1
|
Allen DM, Reyne MI, Allingham P, Levickas A, Bell SH, Lock J, Coey JD, Carson S, Lee AJ, McSparron C, Nejad BF, McKenna J, Shannon M, Li K, Curran T, Broadbent LJ, Downey DG, Power UF, Groves HE, McKinley JM, McGrath JW, Bamford CGG, Gilpin DF. Genomic Analysis and Surveillance of Respiratory Syncytial Virus Using Wastewater-Based Epidemiology. J Infect Dis 2024; 230:e895-e904. [PMID: 38636496 PMCID: PMC11481326 DOI: 10.1093/infdis/jiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/08/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Respiratory syncytial virus (RSV) causes severe infections in infants, immunocompromised or elderly individuals resulting in annual epidemics of respiratory disease. Currently, limited clinical surveillance and the lack of predictable seasonal dynamics limit the public health response. Wastewater-based epidemiology (WBE) has recently been used globally as a key metric in determining prevalence of severe acute respiratory syndrome coronavirus 2 in the community, but its application to other respiratory viruses is limited. In this study, we present an integrated genomic WBE approach, applying reverse-transcription quantitative polymerase chain reaction and partial G-gene sequencing to track RSV levels and variants in the community. We report increasing detection of RSV in wastewater concomitant with increasing numbers of positive clinical cases. Analysis of wastewater-derived RSV sequences permitted identification of distinct circulating lineages within and between seasons. Altogether, our genomic WBE platform has the potential to complement ongoing global surveillance and aid the management of RSV by informing the timely deployment of pharmaceutical and nonpharmaceutical interventions.
Collapse
Affiliation(s)
- Danielle M Allen
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Marina I Reyne
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Pearce Allingham
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ashley Levickas
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen H Bell
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Jonathan Lock
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Jonathon D Coey
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen Carson
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew J Lee
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Cormac McSparron
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - Behnam Firoozi Nejad
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - James McKenna
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Mark Shannon
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Kathy Li
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Tanya Curran
- Regional Virus Laboratory (RVL), Belfast Health and Social Care Trust (BHSCT), Royal Victoria Hospital, Belfast, United Kingdom
| | - Lindsay J Broadbent
- Section of Virology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Damian G Downey
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Ultan F Power
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Helen E Groves
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer M McKinley
- Geography, Archaeology and Palaeoecology, School of Natural and Built Environment, Queen's University Belfast, Belfast, United Kingdom
| | - John W McGrath
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Connor G G Bamford
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F Gilpin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174419. [PMID: 38960169 DOI: 10.1016/j.scitotenv.2024.174419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Wastewater-based epidemiology (WBE) is a critical tool for monitoring community health. Although much attention has focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of coronavirus disease 2019 (COVID-19), other pathogens also pose significant health risks. This study quantified the presence of SARS-CoV-2, influenza A virus (Inf-A), and noroviruses of genogroups I (NoV-GI) and II (NoV-GII) in wastewater samples collected weekly (n = 170) from July 2023 to February 2024 from five wastewater treatment plants (WWTPs) in Yamanashi Prefecture, Japan, by quantitative PCR. Inf-A RNA exhibited localized prevalence with positive ratios of 59 %-82 % in different WWTPs, suggesting regional outbreaks within specific areas. NoV-GI (94 %, 160/170) and NoV-GII (100 %, 170/170) RNA were highly prevalent, with NoV-GII (6.1 ± 0.8 log10 copies/L) consistently exceeding NoV-GI (5.4 ± 0.7 log10 copies/L) RNA concentrations. SARS-CoV-2 RNA was detected in 100 % of the samples, with mean concentrations of 5.3 ± 0.5 log10 copies/L in WWTP E and 5.8 ± 0.4 log10 copies/L each in other WWTPs. Seasonal variability was evident, with higher concentrations of all pathogenic viruses during winter. Non-normalized and normalized virus concentrations by fecal indicator bacteria (Escherichia coli and total coliforms), an indicator virus (pepper mild mottle virus (PMMoV)), and turbidity revealed significant positive associations with the reported disease cases. Inf-A and NoV-GI + GII RNA concentrations showed strong correlations with influenza and acute gastroenteritis cases, particularly when normalized to E. coli (Spearman's ρ = 0.70-0.81) and total coliforms (ρ = 0.70-0.81), respectively. For SARS-CoV-2, non-normalized concentrations showed a correlation of 0.61, decreasing to 0.31 when normalized to PMMoV, suggesting that PMMoV is unsuitable. Turbidity normalization also yielded suboptimal results. This study underscored the importance of selecting suitable normalization parameters tailored to specific pathogens for accurate disease trend monitoring using WBE, demonstrating its utility beyond COVID-19 surveillance.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
3
|
Fernandez-Cassi X, Kohn T. Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-22. [PMID: 38647859 PMCID: PMC11422458 DOI: 10.1007/s12560-024-09594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preamplification pipelines (specific to RNA viruses, DNA viruses or both) for viral genome sequencing using spiked-in Phosphate Buffered Saline and sewage samples containing known concentrations of viruses. We found that compared to the pipeline targeting all genome types, the RNA pipeline performed better in detecting RNA viruses in both spiked and unspiked sewage samples, allowing the detection of various mammalian viruses including members from the Reoviridae, Picornaviridae, Astroviridae and Caliciviridae. However, the DNA-specific pipeline did not improve the detection of mammalian DNA viruses. We also measured viral recovery by quantitative reverse transcription polymerase chain reaction and assessed the impact of genetic background (non-viral genetic material) on viral coverage. Our results indicate that viral recoveries were generally lower in sewage (average of 11.0%) and higher in Phosphate Buffered Saline (average of 23.4%) for most viruses. Additionally, spiked-in viruses showed lower genome coverage in sewage, demonstrating the negative effect of genetic background on sequencing. Finally, correlation analysis revealed a relationship between virus concentration and genome normalized reads per million, indicating that viral metagenomic sequencing can be semiquantitative.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland.
- Departament of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Catalunya, Spain.
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland
| |
Collapse
|
4
|
da Silva CCM, Santos CRDL, Céleri EP, Salles D, Fardin JM, Pussi KF, Gomes DCDO, Ribeiro VDO, Konrad-Moraes LC, Neitzke-Abreu HC, Júnior VL. An Epidemiological Assessment of SARS-CoV-2 in the Sewage System of a Higher Education Institution. Ann Glob Health 2024; 90:50. [PMID: 39139447 PMCID: PMC11319693 DOI: 10.5334/aogh.4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Background: The World Health Organization declared the end of the COVID-19 pandemic in May 2023, three years after the adoption of global emergency measures. Monitoring of SARS-CoV-2 in sewage underscores its importance due to its effectiveness and cost-effectiveness, highlighting the need to prioritize research on water resources and sanitation. Objectives: The aim of this study was to conduct an epidemiological assessment of SARS-CoV-2 in the sewage system of a higher education institution located in Vitória Espírito Santo State, Maruípe campus. Methods: Over a period of 66 days, from February 6 to April 12, 2023, 15 samples were collected. Each sample consisted of 1 L, collected in 1 hour, with 250 mL collected every 15 minutes. The samples were characterized by assessing their appearance, and pH was measured using a Horiba U-50 multiparameter probe. The extracted RNA was subjected to RT-qPCR using the Allplex™ 2019-nCovAssay Seegene kit. Results: The samples exhibited a cloudy appearance with impurities, and the pH ranged from 6.35 to 8.17. Among the evaluated samples, SARS-CoV-2 RNA was detected in two, and, by comparing this with the epidemiological bulletin issued by the State Health Department, an increase in cases in the state was observed during the collection period of these samples. Conclusions: Sewage monitoring proved to be an important tool in this post-pandemic period, serving as an alert and prevention mechanism for the population in relation to new outbreaks. Furthermore, it represents a low-cost mapping strategy and extensive testing of a population, aligning with the studies presented at the beginning of the pandemic. We recommend specific adjustments considering distinct populations.
