1
|
Bognanni A, Firmino RT, Arasi S, Chu DK, Chu AW, Waffenschmidt S, Agarwal A, Dziechciarz P, Horvath A, Mihara H, Roldan Y, Terracciano L, Martelli A, Starok A, Said M, Shamir R, Ansotegui IJ, Dahdah L, Ebisawa M, Galli E, Kamenwa R, Lack G, Li H, Pawankar R, Warner A, Wong GWK, Bozzola M, Assa'Ad A, Dupont C, Bahna S, Spergel J, Venter C, Szajewska H, Nowak-Wegrzyn AH, Vandenplas Y, Papadopoulos NG, Waserman S, Fiocchi A, Schünemann HJ, Brożek JL. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) guideline update - XI - Milk supplement/replacement formulas for infants and toddlers with CMA - Systematic review. World Allergy Organ J 2024; 17:100947. [PMID: 39310372 PMCID: PMC11415968 DOI: 10.1016/j.waojou.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Background Cow's milk allergy (CMA) is the most complex and common food allergy in infants. Elimination of cow's milk from the diet and replacement with a specialized formula for infants with cow's milk allergy who cannot be breastfed is an established approach to minimize the risk of severe allergic reactions while avoiding nutritional deficiencies. Given the availability of multiple options, such as extensively hydrolyzed cow's milk-based formula (eHF-CM), aminoacid formula (AAF), hydrolyzed rice formula (HRF), and soy formula (SF), there is some uncertainty regarding which formula might represent the most suitable choice with respect to health outcomes. The addition of probiotics to a specialized formula has also been proposed as a potential approach to possibly increase the benefit. We systematically reviewed specialized formulas for infants with CMA to inform the updated World Allergy Organization (WAO) DRACMA guidelines. Objective To systematically review and synthesize the available evidence about the use of specialized formulas for the management of individuals with CMA. Methods We searched from inception PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), and the websites of selected allergy organizations, for randomized and non-randomized trials of any language investigating specialized formulas with or without probiotics. We included all studies irrespective of the language of the original publication. The last search was conducted in January 2024. We synthesized the identified evidence quantitatively or narratively as appropriate and summarized it in the evidence profiles. We conducted this review following the PRISMA, Cochrane methods, and the GRADE approach. Results We identified 3558 records including 14 randomized trials and 7 observational studies. Very low certainty evidence suggested that in infants with IgE-mediated CMA, eHF-CM, compared with AAF, might have higher probability of outgrowing CMA (risk ratio (RR) 2.32; risk difference (RD) 25 more per 100), while showing potentially lower probability of severe vomiting (RR 0.12, 95% CI 0.02 to 0.88; RD 23 fewer per 100, 95% CI 3 to 26) and developing food protein-induced enterocolitis syndrome (FPIES) (RR 0.15, 95% CI 0.03 to 0.82; RD 34 fewer per 100, 95% CI 7 to 39). We also found, however, that eHF-CM might be inferior to AAF in supporting a physiological growth, with respect to both weight (-5.5% from baseline, 95%CI -9.5% to -1.5%) and length (-0.7 z-score change, 95%CI -1.15 to -0.25) (very low certainty). We found similar effects for eHF-CM, compared with AAF, also in non-IgE CMA. When compared with SF, eHF-CM might favor weight gain for IgE CMA infants (0.23 z-score change, 95%CI 0.01 to 0.45), and tolerance acquisition (RR 1.86, 95%CI 1.03 to 3.37; RD 27%, 95%CI 1%-74%) for non-IgE CMA (both at very low certainty of the evidence (CoE)). The comparison of eHF-CM vs. HRF, and HRF vs. SF, showed no difference in effect (very low certainty). For IgE CMA patients, low certainty evidence suggested that adding probiotics (L. rhamnosus GG, L. casei CRL431 and B. lactis Bb-12) might increase the probability of developing CMA tolerance (RR 2.47, 95%CI 1.03 to 5.93; RD 27%, 95%CI 1%-91%), and reduce the risk of severe wheezing (RR 0.12, 95%CI 0.02 to 0.95; RD -23%, 95%CI -8% to -0.4%). However, in non-IgE CMA infants, the addition of probiotics (L. rhamnosus GG) showed no significant effect, as supported by low to very low CoE. Conclusions Currently available studies comparing eHF-CM, AAF, HRF, and SF provide very low certainty evidence about their effects in infants with IgE-mediated and non-IgE-mediated CMA. Our review revealed several limitations in the current body of evidence, primarily arising from concerns related to the quality of studies, the limited size of the participant populations and most importantly the lack of diversity and standardization in the compared interventions. It is therefore imperative for future studies to be methodologically rigorous and investigate a broader spectrum of available interventions. We encourage clinicians and researchers to review current World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines for suggestions on how to use milk replacement formulas in clinical practice and what additional research would be the most beneficial.
Collapse
Affiliation(s)
- Antonio Bognanni
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Clinical Epidemiology and Research Center (CERC), Humanitas University & Humanitas Research Hospital, Pieve Emanuele, Milano, Italy
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
| | - Ramon T. Firmino
- Academic Unit of Biological Sciences, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Derek K. Chu
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - Alexandro W.L. Chu
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Siw Waffenschmidt
- Institute for Quality and Efficiency in Health Care, Cologne, Germany
| | - Arnav Agarwal
- Department of Medicine, Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Hanako Mihara
- Clinical Development Infectious Disease, Moderna Japan Co., Ltd., Japan
| | | | - Luigi Terracciano
- Pediatric Primary Care, National Pediatric Health Care System, Milan, Italy
- Italian Society of Preventive and Social Pediatrics (SIPPS), Italy
| | - Alberto Martelli
- Italian Society of Allergy and Pediatric Immunology (SIAIP), Italy
| | | | - Maria Said
- Allergy & Anaphylaxis Australia, Sydney, Australia
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Faculty of Medical and Health Sciences, Tel Aviv University, Israel
| | - Ignacio J. Ansotegui
- Department of Allergy & Immunology, Hospital Quironsalud Bizkaia, Erandio, Bilbao, Spain
| | - Lamia Dahdah
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | - Elena Galli
- Pediatric Allergy Unit, Research Center, San Pietro Hospital - Fatebenefratelli, Rome, Italy
| | - Rose Kamenwa
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Gideon Lack
- Department of Women and Children's Health/Peter Gorer Department of Immunobiology, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
- Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, United Kingdom
| | - Haiqi Li
- Department of Primary Child Care, Children's Hospital, Chongqing Medical University, China
| | - Ruby Pawankar
- Department of Pediatrics. Nippon Medical School, Tokyo, Japan
| | | | - Gary Wing Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Martin Bozzola
- Pediatric Allergy and Immunology Section, Dept of Pediatrics, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Amal Assa'Ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sami Bahna
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Jonathan Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, USA
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Carina Venter
- Section of Allergy and Clinical Immunology, University of Colorado, USA
- Children's Hospital Colorado. Denver, Colorado, USA
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Anna H. Nowak-Wegrzyn
- Department of Pediatrics, Hassenfeld Children's Hospital, New York University, Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, Belgium
- KidZ Health Castle, Brussels, Belgium
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, United Kingdom
| | - Susan Waserman
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - Alessandro Fiocchi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Holger J. Schünemann
- Clinical Epidemiology and Research Center (CERC), Humanitas University & Humanitas Research Hospital, Pieve Emanuele, Milano, Italy
| | - Jan L. Brożek
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
van Haren JS, Delbressine FLM, Monincx M, Hoveling T, Meijer N, Bangaru C, Sterk J, van der Woude DAA, Oei SG, van der Hout-van der Jagt MB. From intra- to extra-uterine: early phase design of a transfer to extra-uterine life support through medical simulation. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1371447. [PMID: 39229370 PMCID: PMC11368740 DOI: 10.3389/fmedt.2024.1371447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Extra-uterine life support technology could provide a more physiologic alternative for the treatment of extremely premature infants, as it allows further fetal growth and development ex utero. Animal studies have been carried out which involved placing fetuses in a liquid-filled incubator, with oxygen supplied through an oxygenator connected to the umbilical vessels. Hence, by delaying lung exposure to air, further lung development and maturation can take place. This medical intervention requires adjustments to current obstetric procedures to maintain liquid-filled lungs through a so-called transfer procedure. Methods Our objective was to develop obstetric device prototypes that allow clinicians to simulate this birth procedure to safely transfer the infant from the mother's uterus to an extra-uterine life support system. To facilitate a user-centered design, implementation of medical simulation during early phase design of the prototype development was used. First, the requirements for the procedure and devices were established, by reviewing the literature and through interviewing direct stakeholders. The initial transfer device prototypes were tested on maternal and fetal manikins in participatory simulations with clinicians. Results & discussion Through analysis of recordings of the simulations, the prototypes were evaluated on effectiveness, safety and usability with latent conditions being identified and improved. This medical simulation-based design process resulted in the development of a set of surgical prototypes and allowed for knowledge building on obstetric care in an extra-uterine life support context.
Collapse
Affiliation(s)
- J. S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - F. L. M. Delbressine
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Monincx
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - T. Hoveling
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - N. Meijer
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
| | - C. Bangaru
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - J. Sterk
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
| | - D. A. A. van der Woude
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Obstetrics & Gynecology, Amphia Hospital, Breda, Netherlands
| | - S. G. Oei
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. B. van der Hout-van der Jagt
- Department of Obstetrics & Gynecology, Máxima Medisch Centrum, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
3
|
Lassoued N, Yero A, Jenabian MA, Soret R, Pilon N. Efficient enzyme-free method to assess the development and maturation of the innate and adaptive immune systems in the mouse colon. Sci Rep 2024; 14:11063. [PMID: 38744932 PMCID: PMC11094196 DOI: 10.1038/s41598-024-61834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Researchers who aim to globally analyze the gastrointestinal immune system via flow cytometry have many protocol options to choose from, with specifics generally tied to gut wall layers of interest. To get a clearer idea of the approach we should use on full-thickness colon samples from mice, we first undertook a systematic comparison of three tissue dissociation techniques: two based on enzymatic cocktails and the other one based on manual crushing. Using flow cytometry panels of general markers of lymphoid and myeloid cells, we found that the presence of cell-surface markers and relative cell population frequencies were more stable with the mechanical method. Both enzymatic approaches were associated with a marked decrease of several cell-surface markers. Using mechanical dissociation, we then developed two minimally overlapping panels, consisting of a total of 26 antibodies, for serial profiling of lymphoid and myeloid lineages from the mouse colon in greater detail. Here, we highlight how we accurately delineate these populations by manual gating, as well as the reproducibility of our panels on mouse spleen and whole blood. As a proof-of-principle of the usefulness of our general approach, we also report segment- and life stage-specific patterns of immune cell profiles in the colon. Overall, our data indicate that mechanical dissociation is more suitable and efficient than enzymatic methods for recovering immune cells from all colon layers at once. Additionally, our panels will provide researchers with a relatively simple tool for detailed immune cell profiling in the murine gastrointestinal tract, regardless of life stage or experimental conditions.
