1
|
Reveglia P, Blanco M, Cobos MJ, Labuschagne M, Joy M, Rubiales D. Metabolic profiling of pea (Pisum sativum) cultivars in changing environments: Implications for nutritional quality in animal feed. Food Chem 2025; 462:140972. [PMID: 39208720 DOI: 10.1016/j.foodchem.2024.140972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.
Collapse
Affiliation(s)
| | - Mireia Blanco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Maria Josè Cobos
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Margalida Joy
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza 50059, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, 14004, Spain.
| |
Collapse
|
2
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Desika J, Yogendra K, Hepziba SJ, Patne N, Vivek BS, Ravikesavan R, Nair SK, Jaba J, Razak TA, Srinivasan S, Shettigar N. Exploring Metabolomics to Innovate Management Approaches for Fall Armyworm ( Spodoptera frugiperda [J.E. Smith]) Infestation in Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2451. [PMID: 39273935 PMCID: PMC11397220 DOI: 10.3390/plants13172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is a highly destructive lepidopteran pest known for its extensive feeding on maize (Zea mays L.) and other crops, resulting in a substantial reduction in crop yields. Understanding the metabolic response of maize to FAW infestation is essential for effective pest management and crop protection. Metabolomics, a powerful analytical tool, provides insights into the dynamic changes in maize's metabolic profile in response to FAW infestation. This review synthesizes recent advancements in metabolomics research focused on elucidating maize's metabolic responses to FAW and other lepidopteran pests. It discusses the methodologies used in metabolomics studies and highlights significant findings related to the identification of specific metabolites involved in FAW defense mechanisms. Additionally, it explores the roles of various metabolites, including phytohormones, secondary metabolites, and signaling molecules, in mediating plant-FAW interactions. The review also examines potential applications of metabolomics data in developing innovative strategies for integrated pest management and breeding maize cultivars resistant to FAW by identifying key metabolites and associated metabolic pathways involved in plant-FAW interactions. To ensure global food security and maximize the potential of using metabolomics in enhancing maize resistance to FAW infestation, further research integrating metabolomics with other omics techniques and field studies is necessary.
Collapse
Affiliation(s)
- Jayasaravanan Desika
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Sundararajan Juliet Hepziba
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nagesh Patne
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | | | - Rajasekaran Ravikesavan
- Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, India
| | - Sudha Krishnan Nair
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
| | - Jagdish Jaba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Thurapmohideen Abdul Razak
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Subbiah Srinivasan
- V.O.C. Agricultural College and Research Institute, Tamil Nadu Agricultural University (TNAU), Killikulam 628252, India
| | - Nivedita Shettigar
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad 502324, India
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad 500030, India
| |
Collapse
|
4
|
Calia G, Cestaro A, Schuler H, Janik K, Donati C, Moser M, Bottini S. Definition of the effector landscape across 13 phytoplasma proteomes with LEAPH and EffectorComb. NAR Genom Bioinform 2024; 6:lqae087. [PMID: 39081684 PMCID: PMC11287381 DOI: 10.1093/nargab/lqae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
'Candidatus Phytoplasma' genus, a group of fastidious phloem-restricted bacteria, can infect a wide variety of both ornamental and agro-economically important plants. Phytoplasmas secrete effector proteins responsible for the symptoms associated with the disease. Identifying and characterizing these proteins is of prime importance for expanding our knowledge of the molecular bases of the disease. We faced the challenge of identifying phytoplasma's effectors by developing LEAPH, a machine learning ensemble predictor composed of four models. LEAPH was trained on 479 proteins from 53 phytoplasma species, described by 30 features. LEAPH achieved 97.49% accuracy, 95.26% precision and 98.37% recall, ensuring a low false-positive rate and outperforming available state-of-the-art methods. The application of LEAPH to 13 phytoplasma proteomes yields a comprehensive landscape of 2089 putative pathogenicity proteins. We identified three classes according to different secretion models: 'classical', 'classical-like' and 'non-classical'. Importantly, LEAPH identified 15 out of 17 known experimentally validated effectors belonging to the three classes. Furthermore, to help the selection of novel candidates for biological validation, we applied the Self-Organizing Maps algorithm and developed a Shiny app called EffectorComb. LEAPH and the EffectorComb app can be used to boost the characterization of putative effectors at both computational and experimental levels, and can be employed in other phytopathological models.