Collapse
Affiliation(s)
- Carmem Cícera Maria da Silva
- PostGraduate Program in Chemistry, Center for Exact Sciences, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
- Infectious Diseases Nucleous, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Carolina Rangel de Lima Santos
- Postgraduate Program in Health Sciences, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Eliomar Pivante Céleri
- PostGraduate Program in Chemistry, Center for Exact Sciences, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - David Salles
- Infectious Diseases Nucleous, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Julia Miranda Fardin
- Infectious Diseases Nucleous, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| | - Kamily Fagundes Pussi
- Postgraduate Program in Health Sciences, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | | | - Vinicius de Oliveira Ribeiro
- Graduate Program Environmental and Sanitary Engineering. Universidade Estadual do Mato Grosso do Sul (UEMS), Dourados, Mato Grosso do Sul, Brazil
| | - Leila Cristina Konrad-Moraes
- Graduate Program Environmental and Sanitary Engineering. Universidade Estadual do Mato Grosso do Sul (UEMS), Dourados, Mato Grosso do Sul, Brazil
| | - Herintha Coeto Neitzke-Abreu
- Postgraduate Program in Health Sciences, Universidade Federal da Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Valdemar Lacerda Júnior
- PostGraduate Program in Chemistry, Center for Exact Sciences, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, Brazil
| |
Collapse
|
5
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
6
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
7
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
8
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
9
|
Carmona-Vicente N, Pandiscia A, Santiso-Bellón C, Perez-Cataluña A, Rodríguez-Díaz J, Costantini VP, Buesa J, Vinjé J, Sánchez G, Randazzo W. Human intestinal enteroids platform to assess the infectivity of gastroenteritis viruses in wastewater. WATER RESEARCH 2024; 255:121481. [PMID: 38520776 DOI: 10.1016/j.watres.2024.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples.
Collapse
Affiliation(s)
| | - Annamaria Pandiscia
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain; Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Alba Perez-Cataluña
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Veronica P Costantini
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Javier Buesa
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Jan Vinjé
- National Calicivirus Laboratory, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia, Spain.
| |
Collapse
|
10
|
Hotta C, Fujinuma Y, Ogawa T, Akita M, Ogawa T. Surveillance of Wastewater to Monitor the Prevalence of Gastroenteritis Viruses in Chiba Prefecture (2014-2019). J Epidemiol 2024; 34:195-202. [PMID: 37211397 PMCID: PMC10918334 DOI: 10.2188/jea.je20220305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND In Japan, sentinel surveillance is used to monitor the trend of infectious gastroenteritis. Another method of pathogen surveillance, wastewater-based epidemiology, has been used recently because it can help to monitor infectious disease without relying on patient data. Here, we aimed to determine the viral trends reflected in the number of reported patients and number of gastroenteritis virus-positive samples. We focused on gastroenteritis viruses present in wastewater and investigated the usefulness of wastewater surveillance for the surveillance of infectious gastroenteritis. METHODS Real-time polymerase chain reaction was used for viral gene detection in wastewater. The number of reported patients per pediatric sentinel site and number of viral genome copies were compared for correlation potential. The number of gastroenteritis virus-positive samples reported by National Epidemiological Surveillance of Infectious Disease (NESID) and the status of gastroenteritis viruses detected in wastewater were also evaluated. RESULTS Genes of norovirus genotype I, norovirus genotype II, sapovirus, astrovirus, rotavirus group A, and rotavirus group C were detected in wastewater samples. Viruses were detected in wastewater during periods when no gastroenteritis virus-positive samples were reported to NESID. CONCLUSION Norovirus genotype II and other gastroenteritis viruses were detected in wastewater even during periods when no gastroenteritis virus-positive samples were found. Therefore, surveillance using wastewater can complement sentinel surveillance and is an effective tool for the surveillance of infectious gastroenteritis.
Collapse
Affiliation(s)
- Chiemi Hotta
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Yuki Fujinuma
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Takashi Ogawa
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Mamiko Akita
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Tomoko Ogawa
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| |
Collapse
|
11
|
Manirambona E, Khan SH, Siddiq A, Albakri K, Salamah HM, Hassan NAIF, Musa SS, Dhama K. Intriguing insight into unanswered questions about Mpox: exploring health policy implications and considerations. Health Res Policy Syst 2024; 22:37. [PMID: 38520018 PMCID: PMC10960492 DOI: 10.1186/s12961-024-01123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/17/2024] [Indexed: 03/25/2024] Open
Abstract
The 2022 multi-country Monkeypox (Mpox) outbreak has added concerns to scientific research. However, unanswered questions about the disease remain. These unanswered questions lie in different aspects, such as transmission, the affected community, clinical presentations, infection and prevention control and treatment and vaccination. It is imperative to address these issues to stop the spread and transmission of disease. We documented unanswered questions with Mpox and offered suggestions that could help put health policy into practice. One of those questions is why gay, bisexual or other men who have sex with men (gbMSM) are the most affected community, underscoring the importance of prioritizing this community regarding treatment, vaccination and post-exposure prophylaxis. In addition, destigmatizing gbMSM and implementing community-based gbMSM consultation and action alongside ethical surveillance can facilitate other preventive measures such as ring vaccination to curb disease transmission and track vaccine efficacy. Relevant to that, vaccine and drug side effects have implied the questionability of their use and stimulated the importance of health policy development regarding expanded access and off-label use, expressing the need for safe drug and vaccine development manufacturing. The possibility of reverse zoonotic has also been raised, thus indicating the requirement to screen not only humans, but also their related animals to understand the real magnitude of reverse zoonosis and its potential risks. Implementing infection prevention and control measures to stop the virus circulation at the human-animal interface that includes One Health approach is essential.
Collapse
Affiliation(s)
- Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | | | | | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | | | | | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
12
|
Malla B, Shrestha S, Haramoto E. Optimization of the 5-plex digital PCR workflow for simultaneous monitoring of SARS-CoV-2 and other pathogenic viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169746. [PMID: 38159741 DOI: 10.1016/j.scitotenv.2023.169746] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is a valuable tool for monitoring pathogenic viruses in the environment, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). While quantitative polymerase chain reaction (qPCR) is widely used for pathogen surveillance in wastewater, it can be affected by inhibition and is limited to relative quantification. Digital PCR (dPCR) offers potential solutions to these limitations. In this study, a 5-plex dPCR workflow was optimized for the simultaneous detection of SARS-CoV-2, influenza A virus, enteroviruses (EnV), and noroviruses of genogroups I (NoV-GI) and GII (NoV-GII) in wastewater samples. Wastewater samples (n = 36) were collected from a wastewater treatment plant in Japan between August and October 2022. The optimization included the evaluation of singleplex and 5-plex dPCR assays, and two different concentration methods, extraction kits, and dPCR approaches. The performance of singleplex and 5-plex dPCR assays showed comparable linearity and reliability, with the 5-plex assays showing greater efficiency. The polyethylene glycol (PEG) precipitation method showed better performance over the centrifugation method, two-step reverse transcription (RT)-dPCR over the one-step RT-dPCR, and AllPrep PowerViral DNA/RNA Kit showed better performance than the QIAamp Viral RNA Mini Kit. The optimal workflow therefore included PEG precipitation, the AllPrep PowerViral DNA/RNA Kit, and two-step RT-dPCR. This workflow was selected to monitor the presence of SARS-CoV-2 and other pathogenic viruses in wastewater samples in a 5-plex dPCR approach, yielding promising results. SARS-CoV-2 RNA was detected in the majority of samples, with NoV-GI, NoV-GII, and EnV also being detected. The successful optimization and application of the 5-plex dPCR assay for pathogen surveillance in wastewater offers significant benefits, including enhanced community health assessment and more effective responses to public health threats.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
13
|
Cuevas-Ferrando E, Sánchez G, Pérez-Cataluña A. SARS-CoV-2 Detection and Genome Sequencing in Urban Wastewaters. Methods Mol Biol 2024; 2732:119-131. [PMID: 38060121 DOI: 10.1007/978-1-0716-3515-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Due to the excretion of SARS-CoV-2 in faeces, the use of wastewater-based epidemiology (WBE) is a useful tool for virus surveillance in large populations. The analysis of this virus includes a concentration step prior to virus detection by RT-qPCR. In addition, the use of massive sequencing allows the detection of specific mutations of clinical importance, as well as the detection of the introduction of new lineages in a specific population. In this chapter, we describe the analysis of SARS-CoV-2 in urban wastewater by the concentration of the samples by precipitation with aluminum chloride, the detection, and quantification of SARS-CoV-2 RNA by RT-qPCR and the genomic sequencing using two different sequencing platforms.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Paterna, Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Paterna, Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Valencia, Paterna, Spain.
| |
Collapse
|
14
|
Jespersen ML, Munk P, Johansen J, Kaas RS, Webel H, Vigre H, Nielsen HB, Rasmussen S, Aarestrup FM. Global within-species phylogenetics of sewage microbes suggest that local adaptation shapes geographical bacterial clustering. Commun Biol 2023; 6:700. [PMID: 37422584 PMCID: PMC10329687 DOI: 10.1038/s42003-023-05083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Most investigations of geographical within-species differences are limited to focusing on a single species. Here, we investigate global differences for multiple bacterial species using a dataset of 757 metagenomics sewage samples from 101 countries worldwide. The within-species variations were determined by performing genome reconstructions, and the analyses were expanded by gene focused approaches. Applying these methods, we recovered 3353 near complete (NC) metagenome assembled genomes (MAGs) encompassing 1439 different MAG species and found that within-species genomic variation was in 36% of the investigated species (12/33) coherent with regional separation. Additionally, we found that variation of organelle genes correlated less with geography compared to metabolic and membrane genes, suggesting that the global differences of these species are caused by regional environmental selection rather than dissemination limitations. From the combination of the large and globally distributed dataset and in-depth analysis, we present a wide investigation of global within-species phylogeny of sewage bacteria. The global differences found here emphasize the need for worldwide data sets when making global conclusions.
