1
|
Wu X, Ishrak R, Reihanisaransari R, Verma Y, Spring B, Singh K, Reddy R. High-speed forward-viewing optical coherence tomography probe based on Lissajous sampling and sparse reconstruction. OPTICS LETTERS 2024; 49:3652-3655. [PMID: 38950232 PMCID: PMC11515085 DOI: 10.1364/ol.521595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
We present a novel endoscopy probe using optical coherence tomography (OCT) that combines sparse Lissajous scanning and compressed sensing (CS) for faster data collection. This compact probe is only 4 mm in diameter and achieves a large field of view (FOV) of 2.25 mm2 and a 10 mm working distance. Unlike traditional OCT systems that use bulky raster scanning, our design features a dual-axis piezoelectric mechanism for efficient Lissajous pattern scanning. It employs compressive data reconstruction algorithms that minimize data collection requirements for efficient, high-speed imaging. This approach significantly enhances imaging speed by over 40%, substantially improving miniaturization and performance for endoscopic applications.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4005, USA
| | - Ragib Ishrak
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4005, USA
| | - Reza Reihanisaransari
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4005, USA
| | - Yogesh Verma
- Advanced Electro-Optics Systems Section, RRCAT, Indore, Madhya Pradesh 452013, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Bryan Spring
- Northeastern University, 111 DA 360 Huntington Avenue, Boston, Massachusetts, USA
| | - Kanwarpal Singh
- Max Planck Institute for the Science of Light, Staudtstraße 2, Erlangen 91058, Germany
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Rohith Reddy
- Department of Electrical and Computer Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4005, USA
| |
Collapse
|
2
|
Wong SJZ, Roy K, Lee C, Zhu Y. Thin-Film Piezoelectric Micromachined Ultrasound Transducers in Biomedical Applications: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:622-637. [PMID: 38635378 DOI: 10.1109/tuffc.2024.3390807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Thin-film piezoelectric micromachined ultrasound transducers (PMUTs) are an increasingly relevant and well-researched field, and their biomedical importance has been growing as the technology continues to mature. This review article briefly discusses their history in biomedical use, provides a simple explanation of their principles for newer readers, and sheds light on the materials selection for these devices. Primarily, it discusses the significant applications of PMUTs in the biomedical industry and showcases recent progress that has been made in each application. The biomedical applications covered include common historical uses of ultrasound such as ultrasound imaging, ultrasound therapy, and fluid sensing, but additionally new and upcoming applications such as drug delivery, photoacoustic imaging, thermoacoustic imaging, biometrics, and intrabody communication. By including a device comparison chart for different applications, this review aims to assist microelectromechanical systems (MEMS) designers that work with PMUTs by providing a benchmark for recent research works. Furthermore, it puts forth a discussion on the current challenges being faced by PMUTs in the biomedical field, current and likely future research trends, and opportunities for PMUT development areas, as well as sharing the opinions and predictions of the authors on the state of this technology as a whole. The review aims to be a comprehensive introduction to these topics without diving excessively deep into existing literature.
Collapse
|
3
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
4
|
Stella GM, Lettieri S, Piloni D, Ferrarotti I, Perrotta F, Corsico AG, Bortolotto C. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1042. [PMID: 37513953 PMCID: PMC10385174 DOI: 10.3390/ph16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND RATIONALE The therapeutic interventions against lung cancer are currently based on a fully personalized approach to the disease with considerable improvement of patients' outcome. Alongside continuous scientific progresses and research investments, massive technologic efforts, innovative challenges, and consolidated achievements together with research investments are at the bases of the engineering and manufacturing revolution that allows a significant gain in clinical setting. AIM AND METHODS The scope of this review is thus to focus, rather than on the biologic traits, on the analysis of the precision sensors and novel generation materials, as semiconductors, which are below the clinical development of personalized diagnosis and treatment. In this perspective, a careful revision and analysis of the state of the art of the literature and experimental knowledge is presented. RESULTS Novel materials are being used in the development of personalized diagnosis and treatment for lung cancer. Among them, semiconductors are used to analyze volatile cancer compounds and allow early disease diagnosis. Moreover, they can be used to generate MEMS which have found an application in advanced imaging techniques as well as in drug delivery devices. CONCLUSIONS Overall, these issues represent critical issues only partially known and generally underestimated by the clinical community. These novel micro-technology-based biosensing devices, based on the use of molecules at atomic concentrations, are crucial for clinical innovation since they have allowed the recent significant advances in cancer biology deciphering as well as in disease detection and therapy. There is an urgent need to create a stronger dialogue between technologists, basic researchers, and clinicians to address all scientific and manufacturing efforts towards a real improvement in patients' outcome. Here, great attention is focused on their application against lung cancer, from their exploitations in translational research to their application in diagnosis and treatment development, to ensure early diagnosis and better clinical outcomes.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80131 Napoli, Italy
