1
|
Petroni TF, Ono MA. Impact of healthcare-associated infections on mortality of hospitalized patients with COVID-19: a systematic review. CIENCIA & SAUDE COLETIVA 2025; 30:e01112023. [PMID: 39936665 DOI: 10.1590/1413-81232025302.01112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/09/2023] [Indexed: 02/13/2025] Open
Abstract
Although most cases of COVID-19 are mild cases, severe cases requiring hospitalization and mechanical ventilation were sufficient to overwhelm healthcare systems worldwide, leading to more than 6 million deaths and the increase in healthcare associated infections (HAIs). The incidence of HAIs in COVID-19 hospitalized patients has been addressed in systematic reviews, but in these there was no description of mortality related to these infections. Therefore, the aim of this review was to evaluate the impact of HAIs on mortality of hospitalized patients with COVID-19, specially by multidrug resistant bacteria as Acinetobacter baumannii. A systematic review was carried out in the PubMed database on July 2022 using the keywords "healthcare-associated infection" OR "nosocomial infection" AND "COVID-19" AND "Acinetobacter baumannii". The incidence of HAIs in COVID-19 patients was 18.85%, with 42.17% of mortality rate and relative risk (RR) 2.08 (95%CI 1.61-2.68). Considering that the risk of death was twice greater in co-infection COVID-19/HAI, it is essential the broad vaccination against COVID-19 and the adoption of measures to reduce HAI incidence in hospitalized patients and mortality by superinfections.
Collapse
Affiliation(s)
| | - Mario Augusto Ono
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina. Londrina PR Brasil
| |
Collapse
|
2
|
Alshamrani M, Farahat F, Albarrak A, El-Saed A, Shibl AM, Memish ZA, Mousa M, Haridy H, Althaqafi A. Narrative review of factors associated with SARS-CoV-2 coinfection in Middle Eastern countries and the need to vaccinate against preventable diseases. J Infect Public Health 2025; 18:102600. [PMID: 39689411 DOI: 10.1016/j.jiph.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
This review evaluated the frequency of, and outcomes associated with, bacterial, fungal, and viral coinfection with SARS-CoV-2 in Middle Eastern countries via a PubMed search through February 2023. Ninety articles reported bacterial (n = 57), fungal (n = 32), and viral (n = 32) coinfections. High frequencies of coinfection with COVID-19 were identified, with rates and outcomes varying by setting, pathogen, surveillance/detection method, population characteristics, and drug-resistance status. Mortality rates were higher in patients with community-acquired (10.0 -42.9 %) and hospital-acquired (51.5 -66 %) bacterial coinfection versus those without (10.5 -21.7 %). Outcomes were worse with than without fungal coinfection, and fatality rates with mucormycosis coinfection reached 66.7 %. Outcomes with viral coinfection were highly variable; however, some data suggested a positive corelation between COVID-19 severity and influenza A and adenovirus coinfection. The negative outcomes associated with bacterial, fungal and some viral coinfections in individuals with COVID-19 support regular vaccination against vaccine-preventable diseases caused by these pathogens, especially among at-risk populations.
Collapse
Affiliation(s)
- Majid Alshamrani
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Fayssal Farahat
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Ali Albarrak
- Infectious Disease Division, Internal Medicine Department, Prince Sultan Military Medical City, King Abdulaziz Street, Alwazarat Area, Riyadh 11165, Saudi Arabia.
| | - Aiman El-Saed
- Infection Prevention and Control Program, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 3660, Riyadh 11481, Saudi Arabia.
| | - Atef M Shibl
- Alfaisal University, College of Medicine, P.O. Box 50927, Riyadh 11533, Saudi Arabia.
| | - Ziad A Memish
- Alfaisal University, College of Medicine, P.O. Box 50927, Riyadh 11533, Saudi Arabia; King Salman Humanitarian Aid & Relief Center, King Abdullah Road, Riyadh 12371, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Mostafa Mousa
- Pfizer Medical Affairs, King Abdullah Financial District Building 4.07, 13519 Riyadh, Saudi Arabia.
| | - Hammam Haridy
- Pfizer Medical & Scientific Affairs, Pfizer Building 6, Dubai, United Arab Emirates.
| | - Abdulhakeem Althaqafi
- Adult Infectious Diseases, Department of Internal Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia; King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia.
