1
|
Khiabani A, Sarabi-Jamab M, Shakeri MS, Pahlevanlo A, Emadzadeh B. Exploring the Acetobacteraceae family isolated from kombucha SCOBYs worldwide and comparing yield and characteristics of biocellulose under various fermentation conditions. Sci Rep 2024; 14:26616. [PMID: 39496750 PMCID: PMC11535285 DOI: 10.1038/s41598-024-77305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Bacterial cellulose (BC) is a cellulosic biopolymer produced by specific acetic acid bacteria during kombucha fermentation. In this study, bacterial cellulose-producing strains were isolated from four different global kombucha SCOBY samples obtained from markets in the Netherlands, America, China, and Iran. The strains were identified using biochemical and molecular techniques. The ability of species to produce BC was evaluated under both static and stirred fermentation conditions. Seven dominant strains from the Acetobacteraceae family and the genus of Komagataeibacter and Gluconacetobacter were identified and submitted to NCBI gene bank archives: K. xylinus CH1, K. sucrofermentans IR2, K. intermedius IR3, K. cocois AM2, K. sucrofermentans NE4, K. cocois NE6, and G. liquefaciens NE7. Among these, K. intermedius IR3, isolated from local Iranian SCOBY, exhibited the highest BC production yield at 5.733 ± 0.170 gL-1 under static fermentation conditions. On the other hand, K. xylinus CH1, from Chinese SCOBY, had the highest yield under stirred conditions, producing 12.689 ± 0.808 gL-1 of BC. The BC production yield of both K. xylinus CH1 and K. intermedius IR3 under stirred conditions was 3 and 1.3 times more than static conditions, respectively. Despite the yield differences, static fermentation demonstrated superior physicochemical characteristics; such as moisture content, water holding capacity, and crystallinity degree, compared to stirred. Therefore, depending on the intended application in industry and specific criteria, both products could serve as functional substitutes in food and medicine sectors.
Collapse
Affiliation(s)
- Azadeh Khiabani
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Monir-Sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Abolfazl Pahlevanlo
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
2
|
Jeong AY, Hong SJ, Jang DE, Kim E, Ko S, Kim YM. Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha. J Food Sci 2024; 89:7916-7927. [PMID: 39366779 DOI: 10.1111/1750-3841.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.
Collapse
Affiliation(s)
- Ah-Young Jeong
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Jin Hong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Da-Eun Jang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunhye Kim
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
| | - Sugju Ko
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Ribič A, Trček J. Customized 16S-23S rDNA ITS Amplicon Metagenomics for Acetic Acid Bacteria Species Identification in Vinegars and Kombuchas. Microorganisms 2024; 12:1023. [PMID: 38792851 PMCID: PMC11123803 DOI: 10.3390/microorganisms12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Acetic acid bacteria (AAB) are involved in food and beverage production bioprocesses, like those in vinegar and kombucha. They oxidize sugars and alcohols into various metabolites, resulting in the final products' pleasant taste and aroma. The 16S rDNA amplicon metagenomics using Illumina technology is usually used to follow the microbiological development of these processes. However, the 16S rRNA gene sequences among different species of AAB are very similar, thus not enabling a reliable identification down to the species level but only to the genus. In this study, we have constructed primers for amplifying half of the 16S-23S rRNA gene internal transcribed spacer (ITS) for library construction and further sequencing using Illumina technology. This approach was successfully used to estimate the relative abundance of AAB species in defined consortia. Further application of this method for the analysis of different vinegar and kombucha samples proves it suitable for assessing the relative abundance of AAB species when these bacteria represent a predominant part of a microbial community.
Collapse
Affiliation(s)
- Alja Ribič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
4
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
5
|
Potočnik V, Gorgieva S, Trček J. From Nature to Lab: Sustainable Bacterial Cellulose Production and Modification with Synthetic Biology. Polymers (Basel) 2023; 15:3466. [PMID: 37631523 PMCID: PMC10459212 DOI: 10.3390/polym15163466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial cellulose (BC) is a macromolecule with versatile applications in medicine, pharmacy, biotechnology, cosmetology, food and food packaging, ecology, and electronics. Although many bacteria synthesize BC, the most efficient BC producers are certain species of the genera Komagataeibacter and Novacetimonas. These are also food-grade bacteria, simplifying their utilization at industrial facilities. The basic principles of BC synthesis are known from studies of Komagataeibacter xylinus, which became a model species for studying BC at genetic and molecular levels. Cellulose can also be of plant origin, but BC surpasses its purity. Moreover, the laboratory production of BC enables in situ modification into functionalized material with incorporated molecules during its synthesis. The possibility of growing Komagataeibacter and Novacetimonas species on various organic substrates and agricultural and food waste compounds also follows the green and sustainable economy principles. Further intervention into BC synthesis was enabled by genetic engineering tools, subsequently directing it into the field of synthetic biology. This review paper presents the development of the fascinating field of BC synthesis at the molecular level, seeking sustainable ways for its production and its applications towards genetic modifications of bacterial strains for producing novel types of living biomaterials using the flexible metabolic machinery of bacteria.