Collapse
Affiliation(s)
- Giulia Calia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, 39100 Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano, 39100 Bolzano, Italy
| | - Katrin Janik
- Institute for Plant Health, Molecular Biology and Microbiology, Laimburg Research Centre, 47141 Pfatten-Vadena, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy
| | - Silvia Bottini
- INRAE, Institut Sophia Agrobiotech, Université Côte d’Azur, CNRS, 06903 Sophia-Antipolis, France
| |
Collapse
|
5
|
Hay AE, Deborde C, Dussarrat T, Moing A, Millery A, Hoang TPT, Touboul D, Rey M, Ledru L, Ibanez S, Pétriacq P, Vanhaverbeke C, Gallet C. Comparative metabolomics reveals how the severity of predation by the invasive insect Cydalima perspectalis modulates the metabolism re-orchestration of native Buxus sempervirens. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38985650 DOI: 10.1111/plb.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The recent biological invasion of box tree moth Cydalima perspectalis on Buxus trees has a major impact on European boxwood stands through severe defoliation. This can hinder further regrowth and threaten survival of populations. In a mesocosm approach and controlled larval density over a 2-month period, responses of B. sempervirens essential and specialized metabolites were characterized using metabolomics, combining 1H-NMR and LC-MS/MS approaches. This is the first metabolome depiction of major Buxus responses to boxwood moth invasion. Under severe predation, remaining green leaves accumulate free amino acids (with the noticeable exception of proline). The leaf trans-4-hydroxystachydrine and stachydrine reached 10-13% and 2-3% (DW), while root content was lower but also modulated by predation level. Larval predation promoted triterpenoid and (steroidal) alkaloid synthesis and diversification, while flavonoids did not seem to have a relevant role in Buxus resistance. Our results reveal the concomitant responses of central and specialized metabolism, in relation to severity of predation. They also confirm the potential of metabolic profiling using 1H-NMR and LC-MS to detect re-orchestration of metabolism of native boxwood after severe herbivorous predation by the invasive box-tree moth, and thus their relevance for plant-insect relationships and ecometabolomics.
Collapse
Affiliation(s)
- A E Hay
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne - CESN, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - C Deborde
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | - T Dussarrat
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
| | - A Moing
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | - A Millery
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - T P T Hoang
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - D Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - M Rey
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne - CESN, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France
| | - L Ledru
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - S Ibanez
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| | - P Pétriacq
- Université Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Bordeaux, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Bordeaux, France
| | | | - C Gallet
- Laboratoire d'Ecologie Alpine UMR CNRS 5553, Université Savoie Mont-Blanc, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
6
|
Oh M, Han AR, Lee J, Choi SY, Choi JW, Song NE, Hong HD, Rhee YK, Cho CW. LC-QTOF/MS-Based Profiling of the Phytochemicals in Ice Plant ( Mesembryanthemum crystallinum) and Their Bioactivities. Foods 2024; 13:1820. [PMID: 38928762 PMCID: PMC11202690 DOI: 10.3390/foods13121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Recent assessments of the correlations between food and medicine underscore the importance of functional foods in disease prevention and management. Functional foods offer health benefits beyond basic nutrition, with fresh fruits and vegetables being particularly prominent because of their rich polyphenol content. In this study, we elucidated the phytochemicals in ice plant (Mesembryanthemum crystallinum), a globally consumed vegetable, using an LC-QTOF/MS-based untargeted detection method. The phytochemicals were clustered based on their structural similarity using molecular networking and annotated using the in silico tool for network annotation propagation. To identify the bioactive compounds, eight compounds were isolated from ice plant extracts. These compounds were identified using extensive spectroscopic methods, including 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, we evaluated the antioxidant and anti-inflammatory activities of all the isolates. Among the tested compounds, three showed antioxidant activity and all eight showed anti-inflammatory activity, demonstrating the potential of ice plant as a functional food.
Collapse
Affiliation(s)
- Mira Oh
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Ah-Ram Han
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Jaeyoun Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea;
| | - Sang Yoon Choi
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Jae Woong Choi
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Nho-Eul Song
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Hee-Do Hong
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Young Kyoung Rhee
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| | - Chang-Won Cho
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (M.O.); (A.-R.H.); (J.W.C.); (N.-E.S.); (H.-D.H.); (Y.K.R.)
| |
Collapse
|
7
|
Llorens E, López-Moral A, Agustí-Brisach C. Root Exudates Metabolic Profiling Confirms Distinct Defense Mechanisms Between Cultivars and Treatments with Beneficial Microorganisms and Phosphonate Salts Against Verticillium Wilt in Olive Trees. PHYTOPATHOLOGY 2024; 114:1393-1400. [PMID: 38205807 DOI: 10.1094/phyto-10-23-0406-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Root exudates play a key role in the life cycle of Verticillium dahliae, the causal agent of Verticillium wilt diseases, because they induce microsclerotia germination to initiate plant infection through the roots. In olive plants, the genotype and the application of biological control agents (BCAs) or phosphonate salts influence the ability of root exudates to decrease V. dahliae viability. Understanding the chemical composition of root exudates could provide new insights into the mechanisms of olive plant defense against V. dahliae. Therefore, the main goal of this study was to analyze the metabolomic profiles of root exudates collected from the olive cultivars Arbequina, Frantoio, and Picual subjected to treatment with BCAs (Aureobasidium pullulans AP08, Bacillus amyloliquefaciens PAB-024) or phosphonate salts (copper phosphite, potassium phosphite). These treatments were selected due to their effectiveness as inducers of resistance against Verticillium wilt in olive plants. Our metabolomic analysis revealed that the olive cultivars exhibited differences in root exudates, which could be related to the different degrees of susceptibility to V. dahliae. The composition of root exudates also changed with the application of BCAs or phosphonate fertilizer, highlighting the complex and dynamic nature of the interactions between olive cultivars and treatments preventing V. dahliae infections. Thus, the identification of genotype-specific metabolic changes and specific metabolites induced by these treatments emphasizes the potential of resistance inducers for enhancing plant defense and promoting the growth of beneficial microorganisms.
