1
|
Mubango E, Fu Z, Dou P, Tan Y, Luo Y, Chen L, Wu K, Hong H. Dual function antioxidant and anti-inflammatory fish maw peptides: Isolation and structure-activity analysis via tandem molecular docking and quantum chemical calculation. Food Chem 2025; 465:141970. [PMID: 39546995 DOI: 10.1016/j.foodchem.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The structure-function relationship of gastrointestinal tract digestion-derived fish maw peptides remains largely unknown. This study aims to elucidate the active sites and cellular bioactivities of these peptides through molecular docking (MD), density functional theory (DFT) computations, in silico bioinformatic analysis, and in cellulo Caco-2 cell studies. In silico screening identified 29 non-toxic, non-allergenic, and water-soluble peptides. Seven peptides exhibited favorable binding to the Keap1-Kelch (2FLU) and TNF-α (2AZ5) proteins. Specifically, peptides WIDPNQG, GFPGER, and FLLFRQ demonstrated the highest electron affinities and smallest HOMO-LUMO energy gaps, suggesting strong free-radical scavenging potential. Both DFT and ex situ MD confirmed the active sites of the seven peptides. The guanidinium group was the dominant active site on six peptides. The isolated peptides improved cellular redox balance, reduced malonaldehyde, and suppressed inflammatory cytokines. This study confirmed DFT computations as a novel tool for elucidating the structure-function relationship of food-derived peptides.
Collapse
Affiliation(s)
- Elliot Mubango
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixin Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peipei Dou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuqing Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Chen
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Li Z, Zhang W, Abubaker MA, Shu Q, Liu Y. In silico identification and experimental validation of two types of angiotensin-converting enzyme (ACE) and xanthine oxidase (XO) milk inhibitory peptides. Food Chem 2025; 464:141864. [PMID: 39504900 DOI: 10.1016/j.foodchem.2024.141864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Bioactive peptides have received significant attention due to their natural origin, low toxicity, and targeting specificity in the past decade. This study identified highly active ACE/XO inhibitors using molecular simulation and online databases and validated their in vitro antioxidant activity and the mechanisms of molecular interactions. According to computer predictions, Asp-Gly-Gly (DGG) and Asp-Gly-Met (DGGM) were identified as potential hydrolysates of common gastrointestinal peptidases with well water-soluble, non-toxic, and non-allergenic. Fourier transform infrared spectroscopy showed that the two peptides altered the enzyme's secondary structure, decreasing α-helix content by about 13 %, along with increasing β-sheet, randam coli, and β-turns content. Molecular docking and molecular dynamics simulations showed that hydrogen bonding and electrostatic interactions caused DGG and DGGM to form stable and dense complexes with the two enzymes. This study provides a new way for economical and efficient screening of new ACE and XO inhibitory peptides from natural proteins.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Wenhua Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
3
|
Liu H, Fan H, Teng X, Sun T, Zhang S, Wang N, Zhang X, Liu T, Zhang Y, Wang D. Exploring novel antioxidant cyclic peptides in corn protein hydrolysate: Preparation, identification and molecular docking analysis. Food Chem 2025; 464:141747. [PMID: 39454442 DOI: 10.1016/j.foodchem.2024.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Antioxidant cyclic peptides were successfully identified from a corn protein hydrolysate. Hydrolysate by Alcalase + Flavourzyme showed the highest cyclic peptide purity (48.36 ± 1.81 %) and higher antioxidant activities compared with other hydrolysate. The success of peptide cyclization in hydrolysate was demonstrated by thermogravimetric analysis and thin-layer chromatography (TLC) analysis. Thermogravimetric analysis showed that the thermal stability of hydrolysate after cyclization was significantly increased, which was related to the formation of cyclic peptides. Peptides with molecular weight less than 1000 Da accounted for more than 80 % in hydrolysate after cyclization. After separation using gel silica chromatography and semi-preparative reverse phase high performance liquid chromatography (RP-HPLC), 22 novel antioxidant cyclic peptides were identified by ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) and orbitrap-tandem mass spectrometry (Orbitrap-MS/MS). Synthetic cyclic peptides with the same sequence were synthesized and characterized for their antioxidant activity. Molecular docking suggested that the free radical molecules could bind with the cyclic backbone and side chain of cyclic peptides through hydrogen bonding, hydrophobic interaction as well as electrostatic interaction. This study has important implications for the high-value utilization of corn protein and new cyclic peptides drugs or functional food development.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xu Teng
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-efficiency Utilization of By-products of Jilin Province, Changchun 130118, China
| | - Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Xu Zhang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China.
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Technological Innovations for Grain Deep-processing and High-efficiency Utilization of By-products of Jilin Province, Changchun 130118, China.
| |
Collapse
|
4
|
Zhang Y, Li W, Hou P, Yang T, Xie J. Physicochemical and stability analysis of mung bean protein hydrolysates with lipid peroxidation inhibition. Food Chem 2025; 463:141135. [PMID: 39255708 DOI: 10.1016/j.foodchem.2024.141135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
This study investigated mung bean protein hydrolysates (MBPH) produced using neutral protease, examining their physicochemical properties, stability, and lipid peroxidation inhibition capabilities. The research revealed that MBPH molecular weight ranged from 17 to 26 kDa and perform various functions, including catalytic, nutrient storage, and binding. Stability assessments showed that MBPH are stable at 45 °C and pH of 7.5 but are light-sensitive and unstable in solution or when combined with sugars. Additionally, increased concentrations of digestive enzymes reduce MBPH stability. Antioxidant tests in vitro and in Caenorhabditis elegans confirmed MBPH's ability to neutralizing radicals, enhance antioxidant enzyme activities, and reduce lipid peroxidation, thereby protecting against oxidative damage. Furthermore, in vivo experiments showed that MBPH extend the lifespan of worms and reduced their body lipid content, indicating potential benefits in mitigating cholesterol-related damage. This research demonstrates the potential of MBPH in inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Wei Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China; College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Peilin Hou
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China
| | - Tan Yang
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Junbo Xie
- College of Traditional Chinese Pharmacy, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.
| |
Collapse
|
5
|
Karki S, Prathumpai W, Anal AK. Microwave-assisted protein extraction from foxtail millet: Optimization, structural characterization, techno-functional properties, and bioactivity of peptides. Int J Biol Macromol 2024; 293:139312. [PMID: 39740721 DOI: 10.1016/j.ijbiomac.2024.139312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
This research investigates the impact of microwave power, processing time, and solid-to-solvent ratio on protein recovery from foxtail millet (Setaria italica), using an artificial neural network (ANN) and genetic algorithm (GA). The extracted protein and subsequent hydrolysates were also evaluated for their techno-functional, structural, and digestibility properties. The ANN model, trained with the Levenberg-Marquardt algorithm and optimized by a GA, identified optimal extraction conditions (960 W, 66.14 s, 0.1264 g/mL), achieving a protein recovery yield of 30.02 ± 0.97 %. Protein recovery increased 1.15-fold for raw microwave-treated protein and 1.52-fold for germinated microwave-treated protein. The functional properties, including foaming, emulsifying, and digestibility were improved. Germinated microwave-treated protein hydrolysates (GMPH) exhibited the highest soluble protein content (17.79 ± 0.33 mg/mL) and degree of hydrolysis (7.63 ± 0.25 %) at 2.5 % (v/w) enzyme concentration, while raw microwave-treated protein hydrolysates (RMPH) showed 16.59 ± 0.36 mg/mL and 5.57 ± 0.14 %, respectively. Partially purified peptides from GMPH and RMPH showed strong antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities, with GMPH showing the highest bioactivity. These findings highlight the potential of germination and microwave-assisted processing to produce high-quality protein and bioactive peptides, supporting the development of protein-rich foods and nutraceuticals to address global protein demand.
