1
|
Gao X, Zhu X, Wang Z, Liu X, Guo R, Luan J, Liu Z, Yu F. Modulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus by Sphingomonas Sp Y503 via the CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3 Signaling Cascade. PLANT, CELL & ENVIRONMENT 2025; 48:1692-1704. [PMID: 39473344 DOI: 10.1111/pce.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 01/04/2025]
Abstract
Catharanthus roseus is a highly relevant model for investigating plant defense mechanisms and the biosynthesis of therapeutically valuable compounds, including terpenoid indole alkaloids (TIAs). It has been demonstrated that beneficial microbial interactions can regulate TIA biosynthesis in C. roseus, highlighting the need to fully comprehend the molecular mechanisms involved to efficiently implement eco-friendly strategies. This study explores the effects of a novel microbial strain, Y503, identified as Sphingomonas sp., on TIA production and the underlying mechanisms in C. roseus. Through bioinformatics analysis, we have identified 17 MAPKKKs, 7 MAPKKs, and 13 MAPKs within the C. roseus genome. Further investigation has verified the presence of the MAPK module (CrMAPKKK1-CrMAPKK1/CrMAPKK2-CrMPK3) mediating Y503 in regulating TIA biosynthesis in C. roseus. This study provides foundational information for strengthening the plant defense system in C. roseus through advantageous microbial interactions, which could contribute to the sustainable cultivation of medicinal plants such as C. roseus.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xiaona Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiqin Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Xuejing Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Rui Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Luan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhiwen Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Quintarelli V, Borgatti D, Baretta M, Stazi SR, Allevato E, Pancaldi S, Baldisserotto C, Mancinelli R, Tedeschi P, Radicetti E, Ben Hassine M. Microbial biofertilizers and algae-based biostimulant affect fruit yield characteristics of organic processing tomato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:530-539. [PMID: 39215534 DOI: 10.1002/jsfa.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.). The experimental treatments were: (i) two microbial biofertilizers (PGPM_1, PGPM_2) and no inoculated plants (No_PGPM); and (ii) two algae-based biostimulant rates (0.5% (Biost_0.5%), 1.0% (Biost_1.0%)) and no application (No_Biost). PGPMs were applied at transplanting, while biostimulants at 15 and 30 days after transplanting. Treatments were replicated three times according to a split-plot experimental design. Plant characteristics were evaluated at 30 days after transplanting in No_Biost treatments. During tomato cultivation, soil plant analysis development (SPAD), nitrogen difference vegetation index (NDVI), leaf area index (LAI) and photosynthetic photon flux density (PPFD) were monitored. Tomato yield was determined. RESULTS PGPM_2 showed the highest shoot biomass (132.9 g plant-1), plant height (44.7 cm), leaf number (34.0 plant-1) and root biomass (9.22 g plant-1). Intermediate values were observed in PGPM_1, while all parameters were lower in No_PGPM. Both PGPMs achieved higher values of SPAD, NDVI, PPFD and LAI than No_PGPM. Biost_1.0% increased all measured growth parameters followed by Biost_0.5% and No_Biost, respectively. Tomato yield was the highest for PGPM_2-Biost_1.0% (67.2 t ha-1). PGPMs affected fruit size and sugar content, while biostimulants were associated with color and lycopene. CONCLUSION The application of microbial biofertilizers and algae-based biostimulants could be part of environment-friendly practice in organic farming. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Quintarelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniele Borgatti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mattia Baretta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Mancinelli
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mortadha Ben Hassine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Muhammad H, Ijaz M, Sattar A, Ul-Allah S, Sher A, Asif M, Dilshad M, Mahmood K, Riaz MW, Zaheer MS, Rizwan M, Manoharadas S. Synergistic effects of PGPRs and fertilizer amendments on improving the yield and productivity of Canola (Brassica napus L.). BMC PLANT BIOLOGY 2025; 25:50. [PMID: 39806305 PMCID: PMC11730122 DOI: 10.1186/s12870-025-06062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola. Canola was chosen for its global importance as an oilseed crop and its responsiveness to soil amendments, making it ideal for evaluating the synergistic effects of PGPRs and fertilizers on yield and soil health. METHODOLOGY This research, which was carried out over two years, was aimed at establishing the effectiveness of PGPRs together with organic and inorganic fertilizers on canola yields and was performed with a two-factorial RCBD design under field conditions. We applied Azotobacter salinestris and Bacillus subtilis with biochar, compost, animal manure, poultry manure, and NPK fertilizer. Insect pest management and other agronomic practices were carried out to maintain the experiment. RESULTS Canola yield and agronomic traits were enhanced by the combination of Bacillus subtilis with the fully recommended N: P:K ratio (140:55:40 kg/ha). Additionally, the application of Bacillus subtilis with biochar at 2 tons/ha improved the yield and quality of canola, as well as the structure and nutrient regulation of the soil. CONCLUSION In light of these results, we recommend the application of Bacillus subtilis to canola seeds along with either 2 t/ha biochar or the entire recommended dose of N: P:K (140:55:40 kg/ha). These strategies are sustainable and help producers and the environment increase the productivity of canola. Combining PGPRs with fertilizers for canola enhances nutrient efficiency, promotes sustainable growth, and boosts stress resilience, addressing agricultural and environmental challenges. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
| | - Muhammad Ijaz
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Pakistan.
| | - Abdul Sattar
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sami Ul-Allah
- Institute of Plant Breeding & Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmad Sher
- Institute of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Asif
- Institute of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Dilshad
- Institute of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, China
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Legrifi I, Al Figuigui J, Lahmamsi H, Taoussi M, Radi M, Belabess Z, Lazraq A, Barka EA, Lahlali R. Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth. Int Microbiol 2025:10.1007/s10123-025-00632-z. [PMID: 39808253 DOI: 10.1007/s10123-025-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies. This study aims to evaluate the potential of rhizobacteria in managing Pythium schmitthenneri-induced root rot in olive trees. We screened 140 bacteria isolated from olive tree rhizospheres for antifungal activity against the pathogen in vitro. Twelve isolates exhibited promising antifungal activity, identified through 16S rDNA gene sequencing as primarily Bacillus, Pseudomonas, Stenotrophomonas, and Alcaligenes species. Particularly, Pseudomonas koreensis (A28 and A29), Pseudomonas reinekei (A16), and Bacillus halotolerans (A10) were the highest effective strains. Mechanistic investigations revealed positive protease production in all twelve isolates, with eight producing amylase and cellulase. Chitinase activity was absent, while five solubilized tricalcium phosphate. Furthermore, eight secreted hydrocyanic acid (HCN), ten synthesized indole-3-acetic acid (IAA), and nine produced siderophores. Variability existed in antimicrobial substance production, including bacillomycin (seven isolates), iturin (eleven isolates), fengycin (two isolates), and surfactin (three isolates). Plant growth-promoting rhizobacteria (PGPR) capabilities were assessed using canola (Brassica napus) seedlings, showing enhanced growth in treated seedlings compared to controls. Greenhouse experiments confirmed the biocontrol efficacy of P. koreensis A28 and Bacillus subtilis C6 against root rot disease. These findings suggest these strains could serve as promising tools for managing olive tree root rot, offering a sustainable alternative to hazardous agrochemicals.
Collapse
Grants
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
- SIRAM This work was supported by the Phytopathology Unit of the Department of Plant Pathology - Ecole Nationale d'Agriculture (Meknes). Financial support has been provided to SIRAM by PRIMA and MESRSI (Morocco), a program supported by H2020, the European Programme for Research and Innovation
Collapse
Affiliation(s)
- Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Jamila Al Figuigui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Haitam Lahmamsi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Department of Biology, Laboratory of Microbial Biotechnology and Bioactive Molecules, Sidi Mohamed BenAbdellah University, Route d'Imouzzer, PO Box 2202, Fez, Morocco
| | - Mohammed Taoussi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Mohammed Radi
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Zitoune, PO Box 11201, Meknes, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, 50000, Meknes, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, P.O. Box 2202, 30000, Fez, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes- USC INRAe1488, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
5
|
Xing Y, Wang X, Mustafa A. Exploring the link between soil health and crop productivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117703. [PMID: 39808880 DOI: 10.1016/j.ecoenv.2025.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Understanding the complex interactions of plants and soils in the face of global food security and environmental degradation challenges is critical to the future of sustainable agriculture. This review discusses the important link between soil health and crop productivity by providing and comprehensive assessment of soil properties and management methods. By examining the physical, chemical, and biological properties of soil, it uncovers the key limitations posed by the soil environment on crop growth. The review highlights how soil texture, nutrient availability, and moisture levels directly impact on root growth, water uptake, and nutrient use efficiencies, while also exploring how diverse cropping systems enhance soil ecology and biodiversity. By utilizing state-of-the-art bioinformatics, we offer an in-depth exploration of rhizosphere microbial communities, emphasizing the functions of phosphate-solubilizing and nitrogen-fixing bacteria in promoting vital nutrient cycles. The potential of using microbial fertilizers to increase crop resistance to disease and stress hold a major premise for future sustainability in agriculture. In this regard, this review highlights the long-term impacts of crop cultivation on soil microbial diversity, revealing intricate selection processes between crops and their microbial partners in shaping crop-soil-microbe interactions. In terms of soil management, practical nutrient management strategies are proposed based on soil testing, emphasizing the benefits of organic farming and conservation tillage for soil health. Modern precision agricultural tools and remote sensing technologies are encouraged to be refined for effective nutrient management. At the policy level, we evaluate international guidelines aimed at fostering agricultural sustainability, suggesting new research pathways for crop-soil dynamics and offering approaches for developing soil health indicators in the face of global environmental challenges.
