1
|
Kounatidis D, Vallianou NG, Stratigou T, Voukali M, Karampela I, Dalamaga M. The Kidney in Obesity: Current Evidence, Perspectives and Controversies. Curr Obes Rep 2024; 13:680-702. [PMID: 39141201 DOI: 10.1007/s13679-024-00583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE OF REVIEW As obesity and chronic kidney disease (CKD) remain a public health issue, we aim to elaborate on their complex relationship regarding pathogenetic mechanisms and therapeutic potential as well. The purpose of this review is to enhance our understanding of the interplay between obesity and CKD in order to timely diagnose and treat obesity-related CKD. RECENT FINDINGS Obesity and CKD pose significant intertwined challenges to global health, affecting a substantial portion of the population worldwide. Obesity is recognized as an independent risk factor, intricately contributing to CKD pathogenesis through mechanisms such as lipotoxicity, chronic inflammation, and insulin resistance. Recent evidence highlights additional factors including hemodynamic changes and intestinal dysbiosis that exacerbate kidney dysfunction in obese individuals, leading to histologic alterations known as obesity-related glomerulopathy (ORG). This narrative review synthesizes current knowledge on the prevalence, pathophysiology, clinical manifestations, and diagnostic strategies of obesity-related kidney disease. Furthermore, it explores mechanistic insights to delineate current therapeutic approaches, future directions for managing this condition and controversies. By elucidating the multifaceted interactions between obesity and kidney health, this review aims to inform clinical practice and stimulate further research to address this global health epidemic effectively.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527, Athens, Greece
| | - Natalia G Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece.
| | - Theodora Stratigou
- Department of Endocrinology, Diabetes and Metabolism, European and National Expertise Center for Rare Endocrine Disorders, Evangelismos General Hospital, 10676, Athens, Greece
| | - Maria Voukali
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126, Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Medical School, Attikon General University Hospital, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
2
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Fan X, Hu X, Cong P, Wang X, Song Y, Liu Y, Wang X, Meng N, Xue C, Xu J. Combined UPLC-QqQ-MS/MS and AP-MALDI Mass Spectrometry Imaging Method for Phospholipidomics in Obese Mouse Kidneys: Alleviation by Feeding Sea Cucumber Phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16312-16322. [PMID: 38985073 DOI: 10.1021/acs.jafc.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid β-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xinxin Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong 266073, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| |
Collapse
|
4
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
5
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
6
|
Zhu X, Si F, Hao R, Zheng J, Zhang C. Nuciferine Protects against Obesity-Induced Nephrotoxicity through Its Hypolipidemic, Anti-Inflammatory, and Antioxidant Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18769-18779. [PMID: 38006352 DOI: 10.1021/acs.jafc.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
High-fat diets (HFD) could cause obesity, trigger lipid accumulation, and induce oxidative stress and inflammation, leading to kidney damage. This study aimed to elucidate the protective effects of nuciferine on HFD-caused nephrotoxicity and explore the underlying mechanisms in Kunming mice and palmitic acid-exposed HK-2 cells. In obese mice, nuciferine notably alleviated HFD-induced chronic renal dysfunction and delayed renal fibrosis progression and podocyte apoptosis, as evidenced by the increased expressions of renal function factors BUN, CRE, and UA and the decreased expressions of key protein factors TGF-β1, p-Samd3, Wnt-1, and β-catenin. Nuciferine also effectively attenuated HFD-induced renal lipid accumulation via the AMPK-mediated regulation of FAS and HSL expressions and suppressed inflammation and oxidative stress via the AMPK-mediated Nrf-2/HO-1 and TLR4/MyD88/NF-κB pathways. In addition, consistent with the results of animal experiments, nuciferine remarkably reversed cell damage and attenuated lipid accumulation, inflammation, and oxidative stress in palmitic acid-exposed HK-2 cells through the AMPK-mediated signaling pathway. Therefore, nuciferine could be a new food-derived protective agent to offset obesity and correlative kidney damage.
Collapse
Affiliation(s)
- Xiangyang Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Fan Si
- College of Resources and Environment, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Jingjie Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Chen Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| |
Collapse
|
7
|
Kim YJ, Oh SH, Lim JH, Cho JH, Jung HY, Kim CD, Park SH, Kwon TH, Kim YL. Impact of Ring Finger Protein 20 and Its Downstream Regulation on Renal Tubular Injury in a Unilateral Nephrectomy Mouse Model Fed a High-Fat Diet. Nutrients 2023; 15:4959. [PMID: 38068817 PMCID: PMC10708490 DOI: 10.3390/nu15234959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Abnormal lipid metabolism increases the relative risk of kidney disease in patients with a single kidney. Using transcriptome analysis, we investigated whether a high-fat diet leads to abnormalities in lipid metabolism and induces kidney cell-specific damage in unilateral nephrectomy mice. Mice with unilateral nephrectomy fed a high-fat diet for 12 weeks exhibited progressive renal dysfunction in proximal tubules, including lipid accumulation, vacuolization, and cell damage. Ring finger protein 20 (RNF20) is a ligase of nuclear receptor corepressor of peroxisome proliferator-activated receptors (PPARs). The transcriptome analysis revealed the involvement of RNF20-related transcriptome changes in PPAR signaling, lipid metabolism, and water transmembrane transporter under a high-fat diet and unilateral nephrectomy. In vitro treatment of proximal tubular cells with palmitic acid induced lipotoxicity by altering RNF20, PPARα, and ATP-binding cassette subfamily A member 1 (ABCA1) expression. PPARγ and aquaporin 2 (AQP2) expression decreased in collecting duct cells, regulating genetic changes in the water reabsorption process. In conclusion, a high-fat diet induces lipid accumulation under unilateral nephrectomy via altering RNF20-mediated regulation and causing functional damage to cells as a result of abnormal lipid metabolism, thereby leading to structural and functional kidney deterioration.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Se-Hyun Oh
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Division of Nephrology, Department of Intermanl Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.-J.K.); (S.-H.O.); (J.-H.C.); (H.-Y.J.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
李 卉, 张 历, 黄 蓉, 任 倩, 郭 帆, 石 敏, 杨 乐, 于 洋, 马 良, 付 平. [Sichuan Dark Tea-Based Medicated Dietary Formula Improves Obesity-Induced Renal Lipid Metabolism Disorder in Mice by Remodeling Gut Microbiota and Short-Chain Fatty Acid Metabolism]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1112-1120. [PMID: 38162058 PMCID: PMC10752792 DOI: 10.12182/20231160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 01/03/2024]
Abstract
Objective To investigate the renoprotective effects of a Sichuan dark tea-based medicated dietary formula (alternatively referred to as Qing, or clarity in Chinese) on mice with diet-induced obesity (DIO) and to explore the specific mechanisms involved. Methods Male C57BL/6 mice were randomly assigned to three groups, a control group, a DIO group, and a Qing treatment group, or the Qing group, with 8 mice in each group. The mice in the control group were given normal maintenance feed and purified water, and the other two groups were fed a high-fat diet for 12 weeks to establish the DIO model. After that, high-fat diet continued in the DIO group, while the Qing group was given Qing at the same time for 12 weeks, during which period the weight of the mice was monitored and recorded every week. The mice were sacrificed after 12 weeks. Serum samples were collected and the levels of triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin were measured to evaluate liver function. In addition, renal lipids were extracted to determine the levels of TG and TC in the kidney and periodic acid-Schiff (PAS) and oil red O stainings were performed to evaluate kidney pathological injury. Western blot was performed to determine the phosphorylated AMPK (pAMPK)/AMPK ratio in the kidney tissue. RT-qPCR and Western blot were used to determine the expression of proteins related to fatty acid oxidation, including acetyl-CoA carboxylase 1 (ACC1), carnitine acyltransferase 1 (CTP1), peroxisome proliferators-activated receptor γ (PPARγ), peroxisome proliferators-activated receptor-1 α (PPAR1α), sterol-regulatory element binding proteins (SREBP-1), and key proteins related to lipid synthesis, including fatty acid synthase (FASN) and stearoyl-coenzyme A desaturase 1 (stearoyl-CoA desaturase) in the kidney tissue. 16SrRNA and metabolomics were applied to analyze the gut microbiota in the intestinal contents and its metabolites. Results Compared with those of the control group, the levels of liver mass (P=0.0003), serum ALT (P<0.0001) and AST (P=0.0001), and kidney TC (P=0.0191) and TG (P=0.0101) of the DIO group were significantly increased and there was lipid deposition in the kidney. Compared with those of the DIO group, mice in the Qing group showed effective reduction in liver mass (P=0.0316) and improvements in the abnormal serum levels of AST (P=0.0012) and ALT (P=0.0027) and kidney TC (P=0.0200) and TG (P=0.0499). In addition, mice in the Qing group showed significant improvement in lipid deposition in the kidney. Qing group showed increased pAMPK/AMPK ratio in comparison with that of the DIO group. In comparison with those of the control group, mice in the DIO group had upregulated expression of lipid synthesis-related genes and proteins (SREBP-1, FASN, and SCD1). As for the fatty acid oxidation-related genes and proteins, DIO mice showed upregulated expression of ACC1 and downregulated expression of CPT1A, PPARγ, and PGC1α in comparison with those of the control group. In the Qing goup, improvements in regard to all these changes were observed. The Qing group demonstrated improvement in the disrupted homeostasis of the gut microbiota. Short-chain fatty acids in the cecal contents, especially isovaleric acid and propionic acid, were also restored. Conclusion Sichuan dark tea-based medicated dietary formula may improve renal lipid metabolism by regulating gut microbiota and the levels of intestinal short-chain fatty acids, thereby protecting obesity-related kidney injury. Isovaleric acid and propionic acid may be the metabolites key to its regulation of gut microbiota.