Collapse
Affiliation(s)
- Sanjaya Karki
- Food Engineering and Bioprocess Technology Program, Department of Food, Agriculture, and Bioresources, School of Environment, Resources, and Development, Asian Institute of Technology, Khlong Luang, Pathumthani 12120, Thailand
| | - Wai Prathumpai
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology Program, Department of Food, Agriculture, and Bioresources, School of Environment, Resources, and Development, Asian Institute of Technology, Khlong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
6
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Yin X, Yang Z, Shi W, Fan S, Guan X, Ren Y, Zhao H, Fan J, Wang M, Li J. Enrichment of antioxidant peptides by interfacial modification of oat polypeptides induced by zinc ions. Int J Biol Macromol 2024; 288:138573. [PMID: 39667476 DOI: 10.1016/j.ijbiomac.2024.138573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
The pursuit of methods to enhance the purity of food-sourced bioactive peptides continues to pose significant challenges. This study introduces an innovative approach to enrich antioxidant peptides by using zinc ion coordination to augment the foaming capabilities of oat peptides. The resulting antioxidant peptide fraction (AF) accounted for 18 % of the oat globulin hydrolysates, with a significant increase (22-47 %) in scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), OH, and O2- radicals. Proteomics identified 479 peptide segments within AF, and the HipHop analysis further identified 340 antioxidant peptides. Notably, the larger peptides (7-23 amino acids) were the primary contributors to the antioxidant activity, featuring key pharmacophores, i.e., charge centers, hydrophobic centers, and hydrogen bond acceptors. The AF and its key monomers (DDTKTWPEDL, YSTDPANPTKSA, NKREQQSGNNIF, and QVGQSPQYQEG) exhibited potent inhibitory effects on tyrosinase (IC50, 18.60-46.20 μg/mL) and provided strong inhibition against lipid oxidation, indicating great potential for applications in health supplements and food preservation.
Collapse
Affiliation(s)
- Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Zhenchi Yang
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Weihe Shi
- School of Statistics, University of International Business and Economics, Beijing, China
| | - Shuheng Fan
- China School of Banking and Finance, University of International Business and Economics, Beijing, China
| | - Xinyue Guan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Yanan Ren
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China.
| | - Mengze Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, China.
| | - Jianjun Li
- Ningxia Xianeng Biotechnology Co., Ltd, Lingwu, China
| |
Collapse
|
8
|
Yong Y, Ahmad HN, Zhang H, Gu Y, Zhu J. Topological structure, rheological characteristics and biological activities of exopolysaccharides produced by Saccharomyces cerevisiae ADT. Int J Biol Macromol 2024; 286:138297. [PMID: 39631608 DOI: 10.1016/j.ijbiomac.2024.138297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Saccharomyces cerevisiae ADT is an edible fungus, with limited research on its exopolysaccharides (EPS). Three types of exopolysaccharides (EPS60, EPS80, and EPS100) were obtained through multiple purification steps using varying concentrations of ethanol in this study. The topological structure, rheological properties, and biological characteristics of EPS were investigated. High performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) analyses indicated that the three EPS are primarily made up of mannose with a small amount of glucose. Acetyl groups were also found, along with the presence of α-type pyranose and β-type pyranose. The Congo Red test and X-ray diffraction results reflected the absence of a triple helix structure and crystal properties. Atomic force microscopy (AFM) revealed the self-assembly of three exopolysaccharides into various topological structures under different concentration gradients, and a clear network structure of entangled chains was observed. EPS60, EPS80 and EPS100 displayed pseudoplasticity, weak gel behavior and thermal stability. Significantly, EPS exhibited antioxidant activity in a dose-dependent manner and showed no acute cytotoxicity to RAW264.7 and HEK293T cells. Therefore, EPS in this study is anticipated to be utilized in natural antioxidants, medications, and functional materials.
Collapse
Affiliation(s)
- Yueyuan Yong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Zhang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Gu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China.
| |
Collapse
|
9
|
Lamminpää I, Amedei A, Parolini C. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Mar Drugs 2024; 22:523. [PMID: 39590803 PMCID: PMC11595733 DOI: 10.3390/md22110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs), which comprise coronary heart disease, hypertension, and stroke, collectively represent the number one cause of death globally. Atherosclerosis is the dominant cause of CVDs, and its risk factors are elevated levels of low-density lipoprotein cholesterol and triglycerides, hypertension, cigarette smoking, obesity, and diabetes mellitus. In addition, diverse evidence highlights the role played by inflammation and clonal haematopoiesis, eventually leading to immunity involvement. The human microbiota project and subsequent studies using next-generation sequencing technology have indicated that thousands of different microbial species are present in the human gut. Disturbances in the gut microbiota (GM) composition, i.e., gut dysbiosis, have been associated with diseases ranging from localised gastrointestinal disorders to metabolic and cardiovascular illnesses. Of note, experimental studies suggested that GM, host immune cells, and marine-derived ingredients work together to ensure intestinal wall integrity. This review discusses current evidence concerning the links among GM, marine-derived ingredients, and human inflammatory disease. In detail, we summarise the impact of fish-derived proteins/peptides and algae components on CVD risk factors and gut microbiome. Furthermore, we describe the interplay among these dietary components, probiotics/prebiotics, and CVDs.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, Via Balzaretti 9, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
10
|
Wang S, Zhang M, Liu Y, Liu J, Zheng T, Li Y, He S, Jiang M, Wu L, Liu F. Influence of fermentation with lactic bacteria on the structure, functional properties and antioxidant activity of flaxseed gum. Int J Biol Macromol 2024; 281:136133. [PMID: 39384420 DOI: 10.1016/j.ijbiomac.2024.136133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Flaxseed meal is a by-product of flaxseed oil extraction. In this research, lactic acid bacteria suitable for modification of flaxseed gum were screened based on cellulase activity and the extraction rate of flaxseed gum. The enzyme-weight method was employed to extract flaxseed gum (SDF). The influences of fermentation modification on the extraction yield, structure, function, and antioxidant activity of flaxseed gum was investigated. Based on the enzyme-producing activity and extraction rate, Lactobacillus plantarum (LP-3), Bacillus paracaetocasei (KLDS-82), and Lactobacillus acidophilus (LAC-11) were identified as the most suitable strains for modifying flaxseed gum. The results indicated that the extraction yield of flaxseed gum was 18.45 % ± 0.2 % after fermentation with KLDS-82, which was significantly higher than that of the unmodified group. After fermentation, the microstructure of flaxseed gum became looser and more porous. The characteristic absorption peak of polysaccharide was observed through scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD), and the crystallization area was reduced. Simultaneously, its swelling capacity, water-holding capacity, oil-holding capacity, and other physicochemical properties have also been enhanced. The glucose adsorption capacity, cholesterol adsorption capacity, sodium cholic acid adsorption capacity, cation exchange capacity, α-glucosidase inhibitory activity, and antioxidant properties of SDF modified by Bacillus paracaetocasei (F-SDF) were significantly higher than those of Lactobacillus acidophilus modified SDF (S-SDF), Lactobacillus plantarum modified SDF (Z-SDF), and unmodified SDF (U-SDF). In conclusion, the modification effect of KLDS-82 is the most remarkable. Therefore, it can be utilized as a functional raw material in food.
Collapse
Affiliation(s)
- Song Wang
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mei Zhang
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jiayu Liu
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Tingting Zheng
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yang Li
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Sixuan He
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mengying Jiang
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Liping Wu
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
11
|
Yan Q, Li N, Li Y, Zhao Z, Song Q, Lu S, Wang J, Wang Q. Preparation and identification of novel antioxidant peptides from collagen hydrolysate of sheep hoof assisted by ultrasound. Int J Biol Macromol 2024; 281:136415. [PMID: 39393747 DOI: 10.1016/j.ijbiomac.2024.136415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In this study, different ultrasound-assisted modes [ultrasonic simultaneous (US) and ultrasonic preconditioning (UP)] of synergistic enzymatic hydrolysis were used to prepare bioactive peptides of sheep hoof collagen. The 2, 2-diphenyl - 1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2 '-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity and metal chelating capacity of sheep's hoof collagen antioxidant peptides (SCPs) (at 1 mg/mL) prepared at 20 min of treatment in US treatment mode (US-20) were 48.56 ± 0.68 %, 51.97 ± 1.15 % and 65.58 ± 1.36 %, respectively, which were higher compared with the control and UP groups. Using LC-MS/MS analysis, 9336, 11,527, and 11,909 peptide sequences were identified from collagen hydrolysate by C, UP-20, and US-20, respectively. The peptides ACEDAPPSAAHFR and FGFEVGPACFLG with high bioactivity were screened using computer analysis. Molecular docking results revealed that hydrogen bonding and hydrophobic interactions between the two peptide sequences with DPPH and ABTS radicals may be responsible for their antioxidant properties. Therefore, we have optimized the extraction of bioactive peptides from sheep hoof collagen using ultrasound-assisted enzymatic hydrolysis, which is helpful for the high-value utilisation of sheep hoof by-products and the extraction of foodborne antioxidant peptides.