Collapse
Affiliation(s)
- Eugenio Llorens
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I de Castellón (UJI), 12006 Castellón de la Plana, Spain
| | - Ana López-Moral
- Department of Agronomy (DAUCO, Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, University of Córdoba (UCO), Córdoba, Spain
| | - Carlos Agustí-Brisach
- Department of Agronomy (DAUCO, Unit of Excellence 'María de Maeztu' 2020-24), ETSIAM, University of Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
8
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Li W, Keller AA. Integrating Targeted Metabolomics and Targeted Proteomics to Study the Responses of Wheat Plants to Engineered Nanomaterials. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2024; 4:507-520. [PMID: 38638683 PMCID: PMC11022172 DOI: 10.1021/acsagscitech.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
This manuscript presents a multiomics investigation into the metabolic and proteomic responses of wheat to molybdenum (Mo)- and copper (Cu)-based engineered nanomaterials (ENMs) exposure via root and leaf application methods. Wheat plants underwent a four-week growth period with a 16 h photoperiod (light intensity set at 150 μmol·m-2·s-1), at 22 °C and 60% humidity. Six distinct treatments were applied, including control conditions alongside exposure to Mo- and Cu-based ENMs through both root and leaf routes. The exposure dosage amounted to 6.25 mg of the respective element per plant. An additional treatment with a lower dose (0.6 mg Mo/plant) of Mo ENM exclusively through the root system was introduced upon the detection of phytotoxicity. Utilizing LC-MS/MS analysis, 82 metabolites across various classes and 24 proteins were assessed in different plant tissues (roots, stems, leaves) under diverse treatments. The investigation identified 58 responsive metabolites and 19 responsive proteins for Cu treatments, 71 responsive metabolites, and 24 responsive proteins for Mo treatments, mostly through leaf exposure for Cu and root exposure for Mo. Distinct tissue-specific preferences for metabolite accumulation were revealed, highlighting the prevalence of organic acids and fatty acids in stem or root tissues, while sugars and amino acids were abundant in leaves, mirroring their roles in energy storage and photosynthesis. Joint-pathway analysis was conducted and unveiled 23 perturbed pathways across treatments. Among these, Mo exposure via roots impacted all identified pathways, whereas exposure via leaf affected 15 pathways, underscoring the reliance on exposure route of metabolic and proteomic responses. The coordinated response observed in protein and metabolite concentrations, particularly in amino acids, highlighted a dynamic and interconnected proteomic-to-metabolic-to-proteomic relationship. Furthermore, the contrasting expression patterns observed in glutamate dehydrogenase (upregulation at 1.38 ≤ FC ≤ 1.63 with high Mo dose, and downregulation at 0.13 ≤ FC ≤ 0.54 with low Mo dose) and its consequential impact on glutamine expression (7.67 ≤ FC ≤ 39.60 with high Mo dose and 1.50 ≤ FC ≤ 1.95 with low Mo dose) following Mo root exposure highlighted dose-dependent regulatory trends influencing proteins and metabolites. These findings offer a multidimensional understanding of plant responses to ENMs exposure, guiding agricultural practices and environmental safety protocols while advancing knowledge on nanomaterial impacts on plant biology.
Collapse
Affiliation(s)
- Weiwei Li
- Bren School of Environmental
Science and Management, University of California
at Santa Barbara, Santa Barbara, California 93106, United States
| | - Arturo A. Keller
- Bren School of Environmental
Science and Management, University of California
at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Muñoz Hoyos L, Anisha WP, Meng C, Kleigrewe K, Dawid C, Hückelhoven R, Stam R. Untargeted metabolomics reveals PTI-associated metabolites. PLANT, CELL & ENVIRONMENT 2024; 47:1224-1237. [PMID: 38164085 DOI: 10.1111/pce.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Plants employ a multilayered immune system to combat pathogens. In one layer, recognition of Pathogen- or Microbe-Associated Molecular Patterns or elicitors, triggers a cascade that leads to defence against the pathogen and Pattern Triggered Immunity. Secondary or specialised metabolites (SMs) are expected to play a role, because they are potentially anti-fungal compounds. Tomato (Solanum lycopersicum) plants inoculated with Alternaria solani s.l. show symptoms of infection after inoculation. Plants inoculated with Alternaria alternata remain symptomless. We hypothesised that pattern-triggered induction of resistance related metabolites in tomato contributes to the resistance against A. alternata. We compared the metabolomic profile (metabolome) of tomato after treatments with A. alternata, A. solani and the fungal elicitor chitin, and identified SMs involved in early defence of tomato plants. We revealed differential metabolome fingerprints. The composition of A. alternata and chitin induced metabolomes show larger overlap with each other than with the A. solani induced metabolome. We identify 65 metabolites possibly associated with PTI in tomato plants, including NAD and trigonelline. We confirm that trigonelline inhibits fungal growth in vitro at physiological concentrations. Thus, a true pattern-triggered, chemical defence is mounted against A. alternata, which contains anti-fungal compounds that could be interesting for crop protection strategies.