- U.O.C. Clinica Pneumologica "L. Vanvitelli", A.O. dei Colli, Ospedale Monaldi, 80131 Napoli, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy
- Department of Diagnostic Services and Imaging, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
5
|
Falkhofen J, Wolff M. Near-Ultrasonic Transfer Function and SNR of Differential MEMS Microphones Suitable for Photoacoustics. SENSORS (BASEL, SWITZERLAND) 2023; 23:2774. [PMID: 36904978 PMCID: PMC10007461 DOI: 10.3390/s23052774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Can ordinary Micro-Electro-Mechanical-Systems (MEMS) microphones be used for near-ultrasonic applications? Manufacturers often provide little information about the signal-to-noise ratio (SNR) in the ultrasound (US) range and, if they do, the data are often determined in a manufacturer-specific manner and are generally not comparable. Here, four different air-based microphones from three different manufacturers are compared with respect to their transfer functions and noise floor. The deconvolution of an exponential sweep and a traditional calculation of the SNR are used. The equipment and methods used are specified, which makes it easy to repeat or expand the investigation. The SNR of MEMS microphones in the near US range is mainly affected by resonance effects. These can be matched for applications with low-level signals and background noise such that the highest possible SNR can be achieved. Two MEMS microphones from Knowles performed best for the frequency range from 20 to 70 kHz; above 70 kHz, an Infineon model delivered the best performance.
Collapse
Affiliation(s)
- Judith Falkhofen
- Heinrich Blasius Institute of Physical Technologies, Hamburg University of Applied Sciences, 20099 Hamburg, Germany
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Scotland High Street, Paisley PA1 2BE, UK
| | - Marcus Wolff
- Heinrich Blasius Institute of Physical Technologies, Hamburg University of Applied Sciences, 20099 Hamburg, Germany
| |
Collapse
|
6
|
Pan J, Bai C, Zheng Q, Xie H. Review of Piezoelectric Micromachined Ultrasonic Transducers for Rangefinders. MICROMACHINES 2023; 14:374. [PMID: 36838074 PMCID: PMC9961946 DOI: 10.3390/mi14020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Piezoelectric micromachined ultrasonic transducer (pMUT) rangefinders have been rapidly developed in the last decade. With high output pressure to enable long-range detection and low power consumption (16 μW for over 1 m range detection has been reported), pMUT rangefinders have drawn extensive attention to mobile range-finding. pMUT rangefinders with different strategies to enhance range-finding performance have been developed, including the utilization of pMUT arrays, advanced device structures, and novel piezoelectric materials, and the improvements of range-finding methods. This work briefly introduces the working principle of pMUT rangefinders and then provides an extensive overview of recent advancements that improve the performance of pMUT rangefinders, including advanced pMUT devices and range-finding methods used in pMUT rangefinder systems. Finally, several derivative systems of pMUT rangefinders enabling pMUT rangefinders for broader applications are presented.
Collapse
Affiliation(s)
- Jiong Pan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Chenyu Bai
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Qincheng Zheng
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
- BIT Chongqing Center for Microelectronics and Microsystems, Chongqing 400030, China
| |
Collapse
|
7
|
He Y, Wan H, Jiang X, Peng C. Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications. BIOSENSORS 2022; 13:bios13010055. [PMID: 36671890 PMCID: PMC9856188 DOI: 10.3390/bios13010055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/14/2023]
Abstract
The objective of this article is to review the recent advancement in piezoelectric micromachined ultrasound transducer (PMUT) technology and the associated piezoelectric materials, device fabrication and characterization, as well as applications. PMUT has been an active research topic since the late 1990s because of the ultrasound application needs of low cost large 2D arrays, and the promising progresses on piezoelectric thin films, semiconductors, and micro/nano-electromechanical system technology. However, the industrial and medical applications of PMUTs have not been very significant until the recent success of PMUT based fingerprint sensing, which inspired growing interests in PMUT research and development. In this paper, recent advances of piezoelectric materials for PMUTs are reviewed first by analyzing the material properties and their suitability for PMUTs. PMUT structures and the associated micromachining processes are next reviewed with a focus on the complementary metal oxide semiconductor compatibility. PMUT prototypes and their applications over the last decade are then summarized to show the development trend of PMUTs. Finally, the prospective future of PMUTs is discussed as well as the challenges on piezoelectric materials, micro/nanofabrication and device integration.