Collapse
Affiliation(s)
- Qi Yan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Nanqi Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yuhan Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ziqiao Zhao
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qianqian Song
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingyun Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Qingling Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
12
|
Guo H, Zang C, Zheng L, Ding L, Yang W, Shan Ren, Guan H. Novel Antioxidant Peptides from Fermented Whey Protein by Lactobacillus rhamnosus B2-1: Separation and Identification by in Vitro and in Silico Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23306-23319. [PMID: 39392363 PMCID: PMC11505895 DOI: 10.1021/acs.jafc.4c07531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Whey is a byproduct of the dairy industry and is rich in protein. To enhance the significance of such byproducts and find efficacious antioxidants for combating oxidative stress, this study reported on the preparation, purification, and identification of novel peptides with antioxidant activities from whey protein metabolites following fermentation by Lactobacillus rhamnosus B2-1. The isolation and identification processes involved macroporous adsorption resin column chromatography, gel filtration column chromatography, and liquid chromatography-tandem mass spectrometry. Therein, three novel antioxidant peptides (PKYPVEPF, LEASPEVI, and YPFPGPIHNS) were selected to be synthesized, and they demonstrated remarkable antioxidant activities in vitro chemical assays. PKYPVEPF, LEASPEVI, and YPFPGPIHNS (100 μg/mL) displayed a notable cytoprotective impact on HepG2 cells under oxidative stress induced by H2O2, increasing the cell viability from 49.02 ± 3.05% to 88.59 ± 10.49%, 82.38 ± 19.16%, and 85.15 ± 7.19%, respectively. Moreover, the peptides boosted the activities of catalase and superoxide dismutase in damaged cells and reduced reactive oxygen species levels. The molecular docking studies highlighted that these antioxidant peptides efficiently bound to key amino acids in the Kelch domain of Keap1, thereby preventing the interaction between Keap1 and Nrf2. In conclusion, PKYPVEPF, LEASPEVI, and YPFPGPIHNS demonstrated substantial antioxidant activity, suggesting their potential for widespread application as functional food additives and ingredients.
Collapse
Affiliation(s)
- Hao Guo
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Chuangang Zang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Long Zheng
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Lin Ding
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Wenqin Yang
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| | - Shan Ren
- Basic
Medical Science College, Qiqihar Medical
University, Qiqihar 161006, China
| | - Hong Guan
- Science
Research Department, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
13
|
Ci X, Liu R, Sun Y, Rifky M, Liu R, Jin Y, Zhu Q, Zhang M, Wu T. A novel antioxidant iron-chelating peptide from yak skin: analysis of the chelating mechanism and digestion stability in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7907-7916. [PMID: 38828699 DOI: 10.1002/jsfa.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The global prevalence of iron deficiency has posed significant public health risks. Animal-derived collagen peptides have been recognized for their potent metal ion-chelating capabilities, which can greatly enhance the bioavailability of iron. Yak skins, typically discarded during production and processing, serve as a valuable resource. Based on yak skin collagen peptide (YSP), we have developed a novel iron-chelating peptide: yak skin collagen iron-chelating peptide (YSP-Fe). RESULTS The maximum level of iron chelation of YSP-Fe achieved was 42.72 ± 0.65 mg g-1. Structural analysis indicated that YSP-Fe was primarily formed from amino, carboxyl and carbonyl groups combined with ferrous ions. Through examination of the amino acid composition, molecular docking and peptide sequence identification, it was determined that Gly, Asp and Arg played crucial roles in the chelation of ferrous ions by YSP. Furthermore, YSP-Fe was more stable in simulated gastrointestinal digestion compared to FeSO4. CONCLUSION YSP-Fe demonstrated dual benefits of iron supplementation and antioxidant effects. These significant findings provide a foundation for the development of novel iron supplements and the effective utilization of yak skin as a valuable resource. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoman Ci
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yuting Sun
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Mohamed Rifky
- Department of Biosystems Technology, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
14
|
Ghelichi S, Sørensen ADM, Náthia-Neves G, Jacobsen C. pH-Dependent Extraction of Antioxidant Peptides from Red Seaweed Palmaria palmata: A Sequential Approach. Mar Drugs 2024; 22:413. [PMID: 39330294 PMCID: PMC11433066 DOI: 10.3390/md22090413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
This study employed a diverse approach to extract antioxidant peptides from red seaweed Palmaria palmata, recognized for its comparatively high protein content. Initially, an aqueous extraction of the entire seaweed was performed, followed by enzymatic hydrolysis of the solid residues prepared from the first step. The effects of three different pH levels (3, 6, and 9) during the aqueous extraction were also examined. Results indicated that the solid fraction from the sequential extraction process contained significantly higher levels of proteins and amino acids than other fractions (p < 0.05). Furthermore, the solid fractions (IC50 ranging from 2.29 to 8.15 mg.mL-1) demonstrated significantly greater free radical scavengers than the liquid fractions (IC50 ranging from 9.03 to 10.41 mg.mL-1 or not obtained at the highest concentration tested) at both stages of extraction (p < 0.05). Among the solid fractions, those produced fractions under alkaline conditions were less effective in radical scavenging than the produced fractions under acidic or neutral conditions. The fractions with most effective metal ion chelating activity were the solid fractions from the enzymatic stage, particularly at pH 3 (IC50 = 0.63 ± 0.04 mg.mL-1) and pH 6 (IC50 = 0.89 ± 0.07 mg.mL-1), which were significantly more effective than those from the initial extraction stage (p < 0.05). Despite no significant difference in the total phenolic content between these solid fractions and their corresponding liquid fractions (3.79 ± 0.05 vs. 3.48 ± 0.02 mg.mL-1 at pH 3 and 2.43 ± 0.22 vs. 2.51 ± 0.00 mg.mL-1 at pH 6) (p > 0.05), the observed antioxidant properties may be attributed to bioactive amino acids such as histidine, glutamic acid, aspartic acid, tyrosine, and methionine, either as free amino acids or within proteins and peptides.
Collapse
Affiliation(s)
- Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Li G, Yu X, Zhan J, Wu C, Wu Y, Wan Y, Wan W, Hu Y, Yang W. A review: Interactions between protein from blue foods and functional components in delivery systems: Function exertion and transmembrane transport by in vitro digestion/cells model. Int J Biol Macromol 2024; 276:133839. [PMID: 39004248 DOI: 10.1016/j.ijbiomac.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Functional compounds (FCs) had some functions, which are affected easily by digestion and transmembrane transport leading to low absorption rates, such as lutein, quercetin, xylo-oligosaccharide. Protein from blue foods is a potential bioactive compound, which had higher bioavailability, especially for bioactive peptides (BBPs). The BBPs has great limitations, especially the variability under pepsin digestion. However, the limitation of single FCs and BBPs in bioavailability might can be complemented by mixture of different bioactive compounds. Therefore, this review provides an in-depth study on the function and mechanism of different FCs/BBPs and their mixtures. Specifically, digestion effect of mixtures on function and transmembrane transport mechanisms of different bioactive compounds were exhibited to elaborate interactions between BBPs and FCs in delivery systems (function and bioavailability). Combination of FCs/BBPs could enhance bioactive compounds function by mutual complement of function mechanisms, as well as improving the function after digestion by regulating digestion process. Moreover, transmembrane absorption and transport of FCs/BBPs also could be facilitated by mixtures due to complement of transmembrane mechanism (endocytosis, protein channels, cell bypass way). This manuscript lays a foundation for the development of active ingredient bioavailability in functional food processing.
Collapse
Affiliation(s)
- Gaoshang Li
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Xuemei Yu
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiduo Wu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yue Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Wubo Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Wenge Yang
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China.
| |
Collapse
|
16
|
Yan WZ, Wang J, Wang YM, Zeng YH, Chi CF, Wang B. Optimization of the Preparation Process and Ameliorative Efficacy in Osteoporotic Rats of Peptide-Calcium Chelates from Skipjack Tuna ( Katsuwonus pelamis) Meat. Foods 2024; 13:2778. [PMID: 39272543 PMCID: PMC11395252 DOI: 10.3390/foods13172778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to establish the preparation process of peptide-calcium chelates (TMP-Ca) using skipjack tuna meat and investigate the function and mechanism of TMP-Ca in an osteoporosis model of rats. The results indicated that trypsin is more suitable for preparing the Ca-chelating hydrolysates of tuna meat, and the optimal hydrolysis conditions were derived as follows: digestion time 4 h, material-liquid ratio 1:10, and enzyme dose 3%. The conditions for chelating Ca with tuna meat hydrolysate were optimized to be chelation time 50 min, temperature 50 °C, pH 8.0, and a peptide-Ca ratio 1:10. The prepared hydrolysate was subjected to ultrafiltration, and the fraction (TMP) (MW <1 kDa) showed the highest Ca chelation rate (51.27 ± 1.42%) and was made into the peptide-Ca chelates (TMP-Ca). In osteoporotic rats, TMP-Ca significantly improved the decrease in ovarian indexes caused by retinoic acid. It also elevated serum Ca, phosphorus, and bone turnover indexes, increased the number of bone trabeculae, and improved bone microstructure. In addition, we confirmed that TMP-Ca could regulate the OPG/TRAF6 pathway to reduce osteoclast differentiation, inhibit bone resorption, and promote bone formation. Therefore, TMP-Ca could significantly ameliorate osteoporosis, and this study provides a functional component for the preparation of healthcare products using skipjack tuna meat to treat osteoporosis.