Collapse
Affiliation(s)
- Nejia Lassoued
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
| | - Alexis Yero
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada
- Human Immuno-Virology Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC, Canada.
- Centre d'excellence en recherche sur les maladies orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montreal, QC, Canada.
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Power ML, Muletz-Wolz CR, Bornbusch SL. Microbiome: Mammalian milk microbiomes: sources of diversity, potential functions, and future research directions. REPRODUCTION AND FERTILITY 2024; 5:e230056. [PMID: 38513351 PMCID: PMC11046322 DOI: 10.1530/raf-23-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Abstract Milk is an ancient, fundamental mammalian adaptation that provides nutrition and biochemical communication to offspring. Microbiomes have been detected in milk of all species studied to date. In this review, we discuss: (a) routes by which microbes may enter milk; (b) evidence for proposed milk microbiome adaptive functions; (c) variation in milk microbiomes across mammals; and (d) future research directions, including suggestions for how to address outstanding questions on the viability and functionality of milk microbiomes. Milk microbes may be sourced from the maternal gastrointestinal tract, oral, skin, and mammary gland microbiomes and from neonatal oral and skin microbiomes. Given the variety of microbial sources, stochastic processes strongly influence milk microbiome assembly, but milk microbiomes appear to be influenced by maternal evolutionary history, diet, environment, and milk nutrients. Milk microbes have been proposed to colonize the neonatal intestinal tract and produce gene and metabolic products that influence physiology, metabolism, and immune system development. Limited epidemiological data indicate that early-life exposure to milk microbes can result in positive, long-term health outcomes. Milk microbiomes can be modified by dietary changes including providing the mother with probiotics and prebiotics. Milk replacers (i.e. infant formula) may benefit from supplementation with probiotics and prebiotics, but data are lacking on probiotics' usefulness, and supplementation should be evidence based. Overall, milk microbiome literature outside of human and model systems is scarce. We highlight the need for mechanistic studies in model species paired with comparative studies across mammals to further our understanding of mammalian milk microbiome evolution. A broader study of milk microbiomes has the potential to inform animal care with relevance to ex situ endangered species. Lay summary Milk is an ancient adaptation that supports the growth and development of mammalian neonates and infants. Beyond its fundamental nutritional function, milk influences all aspects of neonatal development, especially immune function. All kinds of milks so far studied have contained a milk microbiome. In this review, we focus on what is known about the collection of bacterial members found in milk microbiomes. Milk microbiomes include members sourced from maternal and infant microbiomes and they appear to be influenced by maternal evolutionary history, diet, milk nutrients, and environment, as well as by random chance. Once a neonate begins nursing, microbes from milk colonize their gut and produce byproducts that influence their physiology, metabolism, and immune development. Empirical data on milk microbiomes outside of humans and model systems are sparse. Greater study of milk microbiomes across mammals will expand our understanding of mammalian evolution and improve the health of animals under human care.
Collapse
Affiliation(s)
- Michael L Power
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
- Department of Nutrition Science, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
van Haren JS, Delbressine FLM, Schoberer M, te Pas AB, van Laar JOEH, Oei SG, van der Hout-van der Jagt MB. Transferring an extremely premature infant to an extra-uterine life support system: a prospective view on the obstetric procedure. Front Pediatr 2024; 12:1360111. [PMID: 38425664 PMCID: PMC10902175 DOI: 10.3389/fped.2024.1360111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
To improve care for extremely premature infants, the development of an extrauterine environment for newborn development is being researched, known as Artificial Placenta and Artificial Womb (APAW) technology. APAW facilitates extended development in a liquid-filled incubator with oxygen and nutrient supply through an oxygenator connected to the umbilical vessels. This setup is intended to provide the optimal environment for further development, allowing further lung maturation by delaying gas exposure to oxygen. This innovative treatment necessitates interventions in obstetric procedures to transfer an infant from the native to an artificial womb, while preventing fetal-to-neonatal transition. In this narrative review we analyze relevant fetal physiology literature, provide an overview of insights from APAW studies, and identify considerations for the obstetric procedure from the native uterus to an APAW system. Lastly, this review provides suggestions to improve sterility, fetal and maternal well-being, and the prevention of neonatal transition.
Collapse
Affiliation(s)
- Juliette S. van Haren
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, Netherlands
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
| | | | - Mark Schoberer
- Institute for Applied Medical Engineering and Clinic for Neonatology, University Hospital Aachen, Aachen, Germany
| | - Arjan B. te Pas
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Judith O. E. H. van Laar
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - S. Guid Oei
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. Beatrijs van der Hout-van der Jagt
- Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
7
|
Samarra A, Flores E, Bernabeu M, Cabrera-Rubio R, Bäuerl C, Selma-Royo M, Collado MC. Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:1-28. [PMID: 39060728 DOI: 10.1007/978-3-031-58572-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning human reproductive microbiota, and also, the microbial colonization during early life, focusing on the potential impact on infant development and health outcomes. Furthermore, we conclude that some dietary strategies including specific probiotics and other-biotics could become potentially valuable tools to modulate the maternal-neonatal microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Eduard Flores
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna-Valencia, Spain.
| |
Collapse
|
8
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Xie Q, Cui D, Zhu Q, Qin X, Ren D, Xu X. Supplementing maternal diet with milk oligosaccharides and probiotics helps develop the immune system and intestinal flora of offsprings. Food Sci Nutr 2023; 11:6868-6877. [PMID: 37970377 PMCID: PMC10630837 DOI: 10.1002/fsn3.3579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Intestinal flora is very important for improving the development of the immune system in newborns. Maternal diet during pregnancy and lactation is one of the key factors affecting the growth and development of offspring. The objective of the present study was to examine whether supplementation of maternal diet with milk oligosaccharides and Bifidobacterium could influence the development of the intestinal flora and immune system of neonatal mice. In total, 30 pregnant Institute of Cancer Research (ICR) mice were randomly divided into six groups: a control group (basal diet) and five intervention groups (basal diet supplemented with different doses of 2'-fucosyllactose [2'-FL] and Bifidobacterium Bb12) during the pregnancy period. All female mice were monitored for physical health during gavage. After delivery, the number of mice in each litter, any deformity, and the development of the offspring were recorded. The spleen, blood, and fecal samples of six groups of 10-12 day-old offspring were collected. The results demonstrated that maternal milk oligosaccharides and probiotics conferred protective effects against lipopolysaccharide (LPS)-induced immunosuppression in mice offspring by significantly enhancing the immune organ indexes, splenocyte proliferation, immunoglobulin (immunoglobulin G, A, M) production as well as improving the macrophage phagocytosis (p < .05). The abundance of Lactobacilli and Bifidobacteria in the feces of offspring mice in the intervention groups was significantly higher than that of the offspring mice in the control group (p < .05). These findings suggest that the combination of 2'-FL and Bifidobacterium Bb12 displayed synergistic interactions between the two components that could promote the development of the immune system of the offsprings and improve their microbiota through maternal ingestion.
Collapse
Affiliation(s)
- Qinggang Xie
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| | | | - Qinchao Zhu
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xuewen Qin
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Daxi Ren
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xiaoxi Xu
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
10
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
11
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Monzon N, Kasahara EM, Gunasekaran A, Burge KY, Chaaban H. Impact of neonatal nutrition on necrotizing enterocolitis. Semin Pediatr Surg 2023; 32:151305. [PMID: 37257267 PMCID: PMC10750299 DOI: 10.1016/j.sempedsurg.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of morbidity and mortality in preterm infants. NEC is multifactorial and the result of a complex interaction of feeding, dysbiosis, and exaggerated inflammatory response. Feeding practices in the neonatal intensive care units (NICUs) can vary among institutions and have significant impact on the vulnerable gastointestinal tract of preterm infants. . These practices encompass factors such as the type of feeding and fortification, duration of feeding, and rate of advancement, among others. The purpose of this article is to review the data on some of the most common feeding practices in the NICU and their impact on the development of NEC in preterm infants. Data on the human milk bioactive component glycosaminoglycans, specifically hyaluronan, will also be discussed in the context of postnatal intestinal development and NEC prevention.