Collapse
Affiliation(s)
- Yingying Xing
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
El-Saadony MT, Saad AM, Mohammed DM, Fahmy MA, Elesawi IE, Ahmed AE, Algopishi UB, Elrys AS, Desoky ESM, Mosa WF, Abd El-Mageed TA, Alhashmi FI, Mathew BT, AbuQamar SF, El-Tarabily KA. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. PLANT STRESS 2024; 14:100632. [DOI: 10.1016/j.stress.2024.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Zhang K, Chen Z. Promoting agricultural sustainable development by a novel integrated pythagorean neutrosophic and WINGS-BWM model. Sci Rep 2024; 14:29043. [PMID: 39580541 PMCID: PMC11585564 DOI: 10.1038/s41598-024-80463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
This paper identifies nine factors affecting agricultural sustainable development by reading extensive literature and invites five experts to assess these factors using the pythagorean neutrosophic linguistic variable. Some of these factors can directly reduce the environmental footprint of agriculture, improve soil health, and promote biodiversity, while others can indirectly integrate to support the adoption of sustainable practices, further mitigating environmental degradation. Collectively, these factors reinforce ecological balance and play a critical role in advancing agricultural sustainable development. To unravel the complex relationships among these factors, a novel decision theory model is proposed, integrating pythagorean neutrosophic set (PNS) with Weighted Influence Nonlinear Specification System (WINGS) and Best-Worst Method (BWM). In addition, we not only categorized all factors into cause-and-effect factors, but also constructed a network relationship diagram based on them. The study shows that agricultural modernization (Y6) is the most important factor and land remediation (Y2) is the most influential factor. This integrated approach can more effectively address the common challenges of uncertainty and linguistic ambiguity in decision-making scenarios. Combining PNS with WINGS helps make the interactions and importance of factors more apparent, which is particularly suitable for analyzing key factors that promote agricultural sustainability. The incorporation of BWM further ensures the model's accuracy and objectivity. This method provides a more comprehensive and accurate reflection of decision-makers' opinions and judgments, improving decision-making efficiency, and can be widely applied not only in agriculture but also to other decision-making problems.
Collapse
Affiliation(s)
- Kecheng Zhang
- School of Business Administration, Shandong Women's University, Jinan, China
| | - Zhicheng Chen
- School of Economics and Management, Shandong Agricultural University, Taian, China.
| |
Collapse
|
8
|
Hernández-Amador E, Montesdeoca-Flores DT, Abreu-Acosta N, Luis-Jorge JC. Effects of Rhizobacteria Strains on Plant Growth Promotion in Tomatoes ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2024; 13:3280. [PMID: 39683073 DOI: 10.3390/plants13233280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Numerous factors, such as soil fertility, climatic conditions, human activity, pests, and diseases, limit agricultural yields. Pesticides and fertilizers have become indispensable tools to satisfy the global food demand. However, its adverse environmental effects have led to the search for more sustainable and ethical techniques. Biofertilizers and biopesticides based on plant- growth-promoting rhizobacteria (PGPRs) are efficient and ecological treatments that promote plant growth and protection against pathogens and abiotic stresses. In this study, twelve rhizobacterial strains with plant-growth-promoting attributes were selected to evaluate their plant-growth-promoting effect on tomato plants (Solanum lycopersicum L. var Robin). Soil inoculation with these strains resulted in a significant increase in shoot length, up to 50% when compared with control plants. Regarding fresh biomass, rhizobacterial treatments significantly improved seedlings' fresh aerial weight with a maximum increase of 77%. Root biomass also demonstrated a substantial improvement, yielding 62.26% greater fresh root weight compared to the control. Finally, dry root weights exhibited the most remarkable enhancements, with values between 49 and 124%, when compared to the control plants. Concerning the nutritional status, the strains inoculation increased the macronutrients and micronutrients content in the aerial and root parts of the plants. All these findings suggest that rhizobacteria from different ecosystems and agriculture soils of the Canary Islands could be used as fertilizer inoculants to increase crop yield and promote more sustainable practices in modern agriculture.
Collapse
Affiliation(s)
- Eduardo Hernández-Amador
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - David Tomás Montesdeoca-Flores
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - Néstor Abreu-Acosta
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - Juan Cristo Luis-Jorge
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Ketehouli T, Goss EM, Ascunce MS, Martins SJ. Metabolic and physiological effects of antibiotic-induced dysbiosis in citrus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117325. [PMID: 39541699 DOI: 10.1016/j.ecoenv.2024.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Streptomycin (Str) and oxytetracycline (Otc) are widely used antibiotics to manage bacterial diseases in citrus and other crops. However, their impacts on the rhizosphere bacterial assembly and plant physiology are poorly understood. The aim of this study was to examine the effects of Str and Otc on the physiology (assimilation, transpiration rate, intracellular CO2, and stomatal conductance to water vapor), rhizosphere bacterial assemblages (16S rRNA gene high-throughput amplicon sequencing), and rhizosphere metabolite profiles in healthy Citrus reticulata trees. The results indicated a reduction in photosynthesis after Str and Otc treatments, whereas CO2 outflow stayed constant. Both antibiotics decreased the culturable numbers of bacteria. Analysis of the microbiome showed changes in relative abundance of bacterial groups, specifically Pseudomonas, Agrobacterium, and Streptomyces, in response to the antibiotics. Metabolite profiles changed in streptomycin- and oxytetracycline-treated citrus plants suggesting response to microbe targets or induction of stress responses. This study advances knowledge of antibiotic-driven effects on the rhizosphere microbiome, rhizosphere metabolome, and plant physiology, which is essential for managing plant diseases while safeguarding rhizosphere ecology and long-term plant health.
Collapse
Affiliation(s)
- Toi Ketehouli
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Marina S Ascunce
- USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Samuel J Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
10
|
Shreshtha K, Prakash A, Pandey PK, Pal AK, Singh J, Tripathi P, Mitra D, Jaiswal DK, Santos-Villalobos SDL, Tripathi V. Isolation and characterization of plant growth promoting rhizobacteria from cacti root under drought condition. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100319. [PMID: 39664109 PMCID: PMC11629231 DOI: 10.1016/j.crmicr.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Plant growth-promoting rhizobia (PGPR) helps plants grow and develop by protecting them from abiotic and biotic stresses, increasing the synthesis of chemicals that promote growth, and enabling the uptake of nutrients. Drought is one of the biggest problems throughout the world. The search for novel and efficient drought-resistant microorganisms that reduce the adverse effects executed by drought is a significant alternative. This study aimed to isolate and characterize PGPR strains from the Opuntia Ficus-Indica cactus plant's rhizosphere, cultivated in the semi-arid Shankargarh district of Uttar Pradesh, India. Tests for plant growth-promoting activity, such as the generation of indole acetic acid (IAA), phosphate solubilization, ammonia, carboxymethyl cellulase, and protease activity, were performed on all bacterial isolates. There were 246 bacterial strains isolated from the rhizospheric zone, and only 16.6 % showed drought resistance and various plant growth-promoting traits. The Bacillus sp. strain promoted the growth promotion of Capsicum annum L. under water stress (30 % field capacity). Additionally, Bacillus sp. isolates, with their potential for drought tolerance and plant growth promotion, could be applied in sustainable agriculture to enhance crop yield and resilience to water scarcity.
Collapse
Affiliation(s)
- Kumar Shreshtha
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Aman Prakash
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Prashant Kumar Pandey
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Arun Kumar Pal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Jyotsna Singh
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K., 248002, India
| | - Durgesh Kumar Jaiswal
- Department of Biotechnology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K., 248002, India
| | | | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P., 211007, India
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, U.K., 248002, India
| |
Collapse
|
11
|
Ackers-Johnson G, Pulmones R, McLaughlan D, Doyle A, Lewis JM, Neal T, Todd S, Roberts AP. Investigating the changing taxonomy and antimicrobial resistance of bacteria isolated from door handles in a new infectious disease ward pre- and post-patient admittance. Microbiol Spectr 2024; 12:e0179724. [PMID: 39513716 PMCID: PMC11619293 DOI: 10.1128/spectrum.01797-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Healthcare-associated infections (HAIs) are a significant burden to health systems, with antimicrobial resistance (AMR) further compounding the issue. The hospital environment plays a significant role in the development of HAIs, with microbial surveillance providing the foundation for interventions. We sampled 40 door handles at a newly built hospital prior to patients being admitted and then 6 and 12 months after this date. We utilized 16S rDNA sequencing to identify unique colonies, disc diffusion assays to assess the antibiotic resistance of Staphylococcus spp., and whole-genome sequenced (WGS) multidrug-resistant (MDR) isolates. Before patient admission, 43% of sites harbored Staphylococcus spp., increasing to 55% and 65% at six and 12 months, respectively, while Bacillus spp. saw a large increase from 3% to 68% and 85%, respectively. No ESKAPE pathogens were identified. Staphylococcus spp. showed relatively low resistance to all antibiotics except cefoxitin (56%) before patient admittance. Resistance was highest after 6 months of ward use, with an increase in isolates susceptible to all antibiotics after 12 months (11% and 54% susceptibility, respectively). However, MDR remained high. WGS revealed blaZ (25/26), and mecA (22/26) and aac6-aph2 (20/26) were the most abundant resistance genes. Two Staphylococcus hominis isolates identified at the first two time points, respectively, and three Staphylococcus epidermidis isolates identified at all three time points, respectively, were believed to be clonal. This study highlighted the prevalence of a resistant reservoir of bacteria recoverable on high-touch surfaces and the long-term persistence of Staphylococcus spp. first introduced prior to patient admission. IMPORTANCE Healthcare-associated infections (HAIs) are a significant burden to health systems, conferring increased morbidity, mortality, and financial costs to hospital admission. Antimicrobial resistance (AMR) further compounds the issue as viable treatment options are constrained. Previous studies have shown that environmental cleaning interventions reduced HAIs. To ensure the effectiveness of these, it is important to analyze the hospital environment at a microbial level, particularly high-touch surfaces which see frequent human interaction. In addition to identifying infectious microorganisms, it is also beneficial to assess typically non-infectious organisms, as traits including AMR can be transferred between the two. Our study identified that there were high levels of antibiotic resistance in typically non-infectious organisms found on high touch surfaces on a hospital ward. However, the organisms identified suggested that the cleaning protocols in place were sufficient, with their presence being due to repeated recolonization events through human interaction after cleaning had taken place.
Collapse
Affiliation(s)
- Gavin Ackers-Johnson
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Ralfh Pulmones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Danielle McLaughlan
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Amy Doyle
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Joseph M. Lewis
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Tim Neal
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Stacy Todd
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
12
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
13
|
Rao MCS, Rahul VD, Uppar P, Madhuri ML, Tripathy B, Vyas RDV, Swami DV, Raju SS. Enhancing the Phytoremediation of Heavy Metals by Plant Growth Promoting Rhizobacteria (PGPR) Consortium: A Narrative Review. J Basic Microbiol 2024:e2400529. [PMID: 39462911 DOI: 10.1002/jobm.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Heavy metal pollution has become a significant concern as the world continues to industrialize, urbanize, and modernize. Heavy metal pollutants impede the growth and metabolism of plants. The bioaccumulation of heavy metals in plants may create chlorophyll antagonism, oxidative stress, underdeveloped plant growth, and reduced photosynthetic system. Finding practical solutions to protect the environment and plants from the toxic effects of heavy metals is essential for long-term sustainable development. The direct use of suitable living plants for eliminating and degrading metal pollutants from ecosystems is known as phytoremediation. Phytoremediation is a novel and promising way to remove toxic heavy metals. Plant growth-promoting rhizobacteria (PGPR) can colonize plant roots and help promote their growth. Numerous variables, such as plant biomass yield, resistance to metal toxicity, and heavy metal solubility in the soil, affect the rate of phytoremediation. Phytoremediation using the PGPR consortium can speed up the process and increase the rate of heavy metal detoxification. The PGPR consortium has significantly increased the biological accumulation of various nutrients and heavy metals. This review sheds light on the mechanisms that allow plants to uptake and sequester toxic heavy metals to improve soil detoxification. The present review aids the understanding of eco-physiological mechanisms that drive plant-microbe interactions in the heavy metal-stressed environment.