Collapse
Affiliation(s)
- Wan-Zhen Yan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiao Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Hui Zeng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
17
|
Cao HM, Wu JH, Li S, Zhou X, Zheng LB, Chi CF. A Na + channel receptor of FMRFamide in the cephalopod Sepiella japonica: Identification, characterisation, and expression profiling during different stages of gonadal development. Neuropeptides 2024; 106:102437. [PMID: 38776655 DOI: 10.1016/j.npep.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
FMRFamide, a member of the neuropeptide family, is involved in numerous physiological processes. FMRFamide-activated sodium channels (FaNaCs) are a family of non-voltage-gated, amiloride-sensitive, Na+-selective channels triggered by the neuropeptide FMRFamide. In the present study, the full-length cDNA of the FaNaC receptor of Sepiella japonica (SjFaNaC) was cloned. The cDNA of SjFaNaC was 3004 bp long with an open reading frame (ORF) of 1812 bp, encoding 603 amino acid residues with no signal peptide at the N-terminus. Sequence analysis indicated that SjFaNaC shared a high identity with other cephalopods FaNaCs and formed a sister clade with bivalves. The protein structure was predicted using SWISS-MODEL with AcFaNaC as the template. Quantitative real-time PCR (qRT-PCR) revealed that SjFaNaC transcripts were highly expressed in both female and male reproductive organs, as well as in the optic lobe and brain of the central nervous system (CNS). Results of in situ hybridisation (ISH) showed that SjFaNaC mRNA was mainly distributed in the medulla and deep retina of the optic lobe and in both the supraesophageal and subesophageal masses of the brain. Subcellular localisation indicated that the SjFaNaC protein was localised intracellularly and on the cell surface of HEK293T cells. In summary, these findings may lay the foundation for future exploration of the functions of SjFaNaC in cephalopods.
Collapse
Affiliation(s)
- Hui-Min Cao
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Jun-Hong Wu
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Shuang Li
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Xu Zhou
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Li-Bing Zheng
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, 1st Haidanan Road, Changzhi Island, Lincheng, Zhoushan 316022, China.
| |
Collapse
|
18
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Gao R, Zhu L, Zhang W, Jin W, Bai F, Xu P, Wang J, Sun Q, Guo Z, Yuan L. Novel Peptides from Sturgeon Ovarian Protein Hydrolysates Prevent Oxidative Stress-Induced Dysfunction in Osteoblast Cells: Purification, Identification, and Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10076-10088. [PMID: 38629202 DOI: 10.1021/acs.jafc.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Lingling Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Fan Bai
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Peng Xu
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Jinlin Wang
- Quzhou Xunlong Aquatic Products Sci-tech Development Co., Ltd., Quzhou, Zhe Jiang 324000, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
20
|
Wang Z, Zhang M, Hao L, Jiao X, Wu C. Two novel polysaccharides from Huangshui: Purification, structure, and bioactivities. Int J Biol Macromol 2024; 267:131396. [PMID: 38582468 DOI: 10.1016/j.ijbiomac.2024.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 → 4)-Glcp-(1 → 2)-Glcp-(1 → 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 → 6)-Manp-(1 → 3)-Glcp-(1 → 6)-Glcp-(1 → 2)-Manp-(1 → 6)-Glcp-(1 → 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.
Collapse
Affiliation(s)
- Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Ma C, Wu X. Cyperus peptide SFRWQ inhibits oxidation and inflammation in RAW264.7 cell model. Int J Biol Macromol 2024; 267:131272. [PMID: 38565370 DOI: 10.1016/j.ijbiomac.2024.131272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Oxidative stress can induce many diseases. Antioxidant peptides from food sources have the advantages of good safety, high activity, and good absorbability. In this study, a pentapeptide (SFRWQ; SER-PHE-ARG-TRP-GLN) was identified in a protein hydrolysate of Cyperus (Cyperus esculentus L.). Enzyme-linked immunosorbent assay (ELISA), real-time quantitative (qPCR), immunofluorescence and other techniques were used to evaluate the anti-inflammatory and antioxidant effects of SFRWQ. SFRWQ was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging ability, help increase superoxide dismutase (SOD) and catalase (CAT) levels in RAW264.7 cells, reduce reactive oxygen species (ROS) levels, and decrease tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) gene expression and secretion. The binding score of SFRWQ to recombinant Kelch-like ECH-associated protein 1 (Keap1) was greater than that of TX6. These findings suggest that SFRWQ activates the Keap1-Nrf2 cellular antioxidant signaling pathway. According to metabolomics studies, SFRWQ increased glutathione (GSH), glutathione disulfide (GSSG), and γ-glutamylcysteine levels and decreased the levels of Prostaglandin D2 (PGD2), Prostaglandin E2 (PGE2), and Prostaglandin H2 (PGH2), which are involved in arachidonic acid metabolism, to protect cells from LPS-induced damage. By elucidating the mechanism of action of SFRWQ, we provide a reference for the development of dietary antioxidant peptides.
Collapse
Affiliation(s)
- Chaoyue Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, PR China
| | - Xiaotong Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, PR China.
| |
Collapse
|
22
|
Bakwo Bassogog CB, Nyobe CE, Sabine FY, Bruno Dupon AA, Ngui SP, Minka SR, Laure NJ, Mune Mune MA. Protein hydrolysates of Moringa oleifera seed: Antioxidant and antihyperglycaemic potential as ingredient for the management of type-2 diabetes. Heliyon 2024; 10:e28368. [PMID: 38560105 PMCID: PMC10981051 DOI: 10.1016/j.heliyon.2024.e28368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
New plant proteins with high nutritional quality and biological properties are actively searched worldwide. Moringa oleifera seed protein isolate was prepared from defatted flour and hydrolyzed using four proteases namely trypsin, pepsin, Alcalase, and thermolysin. Then, antioxidant activity and cellular glucose uptake properties of the hydrolysates were assessed. A high degree of hydrolysis was obtained for hydrolysate prepared using trypsin (60.07%), followed by pepsin (57.14%), Alcalase (50.68%), and thermolysin (45.45%). Thermolysin hydrolysate was the most antioxidant efficient (IC50 0.15 and 0.74 mg/mL for 2,2'-azino-bis(acide 3-ethylbenzothiazoline-6-sulfonique) diammonium salt (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, respectively). Trypsin hydrolysate stimulated high glucose uptake by yeast cells (12.34-35.28%). In the absence of insulin, Alcalase hydrolysate was the most efficient for glucose uptake by the muscle, with the rate ranging from 22.03% to 29.93% after 30 min, then from 29.55% to 34.6% after 60 min. The four hydrolysates improved glucose uptake by the muscle in the presence of insulin with the rate ranging from 46.88% to 58.03% after 30 min, and from 50% to 58.18% after 60 min. Therefore, Moringa oleifera seed proteins could be used to prepare peptides as components of functional foods for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Christian Bernard Bakwo Bassogog
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
- Food and Nutrition Research Centre, PO Box 6163, Yaoundé, Cameroon
| | - Carine Emilienne Nyobe
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
- Food and Nutrition Research Centre, PO Box 6163, Yaoundé, Cameroon
| | - Fanta Yadang Sabine
- Center for Research on Medicinal Plants and Traditional Medicine, PO Box 13033, Yaounde, Cameroon
| | | | - Simon Pierre Ngui
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Samuel René Minka
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | | | - Martin Alain Mune Mune
- Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
- Faculty of Science, University of Maroua, PO Box 814, Maroua, Cameroon
| |
Collapse
|
23
|
Dong SY, Li YQ, Sun X, Sun GJ, Wang CY, Liang Y, Hua DL, Chen L, Mo HZ. Structure, physicochemical properties, and biological activities of protein hydrolysates from Zanthoxylum seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3329-3340. [PMID: 38082555 DOI: 10.1002/jsfa.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Si-Yu Dong
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ying-Qiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gui-Jin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chen-Ying Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yan Liang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong-Liang Hua
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Chen
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hai-Zhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
24
|
Liu XC, Wei X, Skibsted LH, Tomasevic I, Yao X, Wang W, Sun W. Investigation of the peptides with calcium chelating capacity in hydrolysate derived from spent hen meat. J Food Sci 2024; 89:2277-2291. [PMID: 38488738 DOI: 10.1111/1750-3841.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinyan Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Wei Wang
- Linyi Jinluo Win Ray Food Co. Ltd., Linyi, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Jingyun W, Zehao M, Hongyan Y, Xingyu L, Doudou C, Shiling L. Novel antioxidant peptides from sheep plasma protein hydrolysates: Purification, identification and cytoprotective effects against H 2O 2-induced oxidative stress. J Food Sci 2024; 89:1944-1959. [PMID: 38411027 DOI: 10.1111/1750-3841.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
This study sought to purify and identify antioxidant peptides from sheep (Ovis aries) plasma protein hydrolysates and assess their protective impacts on H2O2-induced Caco-2 cells. The purification process involved reversed high-performance liquid chromatography, anion-exchange chromatography, and Sephadex G-25. Three peptides, namely Trp-Glu-Glu-Pro-Ala-Met (WEEPAM), Ser-Leu-His-Phe-Met-Glu (SLHFME), and His-Cys-Thr-Thr-Phe-Met-Ile, with molecular weights of 761.84, 762.87, and 852.03 Da, respectively, were identified by liquid chromatography with tandem mass spectrometry. Among the three antioxidant peptides, superoxide radical (O2 -) radical scavenging capacity of WEEPAM and SLHFME was not significantly different from glutathione (GSH) (p > 0.05), while their 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity was greater than GSH (p < 0.05). WEEPAM revealed increased antioxidant activity after pepsin and trypsin hydrolysis under an in vitro digestion model. In addition, WEEPAM inhibited oxidative damage in Caco-2 cells by significantly reducing reactive oxygen species accumulation, early apoptosis, malondialdehyde formation, and increasing intracellular superoxide dismutase, glutathione peroxidase, and catalase activities.