Collapse
Affiliation(s)
- Lina Muñoz Hoyos
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wan Petra Anisha
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Phytopathology and Crop protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| |
Collapse
|
11
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
12
|
Li X, Li C, Chen Z, Wang J, Sun J, Yao J, Chen K, Li Z, Ye H. High-resolution mass spectrometry-based non-targeted metabolomics reveals toxicity of naphthalene on tall fescue and intrinsic molecular mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115975. [PMID: 38244514 DOI: 10.1016/j.ecoenv.2024.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.
Collapse
Affiliation(s)
- Xuecheng Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China
| | - Changyi Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Ziyu Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China; College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jun Yao
- School of Water Resources & Environment, China University of Geosciences Beijing, Beijing, PR China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| | - Zhenghui Li
- College of Pharmacy, South-Central Minzu University, Wuhan 430074, PR China.
| | - Hengpeng Ye
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Ferreira LC, Santana FM, Scagliusi SMM, Beckmann M, Mur LAJ. Induced responses to the wheat pathogen: Tan Spot-(Pyrenophora tritici-repentis) in wheat (Triticum aestivum) focus on changes in defence associated and sugar metabolism. Metabolomics 2024; 20:19. [PMID: 38296869 PMCID: PMC10830751 DOI: 10.1007/s11306-023-02084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Tan Spot (TS) disease of wheat is caused by Pyrenophora tritici-repentis (Ptr), where most of the yield loss is linked to diseased flag leaves. As there are no fully resistant cultivars available, elucidating the responses of wheat to Ptr could inform the derivation of new resistant genotypes. OBJECTIVES The study aimed to characterise the flag-leaf metabolomes of two spring wheat cultivars (Triticum aestivum L. cv. PF 080719 [PF] and cv. Fundacep Horizonte [FH]) following challenge with Ptr to gain insights into TS disease development. METHODS PF and FH plants were inoculated with a Ptr strain that produces the necrotrophic toxin ToxA. The metabolic changes in flag leaves following challenge (24, 48, 72, and 96 h post-inoculation [hpi]) with Ptr were investigated using untargeted flow infusion ionisation-high resolution mass spectroscopy (FIE-HRMS). RESULTS Both cultivars were susceptible to Ptr at the flag-leaf stage. Comparisons of Ptr- and mock-inoculated plants indicated that a major metabolic shift occurred at 24 hpi in FH, and at 48 hpi in PF. Although most altered metabolites were genotype specific, they were linked to common pathways; phenylpropanoid and flavonoid metabolism. Alterations in sugar metabolism as well as in glycolysis and glucogenesis pathways were also observed. Pathway enrichment analysis suggested that Ptr-triggered alterations in chloroplast and photosynthetic machinery in both cultivars, especially in FH at 96 hpi. In a wheat-Ptr interactome in integrative network analysis, "flavone and flavonol biosynthesis" and "starch and sucrose metabolism" were targeted as the key metabolic processes underlying PF-FH-Ptr interactions. CONCLUSION These observations suggest the potential importance of flavone and flavonol biosynthesis as well as bioenergetic shifts in susceptibility to Ptr. This work highlights the value of metabolomic approaches to provide novel insights into wheat pathosystems.
Collapse
Affiliation(s)
- Larissa Carvalho Ferreira
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
- Everglades Research and Education Center, University of Florida, Belle Glade, FL, USA
| | | | | | - Manfred Beckmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Luis A J Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK.