Collapse
Affiliation(s)
- Vid Potočnik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia;
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Gorgieva S, Jančič U, Cepec E, Trček J. Production efficiency and properties of bacterial cellulose membranes in a novel grape pomace hydrolysate by Komagataeibacter melomenusus AV436 T and Komagataeibacter xylinus LMG 1518. Int J Biol Macromol 2023:125368. [PMID: 37330080 DOI: 10.1016/j.ijbiomac.2023.125368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
The microbial production of cellulose using different bacterial species has been extensively examined for various industrial applications. However, the cost-effectiveness of all these biotechnological processes is strongly related to the culture medium for bacterial cellulose (BC) production. Herein, we examined a simple and modified procedure for preparing grape pomace (GP) hydrolysate, without enzymatic treatment, as a sole growth medium for BC production by acetic acid bacteria (AAB). The central composite design (CCD) was used to optimise the GP hydrolysate preparation toward the highest reducing sugar contents (10.4 g/L) and minimal phenolic contents (4.8 g/L). The experimental screening of 4 differently prepared hydrolysates and 20 AAB strains identified the recently described species Komagataeibacter melomenusus AV436T as the most efficient BC producer (up to 1.24 g/L dry BC membrane), followed by Komagataeibacter xylinus LMG 1518 (up to 0.98 g/L dry BC membrane). The membranes were synthesized in only 4 days of bacteria culturing, 1 st day with shaking, followed by 3 days of static incubation. The produced BC membranes in GP-hydrolysates showed, in comparison to the membranes made in a complex RAE medium 34 % reduction of crystallinity index with the presence of diverse cellulose allomorphs, presence of GP-related components within the BC network responsible for the increase of hydrophobicity, the reduction of thermal stability and 48.75 %, 13.6 % and 43 % lower tensile strength, tensile modulus, and elongation, respectively. Here presented study is the first report on utilising a GP-hydrolysate without enzymatic treatment as a sole culture medium for efficient BC production by AAB, with recently described species Komagataeibacter melomenusus AV436T as the most efficient producer in this type of food-waste material. The scale-up protocol of the scheme presented here will be needed for the cost-optimisation of BC production at the industrial levels.
Collapse
Affiliation(s)
- Selestina Gorgieva
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia.
| | - Urška Jančič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Eva Cepec
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Janja Trček
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
8
|
Exploring the Potential Molecular Mechanisms of Interactions between a Probiotic Consortium and Its Coral Host. mSystems 2023; 8:e0092122. [PMID: 36688656 PMCID: PMC9948713 DOI: 10.1128/msystems.00921-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Beneficial microorganisms for corals (BMCs) have been demonstrated to be effective probiotics to alleviate bleaching and mitigate coral mortality in vivo. The selection of putative BMCs is traditionally performed manually, using an array of biochemical and molecular tests for putative BMC traits. We present a comprehensive genetic survey of BMC traits using a genome-based framework for the identification of alternative mechanisms that can be used for future in silico selection of BMC strains. We identify exclusive BMC traits associated with specific strains and propose new BMC mechanisms, such as the synthesis of glycine betaine and ectoines. Our roadmap facilitates the selection of BMC strains while increasing the array of genetic targets that can be included in the selection of putative BMC strains to be tested as coral probiotics. IMPORTANCE Probiotics are currently the main hope as a potential medicine for corals, organisms that are considered the marine "canaries of the coal mine" and that are threatened with extinction. Our experiments have proved the concept that probiotics mitigate coral bleaching and can also prevent coral mortality. Here, we present a comprehensive genetic survey of probiotic traits using a genome-based framework. The main outcomes are a roadmap that facilitates the selection of coral probiotic strains while increasing the array of mechanisms that can be included in the selection of coral probiotics.