Collapse
Affiliation(s)
- Noahlana Monzon
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Emma M Kasahara
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kathryn Y Burge
- Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hala Chaaban
- Department of Nutritional Sciences, The University of Oklahoma Health Sciences Center, Oklahoma, OKC, 73104; Department of Pediatrics, Division of Neonatology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
13
|
Súkeníková L, Černý V, Thon T, Roubalová R, Jirásková Zákostelská Z, Novotná O, Petrásková P, Boráková K, Kocourková I, Lodinová-Žádníková R, Musil Z, Kolářová L, Prokešová L, Valenta Z, Hrdý J. Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota. Front Immunol 2023; 13:1038328. [PMID: 36703968 PMCID: PMC9872645 DOI: 10.3389/fimmu.2022.1038328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Probiotic administration seems to be a rational approach to promote maturation of the neonatal immune system. Mutual interaction of the microbiota with the host immune system is critical for the setting of appropriate immune responses including a tolerogenic one and thevmaintenance of homeostasis. On the other hand, our knowledge on the modes of actions of probiotics is still scarce. Methods In our study, probiotic strain Escherichia coli O83:K24:H31 (EcO83) was administered to neonates of allergic mothers (AMs; neonates with increased risk for allergy development) within 48 h after the delivery, and the impact of this early postnatal supplementation on allergy incidence and selected immune markers has been analyzed 10 years after the primary EcO83 administration. Results We have observed decreased allergy incidence in 10-year-old children supplemented with EcO83 (13 of 52 children were allergic) in comparison with non-supplemented children of AMs (16 of 42 children were allergic). The early postnatal EcO83 supplementation appeared to limit the allergy in the high-risk group (children of AMs) compared to that in the low-risk group (children of healthy mothers). Dendritic cells (DCs) in the peripheral blood of EcO83-supplemented children do not differ significantly in cell surface presence of CD83. The immunomodulatory capacity of EcO83 on DCs was tested in vitro as well. Both directly isolated myeloid and in vitro monocyte-derived DCs from cord blood increased CD83 expression together with interleukin (IL)-10 secretion after EcO83 stimulation. The effect of early postnatal EcO83 supplementation on the microbiota composition of 10-year-old children was characterized by next-generation sequencing, and we have not observed significant changes in the microbiota composition of EcO83-supplemented and non-supplemented children at the age of 10 years. Conclusions Early postnatal EcO83 supplementation appears to lower allergy incidence in children of AMs. It seems that the beneficial effect of EcO83 is mediated via modulation of DC functional capacities without impacting the microbiota composition. Larger-scale studies will be necessary to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Thon
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | - Radka Roubalová
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | | | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kristýna Boráková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | - Ingrid Kocourková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | | | - Zdeněk Musil
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia,*Correspondence: Jiří Hrdý,
| |
Collapse
|
14
|
Qin W, Xu B, Chen Y, Yang W, Xu Y, Huang J, Duo T, Mao Y, Zhou G, Yan X, Ma L. Dietary ellagic acid supplementation attenuates intestinal damage and oxidative stress by regulating gut microbiota in weanling piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:322-333. [PMID: 36329683 PMCID: PMC9597110 DOI: 10.1016/j.aninu.2022.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 06/01/2023]
Abstract
Intestinal oxidative stress triggers gut microbiota dysbiosis, which is involved in the etiology of post-weaning diarrhea and enteric infections. Ellagic acid (EA) can potentially serve as an antioxidant supplement to facilitate weaning transition by improving intestinal oxidative stress and gut microbiota dysbiosis. Therefore, we aimed to investigate the effects of dietary EA supplementation on the attenuation of intestinal damage, oxidative stress, and dysbiosis of gut microbiota in weanling piglets. A total of 126 piglets were randomly assigned into 3 groups and treated with a basal diet and 2 mL saline orally (Ctrl group), or the basal diet supplemented with 0.1% EA and 2 mL saline orally (EA group), or the basal diet and 2 mL fecal microbiota suspension from the EA group orally (FEA group), respectively, for 14 d. Compared with the Ctrl group, EA group improved growth performance by increasing average daily feed intake and average daily weight gain (P < 0.05) and decreasing fecal scores (P < 0.05). EA group also alleviated intestinal damage by increasing the tight junction protein occludin (P < 0.05), villus height, and villus height-to-crypt depth ratio (P < 0.05), while decreasing intestinal epithelial apoptosis (P < 0.05). Additionally, EA group enhanced the jejunum antioxidant capacity by increasing the total antioxidant capacity (P < 0.01), catalase (P < 0.05), and glutathione/oxidized glutathione (P < 0.05), but decreased the oxidative metabolite malondialdehyde (P < 0.05) compared to the Ctrl group. Compared with the Ctrl group, EA and FEA groups increased alpha diversity (P < 0.05), enriched beneficial bacteria (Ruminococcaceae and Clostridium ramosum), and increased metabolites short-chain fatty acids (P < 0.05). Correspondingly, FEA group gained effects comparable to those of EA group on growth performance, intestinal damage, and intestinal antioxidant capacity. In addition, the relative abundance of bacteria shifted in EA and FEA groups was significantly related to the examined indices (P < 0.05). Overall, dietary EA supplementation could improve growth performance and attenuate intestinal damage and oxidative stress by regulating the gut microbiota in weanling piglets.
Collapse
Affiliation(s)
- Wenxia Qin
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yuwen Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Wenbo Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Yunzheng Xu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Juncheng Huang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Ting Duo
- Wuhan Huayang Animal Pharmaceutical Co., Ltd Wuhan, China
| | - Yihua Mao
- Hubei Tianxin Biotech Co., Ltd, Shiyan, China
| | | | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China
| |
Collapse
|
15
|
Banić M, Butorac K, Čuljak N, Leboš Pavunc A, Novak J, Bellich B, Kazazić S, Kazazić S, Cescutti P, Šušković J, Zucko J, Kos B. The Human Milk Microbiota Produces Potential Therapeutic Biomolecules and Shapes the Intestinal Microbiota of Infants. Int J Mol Sci 2022; 23:ijms232214382. [PMID: 36430861 PMCID: PMC9699365 DOI: 10.3390/ijms232214382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Human milk not only provides a perfect balance of nutrients to meet all the needs of the infant in the first months of life but also contains a variety of bacteria that play a key role in tailoring the neonatal faecal microbiome. Microbiome analysis of human milk and infant faeces from mother-breastfed infant pairs was performed by sequencing the V1-V3 region of the 16S rRNA gene using the Illumina MiSeq platform. According to the results, there is a connection in the composition of the microbiome in each mother-breastfed infant pair, supporting the hypothesis that the infant's gut is colonised with bacteria from human milk. MiSeq sequencing also revealed high biodiversity of the human milk microbiome and the infant faecal microbiome, whose composition changes during lactation and infant development, respectively. A total of 28 genetically distinct strains were selected by hierarchical cluster analysis of RAPD-PCR (Random Amplified Polymorphic DNA-Polymerase Chain Reaction) electrophoresis profiles of 100 strains isolated from human milk and identified by 16S RNA sequencing. Since certain cellular molecules may support their use as probiotics, the next focus was to detect (S)-layer proteins, bacteriocins and exopolysaccharides (EPSs) that have potential as therapeutic biomolecules. SDS-PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis) coupled with LC-MS (liquid chromatography-mass spectrometry) analysis revealed that four Levilactobacillus brevis strains expressed S-layer proteins, which were identified for the first time in strains isolated from human milk. The potential biosynthesis of plantaricin was detected in six Lactiplantibacillus plantarum strains by PCR analysis and in vitro antibacterial studies. 1H NMR (Proton Nuclear Magnetic Resonance) analysis confirmed EPS production in only one strain, Limosilactobacillus fermentum MC1. The overall microbiome analysis suggests that human milk contributes to the establishment of the intestinal microbiota of infants. In addition, it is a promising source of novel Lactobacillus strains expressing specific functional biomolecules.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Saša Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Snježana Kazazić
- The Ruđer Bošković Institute, Laboratory for Mass Spectrometry, Bijenička 54, 10000 Zagreb, Croatia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Ed. C11, 34127 Trieste, Italy
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Laboratory for Bioinformatics, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
16
|
France MT, Brown SE, Rompalo AM, Brotman RM, Ravel J. Identification of shared bacterial strains in the vaginal microbiota of related and unrelated reproductive-age mothers and daughters using genome-resolved metagenomics. PLoS One 2022; 17:e0275908. [PMID: 36288274 PMCID: PMC9604009 DOI: 10.1371/journal.pone.0275908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
It has been suggested that the human microbiome might be vertically transmitted from mother to offspring and that early colonizers may play a critical role in development of the immune system. Studies have shown limited support for the vertical transmission of the intestinal microbiota but the derivation of the vaginal microbiota remains largely unknown. Although the vaginal microbiota of children and reproductive age women differ in composition, the vaginal microbiota could be vertically transmitted. To determine whether there was any support for this hypothesis, we examined the vaginal microbiota of daughter-mother pairs from the Baltimore metropolitan area (ages 14-27, 32-51; n = 39). We assessed whether the daughter's microbiota was similar in composition to their mother's using metataxonomics. Permutation tests revealed that while some pairs did have similar vaginal microbiota, the degree of similarity did not exceed that expected by chance. Genome-resolved metagenomics was used to identify shared bacterial strains in a subset of the families (n = 22). We found a small number of bacterial strains that were shared between mother-daughter pairs but identified more shared strains between individuals from different families, indicating that vaginal bacteria may display biogeographic patterns. Earlier-in-life studies are needed to demonstrate vertical transmission of the vaginal microbiota.
Collapse
Affiliation(s)
- Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anne M. Rompalo
- Division of Infectious Diseases, John Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
17
|
Rio-Aige K, Girbal M, Selma-Royo M, Parra-Llorca A, González S, Martínez-Costa C, Castell M, Collado MC, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Galectins-1, -3 and -9 Are Present in Breast Milk and Have a Role in Early Life Development. Nutrients 2022; 14:nu14204338. [PMID: 36297023 PMCID: PMC9611974 DOI: 10.3390/nu14204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Galectins (Gal) are a family of conserved soluble proteins with high affinity for β-galactoside structures. They have been recognized as important proteins for successful pregnancy. However, little is known about their presence in breast milk and their role in early infancy. Gal-1, -3 and -9 concentrations were evaluated by Multiplex immunoassays in mother–infant pairs from the MAMI cohort in maternal plasma (MP) (n = 15) and umbilical cord plasma (UCP) (n = 15) at birth and in breast milk samples (n = 23) at days 7 and 15 postpartum. Data regarding mother and infant characteristics were collected. Gal-9 was present in a lower concentration range than Gal-1 and Gal-3 in plasma, specifically in UCP. A major finding in the current study is that Gal-1, -3 and -9 were detected for the first time in all the transitional breast milk samples and no differences were found when comparing the two breastfeeding time points. Finally, Gal levels were associated with some maternal and infant characteristics, such as gestational age, pregnancy weight gain, maternal diet, the gender, infant growth and infant infections. In conclusion, Gal levels seem to be involved in certain developmental aspects of early life.