| |
Collapse
|
14
|
Zhang X, Song M, Gao L, Tian Y. Metabolic variations in root tissues and rhizosphere soils of weak host plants potently lead to distinct host status and chemotaxis regulation of Meloidogyne incognita in intercropping. MOLECULAR PLANT PATHOLOGY 2024; 25:e13396. [PMID: 37823341 PMCID: PMC10782644 DOI: 10.1111/mpp.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Root-knot nematodes (RKNs) inflict extensive damage to global agricultural production. Intercropping has been identified as a viable agricultural tool for combating RKNs, but the mechanisms by which intercropped plants modulate RKN parasitism are still not well understood. Here, we focus on the cucumber-amaranth intercropping system. We used a range of approaches, including the attraction assay, in vitro RNA interference (RNAi), untargeted metabolomics, and hairy root transformation, to unveil the mechanisms by which weak host plants regulate Meloidogyne incognita chemotaxis towards host plants and control infection. Amaranth roots showed a direct repellence to M. incognita through disrupting its chemotaxis. The in vitro RNAi assay demonstrated that the Mi-flp-1 and Mi-flp-18 genes (encoding FMRFamide-like peptides) regulated M. incognita chemotaxis towards cucumber and controlled infection. Moreover, M. incognita infection stimulated cucumber and amaranth to accumulate distinct metabolites in both root tissues and rhizosphere soils. In particular, naringenin and salicin, enriched specifically in amaranth rhizosphere soils, inhibited the expression of Mi-flp-1 and Mi-flp-18. In addition, overexpression of genes involved in the biosynthesis of pantothenic acid and phloretin, both of which were enriched specifically in amaranth root tissues, delayed M. incognita development in cucumber hairy roots. Together, our results reveal that both the distinct host status and disruption of chemotaxis contribute to M. incognita inhibition in intercropping.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Shu B, Xie X, Dai J, Liu L, Cai X, Wu Z, Lin J. Host plant-induced changes in metabolism and osmotic regulation gene expression in Diaphorina citri adults. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104599. [PMID: 38072187 DOI: 10.1016/j.jinsphys.2023.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a worldwide citrus pest. It transmits the pathogen Candidatus Liberibacter spp. of Huanglongbing (HLB), causing severe economic losses to the citrus industry. Severalgenera of plants in the Rutaceae family are the hosts of D. citri. However, the impact of these hosts on the metabolism and osmotic regulation gene expression of the pest remains unexplored. In this study, the contents of total sugars, sucrose, fructose, and glucose in young shoots, old leaves, and young leaves of 'Shatangju' mandarin and Murraya exotica were analyzed. Metabolomic analysis found that sucrose and trehalose were more abundant in the gut samples of D. citri adults fed on M. exotica when compared to what's in 'Shatangju' mandarin. A total of six aquaporin genes were identified in D. citri through the genome and transcriptome data. Subsequently, the expression patterns of these genes were investigated with respect to their developmental stage and tissue specificity. Additionally, the expression levels of osmotic regulation and trehalose metabolism genes in adults fed on different plants were evaluated. Our results provide useful information on the transfer of sugar between plants and D. citri. Our results preliminary revealed the sugar metabolism regulation mechanism in D. citri adults.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinyi Xie
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinghua Dai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyang Liu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueming Cai
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
16
|
Praud C, Ribay V, Dey A, Charrier B, Mandral J, Farjon J, Dumez JN, Giraudeau P. Optimization of heteronuclear ultrafast 2D NMR for the study of complex mixtures hyperpolarized by dynamic nuclear polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6209-6219. [PMID: 37942549 DOI: 10.1039/d3ay01681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hyperpolarized 13C NMR at natural abundance, based on dissolution dynamic nuclear polarization (d-DNP), provides rich, sensitive and repeatable 13C NMR fingerprints of complex mixtures. However, the sensitivity enhancement is associated with challenges such as peak overlap and the difficulty to assign hyperpolarized 13C signals. Ultrafast (UF) 2D NMR spectroscopy makes it possible to record heteronuclear 2D maps of d-DNP hyperpolarized samples. Heteronuclear UF 2D NMR can provide correlation peaks that link quaternary carbons and protons through long-range scalar couplings. Here, we report the analytical assessment of an optimized UF long-range HETCOR pulse sequence, applied to the detection of metabolic mixtures at natural abundance and hyperpolarized by d-DNP, based on repeatability and sensitivity considerations. We show that metabolite-dependent limits of quantification in the range of 1-50 mM (in the sample before dissolution) can be achieved, with a repeatability close to 10% and a very good linearity. We provide a detailed comparison of such analytical performance in two different dissolution solvents, D2O and MeOD. The reported pulse sequence appears as an useful analytical tool to facilitate the assignment and integration of metabolite signals in hyperpolarized complex mixtures.
Collapse
Affiliation(s)
- Clément Praud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Joris Mandral
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | | | |
Collapse
|
17
|
Guo L, Yu H, Li Y, Zhang C, Kharbach M. Tensor methods in data analysis of chromatography/mass spectroscopy-based plant metabolomics. PLANT METHODS 2023; 19:130. [PMID: 37990220 PMCID: PMC10662285 DOI: 10.1186/s13007-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Plant metabolomics is an important research area in plant science. Chemometrics is a useful tool for plant metabolomic data analysis and processing. Among them, high-order chemometrics represented by tensor modeling provides a new and promising technical method for the analysis of complex multi-way plant metabolomics data. This paper systematically reviews different tensor methods widely applied to the analysis of complex plant metabolomic data. The advantages and disadvantages as well as the latest methodological advances of tensor models are reviewed and summarized. At the same time, application of different tensor methods in solving plant science problems are also reviewed and discussed. The reviewed applications of tensor methods in plant metabolomics cover a wide range of important plant science topics including plant gene mutation and phenotype, plant disease and resistance, plant pharmacology and nutrition analysis, and plant products ingredient characterization and quality evaluation. It is evident from the review that tensor methods significantly promote the automated and intelligent process of plant metabolomics analysis and profoundly affect the paradigm of plant science research. To the best of our knowledge, this is the first review to systematically summarize the tensor analysis methods in plant metabolomic data analysis.
Collapse
Affiliation(s)
- Lili Guo
- Weifang University of Science and Technology, Shouguang, 262700, China
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen, 518005, China.