Collapse
Affiliation(s)
- Marie Louise Jespersen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Joachim Johansen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical-Microbiomics A/S, Copenhagen, Denmark
| | - Rolf Sommer Kaas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Henry Webel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Vigre
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
15
|
Girón-Guzmán I, Díaz-Reolid A, Cuevas-Ferrando E, Falcó I, Cano-Jiménez P, Comas I, Pérez-Cataluña A, Sánchez G. Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160914. [PMID: 36526211 PMCID: PMC9744676 DOI: 10.1016/j.scitotenv.2022.160914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 05/05/2023]
Abstract
During the current COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a reliable strategy both as a surveillance method and a way to provide an overview of the SARS-CoV-2 variants circulating among the population. Our objective was to compare two different concentration methods, a well-established aluminum-based procedure (AP) and the commercially available Maxwell® RSC Enviro Wastewater TNA Kit (TNA) for human enteric virus, viral indicators and SARS-CoV-2 surveillance. Additionally, both concentration methods were analyzed for their impact on viral infectivity, and nucleic acids obtained from each method were also evaluated by massive sequencing for SARS-CoV-2. The percentage of SARS-CoV-2 positive samples using the AP method accounted to 100 %, 83.3 %, and 33.3 % depending on the target region while 100 % positivity for these same three target regions was reported using the TNA procedure. The concentrations of norovirus GI, norovirus GII and HEV using the TNA method were significantly greater than for the AP method while no differences were reported for rotavirus, astrovirus, crAssphage and PMMoV. Furthermore, TNA kit in combination with the Artic v4 primer scheme yields the best SARS-CoV-2 sequencing results. Regarding impact on infectivity, the concentration method used by the TNA kit showed near-complete lysis of viruses. Our results suggest that although the performance of the TNA kit was higher than that of the aluminum procedure, both methods are suitable for the analysis of enveloped and non-enveloped viruses in wastewater by molecular methods.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Pablo Cano-Jiménez
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
16
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
17
|
Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159166. [PMID: 36202364 PMCID: PMC9534267 DOI: 10.1016/j.scitotenv.2022.159166] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 04/13/2023]
Abstract
Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, OR, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Advanced Molecular Laboratory, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Biology, Morgan State University, Baltimore, MD, USA; Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria; Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Srijan Aggarwal
- Department of Civil, Geological and Environmental Engineering, College of Engineering and Mines, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775, USA
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| |
Collapse
|
18
|
Hegazy N, Cowan A, D'Aoust PM, Mercier É, Towhid ST, Jia JJ, Wan S, Zhang Z, Kabir MP, Fang W, Graber TE, MacKenzie AE, Guilherme S, Delatolla R. Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158458. [PMID: 36075428 PMCID: PMC9444583 DOI: 10.1016/j.scitotenv.2022.158458] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Wastewater surveillance (WWS) of SARS-CoV-2 was proven to be a reliable and complementary tool for population-wide monitoring of COVID-19 disease incidence but was not as rigorously explored as an indicator for disease burden throughout the pandemic. Prior to global mass immunization campaigns and during the spread of the wildtype COVID-19 and the Alpha variant of concern (VOC), viral measurement of SARS-CoV-2 in wastewater was a leading indicator for both COVID-19 incidence and disease burden in communities. As the two-dose vaccination rates escalated during the spread of the Delta VOC in Jul. 2021 through Dec. 2021, relations weakened between wastewater signal and community COVID-19 disease incidence and maintained a strong relationship with clinical metrics indicative of disease burden (new hospital admissions, ICU admissions, and deaths). Further, with the onset of the vaccine-resistant Omicron BA.1 VOC in Dec. 2021 through Mar. 2022, wastewater again became a strong indicator of both disease incidence and burden during a period of limited natural immunization (no recent infection), vaccine escape, and waned vaccine effectiveness. Lastly, with the populations regaining enhanced natural and vaccination immunization shortly prior to the onset of the Omicron BA.2 VOC in mid-Mar 2022, wastewater is shown to be a strong indicator for both disease incidence and burden. Hospitalization-to-wastewater ratio is further shown to be a good indicator of VOC virulence when widespread clinical testing is limited. In the future, WWS is expected to show moderate indication of incidence and strong indication of disease burden in the community during future potential seasonal vaccination campaigns.
Collapse
Affiliation(s)
- Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stéphanie Guilherme
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
19
|
Fang Z, Roberts AMI, Mayer CD, Frantsuzova A, Potts JM, Cameron GJ, Singleton PTR, Currie I. Wastewater monitoring of COVID-19: a perspective from Scotland. JOURNAL OF WATER AND HEALTH 2022; 20:1688-1700. [PMID: 36573673 DOI: 10.2166/wh.2022.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scotland introduced wastewater monitoring for COVID-19 early in the pandemic. From May 2020, samples have been taken and analysed using quantitative polymerase chain reaction (qPCR). The programme was expanded to over 100 sites accounting for around 80% of the population. Data are presented publicly via a dashboard and regular reports are produced for both the public and health professionals. Wastewater-based epidemiology (WBE) offers opportunities and challenges. It offers an objective means of measuring COVID-19 prevalence and can be more practical or timely than other methods of mass testing. However, it also has substantial variability impacted by multiple environmental factors. Methods for data collection and analysis have developed significantly through the pandemic, reflecting the evolving situation and policy direction. We discuss the Scottish experience of wastewater monitoring for COVID-19, with a focus on the analysis of data. This includes our approach to flow normalisation, our experience of variability in measurements and anomalous values, and the visualisation and presentation of data to stakeholders. Summarising the Scottish methodology as of March 2022, we also discuss how wastewater data were used for informing policy and public health actions. We draw lessons from our experience and consider future directions for WBE in Scotland.
Collapse
Affiliation(s)
- Zhou Fang
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK E-mail:
| | - Adrian M I Roberts
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK E-mail:
| | - Claus-Dieter Mayer
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK E-mail:
| | - Anastasia Frantsuzova
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK E-mail:
| | - Jackie M Potts
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK E-mail:
| | - Graeme J Cameron
- Scottish Environment Protection Agency, Strathallan House, Castle Business Park, Stirling FK9 4TZ, UK
| | - Peter T R Singleton
- Scottish Environment Protection Agency, Strathallan House, Castle Business Park, Stirling FK9 4TZ, UK
| | - Iona Currie
- Scottish Government, Rural and Environment Science and Analytical Services, 5 Atlantic Quay, Atlantic Quay, 150 Broomielaw, Glasgow G28LU, UK
| |
Collapse
|
20
|
Martins RM, Carvalho T, Bittar C, Quevedo DM, Miceli RN, Nogueira ML, Ferreira HL, Costa PI, Araújo JP, Spilki FR, Rahal P, Calmon MF. Long-Term Wastewater Surveillance for SARS-CoV-2: One-Year Study in Brazil. Viruses 2022; 14:v14112333. [PMID: 36366431 PMCID: PMC9692902 DOI: 10.3390/v14112333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 02/01/2023] Open
Abstract
Wastewater-based epidemiology (WBE) is a tool involving the analysis of wastewater for chemicals and pathogens at the community level. WBE has been shown to be an effective surveillance system for SARS-CoV-2, providing an early-warning-detection system for disease prevalence in the community via the detection of genetic materials in the wastewater. In numerous nation-states, studies have indicated the presence of SARS-CoV-2 in wastewater. Herein, we report the primary time-course monitoring of SARS-CoV-2 RNA in wastewater samples in São José do Rio Preto-SP/Brazil in order to explain the dynamics of the presence of SARS-CoV-2 RNA during one year of the SARS-CoV-2 pandemic and analyze possible relationships with other environmental parameters. We performed RNA quantification of SARS-CoV-2 by RT-qPCR using N1 and N2 targets. The proportion of positive samples for every target resulted in 100% and 96.6% for N1 and N2, respectively. A mean lag of -5 days is observed between the wastewater signal and the new SARS-CoV-2-positive cases reported. A correlation was found between the air and wastewater temperatures and therefore between the SARS-CoV-2 viral titers for N1 and N2 targets. We also observed a correlation between SARS-CoV-2 viral titers and media wastewater flow for the N1 target. In addition, we observed higher viral genome copies within the wastewater samples collected on non-rainy days for the N1 target. Thus, we propose that, based on our results, monitoring raw wastewater may be a broadly applicable strategy that might contribute to resolving the pressing problem of insufficient diagnostic testing; it may represent an inexpensive and early-warning method for future COVID-19 outbreaks, mainly in lower- and middle-income countries.