Collapse
Affiliation(s)
- 卉 李
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 历涵 张
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 蓉双 黄
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 倩 任
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 帆 郭
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 敏 石
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 乐天 杨
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 洋 于
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 良 马
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 平 付
- 四川大学华西医院 肾脏内科 肾脏病研究所 (成都 610041)Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Zhang H, Chen R, Xu X, Yang M, Xu W, Xiang S, Wang L, Jiang X, Hua F, Huang X. Metabolically healthy obesity is associated with higher risk of both hyperfiltration and mildly reduced estimated glomerular filtration rate: the role of serum uric acid in a cross-sectional study. J Transl Med 2023; 21:216. [PMID: 36959674 PMCID: PMC10035285 DOI: 10.1186/s12967-023-04003-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/16/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND The impact of metabolically healthy obesity (MHO) on kidney dysfunction remains debatable. Moreover, few studies have focused on the early stages of kidney dysfunction indicated by hyperfiltration and mildly reduced eGFR. Thus, we aimed to investigate the association between the MHO and early kidney dysfunction, which is represented by hyperfiltration and mildly reduced estimated glomerular filtration rate (eGFR), and to further explore whether serum uric acid affects this association. METHODS This cross-sectional study enrolled 1188 residents aged ≥ 40 years old from Yonghong Communities. Metabolically healthy phenotypes were categorized based on Adult Treatment Panel III criteria. Obesity was defined as body mass index (BMI) ≥ 25 kg/m2. Mildly reduced eGFR was defined as being in the range 60 < eGFR ≤ 90 ml/min/1.73m2. Hyperfiltration was defined as eGFR > 95th percentile after adjusting for sex, age, weight, and height. RESULTS Overall, MHO accounted for 12.8% of total participants and 24.6% of obese participants. Compared to metabolically healthy non-obesity (MHNO), MHO was significantly associated with an increased risk of mildly reduced eGFR (odds ratio [OR] = 1.85, 95% confidence interval [CI] 1.13-3.01) and hyperfiltration (OR = 2.28, 95% CI 1.03-5.09). However, upon further adjusting for uric acid, the association between the MHO phenotype and mildly reduced eGFR was reduced to null. Compared with MHNO/non-hyperuricemia, MHO/non-hyperuricemia was associated with an increased risk of mildly reduced eGFR (OR = 2.04, 95% CI 1.17-3.58), whereas MHO/hyperuricemia was associated with an observably increased risk (OR = 3.07, 95% CI 1.34-7.01). CONCLUSIONS MHO was associated with an increased risk of early kidney dysfunction, and the serum uric acid partially mediated this association. Further prospective studies are warranted to clarify the causality.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Rui Chen
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Xiaohong Xu
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, Jiangsu, China
- Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China
| | - Minxing Yang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Wenrong Xu
- Department of Immunization Program, Liangxi District Center for Disease Control and Prevention, Wuxi, 214000, Jiangsu, China
| | - Shoukui Xiang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Long Wang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Xiaohong Jiang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China
| | - Fei Hua
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China.
| | - Xiaolin Huang
- Department of Endocrine and Metabolic Diseases, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University, 185 Juqianjie Road, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
11
|
Park JS, Kim DH, Choi HI, Kim CS, Bae EH, Ma SK, Kim SW. 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) induces cell death through ferroptosis and acts as a trigger of apoptosis in kidney cells. Cell Death Dis 2023; 14:78. [PMID: 36732325 PMCID: PMC9894909 DOI: 10.1038/s41419-023-05601-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Ferroptosis is a cell death mechanism characterized by intracellular iron accumulation and lipid peroxidation. Effects of uremic toxins on ferroptosis in the kidney are not well understood. We investigated whether protein-bound uremic toxins induce ferroptosis, resulting in cell death, using the bilateral ureteral obstruction (BUO) mouse model and kidney cells. In BUO mice, we observed elevated lipid peroxidation, increased iron concentration, and decreased glutathione peroxidase 4 (GPX4) expression. Levels of transferrin receptor 1 and system Xc-, which are involved in iron transport and storage, were also elevated, while those of ferritin heavy and light chains (FHC and FLC) were reduced. Treatment of HK-2 and NRK49F kidney cells with CMPF decreased GSH levels and the expression of GPX4, FHC, and FLC, and increased levels of ROS, lipid peroxidation, and intracellular iron concentration. CMPF-induced and erastin-induced decreases in GPX4 levels and increases in Bax and cytochrome C levels were counteracted by ferrostatin-1 pretreatment. However, GPX4 mRNA levels, protein abundance, or promoter activity were not restored by Z-VAD-FMK, a multi-caspase inhibitor. These results suggest that ferroptosis induced by CMPF treatment induces apoptosis, and inhibition of ferroptosis reduces apoptosis, suggesting that ferroptosis plays a role in triggering cell death by apoptosis.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
12
|
circITGB1 Regulates Adipocyte Proliferation and Differentiation via the miR-23a/ARRB1 Pathway. Int J Mol Sci 2023; 24:ijms24031976. [PMID: 36768295 PMCID: PMC9916083 DOI: 10.3390/ijms24031976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Adipose tissues represent an important energy storage organ in animals and are the largest endocrine organ. It plays an important regulatory role in the pathogenesis of insulin resistance, cardiovascular disease, and metabolic syndrome. Adipose development is a complex biological process involving multiple key genes, signaling pathways, and non-coding RNAs, including microRNAs and circular RNAs. In this study, we characterized circITGB1 and named its host gene ITGB1, which is differentially expressed in sheep of different months based on sequencing data. We collated and analyzed the sequencing data to select miRNA-23a with strong binding to ARRB1. We found that miRNA-23a regulates the development and differentiation of sheep adipocytes by targeting ARRB1. As a competing endogenous RNA, circITGB1 overexpression effectively alleviated the inhibitory effect of miR-23a on ARRB1. Conclusively, we provide evidence that circITGB1 regulates the proliferation and differentiation of sheep adipocytes via the miR-23a/ARRB1 pathway. This study provides a scientific basis for further studies on adipose tissue development at the circRNA level.
Collapse
|
13
|
Zhou Y, Tao H, Xu N, Zhou S, Peng Y, Zhu J, Liu S, Chang Y. Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J Food Biochem 2022; 46:e14379. [PMID: 35976957 DOI: 10.1111/jfbc.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Diabetic nephropathy (DN) is a highly prevalent and severe diabetic complication. It is urgent to explore high efficiency and minor side effects therapy for DN. Chrysin is a natural flavonoid with various biological activities found in honey and propolis, and has considerable potential to improve DN. The study was designed to explore the effects and the specific underlying mechanism of chrysin for DN in high-fat-diet (HFD) and streptozotocin (STZ) induced DN mice. Firstly, the study revealed that chrysin effectively improved obesity, insulin resistance (IR), renal function, and pathological injury in DN mice. Secondly, the study found that chrysin improved the key indices and markers of lipid accumulation, oxidative stress, and inflammation which are closely related to the development or progression of DN. Moreover, chrysin markedly modulated lipid metabolism by regulating Adenosine 5' monophosphate-activated protein kinase (AMPK) and essential downstream proteins. Furthermore, AMPK inhibitor (Dorsomorphin) intervention partially suppressed the positive effects of chrysin on all testing indicators, indicating that activated AMPK is crucial for chrysin action on DN. The present study demonstrated that chrysin may improve DN by regulating lipid metabolism, and activated AMPK plays a critical role in the regulation of chrysin. PRACTICAL APPLICATIONS: The study verified the positive effects of chrysin on obesity, insulin resistance, kidney injury, renal function, lipid accumulation, inflammation, and oxidative stress, which are closely related to the development or progression of diabetic nephropathy (DN). Moreover, we explored that chrysin improves DN by regulating AMPK-mediated lipid metabolism. Furthermore, the AMPK inhibitor was used to confirm that activated AMPK plays a critical role in the effects of chrysin. These results could offer a full explanation and a potential option for adjuvant therapy of DN diabetes with chrysin.
Collapse
Affiliation(s)
- Yingjun Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Tao
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Nuo Xu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shichun Zhou
- Agricultural and Rural Bureau, Haiyang, Shandong, People's Republic of China
| | - Yuke Peng
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jianxiang Zhu
- Shanghai Cao Yang No. 2 High School, Shanghai, People's Republic of China
| | - Shaowei Liu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yaning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Kim B, Kim GM, Oh S. Use of the Visceral Adiposity Index as an Indicator of Chronic Kidney Disease in Older Adults: Comparison with Body Mass Index. J Clin Med 2022; 11:6297. [PMID: 36362525 PMCID: PMC9659218 DOI: 10.3390/jcm11216297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2023] Open
Abstract
The visceral adiposity index (VAI) was recently introduced to quantify visceral fat accumulation and dysfunction. This cross-sectional study explored whether the VAI is associated with chronic kidney disease (CKD) in older adults and compared its utility with that of body mass index (BMI) for predicting CKD. In total, 7736 older adults (3479 men and 4257 women) aged ≥ 60 years were divided into normal, mild, and moderate-to-severe CKD groups. Associations of the VAI and BMI with CKD were compared among the groups, and cut-off points for moderate-to-severe CKD (MSCKD) were established. While the VAI could discriminate among all of the groups, the BMI could not. The severity of CKD was more strongly associated with the VAI than BMI. The odds ratios indicated that, in the fully adjusted model, the VAI was a significant predictor of MSCKD in both men and women, while the BMI was a significant predictor only in men. For the VAI, the area under the receiver operating characteristic curve values for men and women were 0.631 (cut-off point: ≥2.993) and 0.588 (≥4.001), compared with 0.555 (≥25.335) and 0.533 (≥24.096) for BMI, respectively. Taken together, the findings suggest that the VAI is associated with CKD and represents a better indicator for the disease than BMI.