- Chemometrics Group, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark.
| | - Yuan Li
- Northwest Land and Resources Research Center, Shaanxi Normal University, Xi'an, 710062, China
| | - Chenxi Zhang
- Weifang University of Science and Technology, Shouguang, 262700, China
| | - Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, Helsinki, 00014, Finland
- Department of Computer Sciences, University of Helsinki, Helsinki, 00560, Finland
| |
Collapse
|
18
|
Bini AP, Rossi GD, Poeschl Y, Serra MCD, Camargo LEA, Monteiro-Vitorello CB, van Sluys MA, van Dam NM, Uthe H, Creste S. Molecular, biochemical and metabolomics analyses reveal constitutive and pathogen-induced defense responses of two sugarcane contrasting genotypes against leaf scald disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108033. [PMID: 37757720 DOI: 10.1016/j.plaphy.2023.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X. albilineans using molecular and biochemical approaches to assess pathogen-triggered ROS, phytohormones and metabolomics in two contrasting sugarcane genotypes from 0.5 to 144 h post-inoculation (hpi). In addition, the infection process was monitored using TaqMan-based quantification of X. albilineans and the disease symptoms were evaluated in both genotypes after 15 d post-inoculation (dpi). The susceptible genotype presented a response to the infection at 0.5 hpi, accumulating defense-related metabolites such as phenolics and flavonoids with no significant defense responses thereafter, resulting in typical symptoms of leaf scald at 15 dpi. The resistant genotype did not respond to the infection at 0.5 hpi but constitutively presented higher levels of salicylic acid and of the same metabolites induced by the infection in the susceptible genotype. Moreover, two subsequent pathogen-induced metabolic responses at 12 and 144 hpi were observed only in the resistant genotype in terms of amino acids, quinic acids, coumarins, polyamines, flavonoids, phenolics and phenylpropanoids together with an increase of hydrogen peroxide, ROS-related genes expression, indole-3-acetic-acid and salicylic acid. Multilevel approaches revealed that constitutive chemical composition and metabolic reprogramming hampers the development of leaf scald at 48 and 72 hpi, reducing the disease symptoms in the resistant genotype at 15 dpi. Phenylpropanoid pathway is suggested as a strong candidate marker for breeding sugarcane resistant to leaf scald.
Collapse
Affiliation(s)
- Andressa Peres Bini
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Guilherme Duarte Rossi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Via de Acesso Professor Paulo Donato Castellane S/N, 14884-900, Jaboticabal, SP, Brazil
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marina Carnaz Duarte Serra
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
| | | | - Marie-Anne van Sluys
- Universidade de São Paulo, Departamento de Botânica - Instituto de Biociências, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Cadena-Zamudio JD, Monribot-Villanueva JL, Pérez-Torres CA, Alatorre-Cobos F, Guerrero-Analco JA, Ibarra-Laclette E. Non-Targeted Metabolomic Analysis of Arabidopsis thaliana (L.) Heynh: Metabolic Adaptive Responses to Stress Caused by N Starvation. Metabolites 2023; 13:1021. [PMID: 37755301 PMCID: PMC10535036 DOI: 10.3390/metabo13091021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
As sessile organisms, plants develop the ability to respond and survive in changing environments. Such adaptive responses maximize phenotypic and metabolic fitness, allowing plants to adjust their growth and development. In this study, we analyzed the metabolic plasticity of Arabidopsis thaliana in response to nitrate deprivation by untargeted metabolomic analysis and using wild-type (WT) genotypes and the loss-of-function nia1/nia2 double mutant. Secondary metabolites were identified using seedlings grown on a hydroponic system supplemented with optimal or limiting concentrations of N (4 or 0.2 mM, respectively) and harvested at 15 and 30 days of age. Then, spectral libraries generated from shoots and roots in both ionization modes (ESI +/-) were compared. Totals of 3407 and 4521 spectral signals (m/z_rt) were obtained in the ESI+ and ESI- modes, respectively. Of these, approximately 50 and 65% were identified as differentially synthetized/accumulated. This led to the presumptive identification of 735 KEGG codes (metabolites) belonging to 79 metabolic pathways. The metabolic responses in the shoots and roots of WT genotypes at 4 mM of N favor the synthesis/accumulation of metabolites strongly related to growth. In contrast, for the nia1/nia2 double mutant (similar as the WT genotype at 0.2 mM N), metabolites identified as differentially synthetized/accumulated help cope with stress, regulating oxidative stress and preventing programmed cell death, meaning that metabolic responses under N starvation compromise growth to prioritize a defensive response.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
| | - Fulgencio Alatorre-Cobos
- Consejo Nacional de Ciencia y Tecnología, Unidad de Bioquímica y Biología Molecular de Plantas, Merida 97205, Yucatan, Mexico;
- Centro de Investigación Científica de Yucatán (CICY), Unidad de Biotecnología, Merida 97205, Yucatan, Mexico
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (C.-A.P.-T.); (J.A.G.-A.)