Collapse
Affiliation(s)
- Merugu Chandra Surya Rao
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Vadlamudi Dinesh Rahul
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Pandu Uppar
- Department of Agricultural and Horticultural Sciences, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, India
| | - Marpu Lakshmi Madhuri
- Department of Horticulture, NS College of Horticultural Sciences, Markapur, Ongole, India
| | - Barsha Tripathy
- Department of Vegetable Science, Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Ryali Devi Veda Vyas
- Department of Soil Science and Agricultural Chemistry, College of Agriculture-Dharwad, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Dokka Venkata Swami
- Department of Horticulture, Dr. Y.S.R Horticultural University, Tadepalligudem, West Godavari, Andhra Pradesh, India
| | - Sirivuru Srinivasa Raju
- Department of Horticulture, Acharya N.G. Ranga Agricultural University, Lam, Guntur, Andhar Pradesh, India
| |
Collapse
|
14
|
Malik L, Hussain S, Shahid M, Mahmood F, Ali HM, Malik M, Sanaullah M, Zahid Z, Shahzad T. Co-applied biochar and drought tolerant PGPRs induced more improvement in soil quality and wheat production than their individual applications under drought conditions. PeerJ 2024; 12:e18171. [PMID: 39469591 PMCID: PMC11514766 DOI: 10.7717/peerj.18171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Background Plant growth and development can be greatly impacted by drought stress. Suitable plant growth promoting rhizobacteria (PGPR) or biochar (BC) application has been shown to alleviate drought stress for plants. However, their co-application has not been extensively explored in this regard. Methods We isolated bacterial strains from rhizospheric soils of plants from arid soils and characterized them for plant growth promoting characteristics like IAA production and phosphate solubilization as well as for drought tolerance. Three bacterial strains or so called PGPRs, identified as Bacillus thuringiensis, Bacillus tropicus, and Bacillus paramycoides based on their 16S rRNA, were screened for further experiments. Wheat was grown on normal, where soil moisture was maintained at 75% of water holding capacity (WHC), and induced-drought (25% WHC) stressed soil in pots. PGPRs were applied alone or in combination with a biochar derived from pyrolysis of tree wood. Results Drought stress substantially inhibited wheat growth. However, biochar addition under stressed conditions significantly improved the wheat growth and productivity. Briefly, it increased straw yield by 25%, 100-grain weight by 15% and grain yield by 10% compared to the control. Moreover, co-application of biochar with PGPRs B. thuringiensis, B. tropicus and B. paramycoides further enhanced straw yield by 37-41%, 100-grain weight by 30-36%, and grain yield by 22-22.57%, respectively. The co-application also enhanced soil quality by increasing plant-available phosphorus by 4-31%, microbial biomass by 33-45%, and soil K+/Na+ ratio by 41-44%. Conclusion Co-application of PGPRs and biochar alleviated plant drought stress by improving nutrient availability and absorption. Acting as a nutrient reservoir, biochar worked alongside PGPRs, who solubilized nutrients from the former and promoted wheat growth. We recommend that the co-application of suitable PGPRs and biochar is a better technology to produce wheat under drought conditions than using these enhancers separately.
Collapse
Affiliation(s)
- Laraib Malik
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Faisalabad, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mehreen Malik
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zubda Zahid
- Department of Agro environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
15
|
Clagnan E, Costanzo M, Visca A, Di Gregorio L, Tabacchioni S, Colantoni E, Sevi F, Sbarra F, Bindo A, Nolfi L, Magarelli RA, Trupo M, Ambrico A, Bevivino A. Culturomics- and metagenomics-based insights into the soil microbiome preservation and application for sustainable agriculture. Front Microbiol 2024; 15:1473666. [PMID: 39526137 PMCID: PMC11544545 DOI: 10.3389/fmicb.2024.1473666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Soil health is crucial for global food production in the context of an ever-growing global population. Microbiomes, a combination of microorganisms and their activities, play a pivotal role by biodegrading contaminants, maintaining soil structure, controlling nutrients' cycles, and regulating the plant responses to biotic and abiotic stresses. Microbiome-based solutions along the soil-plant continuum, and their scaling up from laboratory experiments to field applications, hold promise for enhancing agricultural sustainability by harnessing the power of microbial consortia. Synthetic microbial communities, i.e., selected microbial consortia, are designed to perform specific functions. In contrast, natural communities leverage indigenous microbial populations that are adapted to local soil conditions, promoting ecosystem resilience, and reducing reliance on external inputs. The identification of microbial indicators requires a holistic approach. It is fundamental for current understanding the soil health status and for providing a comprehensive assessment of sustainable land management practices and conservation efforts. Recent advancements in molecular technologies, such as high-throughput sequencing, revealed the incredible diversity of soil microbiomes. On one hand, metagenomic sequencing allows the characterization of the entire genetic composition of soil microbiomes, and the examination of their functional potential and ecological roles; on the other hand, culturomics-based approaches and metabolic fingerprinting offer complementary information by providing snapshots of microbial diversity and metabolic activities both in and ex-situ. Long-term storage and cryopreservation of mixed culture and whole microbiome are crucial to maintain the originality of the sample in microbiome biobanking and for the development and application of microbiome-based innovation. This review aims to elucidate the available approaches to characterize diversity, function, and resilience of soil microbial communities and to develop microbiome-based solutions that can pave the way for harnessing nature's untapped resources to cultivate crops in healthy soils, to enhance plant resilience to abiotic and biotic stresses, and to shape thriving ecosystems unlocking the potential of soil microbiomes is key to sustainable agriculture. Improving management practices by incorporating beneficial microbial consortia, and promoting resilience to climate change by facilitating adaptive strategies with respect to environmental conditions are the global challenges of the future to address the issues of climate change, land degradation and food security.
Collapse
Affiliation(s)
- Elisa Clagnan
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Gruppo Ricicla Labs, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milan, Milan, Italy
| | - Manuela Costanzo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Andrea Visca
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Luciana Di Gregorio
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Silvia Tabacchioni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Eleonora Colantoni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Filippo Sevi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Federico Sbarra
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Life Sciences and System Biology (DBIOS), University of Turin, Turin, Italy
| | - Arianna Bindo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| | - Lorenzo Nolfi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Rosaria Alessandra Magarelli
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Mario Trupo
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Alfredo Ambrico
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Annamaria Bevivino
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
16
|
Semwal P, Mishra SK, Majhi B, Mishra A, Joshi H, Misra S, Misra A, Srivastava S, Chauhan PS. Bacillus australimaris protect Gloriosa superba L. against Alternaria alternata infestation. World J Microbiol Biotechnol 2024; 40:354. [PMID: 39419894 DOI: 10.1007/s11274-024-04156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Gloriosa superba L., a medicinally important plant, is often affected by leaf blight disease caused by Alternaria alternata, which compromises its productivity. This study explores the protective effects of Bacillus australimaris endophyte (NBRI GS34), demonstrating that its inoculation not only inhibits the disease but also promotes plant growth and increases the concentrations of bioactive metabolites. Co-culturing NBRI GS34 with A. alternata significantly boosts protease (30-50%) and chitinase (6-28%) activities, evidencing a synergistic interaction. Scanning electron microscopy and GC-MS analysis confirm NBRI GS34's antagonistic action and reveal antifungal compounds like undecanoic acid and benzene carboxylic acid in treatments. Greenhouse experiments show a 78% reduction in disease incidence with NBRI GS34 treatment, enhancing vegetative growth and upregulating defense-related genes. Additionally, HPLC analysis reveals increased gloriosine and colchicine concentrations by 52% and 33%, respectively. These findings suggest NBRI GS34 could serve as a sustainable fungicide alternative, enhancing the production of medically valuable compounds and highlighting its potential pharmaceutical applications.
Collapse
Affiliation(s)
- Pradeep Semwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Basudev Majhi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhilasha Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Ankita Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharad Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Ma X, Zhang B, Xiang X, Li W, Li J, Li Y, Tran LSP, Yin H. Characterization of Bacillus pacificus G124 and Its Promoting Role in Plant Growth and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2864. [PMID: 39458811 PMCID: PMC11511372 DOI: 10.3390/plants13202864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Drought represents a major environmental threat to global agricultural productivity. Employing plant growth-promoting rhizobacteria (PGPR) offers a promising strategy to enhance plant growth and resilience under drought stress. In this study, the strain G124, isolated from the arid region of Qinghai, was characterized at the molecular level, and its ability to enhance plant drought tolerance was validated through pot experiments. The findings revealed that the strain G124 belongs to Bacillus pacificus, with a 99.93% sequence similarity with B. pacificus EB422 and clustered within the same clade. Further analysis indicated that the strain G124 demonstrated a variety of growth-promoting characteristics, including siderophore production, phosphate solubilization, and the synthesis of indole-3-acetic acid (IAA), among others. Moreover, inoculation with B. pacificus G124 resulted in significant enhancements in plant height, leaf area, chlorophyll content, relative water content, and root development in both Arabidopsis thaliana and Medicago sativa seedlings under drought conditions. Additionally, G124 boosted antioxidant enzyme activities and osmolyte accumulation, while reducing malondialdehyde (MDA) and reactive oxygen species (ROS) levels in M. sativa seedlings exposed to drought. These findings suggest that B. pacificus G124 holds significant promise for enhancing plant drought tolerance and could be effectively utilized in crop management strategies under arid conditions.
Collapse
Affiliation(s)
- Xiaolan Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (X.M.); (W.L.); (J.L.); (Y.L.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Xin Xiang
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Wenjing Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (X.M.); (W.L.); (J.L.); (Y.L.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Jiao Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (X.M.); (W.L.); (J.L.); (Y.L.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Yang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (X.M.); (W.L.); (J.L.); (Y.L.)
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China; (B.Z.); (X.X.)