Collapse
|
9
|
Jelenko K, Cepec E, Nascimento FX, Trček J. Comparative Genomics and Phenotypic Characterization of Gluconacetobacter entanii, a Highly Acetic Acid-Tolerant Bacterium from Vinegars. Foods 2023; 12:foods12010214. [PMID: 36613429 PMCID: PMC9818992 DOI: 10.3390/foods12010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
The bacterial species Gluconacetobacter entanii belongs to a group of acetic acid bacteria. In 2000, it was described as a primary species of submerged spirit vinegar-producing bioreactors with a strict requirement of acetic acid, ethanol, and glucose for growth. Over the years, the type-strain of G. entanii deposited in international culture collections has lost the ability for revitalization and is thus not available any more in a culturable form. Here, we have systematically characterized phenotypic features and genomes of recently isolated G. entanii strains and compared them with characteristics of the type-strain available from published data. Using the functional annotation, genes gmhB and psp were identified as unique for G. entanii genomes among species in the clade Novacetimonas. The genome stability of G. entanii was assessed after 28 and 43 months of preculturing the strain Gluconacetobacter entanii AV429 twice a week. The strain G. entanii AV429 did not accumulate giant insertions or deletions but a few gene mutations. To unify further research into acetic acid bacteria systematics and taxonomy, we propose G. entanii AV429 as the neotype strain.
Collapse
Affiliation(s)
- Karin Jelenko
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Eva Cepec
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | | | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-229-3749
| |
Collapse
|
10
|
Characterization, genome analysis and genetic tractability studies of a new nanocellulose producing Komagataeibacter intermedius isolate. Sci Rep 2022; 12:20520. [PMID: 36443480 PMCID: PMC9705422 DOI: 10.1038/s41598-022-24735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.
Collapse
|
11
|
Greser AB, Avcioglu NH. Optimization and physicochemical characterization of bacterial cellulose by Komagataeibacter nataicola and Komagataeibacter maltaceti strains isolated from grape, thorn apple and apple vinegars. Arch Microbiol 2022; 204:465. [PMID: 35802199 DOI: 10.1007/s00203-022-03083-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
Bacterial cellulose (BC) is a valuable biopolymer that is increasingly used in medical, pharmaceutical and food industries with its excellent physicochemical properties as high water-holding capacity, nanofibrillar structure, large surface area, porosity, mechanical strength and biocompatibility. Accordingly, the isolation, identification and characterization of potent BC producers from grape, thorn apple and apple vinegars were performed in this study. The strains isolated from grape and apple vinegars were identified as Komagataeibacter maltaceti and the strain isolated from thorn apple vinegar was identified as Komagataeibacter nataicola with 16S rRNA analysis. Optimized conditions were found as 8% dextrin, 1.5% (peptone + yeast extract) and 10% inoculation amount at pH 6.0 with a productivity rate of 1.15 g/d/L, a yield of 8.06% and a dry weight of 6.45 g/L for K. maltaceti, and 10% maltose, 1% (peptone + yeast extract) and 10% inoculation amount at pH 6.0 with a productivity rate of 0.96 g/L/d, a yield of 5.35% and a dry weight of 5.35 g/L for K. nataicola. Obtained BC from K. maltaceti and K. nataicola strains was more than 2.56- and 1.86-fold when compared with BC obtained from HS media and exhibited 95.1% and 92.5% WHC, respectively. Based on the characterization results, BC pellicles show characteristic FT-IR bands and have ultrafine 3D structures with high thermal stability. By means of having ability to assimilate monosaccharides, disaccharides and polysaccharide used in this study, it is predicted that both isolated Komagataeibacter species can be used in the production of biopolymers from wastes containing complex carbon sources in the future.
Collapse
Affiliation(s)
- Anita Beril Greser
- Department of Pharmacy, Medical College, Jagiellonian University, 31-027, Kraków, Poland
| | - Nermin Hande Avcioglu
- Department, Biotechnology Section Faculty of Science, Biology, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
12
|
Sengun IY, Kilic G, Charoenyingcharoen P, Yukphan P, Yamada Y. Investigation of the microbiota associated with traditionally produced fruit vinegars with focus on acetic acid bacteria and lactic acid bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
14
|
da Silva IGR, Pantoja BTDS, Almeida GHDR, Carreira ACO, Miglino MA. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073955. [PMID: 35409314 PMCID: PMC8999934 DOI: 10.3390/ijms23073955] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
Collapse
Affiliation(s)
- Izabela Gabriela Rodrigues da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- NUCEL-Cell and Molecular Therapy Center, School of Medicine, Sao Paulo University, Sao Paulo 05508-270, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- Correspondence:
| |
Collapse
|
15
|
Thongwai N, Futui W, Ladpala N, Sirichai B, Weechan A, Kanklai J, Rungsirivanich P. Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms 2022; 10:microorganisms10030528. [PMID: 35336103 PMCID: PMC8955979 DOI: 10.3390/microorganisms10030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter maltaceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20–30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8–16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.