Collapse
Affiliation(s)
- Karla Rio-Aige
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Marina Girbal
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Sonia González
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33071 Oviedo, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), 33011 Oviedo, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, INCLIVA Biomedical Research Institute, University of Valencia, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence:
| | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
18
|
Antimicrobial peptides with cell-penetrating activity as prophylactic and treatment drugs. Biosci Rep 2022; 42:231731. [PMID: 36052730 PMCID: PMC9508529 DOI: 10.1042/bsr20221789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/18/2023] Open
Abstract
Health is fundamental for the development of individuals and evolution of species. In that sense, for human societies is relevant to understand how the human body has developed molecular strategies to maintain health. In the present review, we summarize diverse evidence that support the role of peptides in this endeavor. Of particular interest to the present review are antimicrobial peptides (AMP) and cell-penetrating peptides (CPP). Different experimental evidence indicates that AMP/CPP are able to regulate autophagy, which in turn regulates the immune system response. AMP also assists in the establishment of the microbiota, which in turn is critical for different behavioral and health aspects of humans. Thus, AMP and CPP are multifunctional peptides that regulate two aspects of our bodies that are fundamental to our health: autophagy and microbiota. While it is now clear the multifunctional nature of these peptides, we are still in the early stages of the development of computational strategies aimed to assist experimentalists in identifying selective multifunctional AMP/CPP to control nonhealthy conditions. For instance, both AMP and CPP are computationally characterized as amphipatic and cationic, yet none of these features are relevant to differentiate these peptides from non-AMP or non-CPP. The present review aims to highlight current knowledge that may facilitate the development of AMP’s design tools for preventing or treating illness.
Collapse
|
19
|
Yang Z, Wu Y, Liu X, Zhang M, Peng J, Wei H. S. boulardii Early Intervention Maintains Gut Microbiome Structure and Promotes Gut Mucosal Barrier Function in Early-Weaned Rats. Nutrients 2022; 14:nu14173485. [PMID: 36079743 PMCID: PMC9459792 DOI: 10.3390/nu14173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Early weaning leads to the disorder of the gut microbiome and gut mucosal barrier injury. Early intervention of gut microbiome colonization contributes to the development of the gut microbiome and gut function. The aim of this study was to explore the effects of Saccharomyces boulardii (S. boulardii) early intervention on the gut microbiome structure and gut mucosal barrier function of early-weaned rats. The results showed that S. boulardii early intervention improved growth performance along with a decrease in pathogenic bacteria, an increase in beneficial bacteria, a stable and complex microbiome, and a high level of microbial metabolism. Moreover, S. boulardii upregulated the mucosal barrier function including goblet cells and relative gene expression, tight junction, and sIgA level. Furthermore, S. boulardii suppressed the inflammatory response and promoted the anti-inflammatory response. Our study may provide a possible early intervention strategy for preventing an early weaning-induced disorder of the gut microbiome and loss of gut mucosal barrier function.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
20
|
Súkeníková L, Černý V, Věcek J, Petrásková P, Novotná O, Vobruba Š, Michalčíková T, Procházka J, Kolářová L, Prokešová L, Hrdý J. The Impact of Escherichia coli Probiotic Strain O83:K24:H31 on the Maturation of Dendritic Cells and Immunoregulatory Functions In Vitro and In Vivo. Cells 2022; 11:cells11101624. [PMID: 35626660 PMCID: PMC9140140 DOI: 10.3390/cells11101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Early postnatal events are important for the development of the neonatal immune system. Harboring the pioneering microorganisms forming the microbiota of the neonatal gastrointestinal tract is important for priming the immune system, as well as inducing appropriate tolerance to the relatively innocuous environmental antigens and compounds of normal healthy microbiota. Early postnatal supplementation of suitable, safe probiotics could accelerate this process. In the current study, the immunomodulatory capacity of the probiotic strain of Escherichia coli O83:K24:H31 (EcO83) was characterized in vitro and in vivo. We compared the capacity of EcO83 with and without hemolytic activity on selected immune characteristics in vitro as determined by flow cytometry and quantitative real-time PCR. Both strains with and without hemolytic activity exerted comparable capacity on the maturation of dendritic cells while preserving the induction of interleukin 10 (Il10) expression in dendritic cells and T cells cocultured with EcO83 primed dendritic cells. Early postnatal supplementation with EcO83 led to massive but transient colonization of the neonatal gastrointestinal tract, as detected by in vivo bioimaging. Early postnatal EcO83 administration promoted gut barrier function by increasing the expression of claudin and occludin and the expression of Il10. Early postnatal EcO83 application promotes maturation of the neonatal immune system and promotes immunoregulatory and gut barrier functions.
Collapse
Affiliation(s)
- Lenka Súkeníková
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Viktor Černý
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Jan Věcek
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Petra Petrásková
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Olga Novotná
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Šimon Vobruba
- Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Tereza Michalčíková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (T.M.); (J.P.)
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (T.M.); (J.P.)
| | - Libuše Kolářová
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Ludmila Prokešová
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
| | - Jiří Hrdý
- First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.S.); (V.Č.); (J.V.); (P.P.); (O.N.); (L.K.); (L.P.)
- Correspondence: ; Tel.: +420-224968473
| |
Collapse
|
21
|
Look Who's Talking: Host and Pathogen Drivers of Staphylococcus epidermidis Virulence in Neonatal Sepsis. Int J Mol Sci 2022; 23:ijms23020860. [PMID: 35055041 PMCID: PMC8775791 DOI: 10.3390/ijms23020860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm infants are at increased risk for invasive neonatal bacterial infections. S. epidermidis, a ubiquitous skin commensal, is a major cause of late-onset neonatal sepsis, particularly in high-resource settings. The vulnerability of preterm infants to serious bacterial infections is commonly attributed to their distinct and developing immune system. While developmentally immature immune defences play a large role in facilitating bacterial invasion, this fails to explain why only a subset of infants develop infections with low-virulence organisms when exposed to similar risk factors in the neonatal ICU. Experimental research has explored potential virulence mechanisms contributing to the pathogenic shift of commensal S. epidermidis strains. Furthermore, comparative genomics studies have yielded insights into the emergence and spread of nosocomial S. epidermidis strains, and their genetic and functional characteristics implicated in invasive disease in neonates. These studies have highlighted the multifactorial nature of S. epidermidis traits relating to pathogenicity and commensalism. In this review, we discuss the known host and pathogen drivers of S. epidermidis virulence in neonatal sepsis and provide future perspectives to close the gap in our understanding of S. epidermidis as a cause of neonatal morbidity and mortality.
Collapse
|
22
|
|
23
|
Ahannach S, Delanghe L, Spacova I, Wittouck S, Van Beeck W, De Boeck I, Lebeer S. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience 2021; 24:103306. [PMID: 34765924 PMCID: PMC8571498 DOI: 10.1016/j.isci.2021.103306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Few validated protocols are available for large-scale collection, storage, and analysis of microbiome samples from the vagina, skin, and mouth. To prepare for a large-scale study on the female microbiome by remote self-sampling, we investigated the impact of sample collection, storage, and host DNA depletion on microbiome profiling. Vaginal, skin, and saliva samples were analyzed using 16S rRNA gene amplicon and metagenomic shotgun sequencing, and qPCR. Of the two tested storage buffers, the eNAT buffer could keep the microbial composition stable during various conditions. All three tested host DNA-depletion approaches showed a bias against Gram-negative taxa. However, using the HostZERO Microbial DNA and QIAamp DNA Microbiome kits, samples still clustered according to body site and not by depletion approach. Therefore, our study showed the effectiveness of these methods in depleting host DNA. Yet, a suitable approach is recommended for each habitat studied based on microbial composition. Lysis buffer keeps the microbial composition stable during various storage conditions Host DNA depletion introduces a larger bias toward Gram-negative taxa The HostZERO Microbial DNA kit performed best in human DNA depletion for metagenomics Body site-specific approach based on microbial composition is needed to minimize bias
Collapse
Affiliation(s)
- Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lize Delanghe
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
24
|
Xue W, Li JJ, Zou Y, Zou B, Wei L. Microbiota and Ocular Diseases. Front Cell Infect Microbiol 2021; 11:759333. [PMID: 34746029 PMCID: PMC8566696 DOI: 10.3389/fcimb.2021.759333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Recent advances have identified significant associations between the composition and function of the gut microbiota and various disorders in organ systems other than the digestive tract. Utilizing next-generation sequencing and multiomics approaches, the microbial community that possibly impacts ocular disease has been identified. This review provides an overview of the literature on approaches to microbiota analysis and the roles of commensal microbes in ophthalmic diseases, including autoimmune uveitis, age-related macular degeneration, glaucoma, and other ocular disorders. In addition, this review discusses the hypothesis of the "gut-eye axis" and evaluates the therapeutic potential of targeting commensal microbiota to alleviate ocular inflammation.
Collapse
Affiliation(s)
- Wei Xue
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Yanli Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.,Department of Ophthalmology, Affiliated Foshan Hospital, Southern Medical University, Foshan, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Dawod B, Marshall JS, Azad MB. Breastfeeding and the developmental origins of mucosal immunity: how human milk shapes the innate and adaptive mucosal immune systems. Curr Opin Gastroenterol 2021; 37:547-556. [PMID: 34634003 PMCID: PMC11451935 DOI: 10.1097/mog.0000000000000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Breastfeeding provides passive immunity while the neonatal immune system matures, and may also protect against chronic immune-mediated conditions long after weaning. This review summarizes current knowledge and new discoveries about human milk and mucosal immunity. RECENT FINDINGS New data suggest that certain microbes in maternal milk may seed and shape the infant gut microbiota, which play a key role in regulating gut barrier integrity and training the developing immune system. Human milk oligosaccharides, best known for their prebiotic functions, have now been shown to directly modulate gene expression in mast and goblet cells in the gastrointestinal tract. Epidemiologic data show a reduced risk of peanut sensitization among infants breastfed by peanut-consuming mothers, suggesting a role for milk-borne food antigens in tolerance development. Cross-fostering experiments in mice suggest the soluble Toll-like receptor 2, found in human milk, may be critical in this process. Finally, interest in human milk antibodies surged during the pandemic with the identification of neutralizing severe acute respiratory syndrome coronavirus 2 antibodies in maternal milk following both natural infection and vaccination. SUMMARY Human milk provides critical immune protection and stimulation to breastfed infants. Understanding the underlying mechanisms could identify new therapeutic targets and strategies for disease prevention across the lifespan.