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (X.M.); (W.L.); (J.L.); (Y.L.)
| |
Collapse
|
18
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
19
|
He S, Li L, Lv M, Wang R, Wang L, Yu S, Gao Z, Li X. PGPR: Key to Enhancing Crop Productivity and Achieving Sustainable Agriculture. Curr Microbiol 2024; 81:377. [PMID: 39325205 DOI: 10.1007/s00284-024-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Due to the burgeoning global population and the advancement of economies, coupled with human activities leading to the degradation of soil ecosystems and the depletion of non-renewable resources, concerns have arisen regarding food security and human survival. In order to address these adverse impacts, the spotlight has been cast upon plant growth-promoting rhizobacteria (PGPR), driven by a strong environmental consciousness. PGPR possesses the capability to foster plant growth and amplify crop yield through both direct and indirect mechanisms. By expediting plant growth, augmenting nutrient assimilation, heightening crop yield and caliber, and fortifying stress resilience, the application of PGPR can mitigate reliance on chemical fertilizers and pesticides while diminishing ecological perils. This exposition delves into the function of PGPR in modulating plant hormones, fostering nutrient solubilization, and fortifying plant resistance against biotic and abiotic stressors. This review offers valuable insights into the intricate interplay between PGPR and plants, elucidating uncertainties ripe for further investigation. Profound comprehension and judicious utilization of PGPR are indispensable for attaining sustainable agricultural progression, making substantial contributions to resolving the conundrums of global food security and environmental conservation.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingli Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lujun Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
20
|
Jiang L, Zeng Z, Wang Z, Tang M, Jiang S, Ma Q, Wang Z, Peng D, Li S, Pu H. Genomic Investigation of a Rhizosphere Isolate, Streptomyces sp. JL1001, Associated with Polygonatum cyrtonema Hua. Curr Microbiol 2024; 81:368. [PMID: 39305346 DOI: 10.1007/s00284-024-03887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
In the present study, using genome mining, Streptomyces sp. JL1001, which possesses a leinamycin-type gene cluster, was identified from 14 strains of Streptomyces originating from the rhizosphere soil of Polygonatum cyrtonema Hua. The complete genome of Streptomyces sp. JL1001 was sequenced and analyzed. The genome of Streptomyces sp. JL1001 consists of a 7,943,495 bp chromosome with a 71.71% G+C content and 7315 protein-coding genes. We also identified 36 biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. JL1001. Twenty-seven BGCs had low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. In addition, a comparative analysis was conducted between the leinamycin-type gene cluster in Streptomyces sp. JL1001 and the biosynthetic gene clusters of leinamycin and largimycin. This study aims to provide a comprehensive analysis of the genomic features of rhizosphere Streptomyces sp. JL1001. It establishes the foundation for further investigation into experimental trials involving novel bioactive metabolites such as AT-less type I polyketides that have important potential applications in medicine and agriculture.
Collapse
Affiliation(s)
- Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Changsha Concord Herbs Cultivation Technology Co., Ltd., Changsha, 410221, China
| | - Zixian Zeng
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhi Wang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Min Tang
- Department of Pharmacy, Yiyang Medical College, Yiyang, 413000, China
| | - Sai Jiang
- Institute of Traditional Chinese Medicine for Innovation Drug Research, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Qingxian Ma
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Zhong Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, 410605, China.
| | - Shunxiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Changsha Concord Herbs Cultivation Technology Co., Ltd., Changsha, 410221, China.
| | - Hong Pu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
21
|
Abidi I, Daoui K, Abouabdillah A, Bazile D, Hassane Sidikou AA, Belqadi L, Mahyou H, Alaoui SB. Pomegranate-Quinoa-Based Agroforestry System: An Innovative Strategy to Alleviate Salinity Effects and Enhance Land Use Efficiency in Salt-Affected Semiarid Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2543. [PMID: 39339517 PMCID: PMC11435191 DOI: 10.3390/plants13182543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Salinity is a major problem, impeding soil productivity, agricultural sustainability, and food security, particularly in dry regions. This study integrates quinoa, a facultative halophyte, into a pomegranate-based agroforestry with saline irrigation in northeast Morocco. We aim to explore this agroforestry model's potential in mitigating salinity's effects on quinoa's agronomic and biochemical traits and evaluate the land equivalent ratio (LER). Field experiments in 2020 and 2021 used a randomized block design with three replicates, including monocropping and agroforestry systems, two salinity levels (1.12 and 10.5 dS m-1), four quinoa genotypes (Titicaca, Puno, ICBA-Q4, ICBA-Q5), and a pomegranate control. Salinity significantly decreased total dry matter (40.5%), root dry matter (50.7%), leaf dry matter (39.2%), and root-to-shoot ratio (7.7%). The impact was more severe in monoculture than in agroforestry, reducing dry matter (47.6% vs. 30.7%), grain yield (46.3% vs. 26.1%), water productivity (47.5% vs. 23.9%), and total sugar (19.2% vs. 5.6%). LER averaged 1.86 to 2.21, indicating 86-121% higher productivity in agroforestry. LER averaged 1.85 at 1.12 dS m-1 and 2.18 at 10.5 dS m-1, reaching 2.21 with pomegranate-ICBA-Q5 combination. Quinoa-pomegranate agroforestry emerges as an innovative strategy, leveraging quinoa's salt resistance and agroforestry's potential to mitigate salinity impacts while enhancing land use efficiency.
Collapse
Affiliation(s)
- Ilham Abidi
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Khalid Daoui
- National Institute for Agricultural Research, Regional Agricultural Research Center, Meknès 50000, Morocco;
| | | | - Didier Bazile
- CIRAD, UMR SENS, F-34398 Montpellier, France;
- UMR SENS, CIRAD, IRD, University Paul Valery Montpellier 3, University Montpellier, F-34090 Montpellier, France
| | - Abdel Aziz Hassane Sidikou
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Loubna Belqadi
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| | - Hamid Mahyou
- National Institute for Agricultural Research, Regional Agricultural Research Center, Oujda 60000, Morocco;
| | - Si Bennasseur Alaoui
- Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco; (A.A.H.S.); (L.B.); (S.B.A.)
| |
Collapse
|
22
|
Begum K, Hasan N, Shammi M. Selective biotic stressors' action on seed germination: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112156. [PMID: 38866107 DOI: 10.1016/j.plantsci.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In the realm of plant biology and agriculture, seed germination serves as a fundamental process with far-reaching implications for crop production and environmental health. This comprehensive review seeks to unravel the intricate web of interactions between some biotic stressors and seed germination, addressing the pertinent issue of how these stressors influence seed germination. Different chemicals produced by interacting plants (different parts), fungi, bacteria, or insects can either promote or inhibit seed germination. Releasing chemicals that modulate signaling pathways and cellular processes significantly disrupt essential cellular functions. This disruption leads to diverse germination outcomes, introducing additional layers of complexity to this regulatory landscape. The chemicals perturb enzyme activity and membrane integrity, imposing unique challenges on the germination process. Understanding the mechanisms- how allelochemicals, mycotoxins, or bacterial toxins affect seed germination or the modes of action holds promise for more sustainable agricultural practices, enhanced pest control, and improved environmental outcomes. In sum, this review contributes to a fundamental exposition of the pivotal role of biotic stressors in shaping the germination of seeds.
Collapse
Affiliation(s)
- Kohinoor Begum
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nazmul Hasan
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Fruit Science Laboratory, Saga University, Saga 840-8502, Japan.
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
23
|
Sehrish AK, Ahmad S, Nafees M, Mahmood Z, Ali S, Du W, Kashif Naeem M, Guo H. Alleviated cadmium toxicity in wheat (Triticum aestivum L.) by the coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria on TaEIL1 gene expression, biochemical and physiological changes. CHEMOSPHERE 2024; 364:143113. [PMID: 39151580 DOI: 10.1016/j.chemosphere.2024.143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.
Collapse
Affiliation(s)
- Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zahid Mahmood
- Crop Science Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
24
|
Meng Y, Li J, Yuan W, Liu R, Xu L, Huang L. Pseudomonas thivervalensis K321, a promising and effective biocontrol agent for managing apple Valsa canker triggered by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106095. [PMID: 39277406 DOI: 10.1016/j.pestbp.2024.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have been reported to suppress various diseases as potential bioagents. It can inhibit disease occurrence through various means such as directly killing pathogens and inducing systemic plant resistance. In this study, a bacterium isolated from soil showed significant inhibition of Valsa mali. Morphological observations and phylogenetic analysis identified the strain as Pseudomonas thivervalensis, named K321. Plate confrontation assays demonstrated that K321 treatment severely damaged V. mali growth, with scanning electron microscopy (SEM) observations showing severe distortion of hyphae due to K321 treatment. In vitro twigs inoculation experiments indicated that K321 had good preventive and therapeutic effects against apple Valsa canker (AVC). Applying K321 on apples significantly enhanced the apple inducing systemic resistance (ISR), including induced expression of apple ISR-related genes and increased ISR-related enzyme activity. Additionally, applying K321 on apples can activate apple MAPK by enhancing the phosphorylation of MPK3 and MPK6. In addition, K321 can promote plant growth by solubilizing phosphate, producing siderophores, and producing 3-indole-acetic acid (IAA). Application of 0.2% K321 increased tomato plant height by 53.71%, while 0.1% K321 increased tomato fresh weight by 59.55%. Transcriptome analysis revealed that K321 can inhibit the growth of V. mali by disrupting the integrity of its cell membrane through inhibiting the metabolism of essential membrane components (fatty acids) and disrupting carbohydrate metabolism. In addition, transcriptome analysis also showed that K321 can enhance plant resistance to AVC by inducing ISR-related hormones and MAPK signaling, and application of K321 significantly induced the transcription of plant growth-related genes. In summary, an excellent biocontrol strain has been discovered that can prevent AVC by inducing apple ISR and directly killing V. mali. This study indicated the great potential of P. thivervalensis K321 for use as a biological agent for the control of AVC.
Collapse
Affiliation(s)
- Yangguang Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Weiwei Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ronghao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Liangsheng Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
25
|
Kumar A, Naroju SP, Kumari N, Arsey S, Kumar D, Gubre DF, Roychowdhury A, Tyagi S, Saini P. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Microbiol Res 2024; 286:127827. [PMID: 39002396 DOI: 10.1016/j.micres.2024.127827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024]
Abstract
Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress.