Collapse
Affiliation(s)
- Bokun Kim
- Department of Anti-Ageing Health Care, Changwon National University, Changwon 51140, Korea
- Future Convergence Research Institute, Changwon National University, Changwon 51140, Korea
- Department of Sports Healthcare, In-Je University, Gimhae 50834, Korea
| | - Gwon-Min Kim
- Medical Research Institute, Pusan National University, Busan 46241, Korea
| | - Sechang Oh
- Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura 300-0032, Japan
| |
Collapse
|
15
|
Chen YY, Hong H, Lei YT, Zou J, Yang YY, He LY. ACE2 deficiency exacerbates obesity-related glomerulopathy through its role in regulating lipid metabolism. Cell Death Discov 2022; 8:401. [PMID: 36180463 PMCID: PMC9523180 DOI: 10.1038/s41420-022-01191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity-related glomerulopathy is a secondary glomerular disease and its incidence has been increased globally in parallel with the obesity epidemic. ORG emerged as a growing cause of end-stage renal disease in recent years. Unbalanced production of adipokines at the adipose tissue as well as low-grade inflammatory processes play central roles in ORG progression. ORG mouse model with ACE2-knockout was generated and kidney injury was evaluated by biochemistry and histological staining assays. Protein and mRNA expressions were quantified by ELISA, western blot or qRT-PCR methods. ACE2 deficiency aggravated ORG-related renal injuries and stimulated both lipid accumulation and inflammatory responses. Further, Nrf2 pathway was deactivated upon ACE2-knockout. By contrast, ACE2 overexpression reactivated Nrf2 pathway and ameliorated ORG symptoms by decreasing fat deposition and reducing inflammatory responses. Our data demonstrated that ACE2 exerted the beneficial effects by acting through Nrf2 signaling pathway, suggesting the protective role of ACE2 against lipid accumulation and inflammatory responses in ORG pathogenesis.
Collapse
Affiliation(s)
- Yin-Yin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Han Hong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Yu-Ting Lei
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha Clinical Research Center for Kidney Disease, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan Province, P. R. China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, 410011, Hunan Province, P. R. China.
| |
Collapse
|
16
|
Harley G, Katerelos M, Gleich K, de Souza DP, Narayana VK, Kemp BE, Power DA, Mount PF. Blocking AMPK signalling to acetyl-CoA carboxylase increases cisplatin-induced acute kidney injury and suppresses the benefit of metformin. Biomed Pharmacother 2022; 153:113377. [DOI: 10.1016/j.biopha.2022.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
|
17
|
Das S, Choudhuri D. Dietary calcium regulates the risk renal injury in high fat diet induced obese rats by regulating renal lipid metabolism, oxidative stress and inflammation. Arch Physiol Biochem 2022; 128:1039-1049. [PMID: 32255372 DOI: 10.1080/13813455.2020.1746812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONTEXT The antiobesity effect of dietary calcium by preventing fat accumulation and weight gain was well established from several epidemiological and animal studies. OBJECTIVE To evaluate the effect of dietary calcium against obesity-associated with renal injury in high fat diet induced obese rats. Materials and Methods: Obesity was induced by high fat diet (HFD) and then given either low or high calcium HFD (0.25% and 1.0%) for another 30 days. RESULTS The results showed that 1.0% high calcium group was effective in reducing renal lipogenesis activity, lipid accumulation, fatty acid synthase (FAS) activity, acetyl coenzyme A carboxylase (ACC) expression, oxidative stress, inflammation and increased the adenosine monophosphate kinase (AMPK) expression. DISCUSSION AND CONCLUSION Downregulation of renal lipid accumulation by high calcium diet through AMPK mediated lipogenesis activity, oxidative stress and the inflammatory response seemed to prevent the renal injury in high fat diet (HFD) induced obese rats.
Collapse
Affiliation(s)
- Sandeep Das
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| | - Dipayan Choudhuri
- Reproductive Physiology and Endocrinology Laboratory, Department of Human Physiology, Tripura University (A Central University), Suryamaninagar, Agartala, India
| |
Collapse
|
18
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
19
|
Singh SSB, Patil KN. Trans-ferulic acid attenuates hyperglycemia-induced oxidative stress and modulates glucose metabolism by activating AMPK signaling pathway in vitro. J Food Biochem 2022; 46:e14038. [PMID: 34981525 DOI: 10.1111/jfbc.14038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a potent metabolic regulator and an attractive target for antidiabetic activators. Here we report for the first that, trans-ferulic acid (TFA) is a potent dietary bioactive molecule of hydroxycinnamic acid derivative for the activation of AMPK with a maximum increase in phosphorylation (2.71/2.67 ± 0.10; p < .001 vs. high glucose [HG] control) in hyperglycemia-induced human liver cells (HepG2) and rat skeletal muscle cells (L6), where HG suppresses the AMPK pathway. It was also observed that TFA increased activation of AMPK in a dose- and time-dependent manner and also increased the phosphorylation of acetyl-CoA carboxylase (ACC), suggesting that it may promotes fatty acid oxidation; however, pretreatment with compound C reversed the effect. In addition, TFA reduced the level of intracellular reactive oxygen species (ROS) and nitric oxide (NO) induced by hyperglycemia and subsequently increased the level of glutathione. Interestingly, TFA also upregulated the glucose transporters, GLUT2 and GLUT4, and inhibited c-Jun N-terminal protein kinase (JNK1/2) by decreasing the phosphorylation level in tested cells under HG condition. Our studies provide critical insights into the mechanism of action of TFA as a potential natural activator of AMPK under hyperglycemia. PRACTICAL APPLICATIONS: Hydroxycinnamic acid derivatives possess various pharmacological properties and are found to be one of the most ubiquitous groups of plant metabolites in almost all dietary sources. However, the tissue-specific role and its mechanism under hyperglycemic condition remain largely unknown. The present study showed that TFA is a potent activator of AMPK under HG condition and it could be used as a therapeutic agent against hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- Sangeetha S B Singh
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K Neelakanteshwar Patil
- Department of Protein Chemistry and Technology, Council of Scientific & Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Shih YL, Shih CC, Chen SYF, Chen JY. Elevated serum leptin levels are associated with lower renal function among middle-aged and elderly adults in Taiwan, a community-based, cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:1047731. [PMID: 36619557 PMCID: PMC9816377 DOI: 10.3389/fendo.2022.1047731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Plasma leptin is considered a risk factor for obesity and cardio-metabolic disease, but the link between serum leptin and renal function is still under evaluation. In our study, we focused on the relationship between serum leptin and renal function, and we investigated the relationship in more detail. METHODS The 396 middle-aged and elderly Taiwanese adults recruited for our health survey were the subject of our research. All participants agreed to participate and signed a consent form before they joined and completed our study. We divided the participants into three groups according to eGFR tertiles and analyzed the parameters between each group. Then, we used Pearson's correlation test to investigate the relationship between eGFR levels and cardio-metabolic risk factors with adjustment for age. The scatter plot indicates the trend between serum leptin levels and eGFR levels. Participants were reclassified into three subgroups according to their leptin levels and the bar chart reveals the prevalence of chronic kidney disease (CKD) in each group. Finally, we used multivariate linear regression to evaluate the relationship between serum leptin and eGFR levels with adjustment for age, sex, smoking status, drinking status, body mass index (BMI), uric acid levels, hypertension (HTN), diabetes mellitus (DM), and dyslipidemia. RESULTS In our study, we analyzed the data from 396 eligible participants. A total of 41.4% of the participants were male, and the average age of all participants was 64.81 years ( ± 8.78). The participants in the high eGFR group were more likely to have lower serum leptin levels. Furthermore, eGFR values were negatively correlated with serum leptin levels even after adjustment for age. The prevalence of CKD in the high serum leptin group was higher than that in the low serum leptin group. Serum leptin levels showed significant negative correlations with eGFR levels (β=-0.14, p<0.01) in the multivariate linear regression after adjusting for age, sex, smoking status, drinking status, BMI, uric acid levels, HTN, DM, and dyslipidemia. CONCLUSION According to our study, serum leptin levels show a negative relationship with eGFR levels in middle-aged and elderly people in Taiwan. In addition, high serum leptin levels could be an novel marker to survey kidney failure in clinical practices.
Collapse
Affiliation(s)
- Yu-Lin Shih
- Department of Family Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chuan Shih
- General Administrative Department, United Safety Medical Group, New Taipei, Taiwan
| | - Sun-Yi-Fan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Jau-Yuan Chen,
| |
Collapse
|
21
|
Zhou G, Cui J, Xie S, Wan H, Luo Y, Guo G. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Biosci Biotechnol Biochem 2021; 85:1183-1193. [PMID: 33704405 DOI: 10.1093/bbb/zbab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Obesity is one of the most critical risk factors for diabetes mellitus and plays a significant role in diabetic nephropathy (DN). The present investigation aimed to evaluate the possible mechanism of action of vitexin on obesity-induced DN in a high-fat diet (HFD)-fed experimental C57BL/6 mice model. Obesity was induced in male C57BL/6 mice by chronic administration of HFD, and mice were concomitantly treated with vitexin (15, 30, and 60 mg/kg, p.o.). HFD-induced increased renal oxido-nitrosative stress and proinflammatory cytokine levels were significantly inhibited by vitexin. The Western blot analysis suggested that alteration in renal NF-κB, IκBα, nephrin, AMPK, and ACC phosphorylation levels was effectively restored by vitexin treatment. Histological aberration induced in renal tissue after chronic administration of HFD was also reduced by vitexin. In conclusion, vitexin suppressed the progression of obesity-induced DN via modulation of NF-κB/IkBα and AMPK/ACC pathways in an experimental model of HFD-induced DN in C57BL/6J mice.