Collapse
Affiliation(s)
- Bassel Dawod
- Department of Pathology
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia
| | - Jean S. Marshall
- Department of Pathology
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia
| | - Meghan B. Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba
- Department of Pediatrics and Child Health
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Minimally invasive biomarkers to detect maternal physiological status in sow saliva and milk. Animal 2021; 15:100369. [PMID: 34607115 DOI: 10.1016/j.animal.2021.100369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we aimed to validate existing plasma assays to measure biomarkers for maternal signalling in milk and saliva of lactating sows. These biological samples are minimally invasive to the animal and could give a physiological profile of maternal qualities available to their piglets. Sows were farrowed in a zero-confinement system, and their colostrum and milk samples were manually collected during naturally occurring let-downs (i.e. not induced) over the lactation period. Saliva sampling involved sows voluntarily accepting cotton buds to chew without restraint. Commercial kits designed for blood plasma were tested, and any modifications and results are given. We successfully measured total protein, cortisol, tumour necrosis factor-α (TNF-α) and oxytocin in pig milk and saliva and immunoglobulin G (IgG) in pig milk samples. We were unsuccessful at measuring relaxin and serotonin in these biological samples. We observed higher levels of biomarkers in milk than in saliva. The measurement of TNF-α in pig milk for the first time revealed increased levels with larger litters. This development will allow more detailed understanding of biomarkers in milk. There was also evidence that the minimally invasive technique of using saliva sampling did not interrupt natural oxytocin production around parturition.
Collapse
|
27
|
Ding M, Yang B, Khine WWT, Lee YK, Rahayu ES, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. The Species-Level Composition of the Fecal Bifidobacterium and Lactobacillus Genera in Indonesian Children Differs from That of Their Mothers. Microorganisms 2021; 9:microorganisms9091995. [PMID: 34576890 PMCID: PMC8467263 DOI: 10.3390/microorganisms9091995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
The infant gut microbiota plays a critical role in early life growth and derives mainly from maternal gut and breast milk. This study aimed to analyze the differences in the gut microbiota, namely Bifidobacterium and Lactobacillus communities at species level among breast milk as well as maternal and infant feces at different time points after delivery. Fifty-one mother–infant pairs from Indonesia were recruited, and the breast milk and maternal and infant feces were collected and analyzed by high throughput sequencing (16S rRNA, Bifidobacterium groEL and Lactobacillus groEL genes). PCoA results showed bacterial composition was different among breast milk and maternal and infant feces within the first two years. The abundance of Bifidobacterium and Bacteroides were significantly higher in infant feces compared to their maternal feces from birth to two years of age, and maternal breast milk within six months after birth (p < 0.05), whereas the abundance of Blautia, Prevotella, and Faecalibacterium was higher in maternal feces compared to that in breast milk within six months and infant feces within one year after birth, respectively (p < 0.05). The relative abundances of Bacteroides and Lactobacillus was higher and lower in infant feces compared to that in maternal feces only between one and two years of age, respectively (p < 0.05). For Bifidobacterium community at species level, B. adolescentis, B. ruminantium, B. longum subsp. infantis, B. bifidum, and B. pseudolongum were identified in all samples. However, the profile of Bifidobacterium was different between maternal and infant feces at different ages. The relative abundances of B. adolescentis and B. ruminantium were higher in maternal feces compared to those in infant feces from birth to one year of age (p < 0.05), while the relative abundances of B. longum subsp. infantis and B. bifidum were higher in infant feces compared to those in maternal feces beyond three months, and the relative abundance of B. pseudolongum was only higher in infant feces between three and six months (p < 0.05). For Lactobacillus community, L. paragasseri showed higher relative abundance in infant feces when the infant was younger than one year of age (p < 0.05). This study showed bacterial composition at the genus level and Bifidobacterium and Lactobacillus communities at the species level were stage specific in maternal breast milk as well as and maternal and infant feces.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- Correspondence:
| | - Wei Wei Thwe Khine
- Department of Microbiology & Immunology, National University of Singapore, Singapore 117545, Singapore;
| | - Yuan-Kun Lee
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- Department of Microbiology & Immunology, National University of Singapore, Singapore 117545, Singapore;
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - R. Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China; (Y.-K.L.); (R.P.R.); (C.S.)
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.D.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| |
Collapse
|
28
|
Chen J, Li H, Hird SM, Chen MH, Xu W, Maas K, Cong X. Sex Differences in Gut Microbial Development of Preterm Infant Twins in Early Life: A Longitudinal Analysis. Front Cell Infect Microbiol 2021; 11:671074. [PMID: 34458157 PMCID: PMC8387566 DOI: 10.3389/fcimb.2021.671074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Infant gut microbiota plays a vital role in immune response, mediates neurobehavioral development and health maintenance. Studies of twins’ gut microbiota found that gut microbiota composition and diversity tend to be mature and stable with increasing postnatal age (PNA). Preterm infant gut microbiome shifts dramatically when they were staying in the neonatal intensive care unit (NICU). Compositions and shifting characteristics of gut microbiota among neonatal preterm twins and triplets during their early life are still unknown, which impedes a better understanding of the mechanism underpinning neurobehavioral development and precise intervention/health of preterm neonates. This longitudinal cohort study used a twins/triplets design to investigate the interaction of genetic (e.g., male vs. female) and environmental factors influencing the development of the gut microbiome in early life. We included 39 preterm infants, 12 were Female twins/triplets (Female T/T) including 3 twins pairs and 2 triplets, 12 were male twins (Male T) including 6 twins pairs, and 15 were mixed-sex twins/triplets (Mix T/T) including 6 twins pairs and 1 triplet (8 females and 7 males) during the first four weeks of NICU stay. Weekly gut microbiota patterns between females and males were compared by linear discriminant analysis (LDA) effect size (LEfSe). Metagenomics function of gut microbiota was predicted by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Weekly function (KEGG pathways) differences between females and males were detected by using Statistical Analysis of Metagenomic Profiles (STAMP). Results found that female pairs and male pairs were significantly different in gut microbiome diversity, compositions, and predicted metabolic profiles, importantly, females and males were also significantly dissimilar within their co-twin/triplet pairs of the mixed-sex group, infants of co-twins/triplets shared more similar features than un-related infants from different twins’ pair. Future research developing personalized interventions for vulnerable high-risk infants should consider sex, and the interaction of sex and environmental factors.
Collapse
Affiliation(s)
- Jie Chen
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Hongfei Li
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Kendra Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Storrs, CT, United States
| | - Xiaomei Cong
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
29
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
30
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
31
|
Yu L, Deng YH, Huang YH, Ke HJ, Guo Y, Wu JL. Comparison of Gut Microbiota Between Infants with Atopic Dermatitis and Healthy Controls in Guangzhou, China. J Asthma Allergy 2021; 14:493-500. [PMID: 34007187 PMCID: PMC8121685 DOI: 10.2147/jaa.s304685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Evidence on the role of the gut microbiota in atopic dermatitis is inconsistent as human intestinal microbiota is influenced by geography. This cross-sectional study therefore aimed to compare differences in the gut microbiota of infants with atopic dermatitis and healthy infants in Guangzhou, China, by analyzing their stool. Patients and Methods The composition of the intestinal microbiota was analyzed from the stool samples of 20 infants with atopic dermatitis (AD group) and 25 healthy infants (non-AD group) (1-6 months old), using full-length 16S rRNA gene sequencing. The Wilcoxon test was used to analyze the relative abundance of bacteria by phylum, family, genus, and species between groups; microbial community richness and diversity were compared between the two groups. Results There were no significant differences in the microbial community richness and diversity between the two groups. At the phylum level, 11 bacterial phyla were found; most sequences belonged to one of the three dominant bacterial phyla - Firmicutes, Proteobacteria, and Bacteroidetes. The top 10 microbes at the phylum, family, and genus levels showed no significant changes in their composition within the gut microbiota between the AD and non-AD groups. A decrease in the ratio of the Streptococcus genus was found in atopic dermatitis group when compared with healthy controls (p=0.048). Conclusion A decrease in the abundance of Streptococcus was found in children with AD. The role of Streptococcus in the development of AD needs to be confirmed in a large cohort study.
Collapse
Affiliation(s)
- Li Yu
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yu-Hong Deng
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuan-Hui Huang
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Hai-Jin Ke
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yong Guo
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jie-Ling Wu
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Nuzzi G, Di Cicco ME, Peroni DG. Breastfeeding and Allergic Diseases: What's New? CHILDREN-BASEL 2021; 8:children8050330. [PMID: 33923294 PMCID: PMC8145659 DOI: 10.3390/children8050330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023]
Abstract
Asthma and other allergic disorders, such as atopic dermatitis and food allergies, are common chronic health problems in childhood. The rapid rise in the prevalence of these conditions registered over the last few decades has stressed the need to identify the modifiable risk factors associated with the development of these diseases. Breast milk, recognized as the gold standard for healthy growth and development of the newborn, is one of the major factors associated with a lower incidence of allergic and infectious diseases in childhood and young adulthood. Although the underlying mechanisms for these effects are not well understood, breastfeeding leads to immune system maturation. In this narrative review, we summarize existing evidence on breastfeeding and human milk composition in relation to allergic disease prevention or development.