Collapse
Affiliation(s)
- Ashok Kumar
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India.
| | - Sai Prakash Naroju
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, USA
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Shivani Arsey
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Deepak Kumar
- Plant Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Dilasha Fulchand Gubre
- Department of Crop Improvement, Indian Council of Agricultural Research Indian Institute of Soybean Research, Indore, Madhya Pradesh, India
| | - Abhrajyoti Roychowdhury
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Sachin Tyagi
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| | - Pankaj Saini
- School of Life Science and Technology, IIMT University, Meerut, Uttar Pradesh, India
| |
Collapse
|
26
|
Ehinmitan E, Losenge T, Mamati E, Ngumi V, Juma P, Siamalube B. BioSolutions for Green Agriculture: Unveiling the Diverse Roles of Plant Growth-Promoting Rhizobacteria. Int J Microbiol 2024; 2024:6181491. [PMID: 39238543 PMCID: PMC11377119 DOI: 10.1155/2024/6181491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024] Open
Abstract
The extensive use of chemical pesticides and fertilizers in conventional agriculture has raised significant environmental and health issues, including the emergence of resistant pests and pathogens. Plant growth-promoting rhizobacteria (PGPR) present a sustainable alternative, offering dual benefits as biofertilizers and biocontrol agents. This review delves into the mechanisms by which PGPR enhance plant growth, including nutrient solubilization, phytohormone production, and pathogen suppression. PGPR's commercial viability and application, particularly under abiotic stress conditions, are also examined. PGPR improves plant growth directly by enhancing nutrient uptake and producing growth-promoting substances and indirectly by inhibiting phytopathogens through mechanisms such as siderophore production and the secretion of lytic enzymes. Despite their potential, the commercialization of PGPR faces challenges, including strain specificity, formulation stability, and regulatory barriers. The review highlights the need for ongoing research to deepen our understanding of plant-microbe interactions and develop more robust PGPR formulations. Addressing these challenges will be crucial for integrating PGPR into mainstream agricultural practices and reducing reliance on synthetic agrochemicals. The successful adoption of PGPR could lead to more sustainable agricultural practices, promoting healthier crops and ecosystems.
Collapse
Affiliation(s)
- Emmanuel Ehinmitan
- Department of Molecular Biology and Biotechnology Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| | - Turoop Losenge
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Edward Mamati
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Victoria Ngumi
- Department of Botany Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Patrick Juma
- Department of Horticulture Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Beenzu Siamalube
- Department of Molecular Biology and Biotechnology Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
27
|
Hua L, Ye P, Li X, Xu H, Lin F. Anti-Aflatoxigenic Burkholderia contaminans BC11-1 Exhibits Mycotoxin Detoxification, Phosphate Solubilization, and Cytokinin Production. Microorganisms 2024; 12:1754. [PMID: 39338429 PMCID: PMC11434526 DOI: 10.3390/microorganisms12091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
The productivity and quality of agricultural crops worldwide are adversely affected by disease outbreaks and inadequate nutrient availability. Of particular concern is the potential increase in mycotoxin prevalence due to crop diseases, which poses a threat to food security. Microorganisms with multiple functions have been favored in sustainable agriculture to address such challenges. Aspergillus flavus is a prevalent aflatoxin B1 (AFB1)-producing fungus in China. Therefore, we wanted to obtain an anti-aflatoxigenic bacterium with potent mycotoxin detoxification ability and other beneficial properties. In the present study, we have isolated an anti-aflatoxigenic strain, BC11-1, of Burkholderia contaminans, from a forest rhizosphere soil sample obtained in Luzhou, Sichuan Province, China. We found that it possesses several beneficial properties, as follows: (1) a broad spectrum of antifungal activity but compatibility with Trichoderma species, which are themselves used as biocontrol agents, making it possible to use in a biocontrol mixture or individually with other biocontrol agents in an integrated management approach; (2) an exhibited mycotoxin detoxification capacity with a degradation ratio of 90% for aflatoxin B1 and 78% for zearalenone, suggesting its potential for remedial application; and (3) a high ability to solubilize phosphorus and produce cytokinin production, highlighting its potential as a biofertilizer. Overall, the diverse properties of BC11-1 render it a beneficial bacterium with excellent potential for use in plant disease protection and mycotoxin prevention and as a biofertilizer. Lastly, a pan-genomic analysis suggests that BC11-1 may possess other undiscovered biological properties, prompting further exploration of the properties of this unique strain of B. contaminans. These findings highlight the potential of using the anti-aflatoxigenic strain BC11-1 to enhance disease protection and improve soil fertility, thus contributing to food security. Given its multiple beneficial properties, BC11-1 represents a valuable microbial resource as a biocontrol agent and biofertilizer.
Collapse
Affiliation(s)
- Lixia Hua
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Pengsheng Ye
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest of Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue Li
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Hussein SN, Safaie N, Shams-bakhsh M, Al-Juboory HH. Harnessing rhizobacteria: Isolation, identification, and antifungal potential against soil pathogens. Heliyon 2024; 10:e35430. [PMID: 39170238 PMCID: PMC11337714 DOI: 10.1016/j.heliyon.2024.e35430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Rhizobacteria play a crucial role in plant health by providing natural antagonism against soil-borne fungi. The use of rhizobacteria has been viewed as an alternative to the use of chemicals that could be useful for the integrated management of plant diseases and also increase yield in an environmentally friendly manner. However, there is limited understanding of the specific mechanisms by which rhizobacteria inhibit these pathogens and the diversity of rhizobacterial species involved. This study aims to isolate, identify, and characterize rhizobacteria with antagonistic activities against soil-borne fungi. Laboratory tests were carried out on isolated rhizobacteria to evaluate their inhibitory activity against Rhizoctonia solani, Pythium aphanidermatum and Macrophomina phaseolina. The selected bacteria were identified using the Vitek 2 compact system and 16S rRNA genes. Experiments were carried out to evaluate the plant growth promotion and biocontrol ability of these selected isolates. Out of 324 rhizobacteria isolates obtained from various plant species, twelve were chosen due to their strong (>50 %) wide-ranging antifungal activity against three significant phytopathogenic fungi species. According to the identification results, they belong to the following species: Aeribacillus pallidus ECC4, Alloiococcus otitis BRE6, Aneurinibacillus thermoaerophilus ECL1, A. thermoaerophilus SDV1, Bacillus halotolerans DMC8, B. megaterium SKE2, B. megaterium TNK1, B. subtilis NAS1, Enterobacter cloacae complex BZD3, Leclercia adecarboxylata DKS3, Paenibacillus polymyxa TRS4, and Staphylococcus lentus BZD2. Eleven isolates produced protease, six isolates produced chitinase, and seven isolates were highly effective in producing hydrogen cyanide. Ten isolates could fix nitrogen, while all isolates could produce potassium, indole-3-acetic acid, siderophore, and ammonia. These findings enhance our understanding of rhizobacterial biodiversity and their potential as biocontrol agents in sustainable agriculture.
Collapse
Affiliation(s)
- Safaa N. Hussein
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Naser Safaie
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Masoud Shams-bakhsh
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Hurria H. Al-Juboory
- Baghdad University, College of Agriculture, Department of Plant Protection, Iraq
| |
Collapse
|
29
|
Nuguse M, Kejela T. Actinomycetes isolated from rhizosphere of wild Coffea arabica L. showed strong biocontrol activities against coffee wilt disease. PLoS One 2024; 19:e0306837. [PMID: 39088552 PMCID: PMC11293631 DOI: 10.1371/journal.pone.0306837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/23/2024] [Indexed: 08/03/2024] Open
Abstract
Coffee, the second most traded commodity globally after petroleum and is the most exported cash crop of Ethiopia. However, coffee cultivation faces challenges due to fungal diseases, resulting in significant yield losses. The primary fungal diseases affecting coffee production include coffee berry disease, wilt disease (caused by Gibberella xylarioides), and coffee leaf rust. In this study, we aimed to isolate potentially antagonistic actinomycetes from the root rhizosphere of wild Coffea arabica plants in the Yayo coffee forest biosphere in southwestern Ethiopia. Soil samples were collected from the rhizosphere, and actinomycetes were selectively isolated and identified to the genus level by morphological, physiological, and biochemical characterization. These pure isolates were screened for their antagonistic activity against Gibberella xylarioides in vitro using a dual culturing method. Promising isolates demonstrating strong inhibition of fungal mycelial growth were further investigated through in vivo experiments using coffee seedlings. A total of 82 rhizobacteria were isolated. These isolates' inhibition of fungal mycelial growth varied from 0% to 83.3%. Among them, four isolates MUA26, MUA13, MUA52, and MUA14 demonstrated the highest percentage inhibition of fungal mycelial growth: 83.3%, 80%, 76.67%, and 73.3%, respectively. Seedlings inoculated with MUA13, MUA14, and MUA26 during the challenge inoculations (Rhizobacteria + Gibberella xylarioides) exhibited the lowest disease incidence compared to the infected fungi (P < 0.05). Notably, the seedlings inoculated with MUA26 demonstrated the highest disease control efficiency, reaching 83% (P < 0.05). MUA26 was found to produce extracellular enzymes, including chitinase, protease, and lipase, which acted as inhibitors. In summary, this study highlights that MUA26, among the actinomycete isolates, exhibited significant antagonistic activity against Gibberella xylarioides f.sp. coffea. Its efficacy in controlling coffee wilt disease, both in vitro and in vivo, positions it as a potential bioinoculant for managing coffee wilt disease.
Collapse
Affiliation(s)
- Mimi Nuguse
- Department of Biology, College of Natural and Computational Sciences, Mattu University, Mettu, Oromia, Ethiopia
| | - Tekalign Kejela
- Department of Biology, College of Natural and Computational Sciences, Mattu University, Mettu, Oromia, Ethiopia
| |
Collapse
|
30
|
Alshaal T, Alharbi K, Naif E, Rashwan E, Omara AED, Hafez EM. Strengthen sunflowers resilience to cadmium in saline-alkali soil by PGPR-augmented biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116555. [PMID: 38870735 DOI: 10.1016/j.ecoenv.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.
Collapse
Affiliation(s)
- Tarek Alshaal
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, AGTC. 4032 Debrecen, Hungary; Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, 33516 Kafr El-Sheikh, Egypt.