Collapse
Affiliation(s)
- Renan Moura Martins
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Tamara Carvalho
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Cintia Bittar
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Daniela Muller Quevedo
- Institute of Exact and Technological Sciences (ICET), University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Rafael Nava Miceli
- SeMAE-Autonomous Municipal Water and Sewage Service, São José do Rio Preto 15048-000, SP, Brazil
| | - Mauricio Lacerda Nogueira
- Virology Research Laboratory (LPV), Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Helena Lage Ferreira
- Applied Preventive Veterinary Medicine Laboratory, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil
| | - Paulo Inácio Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-360, SP, Brazil
| | - João Pessoa Araújo
- Biotechnology Institute, São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil
| | - Fernando Rosado Spilki
- Molecular Microbiology Laboratory, University Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marilia Freitas Calmon
- Laboratory of Genomic Studies, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
- Correspondence:
| |
Collapse
|
21
|
Replication of Human Norovirus in Mice after Antibiotic-Mediated Intestinal Bacteria Depletion. Int J Mol Sci 2022; 23:ijms231810643. [PMID: 36142552 PMCID: PMC9505278 DOI: 10.3390/ijms231810643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Human noroviruses (HuNoVs) are the main cause of acute gastroenteritis causing more than 50,000 deaths per year. Recent evidence shows that the gut microbiota plays a key role in enteric virus infectivity. In this context, we tested whether microbiota depletion or microbiota replacement with that of human individuals susceptible to HuNoVs infection could favor viral replication in mice. Four groups of mice (n = 5) were used, including a control group and three groups that were treated with antibiotics to eliminate the autochthonous intestinal microbiota. Two of the antibiotic-treated groups received fecal microbiota transplantation from a pool of feces from infants (age 1–3 months) or an auto-transplantation with mouse feces that obtained prior antibiotic treatment. The inoculation of the different mouse groups with a HuNoVs strain (GII.4 Sydney [P16] genotype) showed that the virus replicated more efficiently in animals only treated with antibiotics but not subject to microbiota transplantation. Viral replication in animals receiving fecal microbiota from newborn infants was intermediate, whereas virus excretion in feces from auto-transplanted mice was as low as in the control mice. The analysis of the fecal microbiota by 16S rDNA NGS showed deep variations in the composition in the different mice groups. Furthermore, differences were observed in the gene expression of relevant immunological mediators, such as IL4, CXCL15, IL13, TNFα and TLR2, at the small intestine. Our results suggest that microbiota depletion eliminates bacteria that restrict HuNoVs infectivity and that the mechanism(s) could involve immune mediators.
Collapse
|
22
|
Navarro-Lleó N, Santiso-Bellón C, Vila-Vicent S, Carmona-Vicente N, Gozalbo-Rovira R, Cárcamo-Calvo R, Rodríguez-Díaz J, Buesa J. Recombinant Noroviruses Circulating in Spain from 2016 to 2020 and Proposal of Two Novel Genotypes within Genogroup I. Microbiol Spectr 2022; 10:e0250521. [PMID: 35862999 PMCID: PMC9430863 DOI: 10.1128/spectrum.02505-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Noroviruses are the leading cause of sporadic cases and outbreaks of viral gastroenteritis. For more than 20 years, most norovirus infections have been caused by the pandemic genotype GII.4, yet recent studies have reported the emergence of recombinant strains in many countries. In the present study, 4,950 stool samples collected between January 2016 and April 2020 in Valencia, Spain, from patients with acute gastroenteritis were analyzed to investigate the etiological agent. Norovirus was the most frequently detected enteric virus, with a positivity rate of 9.5% (471/4,950). Among 224 norovirus strains characterized, 175 belonged to genogroup II (GII) and 49 belonged to GI. Using dual genotyping based on sequencing of the open reading frame 1 (ORF1)/ORF2 junction region, we detected 25 different capsid-polymerase-type associations. The most common GII capsid genotype was GII.4 Sydney 2012, followed by GII.2, GII.3, GII.6, and GII.17. A high prevalence of recombinant strains (90.4%) was observed among GII infections between 2018 and 2020. GII.4 Sydney[P16] was the predominant genotype from 2019 to 2020. In addition, GII.P16 polymerase was found harbored within six different capsid genes. GI.4 and GI.3 were the predominant genotypes in genogroup I, in which recombinant strains were also found, such as GI.3[P10], GI.3[P13], and GI.5[P4]. Interestingly, applying the criterion of 2 times the standard deviation, we found that 12 sequences initially classified as GI.3 may represent two new tentative genotypes in genogroup I, designated GI.10 and GI.11. This study shows the extensive diversity of recombinant noroviruses circulating in Spain and highlights the role of recombination events in the spread of noroviruses. IMPORTANCE Human noroviruses are the most common cause of viral diarrhea. There are no approved vaccines to prevent their infections yet, which would be very useful to protect infants, small children, and the elderly in residential institutions. These viruses are extremely contagious and can be transmitted by contaminated food and water as well as directly from person to person. Molecular surveillance and epidemiology of norovirus infections allow the identification of the most common viral strains in different geographical areas over time. Noroviruses show wide genetic variability due to a high rate of mutations but also due to genomic recombinations, as we demonstrate in this study. We have detected 25 different viral capsid-polymerase gene associations among 224 norovirus strains characterized in Spain between January 2016 and April 2020, including two tentative new capsid genotypes in genogroup I.
Collapse
Affiliation(s)
- Noemi Navarro-Lleó
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Javier Buesa
- Department of Microbiology, School of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
23
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
24
|
Qin YF, Gong QL, Zhang M, Sun ZY, Wang W, Wei XY, Chen Y, Zhang Y, Zhao Q, Jiang J. Prevalence of bovine rotavirus among Bovidae in China during 1984-2021: A systematic review and meta-analysis. Microb Pathog 2022; 169:105661. [PMID: 35817280 DOI: 10.1016/j.micpath.2022.105661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Bovine rotavirus (BRV) is a potential zoonotic intestinal pathogen that brings a serious threat to calf health, and has resulted in huge economic losses to China's breeding industry. Here, a systematic review and meta-analysis was conducted to estimate the prevalence of BRV among Bovidae from 1984 to 2021 in China. A total of 64 publications on BRV investigation in China were screened from the databases Chinese National Knowledge Infrastructure (CNKI), Wan Fang Database, Technology Periodical Database (VIP), PubMed, and ScienceDirect. The random-effect model was used to calculate the pooled prevalence of BRV, and the analyzed data were derived from 25 provinces in China. The estimated pooled prevalence of BRV in China was 35.7% (8176/17,292). In addition, the prevalence of BRV in Southwestern China (77.1%; 2924/3600) was significantly higher than that in other regions of China. Regarding geographic and climatic factors, the prevalence of BRV in the subgroup of latitude 30-35° (76.8%; 3303/4659) was significantly higher than that in the subgroup of latitude less than 30° (37.0%; 485/1275) or more than 35° (32.6%; 1703/5722), while the prevalence of BRV in the subgroup of longitude 100-105° (75.4%; 2513/3849) was significantly higher than that in the subgroup of longitude less than 100° (32.6%; 619/2255) or more than 105° (48.9%; 2359/5552). Rainfall was positively correlated with the prevalence of BRV, whereas temperature was negatively correlated with the positive rate of BRV (P < 0.05). Our data showed that the prevalence of BRV was strongly correlated with geographical and climatic conditions. Thus, we recommend that the corresponding prevention and control programs should be formulated according to different geographical conditions. The strengthening of BRV surveillance in areas with high altitude, low temperature, and heavy rainfall may contribute to the decrease of the incidence of BRV infection among Bovidae herds in China.