Collapse
|
33
|
Ortega VA, Mercer EM, Giesbrecht GF, Arrieta MC. Evolutionary Significance of the Neuroendocrine Stress Axis on Vertebrate Immunity and the Influence of the Microbiome on Early-Life Stress Regulation and Health Outcomes. Front Microbiol 2021; 12:634539. [PMID: 33897639 PMCID: PMC8058197 DOI: 10.3389/fmicb.2021.634539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stress is broadly defined as the non-specific biological response to changes in homeostatic demands and is mediated by the evolutionarily conserved neuroendocrine networks of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Activation of these networks results in transient release of glucocorticoids (cortisol) and catecholamines (epinephrine) into circulation, as well as activation of sympathetic fibers innervating end organs. These interventions thus regulate numerous physiological processes, including energy metabolism, cardiovascular physiology, and immunity, thereby adapting to cope with the perceived stressors. The developmental trajectory of the stress-axis is influenced by a number of factors, including the gut microbiome, which is the community of microbes that colonizes the gastrointestinal tract immediately following birth. The gut microbiome communicates with the brain through the production of metabolites and microbially derived signals, which are essential to human stress response network development. Ecological perturbations to the gut microbiome during early life may result in the alteration of signals implicated in developmental programming during this critical window, predisposing individuals to numerous diseases later in life. The vulnerability of stress response networks to maladaptive development has been exemplified through animal models determining a causal role for gut microbial ecosystems in HPA axis activity, stress reactivity, and brain development. In this review, we explore the evolutionary significance of the stress-axis system for health maintenance and review recent findings that connect early-life microbiome disturbances to alterations in the development of stress response networks.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada
| | - Emily M Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.,Owerko Centre, The Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
34
|
Carucci L, Coppola S, Luzzetti A, Giglio V, Vanderhoof J, Berni Canani R. The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age. Minerva Pediatr (Torino) 2021; 73:115-127. [PMID: 33880903 DOI: 10.23736/s2724-5276.21.06188-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complex microbial community of the gut microbiome plays a fundamental role in driving development and function of the human immune system. This phenomenon is named the gut microbiome-immune system axis. When operating optimally, this axis influences both innate and adaptive immunity, which orchestrates the maintenance of crucial elements of host-microorganisms symbiosis, in a dialogue that modulates responses in the most beneficial way. Growing evidence reveals some environmental factors which can positively and negatively modulate the gut microbiome-immune system axis with consequences on the body health status. Several conditions which increasingly affect the pediatric age, such as allergies, autoimmune and inflammatory disorders, arise from a failure of the gut microbiome-immune system axis. Prenatal or postnatal modulation of this axis through some interventional strategies (including diet, probiotics and postbiotics), may lead to a positive gene-environment interaction with improvement of immune-modulatory effects and final positive effect on human health. In particular probiotics and postbiotics exerting pleiotropic regulatory actions on the gut-microbiome-immune system axis provide an innovative preventive and therapeutic strategy for many pediatric conditions.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, Federico II University, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, Federico II University, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, Federico II University, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Veronica Giglio
- Department of Translational Medical Science, Federico II University, Naples, Italy.,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Jon Vanderhoof
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto Berni Canani
- Department of Translational Medical Science, Federico II University, Naples, Italy - .,ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy.,European Laboratory for the Investigation of Food-Induced Diseases, Federico II University, Naples, Italy.,Task Force for Microbiome Studies, Federico II University, Naples, Italy
| |
Collapse
|
35
|
Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr (Torino) 2021; 73:111-114. [PMID: 33880902 DOI: 10.23736/s2724-5276.21.06223-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From an evolutionary and nutritional standpoint, exclusive human milk feeding for the first 6 months of life, with continued breastfeeding for 1 to 2 years of life, is recognized as the gold standard nourishment for the infant: it is a species-specific food, with a composition designed by nature to better respond to the biological and psychological needs of the newborn/infant. Human milk contains many hundreds of bioactive molecules that protect newborn against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Compared with formula feeding, breastfeeding has been associated with decreased morbidity and mortality in infants and to lower incidence of gastrointestinal infections and inflammatory, respiratory and allergic disease. Here, we briefly review the nutritional and functional composition of human milk and provide an overview of its varied bioactive factors.
Collapse
Affiliation(s)
- Giulia Nuzzi
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Irene Trambusti
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria E DI Cicco
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Section of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy -
| |
Collapse
|
36
|
Radlowski EC, Wang M, Monaco MH, Comstock SS, Donovan SM. Combination-Feeding Causes Differences in Aspects of Systemic and Mucosal Immune Cell Phenotypes and Functions Compared to Exclusive Sow-Rearing or Formula-Feeding in Piglets. Nutrients 2021; 13:1097. [PMID: 33801785 PMCID: PMC8065485 DOI: 10.3390/nu13041097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Combination feeding (human milk and formula) is common and influences immune development compared to exclusive breastfeeding. Infant formulas contain prebiotics, which influence immune development. Herein, immune development of combination-fed (CF), sow-reared (SR) and formula-fed (FF) piglets, and the effect of prebiotics was tested. Piglets (n = 47) were randomized to: SR, FF, CF, FF+prebiotic (FP), and CF+prebiotic (CP). FP and CP received formula with galactooligosaccharides and inulin (4 g/L in a 4:1 ratio). CF and CP piglets were sow-reared for until d5 and then rotated between a sow and formula every 12 h. On day 21, piglets received an intraperitoneal injection of lipopolysaccharide 2 h prior to necropsy. Immune cells from blood, mesenteric lymph nodes (MLN), and spleen were phenotyped. Classical (nitric oxide synthase) and alternative (arginase activity) activation pathways were measured in isolated macrophages. Serum IL-6 and TNF-α were measured by ELISA. SR piglets had lower (p < 0.0001) CD4+ T-helper cells and higher (p < 0.0001) B-cells in PBMC than all other groups. CP piglets had higher (p < 0.0001) arginase activity compared to all other groups. FF piglets had higher (p < 0.05) IL-6 compared to both CF and SR, but were similar to FP and CP. Thus, CF, with or without prebiotics, differentially affected immunity compared to exclusively fed groups.
Collapse
Affiliation(s)
- Emily C. Radlowski
- Department of Nutritional Sciences, Dominican University, River Forest, IL 60305, USA;
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| | - Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| |
Collapse
|
37
|
Salvador R, Zhang A, Horai R, Caspi RR. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol 2021; 8:606751. [PMID: 33614621 PMCID: PMC7893107 DOI: 10.3389/fcell.2020.606751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune uveitis is a major cause of blindness in humans. Activation of retina-specific autoreactive T cells by commensal microbiota has been shown to trigger uveitis in mice. Although a culprit microbe and/or its immunogenic antigen remains to be identified, studies from inducible and spontaneous mouse models suggest the potential of microbiota-modulating therapies for treating ocular autoimmune disease. In this review, we summarize recent findings on the contribution of microbiota to T cell-driven, tissue-specific autoimmunity, with an emphasis on autoimmune uveitis, and analyze microbiota-altering interventions, including antibiotics, probiotics, and microbiota-derived metabolites (e.g., short-chain fatty acids), which have been shown to be effective in other autoimmune diseases. We also discuss the need to explore more translational animal models as well as to integrate various datasets (microbiomic, transcriptomic, proteomic, metabolomic, and other cellular measurements) to gain a better understanding of how microbiota can directly or indirectly modulate the immune system and contribute to the onset of disease. It is hoped that deeper understanding of these interactions may lead to more effective treatment interventions.
Collapse
Affiliation(s)
- Ryan Salvador
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Zhang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Grech A, Collins CE, Holmes A, Lal R, Duncanson K, Taylor R, Gordon A. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes 2021; 13:1-30. [PMID: 33978558 PMCID: PMC8276657 DOI: 10.1080/19490976.2021.1897210] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023] Open
Abstract
Early life, including the establishment of the intestinal microbiome, represents a critical window of growth and development. Postnatal factors affecting the microbiome, including mode of delivery, feeding type, and antibiotic exposure have been widely investigated, but questions remain regarding the influence of exposures in utero on infant gut microbiome assembly. This systematic review aimed to synthesize evidence on exposures before birth, which affect the early intestinal microbiome. Five databases were searched in August 2019 for studies exploring pre-pregnancy or pregnancy 'exposure' data in relation to the infant microbiome. Of 1,441 publications identified, 76 were included. Factors reported influencing microbiome composition and diversity included maternal antibiotic and probiotic uses, dietary intake, pre-pregnancy body mass index (BMI), gestational weight gain (GWG), diabetes, mood, and others. Eleven studies contributed to three meta-analyses quantifying associations between maternal intrapartum antibiotic exposure (IAP), BMI and GWG, and infant microbiome alpha diversity (Shannon Index). IAP, maternal overweight/obesity and excessive GWG were all associated with reduced diversity. Most studies were observational, few included early recruitment or longitudinal follow-up, and the timing, frequency, and methodologies related to stool sampling and analysis were variable. Standardization and collaboration are imperative to enhance understanding in this complex and rapidly evolving area.
Collapse
Affiliation(s)
- Allison Grech
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| | - Ravin Lal
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Kerith Duncanson
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Taylor
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan, NSW, Australia
| | - Adrienne Gordon
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales(NSW), Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
39
|
In Love with Shaping You-Influential Factors on the Breast Milk Content of Human Milk Oligosaccharides and Their Decisive Roles for Neonatal Development. Nutrients 2020; 12:nu12113568. [PMID: 33233832 PMCID: PMC7699834 DOI: 10.3390/nu12113568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
Collapse
|
40
|
Khine WWT, Rahayu ES, See TY, Kuah S, Salminen S, Nakayama J, Lee YK. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers. Gut Microbes 2020; 12:1761240. [PMID: 32453977 PMCID: PMC7524161 DOI: 10.1080/19490976.2020.1761240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gastrointestinal (GI) microbiota play an important role in human health and wellbeing and the first wave of gut microbes arrives mostly through vertical transmission from mother to child. This study has undertaken to understand the microbiota profile of healthy Southeast Asian mother-infant pairs. Here, we examined the fecal, vaginal and breast milk microbiota of Indonesian mothers and the fecal microbiota of their children from less than 1 month to 48 months old. To determine the immune status of children and the effect of diet at different ages, we examined the level of cytokines, bile acids in the fecal water and weaning food frequency. The fecal microbiota of the children before weaning contained mainly Bacteroides and Bifidobacterium, which presented at low abundance in the samples of mothers. After weaning, the fecal microbiome of children was mainly of the Prevotella type, with decreasing levels of Bifidobacterium, thus becoming more like the fecal microbiome of the mother. The abundance of infant fecal commensals generally correlated inversely with potential pathogens before weaning. The fecal Bifidobacterium in children correlated inversely with the consumption of complex carbohydrates and fruits after weaning. The specific cytokines related to the proliferation and maturation of immunity were found to increase after weaning. A decreasing level of primary bile acids and an increase of secondary bile acids were observed after weaning. This study highlights the change in the GI microbiota of infants to adult-type microbiota after weaning and identifies diet as a major contributing factor.