Collapse
Affiliation(s)
- Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| | - Wirapong Futui
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthiwa Ladpala
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Benjamat Sirichai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Anuwat Weechan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Jirapat Kanklai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| |
Collapse
|
16
|
Brandão PR, Crespo MTB, Nascimento FX. Phylogenomic and comparative analyses support the reclassification of several Komagataeibacter species as novel members of the Novacetimonas gen. nov. and bring new insights into the evolution of cellulose synthase genes. Int J Syst Evol Microbiol 2022; 72. [PMID: 35175916 DOI: 10.1099/ijsem.0.005252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Komagataeibacter harbours bacteria presenting the ability to produce increased levels of crystalline nanocellulose, as well as strains used in the industrial production of fermented products and beverages. Still, most of the studies of this biotechnologically relevant genus were conducted based on limited phenotypic methodologies and taxonomical classifications. In this work, a detailed analysis of the currently described genus Komagataeibacter was conducted based on phylogenomic analysis, unveiling the phylogenomic relationships within the genus and allowing a detailed phylogenetic analysis of biotechnologically important genes such as those involved in cellulose biosynthesis (bcs genes). Phylogenomic and comparative genomic analysis revealed that several type strains formed an independent genomic group from those of other Komagataeibacter, prompting their reclassification as members of a novel genus, hereby termed Novacetimonas gen. nov. The results support the reclassification of Komagataeibacter hansenii, Komagataeibacter cocois, Komagataeibacter maltaceti and Komagataeibacter pomaceti as novel members of the genus Novacetimonas. The Novacetimonas hansenii species is the proposed representative of the novel genus. Importantly, phylogenetic analysis based on cellulose biosynthesis genes (bcsABCD, bcsAB2XYC2, bcsAB3C3, bcsAB4), showed that the evolutionary history of these genes is closely related to the strain's phylogenomic/taxonomic classification. Hence, the robust taxonomic classification of these bacteria will allow the better characterization and selection of strains for biotechnological applications.
Collapse
Affiliation(s)
- Pedro R Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Maria T B Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
17
|
Cannazza P, Rissanen AJ, Guizelini D, Losoi P, Sarlin E, Romano D, Santala V, Mangayil R. Characterization of Komagataeibacter Isolate Reveals New Prospects in Waste Stream Valorization for Bacterial Cellulose Production. Microorganisms 2021; 9:2230. [PMID: 34835356 PMCID: PMC8621423 DOI: 10.3390/microorganisms9112230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Komagataeibacter spp. has been used for the bioconversion of industrial wastes and lignocellulosic hydrolysates to bacterial cellulose (BC). Recently, studies have demonstrated the capacity of Komagataeibacter spp. in the biotransformation of inhibitors found in lignocellulosic hydrolysates, aromatic lignin-derived monomers (LDMs) and acetate. In general, detoxification and BC synthesis from lignocellulosic inhibitors requires a carbon flow from acetyl-coA towards tricarboxylic acid and gluconeogenesis, respectively. However, the related molecular aspects have not yet been identified in Komagataeibacter spp. In this study, we isolated a cellulose-producing bacterium capable of synthesizing BC in a minimal medium containing crude glycerol, a by-product from the biodiesel production process. The isolate, affiliated to Komagataeibacter genus, synthesized cellulose in a minimal medium containing glucose (3.3 ± 0.3 g/L), pure glycerol (2.2 ± 0.1 g/L) and crude glycerol (2.1 ± 0.1 g/L). Genome assembly and annotation identified four copies of bacterial cellulose synthase operon and genes for redirecting the carbon from the central metabolic pathway to gluconeogenesis. According to the genome annotations, a BC production route from acetyl-CoA, a central metabolic intermediate, was hypothesized and was validated using acetate. We identified that when K. rhaeticus ENS9b was grown in a minimal medium supplemented with acetate, BC production was not observed. However, in the presence of readily utilizable substrates, such as spent yeast hydrolysate, acetate supplementation improved BC synthesis.