Collapse
Affiliation(s)
- Wang Jingyun
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
- Xinjiang Cerim Modern Agriculture Co., Xinjiang Autonomous Region, Shuanghe, China
| | - Ma Zehao
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Yu Hongyan
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Liu Xingyu
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Cao Doudou
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| | - Lu Shiling
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, China
| |
Collapse
|
26
|
Li H, Guan K, Liu M, Jiang W, Yan F, Zhu A, Zhou S. Identification and anti-oxidative potential of milk fat globule membrane (MFGM)-derived bioactive peptides released through in vitro gastrointestinal digestion. Bioorg Chem 2024; 145:107232. [PMID: 38437762 DOI: 10.1016/j.bioorg.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
This study investigated the stability of milk fat globule membrane (MFGM) protein under simulated gastrointestinal conditions using an in vitro enzymatic digestion method. The optimal hydrolysis conditions were determined by monitoring the changes in particle size and zeta-potential of MFGM protein hydrolysates over time. Furthermore, the distribution of small molecular weight peptides with antioxidant activity was explored through DEAE-52 combined with in vitro cell experiments. Two novel antioxidant peptides (TGIIT and IITQ) were identified based on molecular docking technology and evaluated their potential scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+) radicals. TGIIT and IITQ also demonstrated remarkable abilities in promoting mitochondrial biogenesis and activating Keap1/Nrf2 signaling pathway, which can effectively counteract skeletal muscle dysfunction induced by oxidative stress. Thus, MFGM-derived antioxidant peptides have the potential to be employed in food to regulate muscle protein metabolism and alleviate sarcopenia.
Collapse
Affiliation(s)
- He Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, Guangxi, China
| | - Wen Jiang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Fengjuan Yan
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Aihua Zhu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| |
Collapse
|
27
|
Wachirattanapongmetee K, Katekaew S, Weerapreeyakul N, Thawornchinsombut S. Differentiation of protein types extracted from tilapia byproducts by FTIR spectroscopy combined with chemometric analysis and their antioxidant protein hydrolysates. Food Chem 2024; 437:137862. [PMID: 37931446 DOI: 10.1016/j.foodchem.2023.137862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
This research aimed to characterize protein types including sarcoplasmic protein (SP), myofibrillar protein (MP), and alkali-aided protein extract (AP) prepared from tilapia byproducts using water, 0.6 M NaCl, and alkaline solution (pH 11), respectively compared to freeze-dried minced tilapia muscle (CONTROL). Principal component analysis was performed from second derivative FTIR spectra to differentiate protein type. The AP mostly contained β-sheet structure and had low total sulfhydryl content and surface hydrophobicity. SP can be distinguished from MP by the loading plots of the FTIR bands representing the α-helical structure. While the bands for lipids and β-sheet of protein were noted for differentiating AP from CONTROL. After being hydrolyzed by Protease G6, the AP hydrolysate disclosed the highest ABTS radical scavenging activity, while the SP hydrolysate revealed the strongest metal chelating ability. Thus, an understanding of how fish processing waste can be utilized in the production of antioxidant protein hydrolysates has been achieved.
Collapse
Affiliation(s)
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
28
|
Zhou F, Li D, Hou Y, Cong Z, Li K, Gu X, Xiao G. Exploration of hypoglycemic peptides from porcine collagen based on network pharmacology and molecular docking. PLoS One 2024; 19:e0298674. [PMID: 38470866 DOI: 10.1371/journal.pone.0298674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, the extraction of hypoglycemic peptides from food proteins has gained increasing attention. Neuropeptides, hormone peptides, antimicrobial peptides, immune peptides, antioxidant peptides, hypoglycemic peptides and antihypertensive peptides have become research hotspots. In this study, bioinformatic methods were used to screen and predict the properties of pig collagen-derived hypoglycemic peptides, and their inhibitory effects on α-glucosidase were determined in vitro. Two peptides (RL and NWYR) were found to exhibit good water solubility, adequate ADMET (absorption, distribution, metabolism, elimination, and toxicity) properties, potentially high biological activity, and non-toxic. After synthesizing these peptides, NWYR showed the best inhibitory effect on α-glucosidase with IC50 = 0.200±0.040 mg/mL, and it can regulate a variety of biological processes, play a variety of molecular functions in different cellular components, and play a hypoglycemic role by participating in diabetic cardiomyopathy and IL-17 signaling pathway. Molecular docking results showed that NWYR had the best binding effect with the core target DPP4 (4n8d), with binding energy of -8.8 kcal/mol. NWYR mainly bonded with the target protein through hydrogen bonding, and bound with various amino acid residues such as Asp-729, Gln-731, Leu-765, etc., thus affecting the role of the target in each pathway. It is the best core target for adjuvant treatment of T2DM. In short, NWYR has the potential to reduce type 2 diabetes, providing a basis for further research or food applications as well as improved utilization of pig by-products. However, in subsequent studies, it is necessary to further verify the hypoglycemic ability of porcine collagen active peptide (NWYR), and explore the hypoglycemic mechanism of NWYR from multiple perspectives such as key target genes, protein expression levels and differences in metabolites in animal models of hyperglycemia, which will provide further theoretical support for its improvement in the treatment of T2DM.
Collapse
Affiliation(s)
- Fating Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Di Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhihui Cong
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Kaifeng Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xin Gu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
29
|
Wang D, Wei G, Yang Y, Zou Y, Li X, Shi Y, Huang A. Identification and molecular mechanism of novel bifunctional peptides from Duroc × (Landrace × Yorkshire) pig dry-cured ham: A peptidomics and in silico analysis. Food Res Int 2024; 180:114066. [PMID: 38395557 DOI: 10.1016/j.foodres.2024.114066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Duroc × (Landrace × Yorkshire) pigs are popular in the Chinese market because of their rapid growth, leanness, and economic value. Despite their widespread use in dry-cured ham processing, there is a lack of research on the bioactive peptides of Duroc × (Landrace × Yorkshire) pig ham (DLYH). This study aimed to investigate the presence of peptides with antioxidant and α-glucosidase inhibitory activities in DLYH using peptidomics and in silico analysis. A total of 453 peptides were identified from DLYH, originating mainly from myosin, actin, and the EF-hand domain-containing protein. Notably, two peptides, YDEAGPSIVH (YH10) and FAGDDAPRAVF (FF11), emerged as novel bioactive peptides with antioxidant and α-glucosidase inhibitory activities. Among these peptides, YH10 exhibited a high DPPH radical scavenging activity (IC50 = 1.93 mM), ABTS radical scavenging activity (IC50 = 0.10 mM), α-glucosidase inhibitory activity (IC50 = 2.13 mM), and good gastrointestinal tolerance. Molecular docking analysis showed that YH10 was bound to the ABTS and DPPH radicals and the active site of α-glucosidase (3A4A) primarily through hydrogen bonding and hydrophobic interactions. Furthermore, molecular dynamics (MD) simulation indicated that the YH10-3A4A complexes maintained stable and compact conformations. In conclusion, our findings indicated that peptide YH10 derived from DLYH possesses bifunctional properties of α-glucosidase inhibition and antioxidant activity, which could be beneficial for maintaining ham quality and promoting human health.