Collapse
Affiliation(s)
- Yashuo He
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Haotian Wan
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: (X.J.); (C.P.)
| | - Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
- Correspondence: (X.J.); (C.P.)
| |
Collapse
|
8
|
Fang Z, Gao F, Jin H, Liu S, Wang W, Zhang R, Zheng Z, Xiao X, Tang K, Lou L, Tang KT, Chen J, Zheng Y. A Review of Emerging Electromagnetic-Acoustic Sensing Techniques for Healthcare Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1075-1094. [PMID: 36459601 DOI: 10.1109/tbcas.2022.3226290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional electromagnetic (EM) sensing techniques such as radar and LiDAR are widely used for remote sensing, vehicle applications, weather monitoring, and clinical monitoring. Acoustic techniques such as sonar and ultrasound sensors are also used for consumer applications, such as ranging and in vivo medical/healthcare applications. It has been of long-term interest to doctors and clinical practitioners to realize continuous healthcare monitoring in hospitals and/or homes. Physiological and biopotential signals in real-time serve as important health indicators to predict and prevent serious illness. Emerging electromagnetic-acoustic (EMA) sensing techniques synergistically combine the merits of EM sensing with acoustic imaging to achieve comprehensive detection of physiological and biopotential signals. Further, EMA enables complementary fusion sensing for challenging healthcare settings, such as real-world long-term monitoring of treatment effects at home or in remote environments. This article reviews various examples of EMA sensing instruments, including implementation, performance, and application from the perspectives of circuits to systems. The novel and significant applications to healthcare are discussed. Three types of EMA sensors are presented: (1) Chip-based radar sensors for health status monitoring, (2) Thermo-acoustic sensing instruments for biomedical applications, and (3) Photoacoustic (PA) sensing and imaging systems, including dedicated reconstruction algorithms were reviewed from time-domain, frequency-domain, time-reversal, and model-based solutions. The future of EMA techniques for continuous healthcare with enhanced accuracy supported by artificial intelligence (AI) is also presented.
Collapse
|
9
|
Zheng Q, Wang H, Yang H, Jiang H, Chen Z, Lu Y, Feng PXL, Xie H. Thin ceramic PZT dual- and multi-frequency pMUT arrays for photoacoustic imaging. MICROSYSTEMS & NANOENGINEERING 2022; 8:122. [PMID: 36407887 PMCID: PMC9668999 DOI: 10.1038/s41378-022-00449-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized ultrasonic transducer arrays with multiple frequencies are key components in endoscopic photoacoustic imaging (PAI) systems to achieve high spatial resolution and large imaging depth for biomedical applications. In this article, we report on the development of ceramic thin-film PZT-based dual- and multi-frequency piezoelectric micromachined ultrasonic transducer (pMUT) arrays and the demonstration of their PAI applications. With chips sized 3.5 mm in length or 10 mm in diameter, square and ring-shaped pMUT arrays incorporating as many as 2520 pMUT elements and multiple frequencies ranging from 1 MHz to 8 MHz were developed for endoscopic PAI applications. Thin ceramic PZT with a thickness of 9 μm was obtained by wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT arrays, whose piezoelectric constant d 31 was measured to be as high as 140 pm/V. Benefiting from this high piezoelectric constant, the fabricated pMUT arrays exhibited high electromechanical coupling coefficients and large vibration displacements. In addition to electrical, mechanical, and acoustic characterization, PAI experiments with pencil leads embedded into an agar phantom were conducted with the fabricated dual- and multi-frequency pMUT arrays. Photoacoustic signals were successfully detected by pMUT elements with different frequencies and used to reconstruct single and fused photoacoustic images, which clearly demonstrated the advantages of using dual- and multi-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Qincheng Zheng
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
| | - Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086 USA
| | - Yao Lu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
| | - Philip X.-L. Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
- BIT Chongqing Institute of Microelectronics and Microsystems, 400030 Chongqing, China
| |
Collapse
|
10
|
Cai J, Wang Y, Jiang D, Zhang S, Gu YA, Lou L, Gao F, Wu T. Beyond fundamental resonance mode: high-order multi-band ALN PMUT for in vivo photoacoustic imaging. MICROSYSTEMS & NANOENGINEERING 2022; 8:116. [PMID: 36389053 PMCID: PMC9643525 DOI: 10.1038/s41378-022-00426-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