| |
Collapse
|
20
|
Singh DP, Bisen MS, Prabha R, Maurya S, Yerasu SR, Shukla R, Tiwari JK, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Singh PM, Behera TK, Farag MA. Untargeted Metabolomics of Alternaria solani-Challenged Wild Tomato Species Solanum cheesmaniae Revealed Key Metabolite Biomarkers and Insight into Altered Metabolic Pathways. Metabolites 2023; 13:585. [PMID: 37233626 PMCID: PMC10220610 DOI: 10.3390/metabo13050585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023] Open
Abstract
Untargeted metabolomics of moderately resistant wild tomato species Solanum cheesmaniae revealed an altered metabolite profile in plant leaves in response to Alternaria solani pathogen. Leaf metabolites were significantly differentiated in non-stressed versus stressed plants. The samples were discriminated not only by the presence/absence of specific metabolites as distinguished markers of infection, but also on the basis of their relative abundance as important concluding factors. Annotation of metabolite features using the Arabidopsis thaliana (KEGG) database revealed 3371 compounds with KEGG identifiers belonging to biosynthetic pathways including secondary metabolites, cofactors, steroids, brassinosteroids, terpernoids, and fatty acids. Annotation using the Solanum lycopersicum database in PLANTCYC PMN revealed significantly upregulated (541) and downregulated (485) features distributed in metabolite classes that appeared to play a crucial role in defense, infection prevention, signaling, plant growth, and plant homeostasis to survive under stress conditions. The orthogonal partial least squares discriminant analysis (OPLS-DA), comprising a significant fold change (≥2.0) with VIP score (≥1.0), showed 34 upregulated biomarker metabolites including 5-phosphoribosylamine, kaur-16-en-18-oic acid, pantothenate, and O-acetyl-L-homoserine, along with 41 downregulated biomarkers. Downregulated metabolite biomarkers were mapped with pathways specifically known for plant defense, suggesting their prominent role in pathogen resistance. These results hold promise for identifying key biomarker metabolites that contribute to disease resistive metabolic traits/biosynthetic routes. This approach can assist in mQTL development for the stress breeding program in tomato against pathogen interactions.
Collapse
Affiliation(s)
| | | | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi 110012, India
| | | | | | - Md. Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India
| | | | | | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
21
|
Parker EJ, Billane KC, Austen N, Cotton A, George RM, Hopkins D, Lake JA, Pitman JK, Prout JN, Walker HJ, Williams A, Cameron DD. Untangling the Complexities of Processing and Analysis for Untargeted LC-MS Data Using Open-Source Tools. Metabolites 2023; 13:metabo13040463. [PMID: 37110122 PMCID: PMC10142740 DOI: 10.3390/metabo13040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Untargeted metabolomics is a powerful tool for measuring and understanding complex biological chemistries. However, employment, bioinformatics and downstream analysis of mass spectrometry (MS) data can be daunting for inexperienced users. Numerous open-source and free-to-use data processing and analysis tools exist for various untargeted MS approaches, including liquid chromatography (LC), but choosing the 'correct' pipeline isn't straight-forward. This tutorial, in conjunction with a user-friendly online guide presents a workflow for connecting these tools to process, analyse and annotate various untargeted MS datasets. The workflow is intended to guide exploratory analysis in order to inform decision-making regarding costly and time-consuming downstream targeted MS approaches. We provide practical advice concerning experimental design, organisation of data and downstream analysis, and offer details on sharing and storing valuable MS data for posterity. The workflow is editable and modular, allowing flexibility for updated/changing methodologies and increased clarity and detail as user participation becomes more common. Hence, the authors welcome contributions and improvements to the workflow via the online repository. We believe that this workflow will streamline and condense complex mass-spectrometry approaches into easier, more manageable, analyses thereby generating opportunities for researchers previously discouraged by inaccessible and overly complicated software.