Collapse
Affiliation(s)
- Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanling Zou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiang Li
- Yunnan Dong Heng Economic and Trade Group Co., Ltd., Qujing 655000, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
30
|
Shaik MI, Kadir ANA, Sarbon NM. Physicochemical and thermal properties of pepsin- and acid-soluble collagen isolated from the body wall of sea cucumbers (Stichopus hermanni). J Food Sci 2024; 89:320-329. [PMID: 38051010 DOI: 10.1111/1750-3841.16858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.
Collapse
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Asmaa Nuha Abdul Kadir
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
31
|
Wang P, Zhang Y, Hu J, Tan BK. Bioactive Peptides from Marine Organisms. Protein Pept Lett 2024; 31:569-585. [PMID: 39253911 DOI: 10.2174/0109298665329840240816062134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Marine organisms represent promising bioactive peptide resources with diverse biological activities such as antioxidant, antimicrobial, antihypertensive, anti-fatigue, and immunoregulatory activities. Despite many studies on marine bioactive peptides, there is a dearth of comprehensive review articles on the emerging trends that encompass the production techniques and the biological applications of marine bioactive peptides. In this review, we summarize the major research and findings related to marine bioactive peptides, encompassing aspects of their production, purification, biological activities, nanotechnology-based strategies, and their potential applications. Enzymatic hydrolysis currently stands out as the most commonly used method for producing marine bioactive peptides; the downstream purification process often includes a combination of multiple purification techniques. Due to their diverse biological properties, marine peptides have garnered considerable interest for industrial applications as active ingredients in the food, pharmaceutical, and cosmetics industries. Additionally, the incorporation of encapsulation strategies such as nano emulsion, nanoliposome, and microemulsions holds promise for significantly enhancing the bioavailability and bioactivity of marine peptides. Future research should also prioritize the systematic identification and validation of the potential health benefits of marine peptides by both in vitro and in vivo animal models, along with the conduct of human clinical trials.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bee Kang Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
32
|
Hans N, Solanki D, Nagpal T, Amir H, Naik S, Malik A. Process optimization and characterization of hydrolysate from underutilized brown macroalgae (Padina tetrastromatica) after fucoidan extraction through subcritical water hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119497. [PMID: 37951112 DOI: 10.1016/j.jenvman.2023.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/13/2023]
Abstract
The growing demand for macroalgal biomass as a source of proteins, peptides, and amino acids is garnering attention for their biological and functional properties. This study depicts the use of emerging green techniques, i.e. subcritical water, to hydrolyze protein from Padina tetrastromatica. The biomass was treated with subcritical water at varying temperatures between 100 and 220 °C for 10-40 min at a biomass to water proportion of 1:50 (w/v) and pressure of 4.0 MPa. The optimum conditions for recovering the maximum protein (127.2 ± 1.1 mg g-1), free amino acids (58.4 ± 1.0 mg g-1), highest degree of hydrolysis (58.8 ± 1.2 %) and low molecular weight peptides (<650 Da) were found to be 220 °C for 10 min. The amino acid profiling of the hydrolysate revealed that it contains 45 % essential amino acids, with the highest concentration of methionine (0.18 %), isoleucine (0.12 %) and leucine (0.10 %). It was found that the hydrolysate contains phenolics (23.9 ± 1.4 mg GAE g-1) and flavonoids (1.23 ± 0.1 mg QE g-1), which are largely responsible for antioxidant activity. The hydrolysate effectively inhibits acetylcholinesterase and α-amylase in vitro, with IC50 values of 17.9 ± 0.1 mg mL-1 and 16.0 ± 0.5 %, respectively, which can help prevent Alzheimer's disease and diabetes mellitus. Consequently, this study reveals that utilizing eco-friendly subcritical water hydrolysis method, 79 % of the protein was recovered from P. tetrastromatica, which might be an effective source of bioactive peptides in various nutraceutical, pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- Nidhi Hans
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Divyang Solanki
- School of Agriculture and Food Science, The University of Queensland, Brisbane, 4072, Australia.
| | - Tanya Nagpal
- Food Customization and Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Hirah Amir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Satyanarayan Naik
- Supercritical Fluid Extraction Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
33
|
Zhang ZQ, Ren XR, Geng J, Chen SC, Wang QL, Liu CQ, Xiao JH, Huang DW. Identification, characterization and hypolipidemic effect of novel peptides in protein hydrolysate from Protaetia brevitarsis larvae. Food Res Int 2024; 176:113813. [PMID: 38163717 DOI: 10.1016/j.foodres.2023.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.
Collapse
Affiliation(s)
- Zong-Qi Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xin-Rui Ren
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Si-Cong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Qing-Lei Wang
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Chun-Qin Liu
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, People's Republic of China
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| | - Da-Wei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
34
|
Zhang D, Zhang X, Shen F, Ding Y, Wang J, Cui Y, Ye S. Preparation and functional characteristics of protein from Ginkgo endophytic Pseudomonas R6 and Ginkgo seed. Int J Biol Macromol 2023; 253:127063. [PMID: 37748587 DOI: 10.1016/j.ijbiomac.2023.127063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Ginkgo seed protein (GSP) has excellent processing characteristics and antioxidant properties. In this study, Gingko endophytic protein (GEP) was synthesized by Ginkgo endophytic Pseudomonas R6. SDS-PAGE analysis indicated that the molecular weights of GSP and GEP were mainly distributed at 17 KDa and 48 KDa, respectively. FTIR showed that GEP and GSP exhibited characteristic absorption in the amide I, II, and III bands, and absorption in amide A and B indicated the presence of hydrogen bonding. HPLC analysis showed that both proteins had 17 amino acids, but their relative abundance was different, with GSP having the highest Ser content (74.713 mg/g) and GEP having the highest Val content (35.905 mg/g). Stomata were observed on the surface of both proteins by SEM, and there were lamellar and some spherical structures on GEP, while the opposite was observed on GSP. GEP had superior solubility, OHC, FC and EC, while GSP showed good WHC. Both proteins exhibited antioxidant activities, with GSP exhibiting stronger hydroxyl radical scavenging ability than GEP, with IC50 of 0.46 mg/mL and 1.54 mg/mL, respectively. This work demonstrates the antioxidant potential of GEP as an alternative to GSP in the food industry.
Collapse
Affiliation(s)
- Dong Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Xiaohan Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Fengjun Shen
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yan Ding
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Jing Wang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yanping Cui
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Shuhong Ye
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
35
|
Yao Y, Tang H, Ma H, Liu Z, Huang J, Yang X, Zhao L, Yuan Q. Chondroitin Sulfate/Dermatan Sulfate Hybrid Chains from Swim Bladder: Isolation, Structural Analysis, and Anticoagulant Activity. Mar Drugs 2023; 22:9. [PMID: 38276647 PMCID: PMC10817686 DOI: 10.3390/md22010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Glycosaminoglycans (GAGs) with unique structures from marine animals show intriguing pharmacological activities and negligible biological risks, providing more options for us to explore safer agents. The swim bladder is a tonic food and folk medicine, and its GAGs show good anticoagulant activity. In this study, two GAGs, CMG-1.0 and GMG-1.0, were extracted and isolated from the swim bladder of Cynoscion microlepidotus and Gadus morhua. The physicochemical properties, precise structural characteristics, and anticoagulant activities of these GAGs were determined for the first time. The analysis results of the CMG-1.0 and GMG-1.0 showed that they were chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains with molecular weights of 109.3 kDa and 123.1 kDa, respectively. They were mainly composed of the repeating disaccharide unit of -{IdoA-α1,3-GalNAc4S-β1,4-}- (DS-A). The DS-B disaccharide unit of -{IdoA2S-α1,3-GalNAc4S-β1,4-}- also existed in both CMG-1.0 and GMG-1.0. CMG-1.0 had a higher proportion of CS-O disaccharide unit -{-GlcA-β1,3-GalNAc-β1,4-}- but a lower proportion of CS-E disaccharide unit -{-GlcA-β1,3-GalNAc4S6S-β1,4-}- than GMG-1.0. The disaccharide compositions of the GAGs varied in a species-specific manner. Anticoagulant activity assay revealed that both CMG-1.0 and GMG-1.0 had potent anticoagulant activity, which can significantly prolong activated partial thromboplastin time. GMG-1.0 also can prolong the thrombin time. CMG-1.0 showed no intrinsic tenase inhibition activity, while GMG-1.0 can obviously inhibit intrinsic tenase with EC50 of 58 nM. Their significantly different anticoagulant activities may be due to their different disaccharide structural units and proportions. These findings suggested that swim bladder by-products of fish processing of these two marine organisms may be used as a source of anticoagulants.