Collapse
Affiliation(s)
- Guangju Zhou
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiale Cui
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Suhua Xie
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haiyan Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Luo
- Department of Rehabilitation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Guo
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
22
|
Deng Y, Wu Q, Chen W, Zhu L, Liu W, Xia F, Sun L, Lin X, Zeng R. Lipidomics reveals association of circulating lipids with body mass index and outcomes in IgA nephropathy patients. J Mol Cell Biol 2021; 13:mjab040. [PMID: 34272854 PMCID: PMC8697343 DOI: 10.1093/jmcb/mjab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022] Open
Abstract
IgA nephropathy (IgAN) is a leading cause of chronic kidney disease (CKD), which are commonly accompanied by dyslipidemia. Obesity is also associated with dyslipidemia and risk of CKD, but the relation of the dyslipidemia patterns with obesity and disease progression in IgAN patients remains unknown. Traditional Chinese medicine (TCM) and the combined treatment with corticosteroids and TCM have been shown to be of benefit for IgAN patients, but predictive markers for guiding these treatments are lacking. Here, we quantified 545 lipid species in the plasma from 196 participants, including 140 IgAN patients and 56 healthy volunteers, and revealed an altered plasma lipidome in IgAN patients as compared to healthy participants. Association analysis showed that a sub-group of glycerides, particularly triacylglycerols (TGs) containing docosahexaenoic acid, were positively associated with high body mass index (BMI) in under- or normal weight IgAN patients, while several free fatty acids and sphingomyelins were positively associated with high BMI in overweight or obese IgAN patients. Further, our study suggested that elevated levels of eight lipids, mainly TG species containing linolenic acid, were independent risk factors for IgAN progression and also reported the prospective association of circulating lipids with treatment outcomes in IgAN. Taken together, our findings may not only help to achieve precision medicine but also provide a knowledge base for dietary intervention in the treatment of IgAN.
Collapse
Affiliation(s)
- Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wanjia Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Li Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wangyi Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Fangying Xia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| |
Collapse
|
23
|
Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021; 8:673556. [PMID: 34268323 PMCID: PMC8275856 DOI: 10.3389/fmed.2021.673556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Incidence of obesity related renal disorders have increased 10-folds in recent years. One of the consequences of obesity is an increased glomerular filtration rate (GFR) that leads to the enlargement of the renal glomerulus, i.e., glomerulomegaly. This heightened hyper-filtration in the setting of type 2 diabetes irreparably damages the kidney and leads to progression of end stage renal disease (ESRD). The patients suffering from type 2 diabetes have progressive proteinuria, and eventually one third of them develop chronic kidney disease (CKD) and ESRD. For ameliorating the progression of CKD, inhibitors of renin angiotensin aldosterone system (RAAS) seemed to be effective, but on a short-term basis only. Long term and stable treatment strategies like weight loss via restricted or hypo-caloric diet or bariatric surgery have yielded better promising results in terms of amelioration of proteinuria and maintenance of normal GFR. Body mass index (BMI) is considered as a traditional marker for the onset of obesity, but apparently, it is not a reliable indicator, and thus there is a need for more precise evaluation of regional fat distribution and amount of muscle mass. With respect to the pathogenesis, recent investigations have suggested perturbation in fatty acid and cholesterol metabolism as the critical mediators in ectopic renal lipid accumulation associated with inflammation, increased generation of ROS, RAAS activation and consequential tubulo-interstitial injury. This review summarizes the renewed approaches for the obesity assessment and evaluation of the pathogenesis of CKD, altered renal hemodynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| | - Yingjun Liao
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Zheng
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Xia X, Wang X, Wang H, Lin Z, Shao K, Xu J, Zhao Y. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113919. [PMID: 33577915 DOI: 10.1016/j.jep.2021.113919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney damage (DKD) is one of the most common complications of diabetes, which is known as a chronic inflammatory kidney disease caused by persistent hyperglycemia. White tea was originally used as a folk medicine to treat measles in ancient China. What arouses our interest is that there is a traditional method to treat diabetes with white tea taken from over 30-year-old tree of Camellia sinensis L. However, there are few reports on the renal protection of white tea. AIM OF THE STUDY This present study was designed to study the potential protective effects of white tea (WT) and old tree white tea (OTWT) on high-fat-diet (HFD) combined with streptozotocin (STZ)-induced type 2 diabetic mice to explore the possible mechanism of WT/OTWT against DKD. MATERIALS AND METHODS C57BL/6 mice were randomly divided into four groups: NC, T2D, WT (400 mg/kg·b.w, p.o.), OTWT (400 mg/kg·b.w, p.o.). Diabetes was established in all groups except NC group, by six weeks of HFD feeding combined with STZ (50 mg/kg, i.p.) for 3 times, treatments were administered for six weeks and then all the animals were decapitated; kidney tissues and blood samples were collected for the further analysis, including: levels of insulin, lipid metabolism (TG, TC, HDL, LDL, FFA), antioxidative enzymes (catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPx)), blood urea nitrogen (BUN) and creatine, inflammatory cytokines (TNF-α, IL-1β, COX-2, iNOS, MCP-1), advanced glycation end products (AGE), receptor of AGE (RAGE), Nrf2, AMPK, SIRT1, and PGC-1α. H&E, PAS and Masson staining were performed to examine the histopathological alterations of the kidneys. RESULTS Our data showed that WT and OTWT reversed the abnormal serum lipids (TG, TC, HDL, LDL, FFA) in T2D mice, upregulated antioxidative enzymes levels (CAT, SOD, GPx) and inhibit the excessive production of proinflammatory mediators (including MCP-1, TNF-α, IL1β, COX-2 and iNOS) by varying degrees, and OTWT was more effective. In histopathology, OTWT could significantly alleviate the accumulation of renal AGE in T2D mice, thereby improving the structural changes of the kidneys, such as glomerular hypertrophy, glomerular basement membrane thickening and kidney FIbrosis. CONCLUSIONS Both WT and OTWT could alleviate the diabetic changes in T2D mice via hypoglycemic, hypolipidemic, anti-oxidative and anti-inflammatory effects, while OTWT was more evident. OTWT could prominently alleviate the accumulation of AGE in the kidneys of T2D mice, thereby ameliorating the renal oxidative stress and inflammatory damage, which was associated with the activation of SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Xiaoyan Xia
- School of Traditional Chinese Medicine, Shanxi Datong University, Datong, 037009, China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhenchuan Lin
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Keping Shao
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
25
|
Hinden L, Kogot-Levin A, Tam J, Leibowitz G. Pathogenesis of diabesity-induced kidney disease: role of kidney nutrient sensing. FEBS J 2021; 289:901-921. [PMID: 33630415 DOI: 10.1111/febs.15790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Diabetes kidney disease (DKD) is a major healthcare problem associated with increased risk for developing end-stage kidney disease and high mortality. It is widely accepted that DKD is primarily a glomerular disease. Recent findings however suggest that kidney proximal tubule cells (KPTCs) may play a central role in the pathophysiology of DKD. In diabetes and obesity, KPTCs are exposed to nutrient overload, including glucose, free-fatty acids and amino acids, which dysregulate nutrient and energy sensing by mechanistic target of rapamycin complex 1 and AMP-activated protein kinase, with subsequent induction of tubular injury, inflammation, and fibrosis. Pharmacological treatments that modulate nutrient sensing and signaling in KPTCs, including cannabinoid-1 receptor antagonists and sodium glucose transporter 2 inhibitors, exert robust kidney protective effects. Shedding light on how nutrients are sensed and metabolized in KPTCs and in other kidney domains, and on their effects on signal transduction pathways that mediate kidney injury, is important for understanding the pathophysiology of DKD and for the development of novel therapeutic approaches in DKD and probably also in other forms of kidney disease.
Collapse
Affiliation(s)
- Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
26
|
Fisetin protects against high fat diet-induced nephropathy by inhibiting inflammation and oxidative stress via the blockage of iRhom2/NF-κB signaling. Int Immunopharmacol 2021; 92:107353. [PMID: 33429334 DOI: 10.1016/j.intimp.2020.107353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Promoted inflammation enhances the development of nephropathy in obesity. Fisetin (3,3',4',7-tetrahydroxyflavone, FIS) is a naturally occurring dietary flavonoid, and exhibits anti-inflammatory and anti-oxidative properties. Inactive rhomboid protein 2 (iRhom2), an inactive member of the rhomboid intramembrane proteinase family, is an essential inflammation-associated regulator. Here, we attempted to investigate the protective mechanisms of FIS against high fat diet (HFD)-induced nephropathy, with particular focus on iRhom2. We found that HFD induced systematic and renal pro-inflammatory cytokine production. Furthermore, iRhom2 expression was markedly elevated in kidney of HFD-fed mice, and in PAL-incubated macrophages, accompanied with high phosphorylation of NF-κB. Significant oxidative stress was observed in kidney of HFD-fed mice through suppressing Nrf-2/HO-1 signaling. Moreover, activation of iRhom2/NF-κB signaling and oxidative stress by PAL was detected in macrophages, which were effectively reversed by FIS. Importantly, we showed that iRhom2 knockdown significantly abrogated the ability of FIS to restrain inflammation and oxidative stress induced by PAL in macrophages, indicating that iRhom2 might be a potential therapeutic target for FIS during nephropathy treatment. Together, these results revealed that FIS could mitigate HFD-induced renal injury by regulating iRhom2/NF-κB and Nrf-2/HO-1 signaling pathways.