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman Naif
- Department of Crop Science, Faculty of Agriculture, Damanhour University, El-Beheira 22511, Egypt
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
31
|
Tian S, Xu Y, Zhong Y, Qiao Y, Wang D, Wu L, Yang X, Yang M, Wu Z. Exploring the Organic Acid Secretion Pathway and Potassium Solubilization Ability of Pantoea vagans ZHS-1 for Enhanced Rice Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:1945. [PMID: 39065472 PMCID: PMC11281029 DOI: 10.3390/plants13141945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Soil potassium deficiency is a common issue limiting agricultural productivity. Potassium-solubilizing bacteria (KSB) show significant potential in mitigating soil potassium deficiency, improving soil quality, and enhancing plant growth. However, different KSB strains exhibit diverse solubilization mechanisms, environmental adaptability, and growth-promoting abilities. In this study, we isolated a multifunctional KSB strain ZHS-1, which also has phosphate-solubilizing and IAA-producing capabilities. 16S rDNA sequencing identified it as Pantoea vagans. Scanning electron microscopy (SEM) showed that strain ZHS-1 severely corroded the smooth, compact surface of potassium feldspar into a rough and loose state. The potassium solubilization reached 20.3 mg/L under conditions where maltose was the carbon source, sodium nitrate was the nitrogen source, and the pH was 7. Organic acid metabolism profiling revealed that strain ZHS-1 primarily utilized the EMP-TCA cycle, supplemented by pathways involving pantothenic acid, glyoxylic acid, and dicarboxylic acids, to produce large amounts of organic acids and energy. This solubilization was achieved through direct solubilization mechanisms. The strain also secreted IAA through a tryptophan-dependent metabolic pathway. When strain ZHS-1 was inoculated into the rhizosphere of rice, it demonstrated significant growth-promoting effects. The rice plants exhibited improved growth and root development, with increased accumulation of potassium and phosphorus. The levels of available phosphorus and potassium in the rhizosphere soil also increased significantly. Additionally, we observed a decrease in the relative abundance of Actinobacteria and Proteobacteria in the rice rhizosphere soil, while the relative abundance of genera associated with acid production and potassium solubilization, such as Gemmatimonadota, Acidobacteria, and Chloroflexi, as well as Cyanobacteria, which are beneficial to plant growth, increased. These findings contribute to a deeper understanding of the potassium solubilization mechanisms of strain ZHS-1 and highlight its potential as a plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- Shiqi Tian
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yufeng Xu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yanglin Zhong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Yaru Qiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Dongchao Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Lei Wu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (S.T.); (Y.X.); (Y.Z.); (Y.Q.); (L.W.); (X.Y.)
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|
32
|
Weng L, Tang Z, Sardar MF, Yu Y, Ai K, Liang S, Alkahtani J, Lyv D. Unveiling the frontiers of potato disease research through bibliometric analysis. Front Microbiol 2024; 15:1430066. [PMID: 39027102 PMCID: PMC11257026 DOI: 10.3389/fmicb.2024.1430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Research on potato diseases had been widely reported, but a systematic review of potato diseases was lacking. Here, bibliometrics was used to systematically analyze the progress of potato disease. The publications related to "potato" and "disease" were searched in the Web of Science (WOS) from 2014 to 2023. The results showed that a total of 2095 publications on potato diseases were retrieved, with the annual publication output increasing year by year at a growth rate of 8.52%. The main countries where publications were issued were the United States, China, and India. There was relatively close cooperation observed between China, the United States, and the United Kingdom in terms of international collaboration, while international cooperation by India was less extensive. Based on citation analysis and trending topics, potential future research directions include nanoparticles, which provides highly effective carriers for biologically active substances due to their small dimensions, extensive surface area, and numerous binding sites; machine learning, which facilitates rapid identification of relevant targets in extensive datasets, thereby accelerating the process of disease diagnosis and fungicide innovation; and synthetic communities composed of various functional microorganisms, which demonstrate more stable effects in disease prevention and control.
Collapse
Affiliation(s)
- Ling Weng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, China
| | - Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences (National Agricultural Experimental Station for Soil Quality, Taihe)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei, China
| | - Keyu Ai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shurui Liang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dianqiu Lyv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
33
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
34
|
Mažylytė R, Kailiuvienė J, Mažonienė E, Orola L, Kaziūnienė J, Mažylytė K, Lastauskienė E, Gegeckas A. The Co-Inoculation Effect on Triticum aestivum Growth with Synthetic Microbial Communities (SynComs) and Their Potential in Agrobiotechnology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1716. [PMID: 38931148 PMCID: PMC11207813 DOI: 10.3390/plants13121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
The use of rhizospheric SynComs can be a new and sustainable strategy in the agrobiotechnology sector. The objective of this study was to create the most appropriate SynCom composition; examine the ability to dissolve natural rock phosphate (RP) from Morocco in liquid-modified NBRIP medium; determine organic acids, and phytohormones; and verify plant growth promoting and nutrition uptake effect in the pot experiments of winter wheat (Triticum aestivum). A total of nine different microorganisms were isolated, which belonged to three different genera: Bacillus, Pseudomonas, and Streptomyces. Out of the 21 treatments tested, four SynComs had the best phosphate-dissolving properties: IJAK-27+44+91 (129.17 mg L-1), IIBEI-32+40 (90.95 µg mL-1), IIIDEG-45+41 (122.78 mg L-1), and IIIDEG-45+41+72 (120.78 mg L-1). We demonstrate that these SynComs are capable of producing lactic, acetic, gluconic, malic, oxalic, citric acids, and phytohormones such as indole-3-acetic acid, zeatin, gibberellic acid, and abscisic acid. In pot experiments with winter wheat, we also demonstrated that the designed SynComs were able to effectively colonize the plant root rhizosphere and contributed to more abundant plant growth characteristics and nutrient uptake as uninoculated treatment or uninoculated treatment with superphosphate (NPK 0-19-0). The obtained results show that the SynCom compositions of IJAK-27+44+91, IIBEI-32+40, IIIDEG-45+41, and IIIDEG-45+41+72 can be considered as promising candidates for developing biofertilizers to facilitate P absorption and increase plant nutrition.
Collapse
Affiliation(s)
- Raimonda Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | | | - Edita Mažonienė
- Roquette Amilina, LT-35101 Panevezys, Lithuania; (J.K.); (E.M.)
| | - Liana Orola
- Faculty of Chemistry, University of Latvia, LV-1004 Riga, Latvia;
| | - Justina Kaziūnienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, LT-58344 Akademija, Lithuania;
| | - Kamilė Mažylytė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | - Eglė Lastauskienė
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| | - Audrius Gegeckas
- Life Sciences Center, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; (K.M.); (E.L.); (A.G.)
| |
Collapse
|
35
|
Ze M, Ma F, Zhang J, Duan J, Feng D, Shen Y, Chen G, Hu X, Dong M, Qi T, Zou L. Beneficial effects of Bacillus mojavensis strain MTC-8 on plant growth, immunity and disease resistance against Magnaporthe oryzae. Front Microbiol 2024; 15:1422476. [PMID: 38933037 PMCID: PMC11199545 DOI: 10.3389/fmicb.2024.1422476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Rice blast, a prevalent and highly destructive rice disease that significantly impacts rice yield, is caused by the rice blast fungus. In the present study, a strain named MTC-8, identified as Bacillus mojavensis, was demonstrated has strong antagonistic activity against the rice blast fungus, Rhizoctonia solani, Ustilaginoidea virens, and Bipolaria maydis. The potential biocontrol agents were identified using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis and chromatography. Further investigations elucidated the inhibitory mechanism of the isolated compound and demonstrated its ability to suppress spore germination, alter hyphal morphology, disrupt cell membrane integrity, and induce defense-related gene expression in rice. MTC-8 promoted plant growth and may lead to the development of a biocontrol agent that meets agricultural standards. Overall, the Bacillus mojavensis MTC-8 strain exerted beneficial effects on plant growth, immunity and disease resistance against rice blast fungus. In this study, we isolated and purified a bioactive substance from fermentation broth, and the results provide a foundation for the development and application of biopesticides. Elucidation of the inhibitory mechanism against rice blast fungus provides theoretical support for the identification of molecular targets. The successful development of a biocontrol agent lays the groundwork for its practical application in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, China
| |
Collapse
|
36
|
Yu XX, Chen KX, Yuan PP, Wang YH, Li HX, Zhao YX, Dai YJ. Asp-tRNA Asn/Glu-tRNA Gln amidotransferase A subunit-like amidase mediates the degradation of insecticide flonicamid by Variovorax boronicumulans CGMCC 4969. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172479. [PMID: 38621543 DOI: 10.1016/j.scitotenv.2024.172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The main metabolic product of the pyridinecarboxamide insecticide flonicamid, N-(4-trifluoromethylnicotinyl)glycinamide (TFNG-AM), has been shown to have very high mobility in soil, leading to its accumulation in the environment. Catabolic pathways of flonicamid have been widely reported, but few studies have focused on the metabolism of TFNG-AM. Here, the rapid transformation of TFNG-AM and production of the corresponding acid product N-(4-trifluoromethylnicotinoyl) glycine (TFNG) by the plant growth-promoting bacterium Variovorax boronicumulans CGMCC 4969 were investigated. With TFNG-AM at an initial concentration of 0.86 mmol/L, 90.70 % was transformed by V. boronicumulans CGMCC 4969 resting cells within 20 d, with a degradation half-life of 4.82 d. A novel amidase that potentially mediated this transformation process, called AmiD, was identified by bioinformatic analyses. The gene encoding amiD was cloned and expressed recombinantly in Escherichia coli, and the enzyme AmiD was characterized. Key amino acid residue Val154, which is associated with the catalytic activity and substrate specificity of signature family amidases, was identified for the first time by homology modeling, structural alignment, and site-directed mutagenesis analyses. When compared to wild-type recombinant AmiD, the mutant AmiD V154G demonstrated a 3.08-fold increase in activity toward TFNG-AM. The activity of AmiD V154G was greatly increased toward aromatic L-phenylalanine amides, heterocyclic TFNG-AM and IAM, and aliphatic asparagine, whereas it was dramatically lowered toward benzamide, phenylacetamide, nicotinamide, acetamide, acrylamide, and hexanamid. Quantitative PCR analysis revealed that AmiD may be a substrate-inducible enzyme in V. boronicumulans CGMCC 4969. The mechanism of transcriptional regulation of AmiD by a member of the AraC family of regulators encoded upstream of the amiD gene was preliminarily investigated. This study deepens our understanding of the mechanisms of metabolism of toxic amides in the environment, providing new ideas for microbial bioremediation.