Collapse
Affiliation(s)
- Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy;
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| | - Antti J. Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| | - Dieval Guizelini
- Graduate Program in Bioinformatics, Sector of Professional and Technological Education, Federal University of Parana (UFPR), Curitiba 81520-260, PR, Brazil;
| | - Pauli Losoi
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| | - Essi Sarlin
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, 33720 Tampere, Finland; (A.J.R.); (P.L.); (E.S.); (V.S.)
| |
Collapse
|
18
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
19
|
Metagenome-Assembled Genomes Contribute to Unraveling of the Microbiome of Cocoa Fermentation. Appl Environ Microbiol 2021; 87:e0058421. [PMID: 34105982 DOI: 10.1128/aem.00584-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metagenomic studies about cocoa fermentation have mainly reported on the analysis of short reads for determination of operational taxonomic units. However, it is also important to determine metagenome-assembled genomes (MAGs), which are genomes deriving from the assembly of metagenomics. For this research, all the cocoa metagenomes from public databases were downloaded, resulting in five data sets: one from Ghana and four from Brazil. In addition, in silico approaches were used to describe putative phenotypes and the metabolic potential of MAGs. A total of 17 high-quality MAGs were recovered from these microbiomes, as follows: (i) for fungi, Yamadazyma tenuis (n = 1); (ii) lactic acid bacteria, Limosilactobacillus fermentum (n = 5), Liquorilactobacillus cacaonum (n = 1), Liquorilactobacillus nagelli (n = 1), Leuconostoc pseudomesenteroides (n = 1), and Lactiplantibacillus plantarum subsp. plantarum (n = 1); (iii) acetic acid bacteria, Acetobacter senegalensis (n = 2) and Kozakia baliensis (n = 1); and (iv) Bacillus subtilis (n = 1), Brevundimonas sp. (n = 2), and Pseudomonas sp. (n = 1). Medium-quality MAGs were also recovered from cocoa microbiomes, including some that, to our knowledge, were not previously detected in this environment (Liquorilactobacillus vini, Komagataeibacter saccharivorans, and Komagataeibacter maltaceti) and others previously described (Fructobacillus pseudoficulneus and Acetobacter pasteurianus). Taken together, the MAGs were useful for providing an additional description of the microbiome of cocoa fermentation, revealing previously overlooked microorganisms, with prediction of key phenotypes and biochemical pathways. IMPORTANCE The production of chocolate starts with the harvesting of cocoa fruits and the spontaneous fermentation of the seeds in a microbial succession that depends on yeasts, lactic acid bacteria, and acetic acid bacteria in order to eliminate bitter and astringent compounds present in the raw material, which will be further roasted and grinded to originate the cocoa powder that will enter the food processing industry. The microbiota of cocoa fermentation is not completely known, and yet it advanced from culture-based studies to the advent of next-generation DNA sequencing, with the generation of a myriad of data that need bioinformatic approaches to be properly analyzed. Although the majority of metagenomic studies have been based on short reads (operational taxonomic units), it is also important to analyze entire genomes to determine more precisely possible ecological roles of different species. Metagenome-assembled genomes (MAGs) are very useful for this purpose; here, MAGs from cocoa fermentation microbiomes are described, and the possible implications of their phenotypic and metabolic potentials are discussed.
Collapse
|
20
|
Acetan and Acetan-Like Polysaccharides: Genetics, Biosynthesis, Structure, and Viscoelasticity. Polymers (Basel) 2021; 13:polym13050815. [PMID: 33799945 PMCID: PMC7961339 DOI: 10.3390/polym13050815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria produce a variety of multifunctional polysaccharides, including structural, intracellular, and extracellular polysaccharides. They are attractive for the industrial sector due to their natural origin, sustainability, biodegradability, low toxicity, stability, unique viscoelastic properties, stable cost, and supply. When incorporated into different matrices, they may control emulsification, stabilization, crystallization, water release, and encapsulation. Acetan is an important extracellular water-soluble polysaccharide produced mainly by bacterial species of the genera Komagataeibacter and Acetobacter. Since its original description in Komagataeibacter xylinus, acetan-like polysaccharides have also been described in other species of acetic acid bacteria. Our knowledge on chemical composition of different acetan-like polysaccharides, their viscoelasticity, and the genetic basis for their production has expanded during the last years. Here, we review data on acetan biosynthesis, its molecular structure, genetic organization, and mechanical properties. In addition, we have performed an extended bioinformatic analysis on acetan-like polysaccharide genetic clusters in the genomes of Komagataeibacter and Acetobacter species. The analysis revealed for the first time a second acetan-like polysaccharide genetic cluster, that is widespread in both genera. All species of the Komagataeibacter possess at least one acetan genetic cluster, while it is present in only one third of the Acetobacter species surveyed.
Collapse
|
21
|
Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2020; 70:5596-5600. [DOI: 10.1099/ijsem.0.004484] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|