Collapse
Affiliation(s)
- Yi-Feng Qin
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zheng-Yao Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Xin-Yu Wei
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, China
| | - Yuan Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China.
| | - Jing Jiang
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China.
| |
Collapse
|
25
|
Designing for COVID-2x: Reflecting on Future-Proofing Human Habitation for the Inevitable Next Pandemic. BUILDINGS 2022. [DOI: 10.3390/buildings12070976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic of 2020–2022 has revealed the vulnerability of modern society to a highly contagious airborne virus. Many spaces in the urban and built environment designed during the late twentieth and early twenty-first century are ill-suited to maintain the level of social distancing required to reduce the probability of virus transmission. Enclosed spaces—in particular, communal circulation spaces such as corridors, elevators and lobbies—have proven loci of transmission, together with circulating reticulated air and lack of proper ventilation. While urban planning needs to incorporate the lessons learnt during COVID-19 in order to future-proof our communities through the provision of well-designed greenspaces, the main burden will fall on architects, who will play an instrumental role in designing buildings that are fit-for purpose. This conceptual paper reviews the status quo and discusses a number of strategies to future-proof human habitation for the inevitable next pandemic.
Collapse
|
26
|
Guo Y, Li J, O'Brien J, Sivakumar M, Jiang G. Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. WATER RESEARCH 2022; 219:118610. [PMID: 35598472 DOI: 10.1016/j.watres.2022.118610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The amount of norovirus RNA (Ribonucleic Acid) in raw wastewater, collected from a wastewater treatment plant (WWTP), can provide an indication of disease prevalence within the sampled catchment. However, an accurate back-estimation might be impeded by the uncertainties from in-sewer/in-sample degradation of viral RNA, variable shedding magnitude, and difficulties in measurement within raw wastewater. The current study reviewed the published literature regarding the factors of norovirus shedding, viral RNA decay in wastewater, and the occurrence of norovirus RNA in raw wastewater based on molecular detection. Sensitivity analysis for WBE back-estimation was conducted using the reported data of the factors mentioned above considering different viral loads in wastewater samples. It was found that the back-estimation is more sensitive to analytical detection uncertainty than shedding variability for norovirus. Although seasonal temperature change can lead to variation of decay rates and may influence the sensitivity of this pathogen-specific parameter, decay rates of norovirus RNA contribute negligibly to the variance in estimating disease prevalence, based on the available data from decay experiments in bulk wastewater under different temperatures. However, the effects of in-sewer transportation on viral RNA decay and retardation by sewer biofilms on pipe surfaces are largely unknown. Given the highest uncertainty from analytical measurement by molecular methods and complexity of in-sewer processes that norovirus experienced during the transportation to WWTP, future investigations are encouraged to improve the accuracy of viral RNA detection in wastewater and delineate viral retardation/interactions with wastewater biofilms in real sewers.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
27
|
Cuevas-Ferrando E, Pérez-Cataluña A, Falcó I, Randazzo W, Sánchez G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front Microbiol 2022; 13:836193. [PMID: 35464930 PMCID: PMC9026171 DOI: 10.3389/fmicb.2022.836193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023] Open
Abstract
Wastewater discharge to the environment or its reuse after sanitization poses a concern for public health given the risk of transmission of human viral diseases. However, estimating the viral infectivity along the wastewater cycle presents technical challenges and still remains underexplored. Recently, human-associated crAssphage has been investigated to serve as viral pathogen indicator to monitor fecal impacted water bodies, even though its assessment as biomarker for infectious enteric viruses has not been explored yet. To this end, the occurrence of potentially infectious norovirus genogroup I (GI), norovirus GII, hepatitis A virus (HAV), rotavirus A (RV), and human astrovirus (HAstV) along with crAssphage was investigated in influent and effluent water sampled in four wastewater treatment plants (WWTPs) over 1 year by a PMAxx-based capsid integrity RT-qPCR assay. Moreover, influent and effluent samples of a selected WWTP were additionally assayed by an in situ capture RT-qPCR assay (ISC-RT-qPCR) as estimate for viral infectivity in alternative to PMAxx-RT-qPCR. Overall, our results showed lower viral occurrence and concentration assessed by ISC-RT-qPCR than PMAxx-RT-qPCR. Occurrence of potentially infectious enteric virus was estimated by PMAxx-RT-qPCR as 88–94% in influent and 46–67% in effluent wastewaters with mean titers ranging from 4.77 to 5.89, and from 3.86 to 4.97 log10 GC/L, with the exception of HAV that was sporadically detected. All samples tested positive for crAssphage at concentration ranging from 7.41 to 9.99 log10 GC/L in influent and from 4.56 to 6.96 log10 GC/L in effluent wastewater, showing higher mean concentration than targeted enteric viruses. Data obtained by PMAxx-RT-qPCR showed that crAssphage strongly correlated with norovirus GII (ρ = 0.67, p < 0.05) and weakly with HAstV and RV (ρ = 0.25–0.30, p < 0.05) in influent samples. In effluent wastewater, weak (ρ = 0.27–0.38, p < 0.05) to moderate (ρ = 0.47–0.48, p < 0.05) correlations between crAssphage and targeted viruses were observed. Overall, these results corroborate crAssphage as an indicator for fecal contamination in wastewater but a poor marker for either viral occurrence and viral integrity/infectivity. Despite the viral load reductions detected in effluent compared to influent wastewaters, the estimates of viral infectivity based on viability molecular methods might pose a concern for (re)-using of treated water.
Collapse
|
28
|
Huang Y, Zhou N, Zhang S, Yi Y, Han Y, Liu M, Han Y, Shi N, Yang L, Wang Q, Cui T, Jin H. Norovirus detection in wastewater and its correlation with human gastroenteritis: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22829-22842. [PMID: 35048346 PMCID: PMC8769679 DOI: 10.1007/s11356-021-18202-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Norovirus (NoV) is a major cause of sporadic cases and outbreaks of acute gastroenteritis (AGE), thereby imposing threat to health globally. It is unclear how quantitation of wastewater NoV reflects the incidence of human AGE infections; therefore, we conducted this systematic review and meta-analysis of published NoV wastewater surveillance studies. A literature search was performed, and all studies on NoV wastewater surveillance were identified. Quantitative results were evaluated. The results showed that the overall detection rate of NoV in wastewater was 82.10% (95% confidence interval [CI]: 74.22-89.92%); NoV concentration was statistically significant in terms of season (P < 0.001), with higher concentration in spring and winter. There were positive correlations between NoV GII concentration in wastewater and GII AGE cases (rs = 0.51, 95% CI: 0.18-0.74, I2 = 0%), total AGE cases (rs = 0.40, 95% CI: 0.15-0.61, I2 = 23%) and NoV outbreaks (rs = 0.47, 95% CI: 0.30-0.62, I2 = 0%). Results of cross-correlation analysis of partial data indicated that variations in GII concentration were consistent with or ahead of those in the number of AGE cases. The diversity of NoV genotypes in wastewater was elucidated, and the dominant strains in wastewater showed a consistent temporal distribution with those responsible for human AGE. Our study demonstrated the potential association of NoV detected in wastewater with AGE infections, and further studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Yue Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Nan Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shihan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Youqin Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Han
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Minqi Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yue Han
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Naiyang Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Liuqing Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qiang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tingting Cui
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, 210009, China.
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Omatola CA, Olaniran AO. Epidemiological significance of the occurrence and persistence of rotaviruses in water and sewage: a critical review and proposal for routine microbiological monitoring. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:380-399. [PMID: 35174845 DOI: 10.1039/d1em00435b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Globally, waterborne gastroenteritis attributable to rotaviruses is on the increase due to the rapid increase in population growth, poor socioeconomic conditions, and drastic changes in climatic conditions. The burden of diarrhea is quite alarming in developing nations where the majority of the populations still rely on untreated surface water that is usually polluted for their immediate water needs. Humans and animals of all ages are affected by rotaviruses. In humans, the preponderance of cases occurs in children under 5 years. Global efforts in advancing water/wastewater treatment technologies have not yet realized the objective of complete viral removal from wastewater. Most times, surface waters are impacted heavily by inadequately treated wastewater run-offs thereby exposing people or animals to preventable health risks. The relative stability of rotaviruses in aquatic matrices during wastewater treatment, poor correlation of bacteriological indicators with the presence of rotaviruses, and their infectiousness at a low dose informed the proposal for inclusion in the routine microbiological water screening panel. Environmental monitoring data have been shown to provide early warnings that can complement clinical data used to monitor the impact of current rotavirus vaccination in a community. This review was therefore undertaken to critically appraise rotavirus excretion and emission pathways, and the existence, viability and persistence in the receiving aquatic milieu. The efficiency of the current wastewater treatment modality for rotavirus removal, correlation of the current bacteriological water quality assessment strategy, public health risks and current laboratory methods for an epidemiological study were also discussed.