Collapse
Affiliation(s)
- Xue-Xiu Yu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Pan-Pan Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yu-He Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Hua-Xiao Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
37
|
Villafañe DL, Maldonado RA, Bianchi JS, Kurth D, Gramajo H, Chiesa MA, Rodríguez E. Streptomyces N2A, an endophytic actinobacteria that promotes soybean growth and increases yield and seed quality under field conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112073. [PMID: 38522657 DOI: 10.1016/j.plantsci.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Sustainable agriculture based on the use of soil-beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) and biocontrol agents (BCA) is gaining great consideration to reduce the use of agrochemicals for crop production. With this aim, in this study, a total of 78 actinobacteria were isolated from the rhizosphere and endosphere of soybean roots. Based on in vitro compatibility with Bradyrhizobium japonicum, the ability to produce phytohormones, siderophores, exo-enzymes, antifungal compounds and phosphate solubilization (PGPR traits), two endophytic strains, named N2A and N9, were selected to evaluate their effects on plant growth and development at greenhouse and field conditions. Greenhouse trials showed significantly promoted seedling emergence compared to control and the conventional fungicide treatment. Analysis of growth and development associated parameters at reproductive stages and maturity at greenhouse, but also and most importantly, in field experiments showed significant improvements. Plant biomass, node number, pod number, and consequently yield, were higher in plants previously treated with N2A and co-inoculated with B. japonicum compared to the conventional seed treatment. Furthermore, a significant increase in health status and vigor was observed for seeds harvested from the N2A-treated plants in relation to seeds obtained from the conventional treatment. Thus, we demonstrated that Streptomyces sp. N2A can replace traditional chemical fungicides to protect the seed during germination, allowing good implantation, but also, stimulating the growth and development of soybean crop increasing yield and seed quality at field conditions. Altogether, this supports the potential use of Streptomyces N2A as a PGPR for soybean crop production more efficiently and sustainably.
Collapse
Affiliation(s)
- David L Villafañe
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - Rodrigo A Maldonado
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Julieta S Bianchi
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina
| | - Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Hugo Gramajo
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina
| | - María Amalia Chiesa
- Laboratorio de EcoFisiología Vegetal (LEFIVE), Instituto de Investigaciones en Ciencias Agrarias de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IICAR-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Parque Villarino S/N, Zavalla 2125, Santa Fe, Argentina.
| | - Eduardo Rodríguez
- Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| |
Collapse
|
38
|
Dong H, Wang Y, Di Y, Qiu Y, Ji Z, Zhou T, Shen S, Du N, Zhang T, Dong X, Guo Z, Piao F, Li Y. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na +/K + homeostasis and ABA signaling pathway in tomato. Microbiol Res 2024; 283:127707. [PMID: 38582011 DOI: 10.1016/j.micres.2024.127707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.
Collapse
Affiliation(s)
- Han Dong
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China; College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuanyuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yancui Di
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yingying Qiu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zelin Ji
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tengfei Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
39
|
Bouraoui M, Abbes Z, L’taief B, Alshaharni MO, Abdi N, Hachana A, Sifi B. Exploring the biochemical dynamics in faba bean (Vicia faba L. minor) in response to Orobanche foetida Poir. parasitism under inoculation with different rhizobia strains. PLoS One 2024; 19:e0304673. [PMID: 38820398 PMCID: PMC11142618 DOI: 10.1371/journal.pone.0304673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.
Collapse
Affiliation(s)
- Manel Bouraoui
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
- Sciences Faculty of Bizerte (FSB), Carthage University, Tunis, Tunisia
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Zouhaier Abbes
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| | - Boulbaba L’taief
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O. Alshaharni
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Neila Abdi
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Amira Hachana
- Agronomic Sciences and Technology Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| | - Bouaziz Sifi
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Carthage University, Tunis, Tunisia
| |
Collapse
|
40
|
Mauceri A, Puccio G, Faddetta T, Abbate L, Polito G, Caldiero C, Renzone G, Lo Pinto M, Alibrandi P, Vaccaro E, Abenavoli MR, Scaloni A, Sunseri F, Cavalieri V, Palumbo Piccionello A, Gallo G, Mercati F. Integrated omics approach reveals the molecular pathways activated in tomato by Kocuria rhizophila, a soil plant growth-promoting bacterium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108609. [PMID: 38615442 DOI: 10.1016/j.plaphy.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Plant microbial biostimulants application has become a promising and eco-friendly agricultural strategy to improve crop yields, reducing chemical inputs for more sustainable cropping systems. The soil dwelling bacterium Kocuria rhizophila was previously characterized as Plant Growth Promoting Bacteria (PGPB) for its multiple PGP traits, such as indole-3-acetic acid production, phosphate solubilization capability and salt and drought stress tolerance. Here, we evaluated by a multi-omics approach, the PGP activity of K. rhizophila on tomato, revealing the molecular pathways by which it promotes plant growth. Transcriptomic analysis showed several up-regulated genes mainly related to amino acid metabolism, cell wall organization, lipid and secondary metabolism, together with a modulation in the DNA methylation profile, after PGPB inoculation. In agreement, proteins involved in photosynthesis, cell division, and plant growth were highly accumulated by K. rhizophila. Furthermore, "amino acid and peptides", "monosaccharides", and "TCA" classes of metabolites resulted the most affected by PGPB treatment, as well as dopamine, a catecholamine neurotransmitter mediating plant growth through S-adenosylmethionine decarboxylase (SAMDC), a gene enhancing the vegetative growth, up-regulated in tomato by K. rhizophila treatment. Interestingly, eight gene modules well correlated with differentially accumulated proteins (DAPs) and metabolites (DAMs), among which two modules showed the highest correlation with nine proteins, including a nucleoside diphosphate kinase, and cytosolic ascorbate peroxidase, as well as with several amino acids and metabolites involved in TCA cycle. Overall, our findings highlighted that sugars and amino acids, energy regulators, involved in tomato plant growth, were strongly modulated by the K. rhizophila-plant interaction.
Collapse
Affiliation(s)
- Antonio Mauceri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Guglielmo Puccio
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy; University of Palermo, SAAF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Teresa Faddetta
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Loredana Abbate
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Giulia Polito
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Ciro Caldiero
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Giovanni Renzone
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Margot Lo Pinto
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | - Pasquale Alibrandi
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Edoardo Vaccaro
- Mugavero Teresa S.A.S., Corso Umberto e Margherita 1B, 90018, Termini Imerese, (Palermo), Italy
| | - Maria Rosa Abenavoli
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Andrea Scaloni
- National Research Council, Proteomics, Metabolomics and Mass Spectrometry Laboratory (ISPAAM), Piazzale E. Fermi 1, 80055, Portici, (Napoli), Italy
| | - Francesco Sunseri
- University Mediterranea of Reggio Calabria, AGRARIA Department, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - Vincenzo Cavalieri
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy
| | | | - Giuseppe Gallo
- University of Palermo, STEBICEF Department, Viale Delle Scienze, 90128, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Francesco Mercati
- National Research Council, Institute of Biosciences and Bioresources (IBBR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
41
|
Shah AA, Zafar S, Usman S, Javad S, Zaib-Un-Nisa, Aslam M, Noreen Z, Elansary HO, Almutairi KF, Ahmad A. Zinc oxide nanoparticles and Klebsiella sp. SBP-8 alleviates chromium toxicity in Brassica juncea by regulation of antioxidant capacity, osmolyte production, nutritional content and reduction in chromium adsorption. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108624. [PMID: 38636254 DOI: 10.1016/j.plaphy.2024.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Heavy metals are one of the most damaging environmental toxins that hamper growth of plants. These noxious chemicals include lead (Pb), arsenic (As), nickel (Ni), cadmium (Cd) and chromium (Cr). Chromium is one of the toxic metal which induces various oxidative processes in plants. The emerging role of nanoparticles as pesticides, fertilizers and growth regulators have attracted the attention of various scientists. Current study was conducted to explore the potential of zinc oxide nanoparticles (ZnONPs) alone and in combination with plant growth promoting rhizobacteria (PGPR) Klebsiella sp. SBP-8 in Cr stress alleviation in Brassica juncea (L.). Chromium stress reduced shoot fresh weight (40%), root fresh weight (28%), shoot dry weight (28%) and root dry weight (34%) in B. juncea seedlings. Chromium stressed B. juncea plants showed enhanced levels of malondialdehyde (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide ion (O2• -). However, co-supplementation of ZnONPs and Klebsiella sp. SBP-8 escalated the activity of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) in B. juncea grown in normal and Cr-toxic soil. It is further proposed that combined treatment of ZnONPs and Klebsiella sp. SBP-8 may be useful for alleviation of other abiotic stresses in plants.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Zaib-Un-Nisa
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid F Almutairi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aqeel Ahmad
- University of Chinese Academy of Sciences (UCAS), Beijing, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
42
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
43
|
Nagah A, El-Sheekh MM, Arief OM, Alqahtani MD, Alharbi BM, Dawwam GE. Endophytic Bacillus vallismortis and Bacillus tequilensis bacteria isolated from medicinal plants enhance phosphorus acquisition and fortify Brassica napus L. vegetative growth and metabolic content. FRONTIERS IN PLANT SCIENCE 2024; 15:1324538. [PMID: 38584952 PMCID: PMC10995350 DOI: 10.3389/fpls.2024.1324538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
Phosphorus fertilization imposes critical limitations on crop productivity and soil health. The aim of the present work is to explore the potential of two phosphate solubilizing bacteria (PSB) species in phosphorus supplementation of canola (Brassica napus L.). Out of 38 bacterial isolates obtained from nine medicinal plants, two bacterial strains (20P and 28P) were proved as the most potent for the in-vitro tricalcium phosphate solubilization test. These isolates verified their activity toward different enzymes as nitrogenase and alkaline phosphatase. Also, 20P and 28P gave a high amount of indole-3-acetic acid, 34.16 μg/ml and 35.20 μg/ml, respectively, and were positive for siderophores production as they detected moderate affinity for iron chelation. Molecular identification confirmed that strain 20P was Bacillus vallismortis and strain 28P was Bacillus tequilensis. A pot experiment was conducted to study the effect of four different phosphorus concentrations (0%, 50%, 75%, and 100% P) each alone and/or in combination with B. vallismortis, B. tequilensis, or both bacterial isolates on the vegetative growth and some physiological parameters of canola. The combined treatment of 50% phosphorus + (B. vallismortis + B. tequilensis) was generally the most effective with respect to shoot height, shoot dry mass, leaf area, photosynthetic pigment fractions, total sugar content, and accumulated NPK content. In contrast, the rhizosphere pH reached the minimum value under the same treatment. These findings highlighted the potential use of PSB (B. vallismortis and B. tequilensis) along with phosphorus fertilization as a safe sustainable tactic.