Collapse
|
27
|
Qi L, Kang N, Li Y, Zhao H, Chen S. The Predictive Value of Visceral Adiposity Index and Lipid Accumulation Index for Microalbuminuria in Newly Diagnosed Type 2 Diabetes Patients. Diabetes Metab Syndr Obes 2021; 14:1107-1115. [PMID: 33737822 PMCID: PMC7961207 DOI: 10.2147/dmso.s302761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 04/09/2023] Open
Abstract
PURPOSE This study aims to investigate the predictive value of visceral adiposity index (VAI) and lipid accumulation index (LAP) for microalbuminuria (MAU) in patients with newly diagnosed Type 2 diabetes (T2DM). PATIENTS AND METHODS This study included 335 patients with newly diagnosed T2DM patients from Hebei General Hospital. All the patients aged from 18 to 65 years old include 226 males and 109 females. Patients information and blood indicators were Collected and calculated the LAP and VAI scores. All the patients were divided into males (group A) and females (group B), and these groups were then further subdivided into A1 group which arises microalbuminuria, and A2 group which does not. With the same method, women were divided into B1 group and B2 group. RESULTS Baseline data analysis showed that LAP and VAI levels in A1 and B1 groups were significantly higher than those in A2 and B2 groups (P<0.05). Logistic regression analysis showed that fasting blood glucose, waist circumference, LAP, and VAI were independent risk factors for the occurrence of microalbuminuria in both males and females. ROC showed that the area under curve (AUC) of waist circumference, fasting blood glucose, LAP and VAI in male patients were 0.626, 0.676, 0.760 and 0.742, respectively, and in female patients were 0.703, 0.685, 0.787 and 0.764, respectively. In addition, the area under the curve of both LAP and VAI was higher in females than in males. CONCLUSION This study confirmed that both LAP and VAI had predictive values for the occurrence of urinary microalbumin in newly diagnosed T2DM patients. The predictive value was higher in the female group and the suggestion was more applicable to female patients.
Collapse
Affiliation(s)
- Licui Qi
- Graduate School of Hebei North University, Zhangjiakou, 075000, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Ning Kang
- Graduate School of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yong Li
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Hang Zhao
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
| | - Shuchun Chen
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, People’s Republic of China
- Correspondence: Shuchun Chen Endocrinology Department, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, Hebei, 050051, People’s Republic of China Email
| |
Collapse
|
28
|
Pereira BM, Thieme K, de Araújo L, Rodrigues AC. Lack of adiponectin in mice accelerates high-fat diet-induced progression of chronic kidney disease. Life Sci 2020; 257:118061. [DOI: 10.1016/j.lfs.2020.118061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
|
29
|
Promsan S, Lungkaphin A. The roles of melatonin on kidney injury in obese and diabetic conditions. Biofactors 2020; 46:531-549. [PMID: 32449276 DOI: 10.1002/biof.1637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes. Chronic kidney disease (CKD) is a complication occurring as a result of obesity and diabetic conditions that lead to an increased mortality rate. There are several mechanisms and pathways contributing to kidney injury in obese and diabetic conditions. The expansion of adipocytes triggers proinflammatory cytokines release into blood circulation and bind with the receptors at the cell membranes of renal tissues leading to kidney injury. Obesity-mediated inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are the important causes and progression of CKD. Melatonin (N-acetyl-5-methoxytryptamine) is a neuronal hormone that is synthesized by the pineal gland and plays an essential role in regulating several physiological functions in the human body. Moreover, melatonin has pleiotropic effects such as antioxidant, anti-inflammation, antiapoptosis. In this review, the relationship between obesity, diabetic condition, and kidney injury and the renoprotective effect of melatonin in obese and diabetic conditions from in vitro and in vivo studies have been summarized and discussed.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Melatonin/metabolism
- Melatonin/pharmacology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Oxidative Stress/drug effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
Collapse
Affiliation(s)
- Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University Chiang Mai, Thailand
| |
Collapse
|
30
|
Schwasinger-Schmidt TE, Elhomsy G, Paull-Forney BG. Impact of a Community-Based Weight Loss Program on Renal Function. Cureus 2020; 12:e8101. [PMID: 32542156 PMCID: PMC7292690 DOI: 10.7759/cureus.8101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction Obesity is associated with increased morbidity and mortality and is an independent risk factor for the development and progression of chronic kidney disease (CKD). This study investigated the effect of a community-based, lifestyle-focused, weight-loss intervention on renal function among participants at baseline following 12 weeks of therapy. Methods A retrospective analysis of adults enrolled in a weight management program from 2009 to 2014 was conducted. Participants consumed at least 800 kilocalories per day in meal replacements, attended weekly behavioral education classes, and expended approximately 300 kilocalories per day in physical activity. The primary outcome was the association of weight loss and changes in glomerular filtration rate (GFR). Secondary outcomes included changes in blood sugar levels, lipid parameters, blood pressure, and the use of medication for hypertension and diabetes mellitus. Results Of the 71 participants, 63.4% were female, the average weight was 289 pounds, the average body mass index (BMI) of 53, and baseline GFR 47 ml/min/1.73m2. Following 12 weeks of the intervention, 76.1% of participants improved in CKD stage, 22.4% remained within the same stage, and 1.5% progressed to a higher stage (3A to 3B). Analysis revealed a correlation between weight loss and improved GFR (p=0.0006). Improvements were noted in blood sugar levels, blood pressure, and lipids (p<0.05). Medications were reduced in 61.8% of participants for hypertension and 83.3% for diabetes. Conclusions A significant correlation was observed between weight loss and improved renal function, with most participants improving in CKD stage. Participants also improved in markers of chronic disease and required fewer medications. When controlling for both diabetes and hypertension, the effect of improved renal function persisted.
Collapse
Affiliation(s)
| | - Georges Elhomsy
- Internal Medicine, Kansas University School of Medicine-Wichita, Wichita, USA
| | | |
Collapse
|
31
|
Sun Z, Li Y, Qian Y, Wu M, Huang S, Zhang A, Zhang Y, Jia Z. Celastrol attenuates ox-LDL-induced mesangial cell proliferation via suppressing NLRP3 inflammasome activation. Cell Death Discov 2019; 5:114. [PMID: 31285857 PMCID: PMC6611885 DOI: 10.1038/s41420-019-0196-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Mesangial cell (MC) proliferation is one of the important pathological features of obesity-associated nephropathy with unknown etiology. Excessive MC proliferation can cause glomerulosclerosis and renal function loss. Thus, targeting MC proliferation may be a potential strategy for the treatment of obesity-associated kidney disease. The present study was undertaken to investigate the role of celastrol in MC proliferation induced by ox-LDL, as well as the potential mechanisms. Following ox-LDL treatment, MC proliferation was induced and the NLRP3 inflammasome was activated, as evidenced by increased NLRP3 levels, caspase 1 activity, and IL-18 and IL-1β release. Significantly, NLRP3 siRNAs inhibited MC proliferation and delayed cell cycle progression, as indicated by the cell cycle assay and the expression of cyclin A2 and cyclin D1. Given the anti-inflammatory effect of celastrol, we pretreated MCs with celastrol before ox-LDL treatment. As expected, celastrol pretreatment strikingly inhibited NLRP3 inflammasome activation and MC proliferation triggered by ox-LDL. In summary, celastrol potently blocked ox-LDL-induced MC proliferation, possibly by inhibiting NLRP3 inflammasome activation. These findings also suggest that celastrol may be a potential drug for treating proliferative glomerular diseases related to obesity and lipid disorders.
Collapse
Affiliation(s)
- Zhenzhen Sun
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yuanyuan Li
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yun Qian
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Mengying Wu
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Songming Huang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Aihua Zhang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Yue Zhang
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| | - Zhanjun Jia
- 1Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, 210008 Nanjing, China.,2Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, 210029 Nanjing, China.,3Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 210008 Nanjing, China
| |
Collapse
|
32
|
Jiang X, Yu J, Wang X, Ge J, Li N. Quercetin improves lipid metabolism via SCAP-SREBP2-LDLr signaling pathway in early stage diabetic nephropathy. Diabetes Metab Syndr Obes 2019; 12:827-839. [PMID: 31239739 PMCID: PMC6554005 DOI: 10.2147/dmso.s195456] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/22/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose: Quercetin, the most widely distributed flavonoid, has been shown to have multiple properties and beneficial effects on various metabolic diseases. Thus, our aim was to investigate the underlying mechanism whereby quercetin regulates renal lipid accumulation and ameliorates early diabetic renal injuries in Leprdb/Leprdb (db/db) mice, a model of type 2 diabetes. Methods: db/db mice were administered either 50 mg/kg or 100 mg/kg quercetin by oral gavage once a day to evaluate its effects on early stage diabetic nephropathy; mice were sacrificed at the end of the 10th week after intervention; a similar number of db/db and db/m mice were used as controls. During the experimental study, the general status of the animals was observed daily; body weight and blood glucose concentrations were measured at bi-weekly intervals. Biochemical parameters of lipid metabolism were measured by automatic biochemical analyzer. Renal function parameters were performed using commercial kits. Early renal histological changes and lipid accumulation were demonstrated by H&E staining and Oil-Red-O staining, respectively. Moreover, the expression of key proteins in the low-density lipoprotein receptors (LDLr)-SREBP-2-SREBP cSCAP signaling pathway in the kidneys of diabetic mice was detected by Western blot assay. Results: Compared with diabetic controls, quercetin not only ameliorated albuminuria and urinary albumin-to-creatinine ratio, but also decreased blood urea nitrogen and glucose, serum cholesterol, triglycerides, and low-density lipoprotein cholesterol, whereas it had no remarkable effect on the high-density lipoprotein cholesterol in diabetic db/db mice. Additionally, the evidently down regulated expression of LDLr, HMGCR, SREBP-2, and SCAP subsequently attenuated the renal lipid profile change and lipid droplet accumulation, resulting in the alleviation of renal injury of db/db mice. Conclusion: Quercetin safely and efficiently alleviates early diabetic renal injuries, possibly through improving the lipid metabolism via SCAP-SREBP2-LDLr signaling pathway.