Collapse
Affiliation(s)
- Yue Yao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Hao Tang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Haiqiong Ma
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Zidong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Jinwen Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Xiufen Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| | - Qingxia Yuan
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.Y.); (H.T.); (H.M.); (Z.L.); (J.H.)
| |
Collapse
|
36
|
Shao M, Zhao W, Shen K, Jin H. Peptides from Harpadon nehereus Bone Ameliorate Angiotensin II-Induced HUVEC Injury and Dysfunction through Activation of the AKT/eNOS and Nrf2 Pathway. ACS OMEGA 2023; 8:41655-41663. [PMID: 37969981 PMCID: PMC10634246 DOI: 10.1021/acsomega.3c05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Angiotensin II (Ang II)-induced vascular endothelial cell injury and dysfunction are important pathophysiological factors in the occurrence and development of hypertension. In this study, the amelioration effects of two peptides KA-8 (KLHDEEVA) and PG-7 (PSRILYG) from Harpadon nehereus bone on Ang II-induced damage and dysfunction in human umbilical vein endothelial cells (HUVECs) were investigated. The results showed that they could significantly decrease the reactive oxygen species (ROS) level and increase the activity of antioxidant enzymes in Ang II-induced HUVEC. Two peptides, especially PG-7, significantly upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, PG-7 significantly reduced the level of expression of endothelin-1(ET-1) and increased the phosphorylation level of phosphoinositide 3-kinase (PI3K), serine/threonine kinase (AKT), and nitric oxide synthase (eNOS). These results indicated that the two peptides, especially PG-7, can ameliorate angiotensin II-induced HUVEC injury and dysfunction through activation of the AKT/eNOS and Nrf2 pathway. Furthermore, PG-7 showed a stronger affinity with angiotensin-converting enzyme (ACE) and ACE inhibitory than KA-8. In conclusion, peptide PG-7 reveals potential in the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Manfen Shao
- Zhoushan
Women and Children Hosptital, Zhoushan 316022, China
| | - Wei Zhao
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Kai Shen
- Zhoushan
Women and Children Hosptital, Zhoushan 316022, China
| | - Huoxi Jin
- Zhejiang
Provincial Engineering Technology Research Center of Marine Biomedical
Products, School of Food and Pharmacy, Zhejiang
Ocean University, Zhoushan 316022, China
| |
Collapse
|
37
|
Dong X, Ma Y, Xie Y, Cui W, Zhou H, Zhou K, Xu F, Xu B. Identification and Mechanism Elucidation of Anti-Inflammatory Peptides in Jinhua Ham: An Integrative In Silico and In Vitro Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921432 DOI: 10.1021/acs.jafc.3c05132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
This study aimed to effectively identify anti-inflammatory peptides in Jinhua ham, a dry-cured meat product made from the hind legs of pigs by curing and fermenting processes, and elucidate their anti-inflammatory mechanism. The investigation involved a combination of chromatographic purification, in silico screening, and in vitro validation. The first peak of JHP (JHP-P1) was purified using two-part exchange chromatography, in which 3350 peptides were identified by nano-HPLC-MS/MS, among which QLEELKR and EAEERADIAESQVNKLR showed significant anti-inflammatory potential (prediction scores: 0.759 and 0.841). In molecular docking and in vitro RAW264.7 cell experiments, these peptides displayed a strong affinity for Toll-like receptor 4-myeloid differentiation-2 (TLR4-MD-2), specifically binding around Arg 380, Lys 475, His 401, Gln 423, Asp 426, etc. This binding inhibited TLR4 expression and prevented trimer formation about TLR4-MD-2 and lipopolysaccharide (LPS), strongly inhibiting the inflammatory cascade. JHP suppressed LPS-induced cytokine overproduction and partially inhibited the phosphorylation of proteins in the MAPK/NF-κB pathway. These results demonstrated that combining in silico methods (activity prediction and molecular docking) is an effective strategy for screening anti-inflammatory peptides. This study provided a theoretical basis for identifying more anti-inflammatory peptides and applying them in functional foods.
Collapse
Affiliation(s)
- Xinran Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wei Cui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Anhui Qingsong Food Co., Ltd., Hefei 231299, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
38
|
Miao X, Liu X, Chen H, Wang C, Diao J. Restoration and preservation effects of mung bean antioxidant peptides on H 2O 2-induced WRL-68 cells via Keap1-Nrf2 pathway. Food Sci Nutr 2023; 11:7130-7144. [PMID: 37970394 PMCID: PMC10630844 DOI: 10.1002/fsn3.3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 11/17/2023] Open
Abstract
Mung bean antioxidant peptides (MBAPs) were prepared from mung bean protein hydrolysate, and four peptide sequences including Ser-Asp-Arg-Thr-Gln-Ala-Pro-His (~953 Da), Ser-His-Pro-Gly-Asp-Phe-Thr-Pro-Val (~956 Da), Ser-Asp-Arg-Trp-Phe (~710 Da), and Leu-Asp-Arg-Gln-Leu (~644 Da) were identified. The effects of MBAPs on the oxidation-induced normal human liver cell line WRL-68 were analyzed to determine the mechanism protecting the oxidation-induced injury. The results showed that the cells were subjected to certain oxidative damage by H2O2 induction, as evidenced by decreased cell number and viability, overproduction of intracellular ROS, and decreased mitochondrial membrane potential. Compared with the H2O2-induced group, the MBAP-treated oxidation-induced group exhibited significantly higher cell number and viability, and the intracellular ROS was similar to that of the control group, suggesting that MBAP scavenges excessive intracellular free radicals after acting on the oxidation-induced cells. Combined with Western blotting results, it was concluded that the MBAP-treated oxidation-induced group also significantly promoted the expression of proteins related to the kelch-like ech-related protein 1 (Keap1)/ nuclear factor e2-related factor 2 (Nrf2) signaling pathway, which resulted in an approximately 2-fold increase in antioxidant enzymes, and a decrease in malondialdehyde content of approximately 55% compared to oxidatively-induced cells, leading to the recovery of both cell morphology and viability. These results suggest that MBAPs scavenge intracellular free radicals and improve oxidative stress in hepatocytes through the expression of Keap1/Nrf2 pathway-related protein, thereby reducing oxidative attack on the liver. Therefore, MBAP is applied as a nutritional ingredient in the functional food field, and this study provides a theoretical basis for the high utilization of mung bean proteins.
Collapse
Affiliation(s)
- Xue Miao
- College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Xin Liu
- College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Hongsheng Chen
- College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingChina
- Mudanjiang Institute of Food and BiotechnologyHeilongjiang Bayi Agricultural UniversityMudanjiangChina
| | - Changyuan Wang
- College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingChina
| | - Jingjing Diao
- National Coarse Cereals Engineering Research CenterHeilongjiang Bayi Agricultural UniversityDaqingChina
| |
Collapse
|
39
|
Ullah R, Jan SA, Khan MN, Nazish M, Kamal A, Kaplan A, Yehia HM, Alarjani KM, Alkasir R, Zaman W. Euphorbia royleana Boiss Derived Silver Nanoparticles and Their Applications as a Nanotherapeutic Agent to Control Microbial and Oxidative Stress-Originated Diseases. Pharmaceuticals (Basel) 2023; 16:1413. [PMID: 37895884 PMCID: PMC10609787 DOI: 10.3390/ph16101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 μg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.