| |
Collapse
|
3
|
Candel FJ, Salavert M, Cantón R, Del Pozo JL, Galán-Sánchez F, Navarro D, Rodríguez A, Rodríguez JC, Rodríguez-Aguirregabiria M, Suberviola B, Zaragoza R. The role of rapid multiplex molecular syndromic panels in the clinical management of infections in critically ill patients: an experts-opinion document. Crit Care 2024; 28:440. [PMID: 39736683 DOI: 10.1186/s13054-024-05224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
Rapid multiplex molecular syndromic panels (RMMSP) (3 or more pathogens and time-to-results < 6 h) allow simultaneous detection of multiple pathogens and genotypic resistance markers. Their implementation has revolutionized the clinical landscape by significantly enhancing diagnostic accuracy and reducing time-to-results in different critical conditions. The current revision is a comprehensive but not systematic review of the literature. We conducted electronic searches of the PubMed, Medline, Embase, and Google Scholar databases to identify studies assessing the clinical performance of RMMSP in critically ill patients until July 30, 2024. A multidisciplinary group of 11 Spanish specialists developed clinical questions pertaining to the indications and limitations of these diagnostic tools in daily practice in different clinical scenarios. The topics covered included pneumonia, sepsis/septic shock, candidemia, meningitis/encephalitis, and off-label uses of these RMMSP. These tools reduced the time-to-diagnosis (and therefore the time-to-appropriate treatment), reduced inappropriate empiric treatment and the length of antibiotic therapy (which has a positive impact on antimicrobial stewardship and might be associated with lower in-hospital mortality), may reduce the length of hospital stay, which could potentially lead to cost savings. Despite their advantages, these RMMSP have limitations that should be known, including limited availability, missed diagnoses if the causative agent or resistance determinants are not included in the panel, false positives, and codetections. Overall, the implementation of RMMSP represents a significant advancement in infectious disease diagnostics, enabling more precise and timely interventions. This document addresses relevant issues related to the use of RMMSP on different critically ill patient profiles, to standardize procedures, assist in making management decisions and help specialists to obtain optimal outcomes.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology and Infectious Diseases, Hospital Clínico Universitario San Carlos, IdISSC & IML Health Research Institutes, 28040, Madrid, Spain.
| | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Rafael Cantón
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, , Madrid, Spain
| | - José Luis Del Pozo
- Infectious Diseases Unit, Microbiology Department, Clínica Universidad de Navarra, Navarra, Spain
- IdiSNA: Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Fátima Galán-Sánchez
- Microbiology Department, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Instituto de Investigación Biomédica de Cádiz (INIBICA), Cádiz, Spain
| | - David Navarro
- Microbiology Department, INCLIVA Health Research Institute, Clinic University Hospital, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Alejandro Rodríguez
- Intensive Care Medicine Department, Hospital Universitario de Tarragona Joan XXIII, Universitat Rovira I Virgili, CIBER Enfermedades Respiratorias, d'investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante, Spain
- Department of Microbiology, Institute for Health and Biomedical Research (ISABIAL), Miguel Hernández University, Alicante, Spain
| | | | - Borja Suberviola
- Intensive Care Medicine Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Rafael Zaragoza
- Critical Care Department, Hospital Universitario Dr. Peset, Valencia, Spain
| |
Collapse
|
4
|
Geanes ES, McLennan R, Pierce SH, Menden HL, Paul O, Sampath V, Bradley T. SARS-CoV-2 envelope protein regulates innate immune tolerance. iScience 2024; 27:109975. [PMID: 38827398 PMCID: PMC11140213 DOI: 10.1016/j.isci.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Severe COVID-19 often leads to secondary infections and sepsis that contribute to long hospital stays and mortality. However, our understanding of the precise immune mechanisms driving severe complications after SARS-CoV-2 infection remains incompletely understood. Here, we provide evidence that the SARS-CoV-2 envelope (E) protein initiates innate immune inflammation, via toll-like receptor 2 signaling, and establishes a sustained state of innate immune tolerance following initial activation. Monocytes in this tolerant state exhibit reduced responsiveness to secondary stimuli, releasing lower levels of cytokines and chemokines. Mice exposed to E protein before secondary lipopolysaccharide challenge show diminished pro-inflammatory cytokine expression in the lung, indicating that E protein drives this tolerant state in vivo. These findings highlight the potential of the SARS-CoV-2 E protein to induce innate immune tolerance, contributing to long-term immune dysfunction that could lead to susceptibility to subsequent infections, and uncovers therapeutic targets aimed at restoring immune function following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eric S. Geanes
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Stephen H. Pierce
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather L. Menden
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Oishi Paul
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pediatrics, University of Missouri- Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|
5
|
Strelkova D, Kuleshov V, Burmistrova E, Sychev I, Savochkina Y, Danilov D, Yatsyshina S, Glushchenko E, Elkina M, Ananicheva N, Yasneva A, Topolyanskaya S, Rachina S. The significance of monitoring respiratory sample cultures and polymerase chain reaction tests for detecting bacterial pathogens in severely and critically ill patients with COVID-19. Afr J Thorac Crit Care Med 2024; 30:e1293. [PMID: 39544846 PMCID: PMC11561391 DOI: 10.7196/ajtccm.2024.v30i1.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/08/2024] [Indexed: 11/17/2024] Open