Collapse
Affiliation(s)
- Xiyuan Jiang
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Jiangsu210029, People’s Republic of China
- Eodocrinology Department, KunShan Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 215300, People’s Republic of China
| | - Jiangyi Yu
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Xin Wang
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Jing Ge
- Eodocrinology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu213003, People’s Republic of China
| | - Nan Li
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Jiangsu210029, People’s Republic of China
| |
Collapse
|
33
|
Declèves AE, Mathew AV, Armando AM, Han X, Dennis EA, Quehenberger O, Sharma K. AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice. J Lipid Res 2019; 60:937-952. [PMID: 30862696 PMCID: PMC6495162 DOI: 10.1194/jlr.m088690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5'-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.
Collapse
Affiliation(s)
- Anne-Emilie Declèves
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Laboratory of Metabolic and Molecular Biochemistry Faculty of Medicine, Université of Mons, Mons, Belgium.
| | - Anna V Mathew
- Division of Nephrology Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Aaron M Armando
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Xianlin Han
- Barshop Institute of Aging, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| | - Edward A Dennis
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Chemistry and Biochemistry University of California, San Diego, La Jolla, CA
| | - Oswald Quehenberger
- Departments of Pharmacology, University of California, San Diego, La Jolla, CA; Medicine, University of California, San Diego, La Jolla, CA
| | - Kumar Sharma
- Institute of Metabolomic Medicine University of California, San Diego, La Jolla, CA; Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
34
|
Song QQ, Rao Y, Tang GH, Sun ZH, Zhang JS, Huang ZS, Yin S. Tigliane Diterpenoids as a New Type of Antiadipogenic Agents Inhibit GRα-Dexras1 Axis in Adipocytes. J Med Chem 2019; 62:2060-2075. [DOI: 10.1021/acs.jmedchem.8b01693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qin-Qin Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Yong Rao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhang-Hua Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Jun-Sheng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
35
|
Drori A, Permyakova A, Hadar R, Udi S, Nemirovski A, Tam J. Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes Metab 2019; 21:146-159. [PMID: 30091204 PMCID: PMC6586028 DOI: 10.1111/dom.13497] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the specific role of the endocannabinoid/cannabinoid type-1 (CB1 R) system in modulating mitochondrial dynamics in the metabolically active renal proximal tubular cells (RPTCs). MATERIALS AND METHODS We utilized mitochondrially-targeted GFP in live cells (wild-type and null for the CB1 R) and electron microscopy in kidney sections of RPTC-CB1 R-/- mice and their littermate controls. In both in vitro and in vivo conditions, we assessed the ability of CB1 R agonism or fatty acid flux to modulate mitochondrial architecture and function. RESULTS Direct stimulation of CB1 R resulted in mitochondrial fragmentation in RPTCs. This process was mediated, at least in part, by modulating the phosphorylation levels of the canonical fission protein dynamin-related protein 1 on both S637 and S616 residues. CB1 R-induced mitochondrial fission was associated with mitochondrial dysfunction, as documented by reduced oxygen consumption and ATP production, increased reactive oxygen species and cellular lactate levels, as well as a decline in mitochondrial biogenesis. Likewise, we documented that exposure of RPTCs to a fatty acid flux induced CB1 R-dependent mitochondrial fission, lipotoxicity and cellular dysfunction. CONCLUSIONS CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Anna Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
36
|
Jackson V, Penumetcha M. Dietary oxidised lipids, health consequences and novel food technologies that thwart food lipid oxidation: an update. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Victoria Jackson
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| | - Meera Penumetcha
- University of Central Missouri 108 W South St Warrensburg MO 64093 USA
| |
Collapse
|
37
|
Qiu M, Li S, Jin L, Feng P, Kong Y, Zhao X, Lin Y, Xu Y, Li C, Wang W. Combination of Chymostatin and Aliskiren attenuates ER stress induced by lipid overload in kidney tubular cells. Lipids Health Dis 2018; 17:183. [PMID: 30064425 PMCID: PMC6069859 DOI: 10.1186/s12944-018-0818-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
Background Lipotoxicity plays an important role in the pathogenesis of kidney injury. Our previous study demonstrated that activation of local renin-angiotensin system (RAS) was involved in saturated free fatty acids palmitic acid (PA)-induced tubular cell injuries. The current study aims to investigate whether suppression of RAS by combination of direct renin inhibitor aliskiren and noncanonical RAS pathway chymase inhibitor chymostatin attenuates PA or cholesterol induced-endoplasmic reticulum stress (ER stress) and apopotosis in cultured human proximal tubular HK2 cells. Methods HK2 cells were treated with saturated fatty acid PA (0.6 mM) for 24 h or cholesterol (10 μg/ml) for 6d with or without chymostatin and/or aliskiren. Expressions of the ER stress associated proteins and apoptosis markers were detected by western blotting. The mRNA levels of RAS components were measured by real-time qPCR. Results Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress, as reflected by increased BiP, IRE1α, phosphorylated-eIF2α and ATF4 as well as proapoptotic transcription factor CHOP. The ratio of Bax/Bcl-2 and cleaved caspase-3, two markers of apoptosis were upregulated by PA or cholesterol treatment. PA treatment was also associated with increased levels of angiotensinogen and angiotensin type 1 receptor (AT1R) mRNA expression. Combination treatment of chymostatin and aliskiren markedly suppressed PA or cholesterol-induced ER stress and apoptosis. The protective effect of two inhibitors was also observed in primary cultured cortical tubular cells treated with PA. In contrast, chymostatin and/or aliskiren failed to prevent ER stress induced by tunicamycin. Conclusions These results suggested that combination treatment of chymostatin and aliskiren attenuates lipid-induced renal tubular cell injury, likely through suppressing activation of intracellular RAS. Electronic supplementary material The online version of this article (10.1186/s12944-018-0818-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lizi Jin
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunyun Xu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
38
|
Heo JY, Kim JE, Dan Y, Kim YW, Kim JY, Cho KH, Bae YK, Im SS, Liu KH, Song IH, Kim JR, Lee IK, Park SY. Clusterin deficiency induces lipid accumulation and tissue damage in kidney. J Endocrinol 2018; 237:175-191. [PMID: 29563234 DOI: 10.1530/joe-17-0453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/15/2023]
Abstract
Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease.
Collapse
Affiliation(s)
- Jung-Yoon Heo
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Ji-Eun Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Yongwook Dan
- Weinberg CollegeNorthwestern University, Evanston, Illinois, USA
| | - Yong-Woon Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Jong-Yeon Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Kyu Hyang Cho
- Department of Internal MedicineCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Young Kyung Bae
- Department of PathologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Seung-Soon Im
- Department of PhysiologyKeimyung University School of Medicine, Daegu, Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical SciencesKyungpook National University, Daegu, Korea
| | - In-Hwan Song
- Department of AnatomyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Jae-Ryong Kim
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
- Department of Biochemistry and Molecular BiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal MedicineSchool of Medicine, Kyungpook National University, Daegu, Korea
| | - So-Young Park
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
39
|
Heat shock protein 70 promotes lipogenesis in HepG2 cells. Lipids Health Dis 2018; 17:73. [PMID: 29631603 PMCID: PMC5891916 DOI: 10.1186/s12944-018-0722-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) has followed the international rise in obesity rates. Multiple mechanisms are involved in NAFLD, including endoplasmic reticulum stress and oxidative stress. Heat shock protein 70 (HSP70), which is abundant in most organisms, is sensitive to stress. However, the role of HSP70 in NAFLD has not been investigated. Here, we investigated the possible role of HSP70 in lipid synthesis. Methods C57BL/6 mice were fed a high-fat diet, and HepG2 cells were treated with 0.5 mM palmitic acid (PA). HSP70 expression was detected by qPCR, Western blot and immunohistochemistry. Total cholesterol (TC) and triglyceride (TG) levels were detected by enzyme-linked immunosorbent assay (ELISA). After Hsp70 overexpression and knockdown, TC and TG levels and FAS, SCD, and ACC expression were detected. Results HSP70 expression was significantly increased in the livers of obese mice. In vitro, HSP70 expression was markedly induced by PA in HepG2 cells. Notably, HSP70 overexpression in HepG2 cells enhanced TC and TG synthesis, in parallel with the upregulation of lipogenic genes, including FAS, SCD and ACC. By contrast, HSP70 knockdown decreased the levels of cellular lipids and the expression of FAS, SCD, and ACC in HepG2 cells. Together, our results suggest that HSP70 may promote lipogenesis in HepG2 cells. Conclusions Heat shock protein 70 promotes lipogenesis in HepG2 cells.
Collapse
|
40
|
Chueakula N, Jaikumkao K, Arjinajarn P, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Diacerein alleviates kidney injury through attenuating inflammation and oxidative stress in obese insulin-resistant rats. Free Radic Biol Med 2018; 115:146-155. [PMID: 29195834 DOI: 10.1016/j.freeradbiomed.2017.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
A link between inflammation with obesity and metabolic syndrome has been found in patients with chronic kidney disease (CKD). Diacerein is an anthraquinone used to treat osteoarthritis that exerts anti-inflammatory action by inhibiting the synthesis and activity of proinflammatory cytokines. This study aimed to investigate the protective effect of diacerein on renal function and renal organic anion transporter 3 (Oat3) function in obese insulin-resistant condition. Obese insulin-resistant rats were induced by feeding a high-fat diet in male Wistar rats for 16 weeks. Diacerein or metformin (positive control) (30mg/kg/day) was administered orally for 4 weeks after insulin resistance had been confirmed. Obese insulin-resistant rats showed an impaired renal function as indicated by the increased serum creatinine and microalbuminuria along with the decreased renal Oat3 function and expression. Importantly, diacerein treatment not only improved insulin resistance but also restored renal function. The decreased renal malondialdehyde level, expressions of PKCα, angiotensin 1 receptor (AT1R), Nrf2, and HO-1, and increased expression of SOD2 were observed in diacerein treatment group, indicating the attenuation of renal oxidative stress condition. Moreover, renal inflammation and renal damage were also alleviated in diacerein-treated rats. Our results demonstrated for the first time that diacerein was effective to improve renal function and renal Oat3 function in obese insulin-resistance condition mediated by suppressing renal oxidative stress and inflammation. These findings suggest that anti-inflammatory agents can be used therapeutically to improve metabolic disorder and prevent organ dysfunctions in pre-diabetic condition.