Collapse
Affiliation(s)
- Wei Wei Thwe Khine
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Endang Sutriswati Rahayu
- Faculty of Agricultural Technology and Center for Food & Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ting Yi See
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sherwin Kuah
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Department of Surgery, National University Hospital, Singapore,CONTACT Yuan-Kun Lee Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2117545, Singapore
| |
Collapse
|
41
|
Lajqi T, Pöschl J, Frommhold D, Hudalla H. The Role of Microbiota in Neutrophil Regulation and Adaptation in Newborns. Front Immunol 2020; 11:568685. [PMID: 33133082 PMCID: PMC7550463 DOI: 10.3389/fimmu.2020.568685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Newborns are highly susceptible to infections and mainly rely on innate immune functions. Reduced reactivity, delayed activation and subsequent failure to resolve inflammation however makes the neonatal immune system a very volatile line of defense. Perinatal microbiota, nutrition and different extra-uterine factors are critical elements that define long-term outcomes and shape the immune system during the neonatal period. Neutrophils are first responders and represent a vital component of the immune system in newborns. They have long been regarded as merely executive immune cells, however this notion is beginning to shift. Neutrophils are shaped by their surrounding and adaptive elements have been described. The role of “innate immune memory” and the main triangle connection microbiome—neutrophil—adaptation will be discussed in this review.
Collapse
Affiliation(s)
- Trim Lajqi
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - Johannes Pöschl
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, Memmingen, Germany
| | - Hannes Hudalla
- Heidelberg University Children's Hospital, Department of Neonatology, Heidelberg, Germany
| |
Collapse
|
42
|
Salminen S, Stahl B, Vinderola G, Szajewska H. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients 2020; 12:E1952. [PMID: 32629970 PMCID: PMC7400136 DOI: 10.3390/nu12071952] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Breastfeeding is natural and the optimal basis of infant nutrition and development, with many benefits for maternal health. Human milk is a dynamic fluid fulfilling an infant's specific nutritional requirements and guiding the growth, developmental, and physiological processes of the infant. Human milk is considered unique in composition, and it is influenced by several factors, such as maternal diet and health, body composition, and geographic region. Human milk stands as a model for infant formula providing nutritional solutions for infants not able to receive enough mother's milk. Infant formulas aim to mimic the composition and functionality of human milk by providing ingredients reflecting those of the latest human milk insights, such as oligosaccharides, bacteria, and bacterial metabolites. The objective of this narrative review is to discuss the most recent developments in infant formula with a special focus on human milk oligosaccharides and postbiotics.
Collapse
Affiliation(s)
- Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands;
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe 3000, Argentina;
| | - Hania Szajewska
- Department of Paediatrics at the Medical University of Warsaw, 02091 Warsaw, Poland
| |
Collapse
|
43
|
Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano FJ. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front Immunol 2020; 11:1153. [PMID: 32582216 PMCID: PMC7296122 DOI: 10.3389/fimmu.2020.01153] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
The gut is an efficient barrier which protects against the passage of pathogenic microorganisms and potential harmful macromolecules into the body, in addition to its primary function of nutrient digestion and absorption. Contrary to the restricted macromolecular passage in adulthood, enhanced transfer takes place across the intestines during early life, due to the high endocytic capacity of the immature intestinal epithelial cells during the fetal and/or neonatal periods. The timing and extent of this enhanced endocytic capacity is dependent on animal species, with a prominent non-selective intestinal macromolecular transfer in newborn ungulates, e.g., pigs, during the first few days of life, and a selective transfer of mainly immunoglobulin G (IgG), mediated by the FcRn receptor, in suckling rodents, e.g., rats and mice. In primates, maternal IgG is transferred during fetal life via the placenta, and intestinal macromolecular transfer is largely restricted in human neonates. The period of intestinal macromolecular transmission provides passive immune protection through the transfer of IgG antibodies from an immune competent mother; and may even have extra-immune beneficial effects on organ maturation in the offspring. Moreover, intestinal transfer during the fetal/neonatal periods results in increased exposure to microbial and food antigens which are then presented to the underlying immune system, which is both naïve and immature. This likely stimulates the maturation of the immune system and shifts the response toward tolerance induction instead of activation or inflammation, as usually seen in adulthood. Ingestion of mother's milk and the dietary transition to complex food at weaning, as well as the transient changes in the gut microbiota during the neonatal period, are also involved in the resulting immune response. Any disturbances in timing and/or balance of these parallel processes, i.e., intestinal epithelial maturation, luminal microbial colonization and mucosal immune maturation due to, e.g., preterm birth, infection, antibiotic use or nutrient changes during the neonatal period, might affect the establishment of the immune system in the infant. This review will focus on how differing developmental processes in the intestinal epithelium affect the macromolecular passage in different species and the possible impact of such passage on the establishment of immunity during the critical perinatal period in young mammals.
Collapse
Affiliation(s)
- Björn Weström
- Department of Biology, Lund University, Lund, Sweden
| | - Ester Arévalo Sureda
- Precision Livestock and Nutrition Unit, TERRA Teaching and Research Centre, Gembloux Agro-Biotech, University of Liège, Gembloux, Belgium
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden
- Department of Animal Physiology, Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, Poland
| | - Stefan G. Pierzynowski
- Department of Biology, Lund University, Lund, Sweden
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland
| | - Francisco-José Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
44
|
Susilorini, Suradi, Indarto D, Wasita B, Palupi PD. Immunomodulation of tahneeq method in IL-12 and CD8+ T-Lymphocyte, an in-vivo study in neonatal rats. Saudi J Biol Sci 2020; 27:2645-2650. [PMID: 32994723 PMCID: PMC7499108 DOI: 10.1016/j.sjbs.2020.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulation of the neonatal immune system is quite important for the proliferation and differentiation of antigen-presenting cells (APCs) and T cells. Tahneeq is a traditional method to manually rub the palatal mucosa of newborn babies with premasticated Ajwa palm dates. The present study was to investigate the tahneeq effects on IL-12 expression of dendritic cells (DCs) and blood T lymphocytes expressing CD8+ in neonatal Wistar rats. The number of 90 healthy neonatal Wistar rats have randomly divided into three groups: control group received breastmilk only, treatment group (T1) receiving breast milk + mild-scratched intensity of tahneeq, and T2 group received breastmilk + strong-scratched intensity of tahneeq on the palatal and gingival mucosa immediately after birth. Seven neonatal Wistar rats in all groups were then sacrificed in three hours after birth and days 1, 5, 7, 13, and 30 treatment. IL-12 expression in the palatal and gingival mucosa was determined using immunohistochemical staining, and blood CD8+ T-lymphocytes were quantified using a flow cytometer. One way ANOVA was used to analyze the percentage of IL-12 and CD8+ T-lymphocytes among neonatal Wistar rat groups. The T1 and T2 newborn rat groups had significantly higher IL-12 expression than the control group (p<0.001). The increased IL-12 expression in T2 groups significantly increased (p<0.001) compared to the IL-12 expression in the T1 and control groups. The percentage of CD8+ T lymphocytes in all neonatal rat groups increased on three hours after birth and day 30 treatment but remained constant on days 5 and 7 treatment and decreased on day 13 treatment. At 5, 13, and 30th days treatment, the percentage of CD8+ T lymphocytes in T1 and T2 neonatal rat groups was significantly higher (p<0.05) than that in the control group. In conclusion, the impact on systemic CD8+ T cells did not influence by the depth of the scratch. Both mild and strong tahneeq increased the systemic CD8+ T-lymphocytes in neonatal Wistar rats. The roles of anti-inflammatory cytokines and Treg cells should be further investigated to unravel those different results for the development of mucosal immunity in neonates.
Collapse
Affiliation(s)
- Susilorini
- Doctorate Student of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.,Department of Anatomic Pathology, Faculty of Medicine, Sultan Agung Islamic University, Semarang, Indonesia
| | - Suradi
- Doctorate Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.,Department of Pulmonogy and Respirology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Dono Indarto
- Doctorate Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.,Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.,Biomedical Laboratory, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Brian Wasita
- Doctorate Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia.,Department of Anatomic Pathology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Poppy Diah Palupi
- Department of Pharmacology and Clinical Pharmacy, Nusaputera School of Pharmaceutical Sciences, Semarang, Indonesia
| |
Collapse
|
45
|
Abstract
The neonatal developmental window represents a key time for establishment of the gut microbiota. First contact with these microbes within the infant gastrointestinal tract signifies the start of a critical mutualistic relationship, which is central for short- and longer-term health. Recent research has provided insights into the origin of these microbial pioneers, how they are maintained within the gut environment, and how factors such as antibiotics or preterm birth may disrupt the succession of beneficial microbes. The acquisition, colonisation, and maintenance of the early life microbiota, and subsequent interactions with the host is a rapidly developing research area. In this review we explore some of these key topics which have been illuminated by recent research, and we highlight some of the important unresolved questions which currently limit our overall understanding of the neonatal gut microbiome.