Abstract
Background Bacterial superinfection is one of the most common and potentially lethal complications in severely and critically ill patients with COVID-19. Objectives To determine the colonisation time frame and the spectrum of potential bacterial pathogens in respiratory samples from patients with severe and critical COVID-19, using routine culture and polymerase chain reaction (PCR) tests. Methods A prospective observational study was conducted on patients aged ≥18 years with confirmed severe and critical COVID-19 who were admitted to or transferred to the intensive care unit (ICU). Respiratory samples were collected for microbial culture and PCR testing within the first 2 days after ICU admission/transfer, between days 3 and 6, and after 7 days of ICU stay. Results A total of 82 patients, with a median (interquartile range) age of 74.5 (67.3 - 81.0) years and a median Charlson comorbidity index of 4 (3 - 5), were enrolled in the study. Colonisation with any pathogen was observed in 67% of patients, after a median of 4 (2 - 6) days in the ICU. On days 0 - 2 of the ICU stay, micro-organisms were detected in 18% of patients, with Klebsiella pneumoniae (without acquired antibiotic resistance) and methicillin-susceptible Staphylococcus aureus being most frequently identified. Later, A. baumannii and carbapenem-resistant K. pneumoniae became the predominant micro-organisms, identified in nearly half of the patients. In 74% of the samples, the results of microbial culture and PCR tests were identical. In 17%, PCR revealed bacterial pathogens not identified by culture. Conclusion Our study confirms that colonisation of the respiratory tract occurs early in the course of ICU stay. Superinfections are predominantly caused by multidrug-resistant Gram-negative bacteria. Study synopsis What the study adds. This real-world study provides valuable insights into the significance of microbiological monitoring of critically ill COVID-19 patients. It confirms that bacterial colonisation of the respiratory tract occurs early in the course of ICU stay, with nosocomial superinfections caused predominantly by multidrug-resistant Gram-negative pathogens. Polymerase chain reaction (PCR) testing can assist in ruling out colonisation and in early detection of potential bacterial superinfections.Implications of the findings. Bacterial superinfections present a major challenge in critically ill COVID-19 patients, owing to their high prevalence and mortality rates. Their early detection, determination of causative agents, and antibiotic susceptibility profiling are therefore of paramont importance. PCR testing of clinical specimens appears to be a valuable supplement to respiratory culture, enhancing the precision of diagnosis of lower respiratory tract infections.
Collapse
Affiliation(s)
- D Strelkova
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - V Kuleshov
- City Clinical Hospital named after S. S. Yudin, Moscow, Russian Federation
| | - E Burmistrova
- City Clinical Hospital named after S. S. Yudin, Moscow, Russian Federation
| | - I Sychev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Y Savochkina
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and
Biological Agency, Moscow, Russian Federation
| | - D Danilov
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and
Biological Agency, Moscow, Russian Federation
| | - S Yatsyshina
- Central Research Institute of Epidemiology (CRIE) of the Federal Service for Surveillance on Consumer Rights Protection and Human
Wellbeing, Moscow, Russian Federation
| | - E Glushchenko
- Federal State Budgetary Institution, Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical and
Biological Agency, Moscow, Russian Federation
| | - M Elkina
- Central Research Institute of Epidemiology (CRIE) of the Federal Service for Surveillance on Consumer Rights Protection and Human
Wellbeing, Moscow, Russian Federation
| | - N Ananicheva
- City Clinical Hospital named after S. S. Yudin, Moscow, Russian Federation
| | - A Yasneva
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - S Topolyanskaya
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - S Rachina
- I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
6
|
Plattner AS, Lockowitz CR, Dumm R, Banerjee R, Newland JG, Same RG. Practice Versus Potential: The Impact of the BioFire FilmArray Pneumonia Panel on Antibiotic Use in Children. J Pediatric Infect Dis Soc 2024; 13:196-202. [PMID: 38332718 PMCID: PMC10949437 DOI: 10.1093/jpids/piae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The BioFire FilmArray Pneumonia Panel (BFPP), a multiplex PCR panel for the diagnosis of lower respiratory tract infections, has been proposed as a tool for antimicrobial stewardship. Few studies evaluate real-world implementation of the BFPP and no studies focus exclusively on children. Our institution implemented BFPP testing without restrictions. METHODS We conducted a retrospective cohort study in children hospitalized at St. Louis Children's Hospital to (1) characterize the use of the BFPP in pediatric patients and (2) assess how results impacted antibiotic use. We included all BFPP tests obtained during the first year after the introduction of the test, September 2021 through August 2022. The primary outcome was change in antibiotic therapy within 24 hours of results, which was compared to the potential change in antibiotic therapy determined by two infectious diseases clinicians. RESULTS One hundred sixty-nine tests from 126 patients were included. Nine patients were immunocompromised and 19 had chronic tracheostomy. The majority of tests were sent from tracheal aspirate specimens (92%) and from patients in an intensive care unit (94%). Only 51% of tests were obtained due to respiratory failure or suspected pneumonia. For 80% of test results, there was potential to change antibiotics, but change occurred in only 46% of tests in practice. Antibiotic escalation was more common (26%) than de-escalation (15%) or discontinuation (4.1%). CONCLUSIONS In a cohort of pediatric patients tested with the BFPP, the majority of tests were sent from tracheal aspirates and less than half of tests were associated with a change in antibiotics.