This paper reports on an aluminum nitride (AlN) piezoelectric micromachined ultrasound transducer (PMUT) array for photoacoustic (PA) imaging, where the high-order resonance modes of the PMUT are utilized to improve imaging resolution. A flexural vibration mode (FVM) PMUT is fabricated and applied in a photoacoustic imaging (PAI) system. Specifically, the microelectromechanical system (MEMS)-based PMUT is suitable for PA endoscopic imaging of blood vessels and bronchi due to its miniature size and high sensitivity. More importantly, AlN is a nontoxic material, which makes it harmless for biomedical applications. In the PAI system, the AlN PMUT array is used to detect PA signals, and the acousto-mechanical response is designed and optimized at the PMUT's fundamental resonance. In this work, we focus on the high-order resonance performance of the PMUT PAI beyond the fundamental resonance. The acoustic and electrical responses of the PMUT's high-order resonance modes are characterized and analyzed. The fundamental and three high-order resonance bandwidths are 2.2, 8.8, 18.5, and 48.2 kHz. Compared with the resolution at the fundamental resonance mode, the resolutions at third- and fourth-order resonance modes increase by 38.7% and 76.9% in a phantom experiment. The high-order resonance modes of the AlN PMUT sensor array provide higher central frequency and wider bandwidth for PA signal detection, which increase the resolution of PAI compared to the PMUT working at the fundamental resonance mode.
Collapse
Affiliation(s)
- Junxiang Cai
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Wang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daohuai Jiang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Songsong Zhang
- School of Microelectronics, Shanghai University, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, Shanghai, China
| | - Yuandong Alex Gu
- School of Microelectronics, Shanghai University, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, Shanghai, China
| | - Liang Lou
- School of Microelectronics, Shanghai University, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, Shanghai, China
| | - Fei Gao
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Tao Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Microsystem and Information Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| |
Collapse
|
11
|
Ren D, Li C, Shi J, Chen R. A Review of High-Frequency Ultrasonic Transducers for Photoacoustic Imaging Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1848-1858. [PMID: 34941509 DOI: 10.1109/tuffc.2021.3138158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) is a new and rapidly growing hybrid biomedical imaging modality that combines the virtues of both optical and ultrasonic (US) imaging. The nature of the interaction between light and ultrasound waves allows PAI to make good use of the rich contrast produced by optics while retaining the imaging depths in US imaging. High-frequency US transducers are an important part of the PAI systems, used to detect the high-frequency and broad-bandwidth photoacoustic signals excited by the target tissues irradiated by short laser pulses. Advancement in high-frequency US transducer technology has influenced the boost of PAI to broad applications. Here, we present a review on high-frequency US transducer technologies for PAI applications, including advanced piezoelectric materials and representative transducers. In addition, we discuss the new challenges and directions facing the development of high-frequency US transducers for PAI applications.
Collapse
|
12
|
Vasan A, Allein F, Duque M, Magaram U, Boechler N, Chalasani SH, Friend J. Microscale concert hall acoustics to produce uniform ultrasound stimulation for targeted sonogenetics in hsTRPA1-transfected cells. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100135. [PMID: 36060550 PMCID: PMC9431988 DOI: 10.1002/anbr.202100135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The field of ultrasound neuromodulation has rapidly developed over the past decade, a consequence of the discovery of strain-sensitive structures in the membrane and organelles of cells extending into the brain, heart, and other organs. Notably, clinical trials are underway for treating epilepsy using focused ultrasound to elicit an organized local electrical response. A key limitation to this approach is the formation of standing waves within the skull. In standing acoustic waves, the maximum ultrasound intensity spatially varies from near zero to double the mean in one half a wavelength, and has lead to localized tissue damage and disruption of normal brain function while attempting to evoke a broader response. This phenomenon also produces a large spatial variation in the actual ultrasound exposure in tissue, leading to heterogeneous results and challenges with interpreting these effects. One approach to overcome this limitation is presented herein: transducer-mounted diffusers that result in spatiotemporally incoherent ultrasound. Herein, we numerically and experimentally quantified the effect of a diffuser in an enclosed domain, and show that adding the diffuser leads to a two-fold increase in ultrasound responsiveness of hsTRPA1 transfected HEK cells. Furthermore, we demonstrate the diffuser allow us to produce an uniform spatial distribution of pressure in the rodent skull. Collectively, we propose that our approach leads to a means to deliver uniform ultrasound into irregular cavities for sonogenetics.