Collapse
Affiliation(s)
- Matthew J. Dalby
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
46
|
Zuurveld M, van Witzenburg NP, Garssen J, Folkerts G, Stahl B, van't Land B, Willemsen LEM. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol 2020; 11:801. [PMID: 32457747 PMCID: PMC7221186 DOI: 10.3389/fimmu.2020.00801] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence and incidence of allergic diseases is rising and these diseases have become the most common chronic diseases during childhood in Westernized countries. Early life forms a critical window predisposing for health or disease. Therefore, this can also be a window of opportunity for allergy prevention. Postnatally the gut needs to mature, and the microbiome is built which further drives the training of infant's immune system. Immunomodulatory components in breastmilk protect the infant in this crucial period by; providing nutrients that contain substrates for the microbiome, supporting intestinal barrier function, protecting against pathogenic infections, enhancing immune development and facilitating immune tolerance. The presence of a diverse human milk oligosaccharide (HMOS) mixture, containing several types of functional groups, points to engagement in several mechanisms related to immune and microbiome maturation in the infant's gastrointestinal tract. In recent years, several pathways impacted by HMOS have been elucidated, including their capacity to; fortify the microbiome composition, enhance production of short chain fatty acids, bind directly to pathogens and interact directly with the intestinal epithelium and immune cells. The exact mechanisms underlying the immune protective effects have not been fully elucidated yet. We hypothesize that HMOS may be involved in and can be utilized to provide protection from developing allergic diseases at a young age. In this review, we highlight several pathways involved in the immunomodulatory effects of HMOS and the potential role in prevention of allergic diseases. Recent studies have proposed possible mechanisms through which HMOS may contribute, either directly or indirectly, via microbiome modification, to induce oral tolerance. Future research should focus on the identification of specific pathways by which individual HMOS structures exert protective actions and thereby contribute to the capacity of the authentic HMOS mixture in early life allergy prevention.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Nikita P. van Witzenburg
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Global Centre of Excellence Human Milk Research and Analytical Sciences, Danone Nutricia Research B.V., Utrecht, Netherlands
- Division of Chemical Biology and Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Belinda van't Land
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
47
|
Development and Functions of the Infant Gut Microflora: Western vs. Indian Infants. Int J Pediatr 2020; 2020:7586264. [PMID: 32454840 PMCID: PMC7229554 DOI: 10.1155/2020/7586264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
The human gut is colonized by trillions of bacteria as well as other microorganisms, collectively referred to as the “gut microflora.” This microflora plays an important role in metabolism as well as immunity, and alterations in its normal composition and pattern of colonization can disturb the development and functioning of the immune system, predisposing the individual to several diseases. Neonates acquire their gut microflora from the mother as well as the surroundings, and as the infant grows, the gut microflora undergoes several changes, ultimately acquiring an adult-like composition. Characterization of the gut microflora of healthy infants is important to protect infants from infectious diseases. Furthermore, formulation of prebiotics and probiotics for boosting infant immunity in a specific population also requires prior knowledge of the normal gut microflora in a healthy infant in that population. To this end, several studies have been performed on Western infants; however, the gut microflora of Indian infants is as yet insufficiently studied. Moreover, there has been no comparative analysis of the development and characteristics of the infant gut microflora between the two populations. In this review, we discuss the development and maturation of the infant gut microflora and its effect on immunity, as well as the factors affecting the patterns of colonization. In addition, we compare the patterns of colonization of gut microflora between Western and Indian infants based on the available literature in an attempt to identify the extent of similarity or difference between the two populations.
Collapse
|
48
|
van Bilsen JHM, Dulos R, van Stee MF, Meima MY, Rouhani Rankouhi T, Neergaard Jacobsen L, Staudt Kvistgaard A, Garthoff JA, Knippels LMJ, Knipping K, Houben GF, Verschuren L, Meijerink M, Krishnan S. Seeking Windows of Opportunity to Shape Lifelong Immune Health: A Network-Based Strategy to Predict and Prioritize Markers of Early Life Immune Modulation. Front Immunol 2020; 11:644. [PMID: 32362896 PMCID: PMC7182036 DOI: 10.3389/fimmu.2020.00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/20/2020] [Indexed: 01/01/2023] Open
Abstract
A healthy immune status is strongly conditioned during early life stages. Insights into the molecular drivers of early life immune development and function are prerequisite to identify strategies to enhance immune health. Even though several starting points for targeted immune modulation have been identified and are being developed into prophylactic or therapeutic approaches, there is no regulatory guidance on how to assess the risk and benefit balance of such interventions. Six early life immune causal networks, each compromising a different time period in early life (the 1st, 2nd, 3rd trimester of gestations, birth, newborn, and infant period), were generated. Thereto information was extracted and structured from early life literature using the automated text mining and machine learning tool: Integrated Network and Dynamical Reasoning Assembler (INDRA). The tool identified relevant entities (e.g., genes/proteins/metabolites/processes/diseases), extracted causal relationships among these entities, and assembled them into early life-immune causal networks. These causal early life immune networks were denoised using GeneMania, enriched with data from the gene-disease association database DisGeNET and Gene Ontology resource tools (GO/GO-SLIM), inferred missing relationships and added expert knowledge to generate information-dense early life immune networks. Analysis of the six early life immune networks by PageRank, not only confirmed the central role of the "commonly used immune markers" (e.g., chemokines, interleukins, IFN, TNF, TGFB, and other immune activation regulators (e.g., CD55, FOXP3, GATA3, CD79A, C4BPA), but also identified less obvious candidates (e.g., CYP1A2, FOXK2, NELFCD, RENBP). Comparison of the different early life periods resulted in the prediction of 11 key early life genes overlapping all early life periods (TNF, IL6, IL10, CD4, FOXP3, IL4, NELFCD, CD79A, IL5, RENBP, and IFNG), and also genes that were only described in certain early life period(s). Concluding, here we describe a network-based approach that provides a science-based and systematical method to explore the functional development of the early life immune system through time. This systems approach aids the generation of a testing strategy for the safety and efficacy of early life immune modulation by predicting the key candidate markers during different phases of early life immune development.
Collapse
Affiliation(s)
| | - Remon Dulos
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Mariël F van Stee
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Marie Y Meima
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | | | | | | | | | - Léon M J Knippels
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Karen Knipping
- Danone Nutricia Research, Utrecht, Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Geert F Houben
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Marjolein Meijerink
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Shaji Krishnan
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
49
|
Shang Q, Liu H, Liu S, He T, Piao X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets1. J Anim Sci 2020; 97:4922-4933. [PMID: 31722389 DOI: 10.1093/jas/skz278] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to investigate the effects of dietary supplementation with 2 sources of fiber, sugar beet pulp (SBP), and wheat bran (WB), on sow performance, milk quality, and intestinal health in piglets. Forty-five multiparous sows at day 85 of gestation were allocated to the following 3 treatments: 1) a corn-soybean meal basal diet (CON); 2) the CON diet supplemented with 20% SBP in gestation and 10% SBP in lactation (SBP); and 3) the CON diet supplemented with 30% WB in gestation and 15% WB in lactation (WB). The SBP diets increased (P < 0.05) sow ADFI during lactation, litter and piglet weaning weight, piglet ADG, immunoglobulin A (IgA), and interleukin-10 (IL-10) levels in the colostrum and IgA levels in the milk, while the WB diets only increased (P < 0.05) IL-10 levels in the milk when compared with the CON diets. Piglets from SBP-fed sows had greater (P < 0.05) serum growth hormone and insulin-like growth factor-1 levels than those from WB-fed or CON-fed sows, whereas piglets from WB-fed sows had greater (P < 0.05) serum GH levels than those from CON-fed sows. Serum diamine oxidase activity, endotoxin, IL-6, and tumor necrosis factor-α (TNF-α) levels were reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows also had greater (P < 0.05) serum IL-10 levels than those from CON-fed sows. The ileal mRNA expression of TNF-α was reduced (P < 0.05) in piglets from SBP-fed or WB-fed sows. Piglets from SBP-fed sows had lower (P < 0.05) IL-6 expression, and greater (P < 0.05) IL-10 expression and secretory immunoglobulin A (SIgA) levels in the ileum than those from WB- or CON-fed sows. Piglets from WB-fed sows had greater (P < 0.05) IL-10 expression and SIgA levels compared with those from CON-fed sows. The ileal mRNA expression of occludin in the ileum was greater (P < 0.05) in piglets from SBP-fed sows than those from CON-fed sows. The ileal mRNA expression of ZO-1 was greater (P < 0.05) in piglets from WB-fed sows than those from CON-fed sows, but lower (P < 0.05) than those from SBP-fed sows. Piglets from SBP-fed sows had greater (P < 0.05) abundance of Christensenellaceae and butyrate levels in the colon, while piglets from WB-fed sows had greater (P < 0.05) abundance of Lactobacillaceae. Collectively, maternal SBP supplementation was more effective than WB in improving milk quality, enhancing growth performance and intestinal barrier function, and ameliorating intestinal inflammation in piglets.
Collapse
Affiliation(s)
- Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hansuo Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Tsafaras GP, Ntontsi P, Xanthou G. Advantages and Limitations of the Neonatal Immune System. Front Pediatr 2020; 8:5. [PMID: 32047730 PMCID: PMC6997472 DOI: 10.3389/fped.2020.00005] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
During early post-natal life, neonates must adjust to the transition from the sheltered intra-uterine environment to the microbe-laden external world, wherein they encounter a constellation of antigens and the colonization by the microbiome. At this vulnerable stage, neonatal immune responses are considered immature and present significant differences to those of adults. Pertinent to innate immunity, functional and quantitative deficiencies in antigen-presenting cells and phagocytes are often documented. Exposure to environmental antigens and microbial colonization is associated with epigenetic immune cell reprogramming and activation of effector and regulatory mechanisms that ensure age-depended immune system maturation and prevention of tissue damage. Moreover, neonatal innate immune memory has emerged as a critical mechanism providing protection against infectious agents. Still, in neonates, inexperience to antigenic exposure, along with enhancement of tissue-protective immunosuppressive mechanisms are often associated with severe immunopathological conditions, including sepsis and neurodevelopmental disorders. Despite significant advances in the field, adequate vaccination in newborns is still in its infancy due to elemental restrictions associated also with defective immune responses. In this review, we provide an overview of neonatal innate immune cells, highlighting phenotypic and functional disparities with their adult counterparts. We also discuss the effects of epigenetic modifications and microbial colonization on the regulation of neonatal immunity. A recent update on mechanisms underlying dysregulated neonatal innate immunity and linked infectious and neurodevelopmental diseases is provided. Understanding of the mechanisms that augment innate immune responsiveness in neonates may facilitate the development of improved vaccination protocols that can protect against pathogens and organ damage.
Collapse
Affiliation(s)
- George P Tsafaras
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Polyxeni Ntontsi
- Second Respiratory Medicine Department, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Lab, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|