Collapse
Affiliation(s)
- Alexander S Plattner
- Department of Pediatrics, Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Institute for Informatics, Data Science, and Biostatistics (IDB), Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Christine R Lockowitz
- Department of Pharmacy, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rebekah Dumm
- Department of Pathology and Immunology, Division of Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ritu Banerjee
- Department of Pediatrics, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
| | - Jason G Newland
- Department of Pediatrics, Division of Infectious Diseases, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rebecca G Same
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Dessajan J, Timsit JF. Impact of Multiplex PCR in the Therapeutic Management of Severe Bacterial Pneumonia. Antibiotics (Basel) 2024; 13:95. [PMID: 38247654 PMCID: PMC10812737 DOI: 10.3390/antibiotics13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Pneumonia is a common and severe illness that requires prompt and effective management. Advanced, rapid, and accurate tools are needed to diagnose patients with severe bacterial pneumonia, and to rapidly select appropriate antimicrobial therapy, which must be initiated within the first few hours of care. Two multiplex molecular tests, Unyvero HPN and FilmArray Pneumonia+ Panel, have been developed using the multiplex polymerase chain reaction (mPCR) technique to rapidly identify pathogens and their main antibiotic resistance mechanisms from patient respiratory specimens. Performance evaluation of these tests showed strong correlations with reference techniques. However, good knowledge of their indications, targets, and limitations is essential. Collaboration with microbiologists is, therefore, crucial for their appropriate use. Under these conditions, and with standardized management, these rapid tests can improve the therapeutic management of severe pneumonia faster, more precisely, and with narrow-spectrum antibiotic therapy. Further randomized controlled trials are needed to address the many unanswered questions about multiplex rapid molecular testing during the diagnosis and the management of severe pneumonia. This narrative review will address the current knowledge, advantages, and disadvantages of these tests, and propose solutions for their routine use.
Collapse
Affiliation(s)
- Julien Dessajan
- Assistance Publique Hôpitaux de Paris (AP-HP), Medical and Infectious Diseases Intensive Care Unit, Bichat Claude-Bernard Hospital, Paris Cité University, 46 Rue Henri Huchard, 75018 Paris, France;
| | - Jean-François Timsit
- Assistance Publique Hôpitaux de Paris (AP-HP), Medical and Infectious Diseases Intensive Care Unit, Bichat Claude-Bernard Hospital, Paris Cité University, 46 Rue Henri Huchard, 75018 Paris, France;
- Mixt Research Unit (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Paris Cité University, 75018 Paris, France
| |
Collapse
|
8
|
Falsey AR, Branche AR, Croft DP, Formica MA, Peasley MR, Walsh EE. Real-life Assessment of BioFire FilmArray Pneumonia Panel in Adults Hospitalized With Respiratory Illness. J Infect Dis 2024; 229:214-222. [PMID: 37369370 PMCID: PMC10786250 DOI: 10.1093/infdis/jiad221] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inability to identify the microbial etiology of lower respiratory tract infection leads to unnecessary antibiotic use. We evaluated the utility of the BioFire FilmArray Pneumonia Panel (BioFire PN) to inform microbiologic diagnosis. METHODS Hospitalized adults with respiratory illness were recruited; sputa and clinical/laboratory data were collected. Sputa were cultured for bacteria and tested with BioFire PN. Microbial etiology was adjudicated by 4 physicians. Bacterial polymerase chain reaction (PCR) was compared with culture and clinical adjudication. RESULTS Of 298 sputa tested, BioFire PN detected significantly more pathogens (350 bacteria, 16 atypicals, and 164 viruses) than sputum culture plus any standard-of-care testing (91% vs 60%, P < .0001). When compared with culture, the sensitivity of BioFire PN for individual bacteria was 46% to 100%; specificity, 61% to 100%; and negative predictive value, 92% to 100%. Cases were adjudicated as viral (n = 58) and bacterial (n = 100). PCR detected bacteria in 55% of viral cases and 95% of bacterial (P < .0001). High serum procalcitonin and bacterial adjudication were more often associated with sputa with 106 or 107 copies detected. CONCLUSIONS Multiplex PCR testing of sputa for bacteria is useful to rule out bacterial infection with added value to detect viruses and atypical bacteria.