Collapse
Affiliation(s)
- Aditya Vasan
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA 92093 USA
| | - Florian Allein
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093 USA
| | - Marc Duque
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Uri Magaram
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nicholas Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla CA 92093 USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - James Friend
- Medically Advanced Devices Laboratory, Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering and Department of Surgery, School of Medicine, University of California San Diego, La Jolla CA 92093 USA
| |
Collapse
|
13
|
Ultra-Low-Voltage Capacitive Micromachined Ultrasonic Transducers with Increased Output Pressure Due to Piston-Structured Plates. MICROMACHINES 2022; 13:mi13050676. [PMID: 35630143 PMCID: PMC9144194 DOI: 10.3390/mi13050676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) represent an accepted technology for ultrasonic transducers, while high bias voltage requirements and limited output pressure still need to be addressed. In this paper, we present a design for ultra-low-voltage operation with enhanced output pressure. Low voltages allow for good integrability and mobile applications, whereas higher output pressures improve the penetration depth and signal-to-noise ratio. The CMUT introduced has an ultra-thin gap (120 nm), small plate thickness (800 nm), and is supported by a non-flexural piston, stiffening the topside for improved average displacement, and thus higher output pressure. Three designs for low MHz operation are simulated and fabricated for comparison: bare plate, plate with small piston (34% plate coverage), and big piston (57%). The impact of the piston on the plate mechanics in terms of resonance and pull-in voltage are simulated with finite element method (FEM). Simulations are in good agreement with laser Doppler vibrometer and LCR-meter measurements. Further, the sound pressure output is characterized in immersion with a hydrophone. Pull-in voltages range from only 7.4 V to 25.0 V. Measurements in immersion with a pulse at 80% of the pull-in voltage present surface output pressures from 44.7 kPa to 502.1 kPa at 3.3 MHz to 4.2 MHz with a fractional bandwidth of up to 135%. This leads to an improvement in transmit sensitivity in pulsed (non-harmonic) driving from 7.8 kPa/V up to 24.8 kPa/V.
Collapse
|
14
|
Abstract
Photoacoustic (PA) imaging is able to provide extremely high molecular
contrast while maintaining the superior imaging depth of ultrasound (US)
imaging. Conventional microscopic PA imaging has limited access to deeper tissue
due to strong light scattering and attenuation. Endoscopic PA technology enables
direct delivery of excitation light into the interior of a hollow organ or
cavity of the body for functional and molecular PA imaging of target tissue.
Various endoscopic PA probes have been developed for different applications,
including the intravascular imaging of lipids in atherosclerotic plaque and
endoscopic imaging of colon cancer. In this paper, the authors review
representative probe configurations and corresponding preclinical applications.
In addition, the potential challenges and future directions of endoscopic PA
imaging are discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
| | - Gengxi Lu
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of
Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California Irvine,
Irvine, CA 92617, USA
- The Edwards Lifesciences Center for Cardiovascular
Technology, University of California Irvine, Irvine, CA 92617, USA
- Department of Biomedical Engineering, University of
California Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
15
|
Abstract
Many distributed systems that perform indoor positioning are often based on ultrasound signals and time domain measurements exchanged between low-cost ultrasound transceivers. Synchronization between transmitters and receivers is usually needed. In this paper, the use of BLE technology to achieve time synchronization by wirelessly triggered ultrasound transceivers is analyzed. Building on a previous work, the proposed solution uses BLE technology as communication infrastructure and achieves a level of synchronization compatible with Time of Flight (ToF)-based distance estimations and positioning. The proposed solution was validated experimentally. First, a measurement campaign of the time-synchronization delay for the adopted embedded platforms was carried out. Then, ToF-based distance estimations and positioning were performed. The results show that an accurate and low-cost ToF-based positioning system is achievable, using ultrasound transmissions and triggered by BLE RF transmissions.