Collapse
Affiliation(s)
- Cornelius A Omatola
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Republic of South Africa.
| |
Collapse
|
30
|
Landstrom M, Braun E, Larson E, Miller M, Holm GH. Efficacy of SARS-CoV-2 wastewater surveillance for detection of COVID-19 at a residential private college. FEMS MICROBES 2022; 3:xtac008. [PMID: 37332494 PMCID: PMC10117736 DOI: 10.1093/femsmc/xtac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 09/18/2024] Open
Abstract
Many colleges and universities utilized wastewater surveillance testing for SARS-CoV-2 RNA as a tool to help monitor and mitigate the COVID-19 pandemic on campuses across the USA during the 2020-2021 academic year. We sought to assess the efficacy of one such program by analyzing data on relative wastewater RNA levels from residential buildings in relation to SARS-CoV-2 cases identified through individual surveillance testing, conducted largely independent of wastewater results. Almost 80% of the cases on campus were associated with positive wastewater tests, resulting in an overall positive predictive value of 79% (Chi square 48.1, Df = 1, P < 0.001). However, half of the positive wastewater samples occurred in the two weeks following the return of a student to the residence hall following the 10-day isolation period, and therefore were not useful in predicting new infections. When these samples were excluded, the positive predictive value of a positive wastewater sample was 54%. Overall, we conclude that the continued shedding of viral RNA by patients past the time of potential transmission confounds the identification of new cases using wastewater surveillance, and decreases its effectiveness in managing SARS-CoV-2 infections on a residential college campus.
Collapse
Affiliation(s)
- Michelle Landstrom
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | - Evan Braun
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| | - Ellen Larson
- Student Health Services, Colgate University, 13 Oak Dr., Hamilton, NY 13346, USA
| | - Merrill Miller
- Student Health Services, Colgate University, 13 Oak Dr., Hamilton, NY 13346, USA
| | - Geoffrey H Holm
- Department of Biology , Colgate University, 13 Oak Dr. Hamilton, NY 13346, USA
| |
Collapse
|
31
|
Epidemiological and Genetic Characterization of Norovirus Outbreaks That Occurred in Catalonia, Spain, 2017–2019. Viruses 2022; 14:v14030488. [PMID: 35336893 PMCID: PMC8955687 DOI: 10.3390/v14030488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Molecular characterization of human norovirus (HuNoV) genotypes enhances the understanding of viral features and illustrates distinctive evolutionary patterns. The aim of our study was to describe the prevalence of the genetic diversity and the epidemiology of the genotypes involved in HuNoV outbreaks in Catalonia (Spain) between 2017 and 2019. A total of 100 HuNoV outbreaks were notified with the predominance of GII (70%), followed by GI (27%) and mixed GI/GII (3%). Seasonality was observed for GII outbreaks only. The most prevalent genotypes identified were GII.4[P31] Sydney 2012, GII.4[P16] Sydney 2012 and GII.2[P16]. As compared to person-to-person (P/P) transmitted outbreaks, foodborne outbreaks showed significantly higher attack rates and lower duration. The average attack rate was higher in youth hostel/campgrounds compared to nursing homes. Only genotypes GI.4[P4], GII.2[P16], GII.4[P16], GII.4[P31] and GII.17[P17] were consistently detected every year, and only abundance of GII.2[P16] showed a negative trend over time. GII.4 Sydney 2012 outbreaks were significantly associated to nursing homes, while GII.2[P16] and GI.3[P3] were most frequently identified in youth hostel/campgrounds. The average attack rate was significantly higher when comparing GII.2[P16] vs. GI.4[P4], GII.2[P16] vs. GII.4[P31] Sydney 2012, and GII.6[P7] vs. GII.4[P31] Sydney 2012. No correlations were found between genotype and outbreak duration or age of affected individuals.
Collapse
|
32
|
Yaniv K, Shagan M, Lewis YE, Kramarsky-Winter E, Weil M, Indenbaum V, Elul M, Erster O, Brown AS, Mendelson E, Mannasse B, Shirazi R, Lakkakula S, Miron O, Rinott E, Baibich RG, Bigler I, Malul M, Rishti R, Brenner A, Friedler E, Gilboa Y, Sabach S, Alfiya Y, Cheruti U, Nadav Davidovich, Moran-Gilad J, Berchenko Y, Bar-Or I, Kushmaro A. City-level SARS-CoV-2 sewage surveillance. CHEMOSPHERE 2021; 283:131194. [PMID: 34467943 PMCID: PMC8217074 DOI: 10.1016/j.chemosphere.2021.131194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic created a global crisis impacting not only healthcare systems, but also economics and society. Therefore, it is important to find novel methods for monitoring disease activity. Recent data have indicated that fecal shedding of SARS-CoV-2 is common, and that viral RNA can be detected in wastewater. This suggests that wastewater monitoring is a potentially efficient tool for both epidemiological surveillance, and early warning for SARS-CoV-2 circulation at the population level. In this study we sampled an urban wastewater infrastructure in the city of Ashkelon (̴ 150,000 population), Israel, during the end of the first COVID-19 wave in May 2020 when the number of infections seemed to be waning. We were able to show varying presence of SARS-CoV-2 RNA in wastewater from several locations in the city during two sampling periods, before the resurgence was clinically apparent. This was expressed with a new index, Normalized Viral Load (NVL) which can be used in different area scales to define levels of virus activity such as red (high) or green (no), and to follow morbidity in the population at the tested area. The rise in viral load between the two sampling periods (one week apart) indicated an increase in morbidity that was evident two weeks to a month later in the population. Thus, this methodology may provide an early indication for SARS-CoV-2 infection outbreak in a population before an outbreak is clinically apparent.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | | | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Merav Weil
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | | | - Michal Elul
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Oran Erster
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Alin Sela Brown
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Ella Mendelson
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel; School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Batya Mannasse
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Rachel Shirazi
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Satish Lakkakula
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel
| | - Oren Miron
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ehud Rinott
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Iris Bigler
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Matan Malul
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Rotem Rishti
- KANDO, Environment Services Ltd, Tsor St 8, Kokhav Ya'ir Tzur Yigal, Israel
| | - Asher Brenner
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eran Friedler
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Yael Gilboa
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Sara Sabach
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Yuval Alfiya
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Uta Cheruti
- Faculty of Civ. and Env. Eng., Technion-Israel Inst. of Technology, Haifa, 32000, Israel
| | - Nadav Davidovich
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jacob Moran-Gilad
- Department of Health Systems Management, School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakir Berchenko
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Itay Bar-Or
- Central Virology Lab, Ministry of Health, Sheba Medical Center, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, BeerSheva 8410501, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.
| |
Collapse
|
33
|
Preparing for COVID-2x: Urban Planning Needs to Regard Urological Wastewater as an Invaluable Communal Public Health Asset and Not as a Burden. URBAN SCIENCE 2021. [DOI: 10.3390/urbansci5040075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prior to the COVID-19 pandemic, the analysis of urological wastewater had been a matter of academic curiosity and community-wide big-picture studies looking at drug use or the presence of select viruses such as Hepatitis. The COVID-19 pandemic saw systematic testing of urological wastewater emerge as a significant early detection tool for the presence of SARS-CoV-2 in a community. Even though the pandemic still rages in all continents, it is time to consider the post-pandemic world. This paper posits that urban planners should treat urological wastewater as a communal public health asset and that future sewer design should allow for stratified multi-order sampling.