Collapse
Affiliation(s)
| | | | - Daniel P Croft
- Department of Pulmonary and Critical Medicine, University of Rochester
| | - Maria A Formica
- Infectious Disease Unit, Rochester General Hospital, Rochester, New York, USA
| | | | | |
Collapse
|
9
|
Moy AC, Kimmoun A, Merkling T, Berçot B, Caméléna F, Poncin T, Deniau B, Mebazaa A, Dudoignon E, Dépret F. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: A systematic review and meta-analysis. Anaesth Crit Care Pain Med 2023; 42:101300. [PMID: 37709201 DOI: 10.1016/j.accpm.2023.101300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Accuracy and timing of antibiotic therapy remain a challenge for lower respiratory tract infections. New molecular techniques using Multiplex Polymerase Chain Reaction, including the FilmArray® Pneumonia Plus Panel [FAPP], have been developed to address this. The aim of this study is to evaluate the FAPP diagnostic performance for the detection of the 15 typical bacteria of the panel from respiratory samples in a meta-analysis from a systematic review. METHODS We searched PubMed and EMBASE from January 1, 2010, to December 31, 2022, and selected any study on the FAPP diagnostic performance on respiratory samples compared to the reference standard, bacterial culture. The main outcome was the overall diagnostic accuracy with sensitivity and specificity. We calculated the log Diagnostic Odds Ratio and analyzed performance for separate bacteria, antimicrobial resistance genes, and according to the sample type. We also reported the FAPP turnaround time and the out-of-panel bacteria number and species. This study is registered with PROSPERO (CRD42021226280). RESULTS From 10 317 records, we identified 30 studies including 8 968 samples. Twenty-one were related to intensive care. The overall sensitivity and specificity were 94% [95% Confidence Interval (CI) 91-95] and 98% [95%CI 97-98], respectively. The log Diagnostic Odds Ratio was 6.35 [95%CI 6.05-6.65]. 9.3% [95%CI 9.2-9.5] of bacteria detected in culture were not included in the FAPP panel. CONCLUSION This systematic review reporting the FAPP evaluation revealed a high accuracy. This test may represent an adjunct tool for pulmonary bacterial infection diagnostic and antimicrobial stewardship. Further evidence is needed to assess the impact on clinical outcome.
Collapse
Affiliation(s)
- Anne-Clotilde Moy
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Kimmoun
- Intensive Care Medicine Brabois, CHRU de Nancy, INSERM U1116, Université de Lorraine, Nancy, France; INSERM UMR-S 942, MASCOT, Université de Paris, Paris, France
| | - Thomas Merkling
- Nancy Clinical Investigation Centre, INSERM 1433, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Béatrice Berçot
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - François Caméléna
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - Thibaut Poncin
- Department of Microbiology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, INSERM 1137, IAME, Paris, France
| | - Benjamin Deniau
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| | - Alexandre Mebazaa
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| | - Emmanuel Dudoignon
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France.
| | - François Dépret
- Department of Anesthesiology, Critical Care and Burn Unit, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France; University of Paris, FHU PROMICE, INSERM 942, INI-CRCT Network, Paris, France
| |
Collapse
|
10
|
Candel FJ, Salavert M, Basaras M, Borges M, Cantón R, Cercenado E, Cilloniz C, Estella Á, García-Lechuz JM, Garnacho Montero J, Gordo F, Julián-Jiménez A, Martín-Sánchez FJ, Maseda E, Matesanz M, Menéndez R, Mirón-Rubio M, Ortiz de Lejarazu R, Polverino E, Retamar-Gentil P, Ruiz-Iturriaga LA, Sancho S, Serrano L. Ten Issues for Updating in Community-Acquired Pneumonia: An Expert Review. J Clin Med 2023; 12:6864. [PMID: 37959328 PMCID: PMC10649000 DOI: 10.3390/jcm12216864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Community-acquired pneumonia represents the third-highest cause of mortality in industrialized countries and the