Collapse
Affiliation(s)
- Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
41
|
Han MH, Kim HJ, Jeong JW, Park C, Kim BW, Choi YH. Inhibition of Adipocyte Differentiation by Anthocyanins Isolated from the Fruit of Vitis coignetiae Pulliat is Associated with the Activation of AMPK Signaling Pathway. Toxicol Res 2018; 34:13-21. [PMID: 29371997 PMCID: PMC5776908 DOI: 10.5487/tr.2018.34.1.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022] Open
Abstract
Anthocyanins are naturally occurring water-soluble polyphenolic pigments in plants that have been shown to protect against cardiovascular diseases, and certain cancers, as well as other chronic human disorders. However, the anti-obesity effects of anthocyanins are not fully understood. In this study, we investigated the effects of anthocyanins isolated from the fruit of Vitis coignetiae Pulliat on the adipogenesis of 3T3-L1 preadipocytes. Our data indicated that anthocyanins attenuated the terminal differentiation of 3T3-L1 preadipocytes, as confirmed by a decrease in the number of lipid droplets, lipid content, and triglyceride production. During this process, anthocyanins effectively enhanced the activation of the AMP-activated protein kinase (AMPK); however, this phenomenon was inhibited by the co-treatment of compound C, an inhibitor of AMPK. Anthocyanins also inhibited the expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein a and b, and sterol regulatory element-binding protein-1c. In addition, anthocyanins were found to potently inhibit the expression of adipocyte-specific genes, including adipocyte fatty acid-binding protein, leptin, and fatty acid synthase. These results indicate that anthocyanins have potent anti-obesity effects due to the inhibition of adipocyte differentiation and adipogenesis, and thus may have applications as a potential source for an anti-obesity functional food agent.
Collapse
Affiliation(s)
- Min Ho Han
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Hong Jae Kim
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| | - Jin-Woo Jeong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University, Busan, Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University, Busan, Korea
| | - Yung Hyun Choi
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dongeui University, Busan, Korea
| |
Collapse
|
42
|
Shrikanth CB, Chilkunda ND. Zerumbone Ameliorates High Glucose-Induced Reduction in AMP-Activated Protein Kinase Phosphorylation in Tubular Kidney Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9208-9216. [PMID: 28971677 DOI: 10.1021/acs.jafc.7b02379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AMP-activated protein kinase (AMPK) plays an important role in pathophysiology of diabetes and its complications. In recent years, its role in kidney as a therapeutic target in ameliorating diabetic kidney damage is receiving renewed attention. Efforts on identifying AMPK modulators from dietary sources have gained prominence because of the tremendous potential it harbors. We therefore, examined the effect of a few bioactives on AMPK phosphorylation in kidney tubular cells. AMPK phosphorylation at Thr172 was reduced (0.42 ± 0.05-fold change compared to the control; p < 0.01 vs control) after treatment with high glucose (30 mM) for 48 h and restored by zerumbone (1.59 ± 0.20; p < 0.01 vs high glucose) but not by other tested modulators. Zerumbone also increased the phosphorylation of downstream target of AMPK, the acetyl-CoA carboxylase (ACC) without affecting the mitochondrial membrane potential and ADP/ATP ratio. Thus, zerumbone could potentially be explored as a therapeutic agent in bringing about energy homeostasis in diabetes where high glucose suppresses the AMPK pathway.
Collapse
Affiliation(s)
- Chomanahalli B Shrikanth
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute , Mysuru, 570 020, Karnataka India
| | - Nandini D Chilkunda
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute , Mysuru, 570 020, Karnataka India
| |
Collapse
|
43
|
Han MH, Jeong JS, Jeong JW, Choi SH, Kim SO, Hong SH, Park C, Kim BW, Choi YH. Ethanol extracts of Aster yomena (Kitam.) Honda inhibit adipogenesis through the activation of the AMPK signaling pathway in 3T3-L1 preadipocytes. Drug Discov Ther 2017; 11:281-287. [PMID: 29021504 DOI: 10.5582/ddt.2017.01046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The leaves of Aster yomena (Kitam.) Honda have long been used as a traditional herb for treating disorders including coughs, asthma, and insect bites. According to recent studies, A. yomena leaf extracts have several pharmacological properties, including anti-inflammatory, antioxidant, and anti-asthmatic activities. However, little information is available regarding their anti-obesity effect. In this study, we investigated the inhibitory effect of the ethanol extracts of A. yomena leaves (EEAY) on adipocyte differentiation and adipogenesis using 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were treated with various concentrations of EEAY (ranging from non-toxic), the number of lipid droplets, lipid content, and triglyceride production, the typical characteristics of adipocytes, were suppressed in a concentration-dependent manner. During this process, EEAY significantly reduced the expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α and β, and sterol regulatory element-binding protein-1c. In addition, EEAY was also found to potently inhibit the expression of adipocyte-specific genes, including adipocyte fatty acid-binding protein and leptin. In particular, EEAY treatment effectively enhanced the activation of the AMP-activated protein kinase (AMPK) signaling pathway; however, the co-treatment with compound C, an inhibitor of AMPK, significantly restored the EEAY-induced inhibition of pro-adipogenic transcription factors and adipocyte-specific genes. These results indicate that EEAY may exert an anti-obesity effect by controlling the AMPK signaling pathway, suggesting that the leaf extract of A. yomena may be a potential anti-obesity agent.
Collapse
Affiliation(s)
- Min Ho Han
- National Marine Biodiversity Institute of Korea
| | - Ji-Suk Jeong
- Gurye Wild Flower Institute and Gurye-gun Agricultural Center
| | - Jin-Woo Jeong
- Anti-Aging Research Center, Dongeui University.,Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine
| | | | - Sung Ok Kim
- Department of Food Science & Biotechnology, College of Engineering, Kyungsung University
| | - Su Hyun Hong
- Open Laboratory for Muscular and Skeletal Disease, and Department of Biochemistry, Dongeui University College of Korean Medicine
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University.,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dongeui University
| |
Collapse
|
44
|
Udi S, Hinden L, Earley B, Drori A, Reuveni N, Hadar R, Cinar R, Nemirovski A, Tam J. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD. J Am Soc Nephrol 2017; 28:3518-3532. [PMID: 28860163 DOI: 10.1681/asn.2016101085] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/21/2017] [Indexed: 12/29/2022] Open
Abstract
Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB1R) induces nephropathy, whereas CB1R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB1R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β-oxidation. Collectively, these findings indicate that renal proximal tubule cell CB1R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brian Earley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Reuveni
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
45
|
Kim YJ, Hwang SD, Oh TJ, Kim KM, Jang HC, Kimm H, Kim HC, Jee SH, Lim S. Association Between Obesity and Chronic Kidney Disease, Defined by Both Glomerular Filtration Rate and Albuminuria, in Korean Adults. Metab Syndr Relat Disord 2017; 15:416-422. [PMID: 28832275 DOI: 10.1089/met.2017.0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) has often been defined based on glomerular filtration rate (GFR) alone. The Kidney Disease: Improving Global Outcomes guideline highlights albuminuria in the CKD definition. Thus, we investigated the association between obesity and CKD, as defined by both GFR and albuminuria, in Korean adults. METHODS We used Korea National Health and Nutrition Examination Survey 2011-2014 data (N = 19,331, ≥19 years old) representing the national Korean population. CKD was classified by (1) estimated GFR (eGFR) < 60 mL/min/1.73 m2 (CKDGFR); (2) albumin-to-creatinine ratio (ACR) ≥30 mg/gram (CKDACR); and (3) eGFR < 60 mL/min/1.73 m2 or ACR ≥30 mg/gram (CKDRisk). Associations between obesity and each CKD category were evaluated using multivariate logistic regression analysis. RESULTS The prevalence rates of CKDGFR, CKDACR, and CKDRisk were 2.2%, 6.7%, and 8.1%, respectively. Compared with the normal body mass index (BMI; 18.5-22.9 kg/m2) group, men with BMI ≥ 25 kg/m2 had 1.88 times greater risk of CKDGFR in the adjusted model [95% confidence interval (CI), 1.26-2.80; P = 0.002]; BMI was not significantly associated with CKDGFR in women. In contrast, both men and women with BMI ≥ 25 kg/m2 had 1.58 and 1.40 times higher risk of CKDACR (95% CI, 1.21-2.07 and 1.08-1.81, respectively, both P < 0.01). Obese men and women had 1.65 and 1.38 times higher risk of CKDRisk (95% CI, 1.29-2.12 and 1.09-1.75, respectively, both P < 0.01). CONCLUSIONS Obesity was significantly associated with an increased ACR-based CKD risk. Longitudinal studies are needed to investigate the role of overweight and obesity in the development and progression of CKD.