Collapse
Affiliation(s)
| | - Kathryn C Billane
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Nichola Austen
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Anne Cotton
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Rachel M George
- biOMICS Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - David Hopkins
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Janice A Lake
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| | - James K Pitman
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James N Prout
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Heather J Walker
- biOMICS Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Williams
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Duncan D Cameron
- Department of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
22
|
Han W, Ward JL, Kong Y, Li X. Editorial: Targeted and untargeted metabolomics for the evaluation of plant metabolites in response to the environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1167513. [PMID: 36938031 PMCID: PMC10020689 DOI: 10.3389/fpls.2023.1167513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Wenyan Han
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jane L. Ward
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
23
|
Lacrampe N, Colombié S, Dumont D, Nicot P, Lecompte F, Lugan R. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems. PLANTA 2023; 257:41. [PMID: 36680621 PMCID: PMC9867679 DOI: 10.1007/s00425-022-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Severe N stress allows an accumulation of C-based compounds but impedes that of N-based compounds required to lower the susceptibility of tomato stem to Botrytis cinerea. Botrytis cinerea, a necrotrophic filamentous fungus, forms potentially lethal lesions on the stems of infected plants. Contrasted levels of susceptibility to B. cinerea were obtained in a tomato cultivar grown on a range of nitrate concentration: low N supply resulted in high susceptibility while high N supply conferred a strong resistance. Metabolic deviations and physiological traits resulting from both infection and nitrogen limitation were investigated in the symptomless stem tissue surrounding the necrotic lesion. Prior to infection, nitrogen-deficient plants showed reduced levels of nitrogen-based compounds such as amino acids, proteins, and glutathione and elevated levels of carbon-based and defence compounds such as α-tomatine and chlorogenic acid. After B. cinerea inoculation, all plants displayed a few common responses, mainly alanine accumulation and galactinol depletion. The metabolome of resistant plants grown under high N supply showed no significant change after inoculation. On the contrary, the metabolome of susceptible plants grown under low N supply showed massive metabolic adjustments, including changes in central metabolism around glutamate and respiratory pathways, suggesting active resource mobilization and production of energy and reducing power. Redox and defence metabolisms were also stimulated by the infection in plants grown under low N supply; glutathione and chlorogenic acid accumulated, as well as metabolites with more controversial defensive roles, such as polyamines, GABA, branched-chain amino acids and phytosterols. Taken together, the results showed that nitrogen deficiency, although leading to an increase in secondary metabolites even before the pathogen attack, must have compromised the constitutive levels of defence proteins and delayed or attenuated the induced responses. The involvement of galactinol, alanine, cycloartenol and citramalate in the tomato stem response to B. cinerea is reported here for the first time.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH Unit, INRAE, 84914 Avignon, France
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, 33883 Villenave d’Ornon, France
| | | | | | | | - Raphaël Lugan
- UMR Qualisud, Avignon Université, 84916 Avignon, France
| |
Collapse
|
24
|
Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int J Mol Sci 2022; 23:ijms232012418. [PMID: 36293272 PMCID: PMC9603868 DOI: 10.3390/ijms232012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, 30-084 Kraków, Poland
| |
Collapse
|
25
|
Batcho AA, Nwogwugwu JO, Ali M, Jabbar B, Javaid A, Fellner M. Identification and characterisation of blue light photoreceptor gene family and their expression in tomato ( Solanum lycopersicum) under cold stress. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:647-658. [PMID: 35437142 DOI: 10.1071/fp21297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The Arabidopsis thaliana L. photoreceptor genes homologues in tomato (Solanum lycopersicum L.) genome were analysed using bioinformatic tools. The expression pattern of these genes under cold stress was also evaluated. Transcriptome analysis of the tomato sequence revealed that the photoreceptor gene family is involved in abiotic stress tolerance. They participate in various pathways and controlling multiple metabolic processes. They are structurally related to PAS, LIGHT-OXYGEN-VOLTAGE-SENSING (LOV), DNA photolyase, 5,10-methenyl tetrahydrofolate (MTHF), flavin-binding kelch F-box, GAF, PHY, Seven-bladed β-propeller and C27 domains. They also interact with flavin adenine dinucleotide (FAD), (5S)-5-methyl-2-(methylsulfanyl)-5-phenyl-3-(phenylamino)-3,5-dihydro-4H-imidazol-4-one (FNM) and Phytochromobilin (PϕB) ligands. These interactions help to create a cascade of protein phosphorylation involving in cell defence transcription or stress-regulated genes. They localisation of these gene families on tomato chromosomes appeared to be uneven. Phylogenetic tree of tomato and Arabidopsis photoreceptor gene family were classified into eight subgroups, indicating gene expression diversity. Morphological and physiological assessment revealed no dead plant after 4h of cold treatment. All the plants were found to be alive, but there were some variations in the data across different parameters. Cold stress significantly reduced the rate of photosynthesis from 10.06 to 3.16μmolm-2 s-1 , transpiration from 4.6 to 1.3mmolm-2 s-1 , and stomatal conductance from 94.6 to 25.6mmolm-2 s-1 . The cold stressed plants also had reduced height, root/shoot length, and fresh/dry biomass weight than the control plants. Relative expression analysis under cold stress revealed that after 4h, light stimulates the transcript level of Cry2 from 1.9 to 5.7 and PhyB from 0.98 to 6.9 compared to other photoreceptor genes.
Collapse
Affiliation(s)
- Agossa Anicet Batcho
- National University of Sciences, Technology, Engineering and Mathematics (ENS-UNSTIM), Natitingou, Republic of Benin; and Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelu 27, Olomouc-Holice 783 71, Czech Republic
| | - Joy Oluchi Nwogwugwu
- Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Ibadan, Nigeria
| | - Mohsin Ali
- Independent Researcher, House No. 280 A/1 Sector F1 Mirpur 10250, AJK, Pakistan
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan
| | - Ayesha Javaid
- Independent Researcher, Askari 13, Rawalpandi 46604, Pakistan
| | - Martin Fellner
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelu 27, Olomouc-Holice 783 71, Czech Republic
| |
Collapse
|
26
|
Tag you're it: Application of stable isotope labeling and LC-MS to identify the precursors of specialized metabolites in plants. Methods Enzymol 2022; 676:279-303. [DOI: 10.1016/bs.mie.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|