Collapse
|
34
|
Ekundayo TC. Prevalence of emerging torque teno virus (TTV) in drinking water, natural waters and wastewater networks (DWNWWS): A systematic review and meta-analysis of the viral pollution marker of faecal and anthropocentric contaminations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145436. [PMID: 33736166 DOI: 10.1016/j.scitotenv.2021.145436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The emerging torque teno virus (TTV) has been identified as a biohazard marker of anthropocentric pollution and contamination in drinking water, natural water and wastewater systems (DWNWWS). Therefore, this study aimed at assessing prevalence of TTV in DWNWWS. The study systematically identified and meta-analyzed published studies on TTV prevalence in DWNWWS hosted in Dimensions, Google Scholar, PubMed, Web of Science, and Scopus databases using a random-effects model and mixed-effects meta-regression model for sensitivity analysis. Furthermore, the meta-analysis was stratified to estimate water type-specific TTV prevalence. The study found a total of 58 articles, of which 13 articles subdivided into 31 studies with 374 TTV positive cases and 862 total sample sizes were systematically reviewed and meta-analyzed. The pooled prevalence of TTV in DWNWWS was 37.18% (95%CI: 23.76-55.55%). Prevalence of TTV was significantly different across water types and it was 56.67% (95%CI: 36.94-75.46%) in wastewater, 26.72% (95%CI: 6.87-52.56%) in river water, and 17.17% (95%CI: 0.54-45.39%) in drinking water. TTV incidence in seawater and groundwater was 0% and 25.0% respectively. Funnel plots constructed and associated statistics of rank correlation test and Egger's regression test in this study, show lack of publication bias in the pooled prevalence of TTV in DWNWWS. Although, sample type (QM(df = 1) = 6.9656, p = 0.0083) and concentration methods (QM(df = 1) = 3.8055, p = 0.0511) significantly moderated and accounted for 15.39% and 6.00% of heterogeneity in the prevalence of TTV in DWNWWS respectively. In conclusion, research focus/monitoring activities on TTV is generally inadequate and potential risk of TTV in DWNWWS is underappreciated in most nations; the analyzed studies were from 7 countries (USA, Japan, Italy, Iran, Germany, Egypt, and Brazil). Finally, inefficient concentration method severely influences the prevalence of TTV in DWNWWS and could give rise to underestimation of TTV and mar TTV-based source-tracking of anthropogenic pollutions.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria; Department of Biochemistry and Microbiology, University of Fort Hare, South Africa.
| |
Collapse
|
35
|
Cárcamo-Calvo R, Muñoz C, Buesa J, Rodríguez-Díaz J, Gozalbo-Rovira R. The Rotavirus Vaccine Landscape, an Update. Pathogens 2021; 10:520. [PMID: 33925924 PMCID: PMC8145439 DOI: 10.3390/pathogens10050520] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Rotavirus is the leading cause of severe acute childhood gastroenteritis, responsible for more than 128,500 deaths per year, mainly in low-income countries. Although the mortality rate has dropped significantly since the introduction of the first vaccines around 2006, an estimated 83,158 deaths are still preventable. The two main vaccines currently deployed, Rotarix and RotaTeq, both live oral vaccines, have been shown to be less effective in developing countries. In addition, they have been associated with a slight risk of intussusception, and the need for cold chain maintenance limits the accessibility of these vaccines to certain areas, leaving 65% of children worldwide unvaccinated and therefore unprotected. Against this backdrop, here we review the main vaccines under development and the state of the art on potential alternatives.
Collapse
Affiliation(s)
- Roberto Cárcamo-Calvo
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
| | - Carlos Muñoz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Roberto Gozalbo-Rovira
- Department of Microbiology, School of Medicine, University of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; (R.C.-C.); (C.M.); (J.B.)
- Instituto de Investigación INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| |
Collapse
|
36
|
Hasan SW, Ibrahim Y, Daou M, Kannout H, Jan N, Lopes A, Alsafar H, Yousef AF. Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142929. [PMID: 33131867 PMCID: PMC7571379 DOI: 10.1016/j.scitotenv.2020.142929] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 05/17/2023]
Abstract
Testing SARS-CoV-2 viral loads in wastewater has recently emerged as a method of tracking the prevalence of the virus and an early-warning tool for predicting outbreaks in the future. This study reports SARS-CoV-2 viral load in wastewater influents and treated effluents of 11 wastewater treatment plants (WWTPs), as well as untreated wastewater from 38 various locations, in the United Arab Emirates (UAE) in May and June 2020. Composite samples collected over twenty-four hours were thermally deactivated for safety, followed by viral concentration using ultrafiltration, RNA extraction using commercially available kits, and viral quantification using RT-qPCR. Furthermore, estimates of the prevalence of SARS-CoV-2 infection in different regions were simulated using Monte Carlo. Results showed that the viral load in wastewater influents from these WWTPs ranged from 7.50E+02 to over 3.40E+04 viral gene copies/L with some plants having no detectable viral RNA by RT-qPCR. The virus was also detected in 85% of untreated wastewater samples taken from different locations across the country, with viral loads in positive samples ranging between 2.86E+02 and over 2.90E+04 gene copies/L. It was also observed that the precautionary measures implemented by the UAE government correlated with a drop in the measured viral load in wastewater samples, which were in line with the reduction of COVID-19 cases reported in the population. Importantly, none of the 11 WWTPs' effluents tested positive during the entire sampling period, indicating that the treatment technologies used in the UAE are efficient in degrading SARS-CoV-2, and confirming the safety of treated re-used water in the country. SARS-CoV-2 wastewater testing has the potential to aid in monitoring or predicting an outbreak location and can shed light on the extent viral spread at the community level.
Collapse
Affiliation(s)
- Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Yazan Ibrahim
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Marianne Daou
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hussein Kannout
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Nila Jan
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Alvaro Lopes
- Ministry of Interior Research Center, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; College of Medicine and Health Sciences, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
37
|
Pérez-Cataluña A, Cuevas-Ferrando E, Randazzo W, Falcó I, Allende A, Sánchez G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143870. [PMID: 33338788 PMCID: PMC7722604 DOI: 10.1016/j.scitotenv.2020.143870] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated. Urban wastewater seeded with gamma-irradiated SARS-CoV-2, porcine epidemic diarrhea virus (PEDV), and mengovirus (MgV) was used to test the concentration efficiency of an aluminum-based adsorption-precipitation method and a polyethylene glycol (PEG) precipitation protocol. Moreover, two different RNA extraction methods were compared in this study: a commercial manual spin column centrifugation kit and an automated protocol based on magnetic silica beads. Overall, the evaluated concentration methods did not impact the recovery of gamma-irradiated SARS-CoV-2 nor MgV, while extraction methods showed significant differences for PEDV. Mean recovery rates of 42.9 ± 9.5%, 27.5 ± 14.3% and 9.0 ± 2.2% were obtained for gamma-irradiated SARS-CoV-2, PEDV and MgV, respectively. Limits of detection (LoD95%) for five genomic SARS-CoV-2 targets (N1, N2, gene E, IP2 and IP4) ranged from 1.56 log genome equivalents (ge)/mL (N1) to 2.22 log ge/mL (IP4) when automated system was used; while values ranging between 2.08 (N1) and 2.34 (E) log ge/mL were observed when using column-based extraction method. Different targets were also evaluated in naturally contaminated wastewater samples with 91.2%, 85.3%, 70.6%, 79.4% and 73.5% positivity, for N1, N2, E, IP2 and IP4, respectively. Our benchmarked comparison study suggests that the aluminum precipitation method coupled with the automated nucleic extraction represents a method of acceptable sensitivity to provide readily results of interest for SARS-CoV-2 WBE surveillance.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
38
|
Kittigul L, Pombubpa K. Rotavirus Surveillance in Tap Water, Recycled Water, and Sewage Sludge in Thailand: A Longitudinal Study, 2007-2018. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:53-63. [PMID: 33128701 DOI: 10.1007/s12560-020-09450-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/25/2020] [Indexed: 05/21/2023]
Abstract
The objective of this study was to describe the epidemiological and molecular surveillance of rotaviruses in tap water, recycled water, and sewage sludge in Thailand from 2007 to 2018. Three hundred and seventy tap water, 202 recycled water, and 72 sewage sludge samples were collected and processed to detect the rotavirus VP7 gene using RT-nested PCR. Rotavirus G genotypes were identified by DNA sequencing and phylogenetic analysis. The frequency of rotavirus detection was 0.54% of the tap water samples, 30.2% of the recycled water samples, and 50.0% of the sewage sludge samples. During the 12-year surveillance, G1 was prevalent most years and constantly predominant in recycled water and sewage sludge. G2 was identified in a tap water sample and in recycled water samples. G3 and G9 were observed in both recycled water and sewage sludge samples. The uncommon G6 rotavirus strain was identified in one recycled water sample. The rotavirus VP4 gene was detected in rotavirus strains with an identified G genotype using RT-multiplex nested PCR. The unusual P[6] genotype was the most frequently detected, followed by mixed P[6]/[4] and P[4] genotypes. Phylogenetic analysis of both G and P genotypes showed a close genetic relationship with sequences of human rotavirus strains. The high nucleotide identity of the rotavirus strains found in this study to human rotavirus strains suggests that the rotaviruses are derived from human source. These results represent useful epidemiological and molecular information for evaluating rotavirus distribution in water for consumption and irrigation, and in biosolids for agricultural application.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