Collapse
Affiliation(s)
- Rehman Ullah
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Saiqa Afriq Jan
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University Public School, University of Peshawar, Peshawar 25120, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi 46300, Pakistan;
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman 72060, Turkey;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2451, Riyadh 11451, Saudi Arabia;
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Rashad Alkasir
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
40
|
Ma J, Su K, Chen M, Wang S. Study on the antioxidant activity of peptides from soybean meal by fermentation based on the chemical method and AAPH-induced oxidative stress. Food Sci Nutr 2023; 11:6634-6647. [PMID: 37823157 PMCID: PMC10563698 DOI: 10.1002/fsn3.3612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 10/13/2023] Open
Abstract
Preparation and antioxidant activities of soybean peptides using solid fermentation to decrease the content of trypsin inhibitor (TI) and antigen protein were investigated in this study. The results showed the optimal fermentation conditions were as follows: fermentation time 48 h, the ratio of material to solvent 1:2, inoculum size 12%, and the ratio of Lactic acid bacteria and Aspergillus oryzae 2:1. The hydrolysate was were divided into four components of <1, 1-3, 3-5, and >5 kDa by ultrafiltration based on molecular weight, and the <1 kDa peptides expressed the highest antioxidant activities. Meanwhile, the cell antioxidant activity of the <1 kDa soybean peptides was investigated using AAPH-induced erythrocyte hemolysis, which effectively inhibited erythrocyte hemolysis with the inhibit rate of 85.8% through inhibition of the ROS intracellular generation. In addition, soybean peptides could significantly restore the intracellular antioxidant enzymes (SOD, GSH-Px, and CAT) activities, as well as inhibited intracellular MDA generation and depletion of GSH. The intracellular antioxidant detoxifying mechanism of soybean peptides was associated with both non-enzymatic and enzymatic defense systems. According to this study, fermentation could effectively improve the antioxidant activities of soybean peptides.
Collapse
Affiliation(s)
- JuanJuan Ma
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Keying Su
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Meimei Chen
- Guangzhou College of Technology and BusinessGuangzhouChina
| | - Shuo Wang
- Guangzhou College of Technology and BusinessGuangzhouChina
| |
Collapse
|
41
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
42
|
Zhu WY, Wang YM, Ge MX, Wu HW, Zheng SL, Zheng HY, Wang B. Production, identification, in silico analysis, and cytoprotection on H 2O 2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Front Nutr 2023; 10:1197382. [PMID: 37502715 PMCID: PMC10369073 DOI: 10.3389/fnut.2023.1197382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Exceeding 50% tuna catches are regarded as byproducts in the production of cans. Given the high amount of tuna byproducts and their environmental effects induced by disposal and elimination, the valorization of nutritional ingredients from these by-products receives increasing attention. Objective This study was to identify the angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) peptides from roe hydrolysate of Skipjack tuna (Katsuwonus pelamis) and evaluate their protection functions on H2O2-induced human umbilical vein endothelial cells (HUVECs). Methods Protein hydrolysate of tuna roes with high ACEi activity was prepared using flavourzyme, and ACEi peptides were isolated from the roe hydrolysate using ultrafiltration and chromatography methods and identified by ESI/MS and Procise Protein/Peptide Sequencer for the N-terminal amino acid sequence. The activity and mechanism of action of isolated ACEi peptides were investigated through molecular docking and cellular experiments. Results Four ACEi peptides were identified as WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12), respectively. The affinity of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) with ACE was -8.590, -9.703, -9.325, and -8.036 kcal/mol, respectively. The molecular docking experiment elucidated that the significant ACEi ability of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) was mostly owed to their tight bond with ACE's active sites/pockets via hydrophobic interaction, electrostatic force and hydrogen bonding. Additionally, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could dramatically elevate the Nitric Oxide (NO) production and bring down endothelin-1 (ET-1) secretion in HUVECs, but also abolish the opposite impact of norepinephrine (0.5 μM) on the production of NO and ET-1. Moreover, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could lower the oxidative damage and apoptosis rate of H2O2-induced HUVECs, and the mechanism indicated that they could increase the content of NO and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the generation of reactive oxygen species (ROS) and malondialdehyde (MDA). Conclusion WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) are beneficial ingredients for healthy products ameliorating hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wang-Yu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hua-Wei Wu
- Ningbo Today Food Co., Ltd., Ningbo, China
| | - Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huai-Yu Zheng
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
43
|
Choi JM, Vuppala S, Park MJ, Kim J, Jegal ME, Han YS, Kim YJ, Jang J, Jeong MH, Joo BS. Computer simulation approach to the identification of visfatin-derived angiogenic peptides. PLoS One 2023; 18:e0287577. [PMID: 37384629 PMCID: PMC10309634 DOI: 10.1371/journal.pone.0287577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Angiogenesis plays an essential role in various normal physiological processes, such as embryogenesis, tissue repair, and skin regeneration. Visfatin is a 52 kDa adipokine secreted by various tissues including adipocytes. It stimulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis. However, there are several issues in developing full-length visfatin as a therapeutic drug due to its high molecular weight. Therefore, the purpose of this study was to develop peptides, based on the active site of visfatin, with similar or superior angiogenic activity using computer simulation techniques.Initially, the active site domain (residues 181∼390) of visfatin was first truncated into small peptides using the overlapping technique. Subsequently, the 114 truncated small peptides were then subjected to molecular docking analysis using two docking programs (HADDOCK and GalaxyPepDock) to generate small peptides with the highest affinity for visfatin. Furthermore, molecular dynamics simulations (MD) were conducted to investigate the stability of the protein-ligand complexes by computing root mean square deviation (RSMD) and root mean square fluctuation(RMSF) plots for the visfatin-peptide complexes. Finally, peptides with the highest affinity were examined for angiogenic activities, such as cell migration, invasion, and tubule formation in human umbilical vein endothelial cells (HUVECs). Through the docking analysis of the 114 truncated peptides, we screened nine peptides with a high affinity for visfatin. Of these, we discovered two peptides (peptide-1: LEYKLHDFGY and peptide-2: EYKLHDFGYRGV) with the highest affinity for visfatin. In an in vitrostudy, these two peptides showed superior angiogenic activity compared to visfatin itself and stimulated mRNA expressions of visfatin and VEGF-A. These results show that the peptides generated by the protein-peptide docking simulation have a more efficient angiogenic activity than the original visfatin.
Collapse
Affiliation(s)
- Ji Myung Choi
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Srimai Vuppala
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min Jung Park
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jaeyoung Kim
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Myeong-Eun Jegal
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yu-Seon Han
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Yung-Jin Kim
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Bo Sun Joo
- Lab-to-Medi CRO Inc., Seoul, Republic of Korea
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| |
Collapse
|
44
|
Wu MF, Xi QH, Sheng Y, Wang YM, Wang WY, Chi CF, Wang B. Antioxidant Peptides from Monkfish Swim Bladders: Ameliorating NAFLD In Vitro by Suppressing Lipid Accumulation and Oxidative Stress via Regulating AMPK/Nrf2 Pathway. Mar Drugs 2023; 21:360. [PMID: 37367685 DOI: 10.3390/md21060360] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK) proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c) proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 proteins on promoting the β-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species' (ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD; glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde (MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1) protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop functional products for treating NAFLD.
Collapse
Affiliation(s)
- Ming-Feng Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yan Sheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wan-Yi Wang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
45
|
Jiang H, Kong Y, Song L, Liu J, Wang Z. A Thermostable Type I Collagen from Swim Bladder of Silver Carp ( Hypophthalmichthys molitrix). Mar Drugs 2023; 21:md21050280. [PMID: 37233474 DOI: 10.3390/md21050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
As a major component of the extracellular matrix, collagen has been used as a biomaterial for many purposes including tissue engineering. Commercial collagen derived from mammals is associated with a risk of prion diseases and religious restrictions, while fish-derived collagen can avoid such issues. In addition, fish-derived collagen is widely available and low-cost; however, it often suffers from poor thermal stability, which limits its biomedical application. In this study, collagen with a high thermal stability was successfully extracted from the swim bladder of silver carp (Hypophthalmichthys molitrix) (SCC). The results demonstrated that it was a type I collagen with high purity and well-preserved triple-helix structure. Amino acid composition assay showed that the amounts of threonine, methionine, isoleucine and phenylalanine in the collagen of swim bladder of silver carp were higher than those of bovine pericardium. After adding salt solution, swim-bladder-derived collagen could form fine and dense collagen fibers. In particular, SCC exhibited a higher thermal denaturation temperature (40.08 °C) compared with collagens from the swim bladder of grass carp (Ctenopharyngodon idellus) (GCC, 34.40 °C), bovine pericardium (BPC, 34.47 °C) and mouse tail (MTC, 37.11 °C). Furthermore, SCC also showed DPPH radical scavenging ability and reducing power. These results indicate that SCC presents a promising alternative source of mammalian collagen for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Honghui Jiang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuanyuan Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Lili Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin 300385, China
| | - Zhihong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
46
|
Chi CF, Wang B. Marine Bioactive Peptides-Structure, Function and Application. Mar Drugs 2023; 21:md21050275. [PMID: 37233469 DOI: 10.3390/md21050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Marine organisms live in harsh marine habitats, causing them to have significantly different and more diverse proteins than those of terrestrial organisms [...].
Collapse
Affiliation(s)
- Chang-Feng Chi
- National and Provincial Joint Engineering Research Centre for Marine Germplasm Resources Exploration and Utilization, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|