Collapse
|
16
|
Wang H, Yang H, Chen Z, Zheng Q, Jiang H, Feng PXL, Xie H. Development of Dual-Frequency PMUT Arrays Based on Thin Ceramic PZT for Endoscopic Photoacoustic Imaging. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:770-782. [PMID: 35528228 PMCID: PMC9075345 DOI: 10.1109/jmems.2021.3096733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a dual-frequency piezoelectric micromachined ultrasonic transducer (pMUT) array based on thin ceramic PZT for endoscopic photoacoustic imaging (PAI) applications. With a chip size of 7 × 7 mm2, the pMUT array consists of 256 elements, half of which have a lower resonant frequency of 1.2 MHz and the other half have a higher resonant frequency of 3.4 MHz. Ceramic PZT, with outstanding piezoelectric coefficients, has been successfully thinned down to a thickness of only 4 μ by using wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT elements. The diaphragm diameters of the lower-frequency and higher-frequency elements are 220 μm and 120 μm, respectively. The design methodology, multiphysics modeling, fabrication process, and characterization of the pMUTs are presented in detail. The fabricated pMUT array has been fully characterized via electrical, mechanical, and acoustic measurements. The measured maximum responsivities of the lower- and higher- frequency elements reach 110 nm/V and 30 nm/V at their respective resonances. The measured cross-couplings of the lower-frequency elements and higher-frequency elements are about 9% and 5%, respectively. Furthermore, PAI experiments with pencil leads embedded into an agar phantom have been conducted, which clearly shows the advantages of using dual-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086, USA
| | - Qincheng Zheng
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Philip X-L Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Yao J, Wang LV. Perspective on fast-evolving photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210105-PERR. [PMID: 34196136 PMCID: PMC8244998 DOI: 10.1117/1.jbo.26.6.060602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Acoustically detecting the rich optical absorption contrast in biological tissues, photoacoustic tomography (PAT) seamlessly bridges the functional and molecular sensitivity of optical excitation with the deep penetration and high scalability of ultrasound detection. As a result of continuous technological innovations and commercial development, PAT has been playing an increasingly important role in life sciences and patient care, including functional brain imaging, smart drug delivery, early cancer diagnosis, and interventional therapy guidance. AIM Built on our 2016 tutorial article that focused on the principles and implementations of PAT, this perspective aims to provide an update on the exciting technical advances in PAT. APPROACH This perspective focuses on the recent PAT innovations in volumetric deep-tissue imaging, high-speed wide-field microscopic imaging, high-sensitivity optical ultrasound detection, and machine-learning enhanced image reconstruction and data processing. Representative applications are introduced to demonstrate these enabling technical breakthroughs in biomedical research. CONCLUSIONS We conclude the perspective by discussing the future development of PAT technologies.
Collapse
Affiliation(s)
- Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
18
|
Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6905. [PMID: 33287186 PMCID: PMC7730465 DOI: 10.3390/s20236905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Prussian blue nanoparticles (PBNPs) have attracted increasing research interest in immunosensors, bioimaging, drug delivery, and application as therapeutic agents due to their large internal pore volume, tunable size, easy synthesis and surface modification, good thermal stability, and favorable biocompatibility. This review first outlines the effect of tumor markers using PBNPs-based immunosensors which have a sandwich-type architecture and competitive-type structure. Metal ion doped PBNPs which were used as T1-weight magnetic resonance and photoacoustic imaging agents to improve image quality and surface modified PBNPs which were used as drug carriers to decrease side effects via passive or active targeting to tumor sites are also summarized. Moreover, the PBNPs with high photothermal efficiency and excellent catalase-like activity were promising for photothermal therapy and O2 self-supplied photodynamic therapy of tumors. Hence, PBNPs-based multimodal imaging-guided combinational tumor therapies (such as chemo, photothermal, and photodynamic therapies) were finally reviewed. This review aims to inspire broad interest in the rational design and application of PBNPs for detecting and treating tumors in clinical research.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (X.G.); (Q.W.); (S.L.); (T.L.); (C.L.); (X.H.)
| | | | | | | | | |
Collapse
|