39
|
Shi D, Ma H, Miao J, Liu W, Yang D, Qiu Z, Shen Z, Yin J, Yang Z, Wang H, Li H, Chen Z, Li J, Jin M. Levels of human Rotaviruses and Noroviruses GII in urban rivers running through the city mirror their infection prevalence in populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142203. [PMID: 32920413 PMCID: PMC7470703 DOI: 10.1016/j.scitotenv.2020.142203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Enteric viruses exposed to water pose a huge threat to global public health and can lead to waterborne disease outbreaks. A sudden increase in enteric viruses in some water matrices also underpins the prevalence of corresponding waterborne diseases in communities over the same time period. However, few efforts have been focused on water matrices whose viral pollution may best reflect the clinical prevalence in communities. Here, a one-year surveillance of human enteric viruses including Enteroviruses (EnVs), Rotaviruses (HRVs), Astroviruses (AstVs), Noroviruses GII (HuNoVsGII) and Mastadenoviruses (HAdVs) in four representative water matrices: an urban river (UR) running through city, effluent from Wastewater Treatment Plant (EW), raw water for Urban Water Treatment Plant (RW), and tap water (TW) were performed by qPCR. The relationship between the virus detection frequency at each site and their prevalence in clinical PCR assay was further analyzed. We found that the detection frequencies of HRVs, HuNoVsGII, and AstVs in stools peaked in winter, while EnVs peaked in autumn. No EnVs occurred in EW, RW, or TW, but HuNoVsGII and AstVs occurred intensively in winter. For UR, all types of enteric viruses could be detected and the levels of acute gastroenteritis viruses (HRVs, HuNoVsGII, AstVs, and HAdVs) were highest in autumn or winter, whereas EnVs peaked in summer. In terms of correlation analyses, only HRVs and HuNoVsGII levels in UR showed a strong positive correlation with their prevalence in clinical stool samples. This study indicated that HRVs and HuNoVsGII levels in URs may mirror the local virus prevalence, thereby implying the possibility of revealing their local epidemiology by monitoring them in the URs.
Collapse
Affiliation(s)
- Danyang Shi
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Hui Ma
- Department of Clinical Laboratory, Tianjin Children's Hospital, No. 238, Longyan Road, Tianjin 300134, China
| | - Jing Miao
- Department of Public Health, Shanxi University of Chinese Medicine, Xianyang 712046, China
| | - Weili Liu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Dong Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Jing Yin
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhongwei Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Huaran Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Haibei Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Zhengshan Chen
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China
| | - Junwen Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China.
| | - Min Jin
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, No.1, Dali Road, Tianjin 300050, China.
| |
Collapse
|
40
|
Randazzo W, Cuevas-Ferrando E, Sanjuán R, Domingo-Calap P, Sánchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health 2020; 230:113621. [PMID: 32911123 PMCID: PMC7462597 DOI: 10.1016/j.ijheh.2020.113621] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly emerging pandemic which has enforced extreme containment measures worldwide. In the absence of a vaccine or efficient treatment, cost-effective epidemiological surveillance strategies are urgently needed. Here, we have used RT-qPCR for SARS-CoV-2 detection in a series of longitudinal metropolitan wastewaters samples collected from February to April 2020, during the earliest stages of the epidemic in the Region of Valencia, Spain. We were able to consistently detect SARS-CoV-2 RNA in samples taken in late February, when communicated cases in that region were only incipient. We also find that the wastewater viral RNA context increased rapidly and anticipated the subsequent ascent in the number of declared cases. Our results strongly suggest that the virus was undergoing community transmission earlier than previously believed, and suggest that wastewater analysis could be sensitive and cost-effective strategy for COVID-19 epidemiological surveillance. Routine implementation of this surveillance tool would significantly improve our preparedness against new or re-occurring viral outbreaks.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, Universitat de València, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain; Department of Genetics, Universitat de València, 46980, Paterna, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
41
|
Randazzo W, Cuevas-Ferrando E, Sanjuán R, Domingo-Calap P, Sánchez G. Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. Int J Hyg Environ Health 2020. [PMID: 32911123 DOI: 10.1101/2020.04.23.20076679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The COVID-19 disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a rapidly emerging pandemic which has enforced extreme containment measures worldwide. In the absence of a vaccine or efficient treatment, cost-effective epidemiological surveillance strategies are urgently needed. Here, we have used RT-qPCR for SARS-CoV-2 detection in a series of longitudinal metropolitan wastewaters samples collected from February to April 2020, during the earliest stages of the epidemic in the Region of Valencia, Spain. We were able to consistently detect SARS-CoV-2 RNA in samples taken in late February, when communicated cases in that region were only incipient. We also find that the wastewater viral RNA context increased rapidly and anticipated the subsequent ascent in the number of declared cases. Our results strongly suggest that the virus was undergoing community transmission earlier than previously believed, and suggest that wastewater analysis could be sensitive and cost-effective strategy for COVID-19 epidemiological surveillance. Routine implementation of this surveillance tool would significantly improve our preparedness against new or re-occurring viral outbreaks.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, Universitat de València, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I(2)SysBio, Universitat de València-CSIC, 46980, Paterna, Spain; Department of Genetics, Universitat de València, 46980, Paterna, Spain.
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (IATA-CSIC), Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
42
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020. [PMID: 32425251 DOI: 10.1101/2020.04.22.20075200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
43
|
Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. WATER RESEARCH 2020; 181:115942. [PMID: 32425251 PMCID: PMC7229723 DOI: 10.1016/j.watres.2020.115942] [Citation(s) in RCA: 786] [Impact Index Per Article: 196.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 200,000 reported COVID-19 cases in Spain resulting in more than 20,800 deaths as of April 21, 2020. Faecal shedding of SARS-CoV-2 RNA from COVID-19 patients has extensively been reported. Therefore, we investigated the occurrence of SARS-CoV-2 RNA in six wastewater treatments plants (WWTPs) serving the major municipalities within the Region of Murcia (Spain), the area with the lowest COVID-19 prevalence within Iberian Peninsula. Firstly, an aluminum hydroxide adsorption-precipitation concentration method was validated using a porcine coronavirus (Porcine Epidemic Diarrhea Virus, PEDV) and mengovirus (MgV). The procedure resulted in average recoveries of 10 ± 3.5% and 10 ± 2.1% in influent water (n = 2) and 3.3 ± 1.6% and 6.2 ± 1.0% in effluent water (n = 2) samples for PEDV and MgV, respectively. Then, the method was used to monitor the occurrence of SARS-CoV-2 from March 12 to April 14, 2020 in influent, secondary and tertiary effluent water samples. By using the real-time RT-PCR (RT-qPCR) Diagnostic Panel validated by US CDC that targets three regions of the virus nucleocapsid (N) gene, we estimated quantification of SARS-CoV-2 RNA titers in untreated wastewater samples of 5.4 ± 0.2 log10 genomic copies/L on average. Two secondary water samples resulted positive (2 out of 18) and all tertiary water samples tested as negative (0 out 12). This environmental surveillance data were compared to declared COVID-19 cases at municipality level, revealing that members of the community were shedding SARS-CoV-2 RNA in their stool even before the first cases were reported by local or national authorities in many of the cities where wastewaters have been sampled. The detection of SARS-CoV-2 in wastewater in early stages of the spread of COVID-19 highlights the relevance of this strategy as an early indicator of the infection within a specific population. At this point, this environmental surveillance could be implemented by municipalities right away as a tool, designed to help authorities to coordinate the exit strategy to gradually lift its coronavirus lockdown.
Collapse
Affiliation(s)
- Walter Randazzo
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain; Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Pedro Simón
- ESAMUR, Avenida Juan Carlos, s/n - Edificio Torre Jemeca, Murcia, Spain
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|