first due to infection. Although guidelines for the approach to this infection model are widely implemented in international health schemes, information continually emerges that generates controversy or requires updating its management. This paper reviews the most important issues in the approach to this process, such as an aetiologic update using new molecular platforms or imaging techniques, including the diagnostic stewardship in different clinical settings. It also reviews both the Intensive Care Unit admission criteria and those of clinical stability to discharge. An update in antibiotic, in oxygen, or steroidal therapy is presented. It also analyzes the management out-of-hospital in CAP requiring hospitalization, the main factors for readmission, and an approach to therapeutic failure or rescue. Finally, the main strategies for prevention and vaccination in both immunocompetent and immunocompromised hosts are reviewed.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IdISSC & IML Health Research Institutes, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases Unit, La Fe (IIS) Health Research Institute, University Hospital La Fe, 46015 Valencia, Spain
| | - Miren Basaras
- Immunology, Microbiology and Parasitology Department, Faculty of Medicine and Nursing, University of País Vasco, 48940 Bizkaia, Spain;
| | - Marcio Borges
- Multidisciplinary Sepsis Unit, Intensive Medicine Department, University Hospital Son Llàtzer, 07198 Palma de Mallorca, Spain;
- Instituto de Investigación Sanitaria Islas Baleares (IDISBA), 07198 Mallorca, Spain
| | - Rafael Cantón
- Clinical Microbiology Service, University Hospital Ramón y Cajal, Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain;
- CIBER of Infectious Diseases (CIBERINFEC), National Institute of Health San Carlos III, 28034 Madrid, Spain;
| | - Emilia Cercenado
- Clinical Microbiology & Infectious Diseases Service, University Hospital Gregorio Marañón, 28009 Madrid, Spain;
| | - Catian Cilloniz
- IDIBAPS, CIBERES, 08007 Barcelona, Spain;
- Faculty of Health Sciences, Continental University, Huancayo 15304, Peru
| | - Ángel Estella
- Intensive Care Unit, INIBiCA, University Hospital of Jerez, Medicine Department, University of Cádiz, 11404 Jerez, Spain
| | | | - José Garnacho Montero
- Intensive Care Clinical Unit, Hospital Universitario Virgen Macarena, 41013 Sevilla, Spain;
| | - Federico Gordo
- Intensive Medicine Department, University Hospital of Henares, 28802 Madrid, Spain;
| | - Agustín Julián-Jiménez
- Emergency Department, University Hospital Toledo, University of Castilla La Mancha, 45007 Toledo, Spain;
| | | | - Emilio Maseda
- Anesthesiology Department, Hospital Quirón Salud Valle del Henares, 28850 Madrid, Spain;
| | - Mayra Matesanz
- Hospital at Home Unit, Clinic University Hospital San Carlos, 28040 Madrid, Spain;
| | - Rosario Menéndez
- Pneumology Service, La Fe (IIS) Health Research Institute, University Hospital La Fe, 46015 Valencia, Spain;
| | - Manuel Mirón-Rubio
- Hospital at Home Service, University of Torrejón, Torrejón de Ardoz, 28006 Madrid, Spain;
| | - Raúl Ortiz de Lejarazu
- National Influenza Center, Clinic University Hospital of Valladolid, University of Valladolid, 47003 Valladolid, Spain;
| | - Eva Polverino
- Pneumology Service, Hospital Vall d’Hebron, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health San Carlos III, 28029 Madrid, Spain
| | - Pilar Retamar-Gentil
- CIBER of Infectious Diseases (CIBERINFEC), National Institute of Health San Carlos III, 28034 Madrid, Spain;
- Infectious Diseases & Microbiology Clinical Management Unit, University Hospital Virgen Macarena, IBIS, University of Seville, 41013 Sevilla, Spain
| | - Luis Alberto Ruiz-Iturriaga
- Pneumology Service, University Hospital Cruces, 48903 Barakaldo, Spain; (L.A.R.-I.); (L.S.)
- Faculty of Medicine and Nursing, University of País Vasco, 48940 Bizkaia, Spain
| | - Susana Sancho
- Intensive Medicine Department, University Hospital La Fe, 46015 Valencia, Spain;
| | - Leyre Serrano
- Pneumology Service, University Hospital Cruces, 48903 Barakaldo, Spain; (L.A.R.-I.); (L.S.)