Collapse
Affiliation(s)
- Aziza Nagah
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Omnia M. Arief
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ghada E. Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
44
|
Badawy AM. Impact of antagonistic endophytic bacteria on productivity of some economically important legumes. Braz J Microbiol 2024; 55:749-757. [PMID: 38183583 PMCID: PMC10920516 DOI: 10.1007/s42770-023-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
Understanding the interactions within and between endophytes and their hosts is still obscure. Investigating endophytic bacterial plant growth-promoting (PGP) traits and co-inoculation effects on legumes' performance is a candidate. Endophytic bacteria were isolated from Vicia sativa root nodules. Such endophytes were screened for their PGP traits, hydrolytic enzymes, and antifungal activities. Sterilized Vicia faba and Pisum sativum seedlings were co-inoculated separately with seven different endophytic bacterial combinations before being planted under sterilized conditions. Later on, several growth-related traits were measured. Eleven endophytes (six rhizobia, two non-rhizobia, and three actinomycetes) could be isolated, and all of them were indole-acetic-acid (IAA) producers, while seven isolates could solubilize phosphorus, whereas three, five, five, and four isolates could produce protease, cellulase, amylase, and chitinase, respectively. Besides, some of these isolates possessed powerful antifungal abilities against six soil-borne pathogenic fungi. Co-inoculation of tested plants with endophytic bacterial mixes (Rhizobiamix+Actinomix+non-Rhizobiamix), (Rhizobiamix+Actinomix), or (Rhizobiamix+non-Rhizobiamix) significantly improved the studied growth parameters (shoot, root fresh and dry weights, length and yield traits) compared to controls, whereas co-inoculated plants with (Rhizobiaalone), (non-Rhizobiamix), or (Actinomix) significantly recorded lower growth parameters. Five efficient endophytes were identified: Rhizobium leguminosarum bv. Viciae, Rhizobium pusense, Brevibacterium frigoritolerans, Streptomyces variabilis, and Streptomyces tendae. Such results suggested that these isolates could be utilized as biocontrols and biofertilizers to improve legumes productivity. Also, co-inoculation with different endophytic mixes is better than single inoculation, a strategy that should be commercially exploited.
Collapse
Affiliation(s)
- Ayat M Badawy
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32513, Egypt.
| |
Collapse
|
45
|
Wang M, Yang X. Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment. PeerJ 2024; 12:e16992. [PMID: 38426138 PMCID: PMC10903360 DOI: 10.7717/peerj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) have a specific symbiotic relationship with plants and rhizosphere soil. The purpose of this study was to evaluate the effects of PGPR on blueberry plant growth, rhizospheric soil nutrients and the microbial community. Methods In this study, nine PGPR strains, belonging to the genera Pseudomonas and Buttiauxella, were selected and added into the soil in which the blueberry cuttings were planted. All the physiological indexes of the cuttings and all rhizospheric soil element contents were determined on day 6 after the quartic root irrigation experiments were completed. The microbial diversity in the soil was determined using high-throughput amplicon sequencing technology. The correlations between phosphorus solubilization, the auxin production of PGPR strains, and the physiological indexes of blueberry plants, and the correlation between rhizospheric microbial diversity and soil element contents were determined using the Pearson's correlation, Kendall's tau correlation and Spearman's rank correlation analysis methods. Results The branch number, leaf number, chlorophyllcontentand plant height of the treated blueberry group were significantly higher than those of the control group. The rhizospheric soil element contents also increased after PGPR root irrigation. The rhizospheric microbial community structure changed significantly under the PGPR of root irrigation. The dominant phyla, except Actinomycetota, in the soil samples had the greatest correlation with phosphorus solubilization and the auxin production of PGPR strains. The branch number, leaf number, and chlorophyllcontent had a positive correlation with the phosphorus solubilization and auxin production of PGPR strains and soil element contents. In conclusion, plant growth could be promoted by the root irrigation of PGPR to improve rhizospheric soil nutrients and the microenvironment, with modification of the rhizospheric soil microbial community. Discussion Plant growth could be promoted by the root irrigation of PGPR to improve rhizospheric soil nutrients and the microenvironment, with the modification of the rhizospheric soil microbial community. These data may help us to better understand the positive effects of PGPR on blueberry growth and the rhizosphere soil microenvironment, as well as provide a research basis for the subsequent development of a rhizosphere-promoting microbial fertilizer.
Collapse
Affiliation(s)
- Mengjiao Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinling-Ba Mountains, Hanzhong, Shaanxi, China
- Shaanxi Key Laboratory of Bioresources, Hanzhong, Shaanxi, China
| | - Xinlong Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
46
|
Abou Jaoudé R, Luziatelli F, Ficca AG, Ruzzi M. A plant's perception of growth-promoting bacteria and their metabolites. FRONTIERS IN PLANT SCIENCE 2024; 14:1332864. [PMID: 38328622 PMCID: PMC10848262 DOI: 10.3389/fpls.2023.1332864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
Many recent studies have highlighted the importance of plant growth-promoting (rhizo)bacteria (PGPR) in supporting plant's development, particularly under biotic and abiotic stress. Most focus on the plant growth-promoting traits of selected strains and the latter's effect on plant biomass, root architecture, leaf area, and specific metabolite accumulation. Regarding energy balance, plant growth is the outcome of an input (photosynthesis) and several outputs (i.e., respiration, exudation, shedding, and herbivory), frequently neglected in classical studies on PGPR-plant interaction. Here, we discuss the primary evidence underlying the modifications triggered by PGPR and their metabolites on the plant ecophysiology. We propose to detect PGPR-induced variations in the photosynthetic activity using leaf gas exchange and recommend setting up the correct timing for monitoring plant responses according to the specific objectives of the experiment. This research identifies the challenges and tries to provide future directions to scientists working on PGPR-plant interactions to exploit the potential of microorganisms' application in improving plant value.
Collapse
Affiliation(s)
- Renée Abou Jaoudé
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | | | - Maurizio Ruzzi
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
47
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
48
|
Ikiz B, Dasgan HY, Gruda NS. Utilizing the power of plant growth promoting rhizobacteria on reducing mineral fertilizer, improved yield, and nutritional quality of Batavia lettuce in a floating culture. Sci Rep 2024; 14:1616. [PMID: 38238449 PMCID: PMC10796387 DOI: 10.1038/s41598-024-51818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
In soilless cultivation, plants are grown with nutrient solutions prepared with mineral nutrients. Beneficial microorganisms are very important in plant nutrition. However, they are not present in soilless culture systems. In this study we investigated the impact of introducing Plant Growth Promoting Rhizobacteria (PGPR) as an alternative to traditional mineral fertilizer in hydroponic floating lettuce cultivation. By reducing mineral fertilizers at various ratios (20%, 40%, 60%, and 80%), and replacing them with PGPR, we observed remarkable improvements in multiple growth parameters. Applying PGPR led to significant enhancements in plant weight, leaf number, leaf area, leaf dry matter, chlorophyll content, yield, and nutrient uptake in soilles grown lettuce. Combining 80% mineral fertilizers with PGPR demonstrated a lettuce yield that did not significantly differ from the control treatment with 100% mineral fertilizers. Moreover, PGPR application improved the essential mineral concentrations and enhanced human nutritional quality, including higher levels of phenols, flavonoids, vitamin C, and total soluble solids. PGPR has potential as a sustainable substitute for synthetic mineral fertilizers in hydroponic floating lettuce cultivation, leading to environmentally friendly and nutritionally enriched farming.
Collapse
Affiliation(s)
- Boran Ikiz
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey
| | - Hayriye Yildiz Dasgan
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey.
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, 53113, Bonn, Germany.
| |
Collapse
|
49
|
Świątczak J, Kalwasińska A, Brzezinska MS. Plant growth-promoting rhizobacteria: Peribacillus frigoritolerans 2RO30 and Pseudomonas sivasensis 2RO45 for their effect on canola growth under controlled as well as natural conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1233237. [PMID: 38259930 PMCID: PMC10800854 DOI: 10.3389/fpls.2023.1233237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Even though canola is one of the most important industrial crops worldwide, it has high nutrient requirements and is susceptible to pests and diseases. Therefore, natural methods are sought to support the development of these plants. One of those methods could be a plant growth-promoting rhizobacteria (PGPR) that have a beneficial effect on plant development. The aim of this study was a genomic comparison of two PGPR strains chosen based on their effect on canola growth: Peribacillus frigoritolerans 2RO30, which stimulated canola growth only in sterile conditions, and Pseudomonas sivasensis 2RO45, which promoted canola growth in both sterile and non-sterile conditions. First of all, six bacterial strains: RO33 (Pseudomonas sp.), RO37 (Pseudomonas poae), RO45 (Pseudomonas kairouanensis), 2RO30 (Peribacillus frigoritolerans), 2RO45 (Pseudomonas sivasensis), and 3RO30 (Pseudomonas migulae), demonstrating best PGP traits in vitro, were studied for their stimulating effect on canola growth under sterile conditions. P. frigoritolerans 2RO30 and P. sivasensis 2RO45 showed the best promoting effect, significantly improving chlorophyll content index (CCI) and roots length compared to the non-inoculated control and to other inoculated seedlings. Under non-sterile conditions, only P. sivasensis 2RO45 promoted the canola growth, significantly increasing CCI compared to the untreated control and to other inoculants. Genome comparison revealed that the genome of P. sivasensis 2RO45 was enriched with additional genes responsible for ACC deaminase (acdA), IAA (trpF, trpG), and siderophores production (fbpA, mbtH, and acrB) compared to 2RO30. Moreover, P. sivasensis 2RO45 showed antifungal effect against all the tested phytopathogens and harbored six more biosynthetic gene clusters (BGC), namely, syringomycin, pyoverdin, viscosin, arylpolyene, lankacidin C, and enterobactin, than P. frigoritolerans 2RO30. These BGCs are well known as antifungal agents; therefore, it can be assumed that these BGCs were responsible for the antifungal activity of P. sivasensis 2RO45 against all plant pathogens. This study is the first report describing P. sivasensis 2RO45 as a canola growth promoter, both under controlled and natural conditions, thus suggesting its application in improving canola yield, by improving nutrient availability, enhancing stress tolerance, and reducing environmental impact of farming practices.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | | | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
50
|
Reid TE, Kavamura VN, Torres-Ballesteros A, Smith ME, Abadie M, Pawlett M, Clark IM, Harris JA, Mauchline TH. Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat. THE ISME JOURNAL 2024; 18:wrae131. [PMID: 38990206 PMCID: PMC11292143 DOI: 10.1093/ismejo/wrae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.
Collapse
Affiliation(s)
- Tessa E Reid
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Vanessa N Kavamura
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | | | - Monique E Smith
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Maïder Abadie
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Present address: INRAE, UR1264 MycSA, CS2032, 33882 Villenave d’Ornon, France
| | - Mark Pawlett
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Ian M Clark
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Jim A Harris
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|