Collapse
Affiliation(s)
- Yoon Ji Kim
- 1 Division of Endocrinology and Metabolism, Department of Internal Medicine, Mediplex Sejong Hospital , Incheon, South Korea
| | - Seun Deuk Hwang
- 2 Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University College of Medicine , Incheon, South Korea
| | - Tae Jung Oh
- 3 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, South Korea
| | - Kyoung Min Kim
- 3 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, South Korea
| | - Hak Chul Jang
- 3 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, South Korea
| | - Heejin Kimm
- 4 Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University , Seoul, South Korea
| | - Hyeon Chang Kim
- 5 Department of Preventive Medicine, Yonsei University College of Medicine , Seoul, South Korea .,6 Department of Preventive Medicine, Cardiovascular and Metabolic Diseases Etiology Research Center, Yonsei University College of Medicine , Seoul, South Korea
| | - Sun Ha Jee
- 4 Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University , Seoul, South Korea
| | - Soo Lim
- 3 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine , Seongnam, South Korea
| |
Collapse
|
46
|
Eo H, Park JE, Jeon YJ, Lim Y. Ameliorative Effect of Ecklonia cava Polyphenol Extract on Renal Inflammation Associated with Aberrant Energy Metabolism and Oxidative Stress in High Fat Diet-Induced Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3811-3818. [PMID: 28459555 DOI: 10.1021/acs.jafc.7b00357] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immoderate fat accumulation causes both oxidative stress and inflammation, which can induce kidney damage in obesity. Previously, Ecklonia cava has shown anti-inflammatory and antioxidative effects. Our group aimed to investigate whether E. cava polyphenol extract (ECPE) improves renal damage in high fat diet (HFD)-induced obese mice through regulation of not only energy metabolism but also oxidative stress and inflammation. After obesity induction by HFD, the mice were treated with different dosages of ECPE (100 or 500 mg/kg/day) by gavage for 12 weeks. ECPE treatment lowered the protein levels related to lipid accumulation (SREBP1c, ACC & FAS), inflammation (NLRP3 inflammasome, NFκB, MCP-1, TNF-α & CRP), and oxidative stress (Nrf2, HO-1, MnSOD, NQO1, GPx, 4-HNE and protein carbonyls) in HFD induced obese mice. Moreover, ECPE supplementation significantly up-regulated renal SIRT1, PGC-1α, and AMPK, which are associated with renal energy metabolism. Consequently, the results provide novel insights into the anti-inflammatory roles of ECPE in obesity-induced renal inflammation.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji Eun Park
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University , Jeju 63243, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University , 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
47
|
Chen W, Zhang Q, Cheng S, Huang J, Diao G, Han J. Atgl gene deletion predisposes to proximal tubule damage by impairing the fatty acid metabolism. Biochem Biophys Res Commun 2017; 487:160-166. [PMID: 28400046 DOI: 10.1016/j.bbrc.2017.03.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
Abstract
Fibrosis is the final common pathway of chronic kidney disease (CKD). Normal lipid metabolism is integral to renal physiology, and disturbances of renal lipid metabolism are increasingly being linked with CKD, including the fibrosis. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. In the present study, we used Atgl-/- mice to investigate whether ATGL played a role in the regulation of proximal convoluted tubule (PCT) lipid metabolism and renal fibrosis development. ATGL deficiency led to lipid vacuolation of PCT and tubulointerstitial fibrosis, accompanied by massive albuminuria and decreased creatinine clearance rate (Ccr). In vitro experiments indicated that inhibition of ATGL in proximal tubular cell line HK-2 promoted intracellular lipid deposition, reactive oxygen species (ROS) accumulation and cell apoptosis. Both in vitro and in vivo experiments showed that ATGL inhibition decreased the renal peroxisome proliferator-activated receptorα(PPARα) expression, which implied the suppressed lipid metabolism. The antioxidant N-acetylcysteine (NAC) could partially reverse the effect of ROS accumulation and cell apoptosis, but could not restore the PPARαdecrease. These data raise the possibility that ATGL deficiency could impair the renal fatty acid metabolism though inhibiting PPARαexpression, which may lead to lipid deposition and cell apoptosis of PCT, and finally contribute to the renal fibrosis and dysfunction.
Collapse
Affiliation(s)
- Wen Chen
- Department of Endocrinology, The 303th Hospital of PLA, Nanning, Guangxi Province 530000, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Diseases Proteomics, Chongqing 400038, China
| | - Shiwu Cheng
- Department of Endocrinology, The 303th Hospital of PLA, Nanning, Guangxi Province 530000, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian Han
- Department of Obstetrics and Gynecology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
48
|
Ribeiro RS, Passos CS, Novaes AS, Maquigussa E, Glória MA, Visoná I, Ykuta O, Oyama LM, Boim MA. Precocious obesity predisposes the development of more severe cisplatin-induced acute kidney injury in young adult mice. PLoS One 2017; 12:e0174721. [PMID: 28358868 PMCID: PMC5373612 DOI: 10.1371/journal.pone.0174721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Obesity and its consequences can damage the kidney over time. However, less is known about the impact of developing overweight/obesity during childhood on the kidney in adulthood and the renal impact of a superimposed acute kidney injury (AKI). This study evaluated the effect of obesity induced by a high-fat diet initiated soon after weaning on the adult life of mice and their response to superimposed nephrotoxic effects of cisplatin. C57BL/6 post-weaning mice (3 weeks old) were divided into a control group (CT, n = 12) and a high-fat diet group (HF, n = 12). After 9 weeks, animals were further divided into the following groups: CT, CT treated with a single dose of cisplatin (CTCis, 20 mg/kg, i.p.), HF and HF treated with cisplatin (HFCis). The HF group exhibited higher body weight gain compatible with a moderate obesity. Obese mice presented increased visceral adiposity, hyperkalemia, sodium retention, glomerular hyperfiltration and proteinuria, without any significant changes in blood pressure and glycemia. AKI induced by cisplatin was exacerbated in obese animals with a 92% reduction in the GFR versus a 31% decrease in the CTCis group; this sharp decline resulted in severely elevated serum creatinine and urea levels. Acute tubular necrosis induced by cisplatin was worsened in obese mice. The HFCis group exhibited robust systemic and intrarenal inflammation that was significantly higher than that in the CTCis group; the HFCis group also showed a higher degree of renal oxidative stress. In conclusion, the moderate degree of obesity induced shortly after weaning resulted in mild early renal alterations, however, obese young animals were prone to develop a much more severe AKI induced by cisplatin.
Collapse
Affiliation(s)
- Rosemara S. Ribeiro
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Clevia S. Passos
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Antônio S. Novaes
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Edgar Maquigussa
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Maria A. Glória
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Iria Visoná
- Pathology Department–Federal University of São Paulo, São Paulo, Brazil
| | - Olinda Ykuta
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
| | - Lila M. Oyama
- Nutrition Physiology–Department of Physiology—Federal University of São Paulo, São Paulo, Brazil
| | - Mirian A. Boim
- Renal Division, Department of Medicine–Federal University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
49
|
Chen W, Jiang Y, Han J, Hu J, He T, Yan T, Huang N, Zhang Q, Mei H, Liao Y, Huang Y, Chen B. Atgl deficiency induces podocyte apoptosis and leads to glomerular filtration barrier damage. FEBS J 2017; 284:1070-1081. [PMID: 28194887 DOI: 10.1111/febs.14038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
Abnormal lipid metabolism, renal lipid accumulation and lipotoxicity are associated with the pathological features of glomerulopathy. However, the mechanisms by which lipid accumulation leads to the development or progression of this disease have not been fully elucidated. In this work, we have identified a role for the rate-limiting enzyme in lipolysis, adipose triglyceride lipase (ATGL; also called patatin-like phospholipase domain-containing protein 2), in renal lipid metabolism and kidney disease. ATGL-deficient (Atgl(-/-)) mice displayed albuminuria, accompanied by ectopic deposition of fat in the kidney. Magnetic resonance imaging demonstrated that the contrast agent gadopentetic acid was retained in kidney tissue, suggesting defects in the glomerular filtration barrier. Furthermore, transmission electron microscopy revealed lipid deposits in the podocyte, along with foot process fusion and morphological changes suggestive of apoptosis. Indeed, shRNA-mediated depletion of ATGL promoted podocyte apoptosis, accompanied by increased levels of intracellular reactive oxygen species (ROS) and F-actin fibre redistribution. These effects could be partially reversed by treatment with the antioxidant N-acetylcysteine. These data suggest that ATGL deficiency induces renal lipid accumulation, proteinuria and glomerular filtration barrier dysfunction and implicate increased intracellular ROS levels in inducing podocyte F-actin rearrangement, foot process fusion and apoptosis that underlie these pathological features. ENZYMES Adipose triglyceride lipase, EC3.1.1.3.
Collapse
Affiliation(s)
- Wen Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Youzhao Jiang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Han
- Department of Gynaecology and Obstetrics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiongyu Hu
- Department of Endocrinology, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Ting He
- Department of Burns and Plastic Surgery, the General Hospital of the Chinese People's Armed Police Forces, Beijing, China
| | - Tiantian Yan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Na Huang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Hao Mei
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, CT, USA
| | - Yong Liao
- Department of Endocrinology, 169th Hospital of PLA, Hengyang, Hunan, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
50
|
Glastras SJ, Chen H, Tsang M, Teh R, McGrath RT, Zaky A, Chen J, Wong MG, Pollock CA, Saad S. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet. PLoS One 2017; 12:e0172644. [PMID: 28225809 PMCID: PMC5321436 DOI: 10.1371/journal.pone.0172644] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
AIMS/HYPOTHESIS Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. METHODS Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. RESULTS HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. CONCLUSION Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.
Collapse
Affiliation(s)
- Sarah J. Glastras
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Michael Tsang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Rachel Teh
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| | - Rachel T. McGrath
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Amgad Zaky
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| | - Jason Chen
- Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Muh Geot Wong
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| | - Carol A. Pollock
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|