- Faculty of Medicine and Nursing, University of País Vasco, 48940 Bizkaia, Spain
| |
Collapse
|
11
|
Miller MM, Van Schooneveld TC, Stohs EJ, Marcelin JR, Alexander BT, Watkins AB, Creager HM, Bergman SJ. Implementation of a Rapid Multiplex Polymerase Chain Reaction Pneumonia Panel and Subsequent Antibiotic De-escalation. Open Forum Infect Dis 2023; 10:ofad382. [PMID: 37564742 PMCID: PMC10411041 DOI: 10.1093/ofid/ofad382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Background Net effects of implementation of a multiplex polymerase chain reaction (PCR) pneumonia panel (PNP) on antimicrobial stewardship are thus far unknown. This retrospective study evaluated the real-world impact of the PNP on time to antibiotic de-escalation in critically ill patients treated for pneumonia at an academic medical center. Methods This retrospective, quasi-experimental study included adult intensive care unit (ICU) patients with respiratory culture results from 1 May to 15 August 2019 (pre-PNP group) and adult ICU patients with PNP results from 1 May to 15 August 2020 (PNP group) at Nebraska Medical Center. Patients were excluded for the following reasons: any preceding positive coronavirus disease 2019 PCR test, lack of antibiotic receipt, or non-respiratory tract infection indications for antibiotics. The primary outcome was time to discontinuation of anti-methicillin-resistant Staphylococcus aureus (MRSA) therapy. Secondary outcomes included time to discontinuation of antipseudomonal therapy, frequency of early discontinuation for atypical coverage, and overall duration (in days) of antibiotic therapy for pneumonia. Results Sixty-six patients in the pre-PNP group and 58 in the PNP group were included. There were significant differences in patient characteristics between groups. The median time to anti-MRSA agent discontinuation was 49.1 hours in the pre-PNP and 41.8 hours in the PNP group (P = .28). The median time to discontinuation of antipseudomonal agents was 134.4 hours in the pre-PNP versus 98.1 hours in the PNP group (P = .47). Other outcomes were numerically but not significantly improved in our sample. Conclusions This early look at implementation of a multiplex PNP did not demonstrate a statistically significant difference in antibiotic use but lays the groundwork to further evaluate a significant real-world impact on antibiotic de-escalation in ICU patients treated for pneumonia.
Collapse
Affiliation(s)
- Molly M Miller
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Trevor C Van Schooneveld
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Erica J Stohs
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jasmine R Marcelin
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bryan T Alexander
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Andrew B Watkins
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
| | - Hannah M Creager
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scott J Bergman
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine, Omaha, Nebraska, USA
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Di Pilato V, Giacobbe DR. Editorial of Special Issue "The COVID-19 Pandemic and Bacterial Infections: Microbiological and Clinical Aspects". Microorganisms 2023; 11:microorganisms11041009. [PMID: 37110433 PMCID: PMC10144518 DOI: 10.3390/microorganisms11041009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence in late 2019 of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the pandemic coronavirus disease 2019 (COVID-19), posed significant health challenges worldwide [...].
Collapse
Affiliation(s)
- Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
13
|
Maltezou HC, Papanikolopoulou A, Vassiliu S, Theodoridou K, Nikolopoulou G, Sipsas NV. COVID-19 and Respiratory Virus Co-Infections: A Systematic Review of the Literature. Viruses 2023; 15:865. [PMID: 37112844 PMCID: PMC10142898 DOI: 10.3390/v15040865] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Τhe COVID-19 pandemic highly impacted the circulation, seasonality, and morbidity burden of several respiratory viruses. We reviewed published cases of SARS-CoV-2 and respiratory virus co-infections as of 12 April 2022. SARS-CoV-2 and influenza co-infections were reported almost exclusively during the first pandemic wave. It is possible that the overall incidence of SARS-CoV-2 co-infections is higher because of the paucity of co-testing for respiratory viruses during the first pandemic waves when mild cases might have been missed. Animal models indicate severe lung pathology and high fatality; nevertheless, the available literature is largely inconclusive regarding the clinical course and prognosis of co-infected patients. Animal models also indicate the importance of considering the sequence timing of each respiratory virus infection; however, there is no such information in reported human cases. Given the differences between 2020 and 2023 in terms of epidemiology and availability of vaccines and specific treatment against COVID-19, it is rational not to extrapolate these early findings to present times. It is expected that the characteristics of SARS-CoV-2 and respiratory virus co-infections will evolve in the upcoming seasons. Multiplex real-time PCR-based assays have been developed in the past two years and should be used to increase diagnostic and infection control capacity, and also for surveillance purposes. Given that COVID-19 and influenza share the same high-risk groups, it is essential that the latter get vaccinated against both viruses. Further studies are needed to elucidate how SARS-CoV-2 and respiratory virus co-infections will be shaped in the upcoming years, in terms of impact and prognosis.
Collapse
Affiliation(s)
- Helena C. Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 15123 Athens, Greece
| | - Amalia Papanikolopoulou
- Third Department of Internal Medicine, Sotiria General Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, School of Medicine, Sotiria General Hospital, 11527 Athens, Greece
| | | | - Kalliopi Theodoridou
- Department of Microbiology, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Georgia Nikolopoulou
- Department of Hepatitides, National Public Health Organization, 15123 Athens, Greece
| | - Nikolaos V. Sipsas
- Pathophysiology Department, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Bogdan I, Gadela T, Bratosin F, Dumitru C, Popescu A, Horhat FG, Negrean RA, Horhat RM, Mot IC, Bota AV, Stoica CN, Feciche B, Csep AN, Fericean RM, Chicin GN, Marincu I. The Assessment of Multiplex PCR in Identifying Bacterial Infections in Patients Hospitalized with SARS-CoV-2 Infection: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12030465. [PMID: 36978332 PMCID: PMC10044563 DOI: 10.3390/antibiotics12030465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Bacterial infection can occur in patients hospitalized with SARS-CoV-2 in various conditions, resulting in poorer outcomes, such as a higher death rate. This current systematic review was conducted in order to assess the efficiency of multiplex PCR in detecting bacterial infections in hospitalized COVID-19 patients, as well as to analyze the most common bacterial pathogens and other factors that interfere with this diagnosis. The research was conducted using four electronic databases (PubMed, Taylor&Francis, Web of Science, and Wiley Online Library). Out of 290 studies, nine were included in the systematic review. The results supported the use of multiplex PCR in detecting bacteria, considering its high sensitivity and specificity rates. The most common bacterial pathogens found were Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Haemophilus influenzae. The median age at admission was 61.5 years, and the majority of patients were men (70.3%), out of a total of 1553 patients. The proportion of ICU admission was very high, with a pooled proportion of 52.6% over the analyzed studies, and an average duration of hospitalization of 13 days. The mortality rate was proportionally high, as was the rate of ICU admission, with a pooled mortality of 24.9%. It was discovered that 65.2% of all patients used antibiotics before admission, with or without medical prescription. Antibiotic treatment should be considered consciously, considering the high risks of developing antibiotic resistance.
Collapse
Affiliation(s)
- Iulia Bogdan
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Tejaswi Gadela
- School of General Medicine, Bhaskar Medical College, Amdapur Road 156-162, Hyderabad 500075, India
| | - Felix Bratosin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Alin Popescu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | | | - Razvan Mihai Horhat
- Department of Conservative Dentistry and Endodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ion Cristian Mot
- ENT Department, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq, 300041 Timisoara, Romania
| | - Adrian Vasile Bota
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Carmen Nicoleta Stoica
- Oradea Emergency Clinical Hospital, Infectious Diseases Department, 410087 Oradea, Romania
| | - Bogdan Feciche
- Department of Urology, Satu-Mare County Emergency Hospital, Strada Ravensburg 2, 440192 Satu-Mare, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Andrei Nicolae Csep
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Roxana Manuela Fericean
- Department XIII, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Gratiana Nicoleta Chicin
- Faculty of General Medicine, “Vasile Goldis” Western University of Arad, Bulevardul Revolutiei 94, 310025 Arad, Romania
- National Institute of Public Health, Strada Doctor Leonte Anastasievici 1-3, 050463 Bucuresti, Romania
- Correspondence: (C.D.); (B.F.); (G.N.C.)
| | - Iosif Marincu
- Methodological and Infectious Diseases Research Center, Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Cilloniz C, Luna CM, Hurtado JC, Marcos MÁ, Torres A. Respiratory viruses: their importance and lessons learned from COVID-19. Eur Respir Rev 2022; 31:220051. [PMID: 36261158 PMCID: PMC9724808 DOI: 10.1183/16000617.0051-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory virus infection can cause severe illnesses capable of inducing acute respiratory failure that can progress rapidly to acute respiratory distress syndrome (ARDS). ARDS is related to poor outcomes, especially in individuals with a higher risk of infection, such as the elderly and those with comorbidities, i.e. obesity, asthma, diabetes mellitus and chronic respiratory or cardiovascular disease. Despite this, effective antiviral treatments available for severe viral lung infections are scarce. The coronavirus disease 2019 (COVID-19) pandemic demonstrated that there is also a need to understand the role of airborne transmission of respiratory viruses. Robust evidence supporting this exists, but better comprehension could help implement adequate measures to mitigate respiratory viral infections. In severe viral lung infections, early diagnosis, risk stratification and prognosis are essential in managing patients. Biomarkers can provide reliable, timely and accessible information possibly helpful for clinicians in managing severe lung viral infections. Although respiratory viruses highly impact global health, more research is needed to improve care and prognosis of severe lung viral infections. In this review, we discuss the epidemiology, diagnosis, clinical characteristics, management and prognosis of patients with severe infections due to respiratory viruses.
Collapse
Affiliation(s)
- Catia Cilloniz
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Carlos M Luna
- Pneumology Division, Hospital of Clínicas, Faculty of Medicine, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Hurtado
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - María Ángeles Marcos
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - Antoni Torres
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| |
Collapse
|
16
|
Gadsby NJ, Musher DM. The Microbial Etiology of Community-Acquired Pneumonia in Adults: from Classical Bacteriology to Host Transcriptional Signatures. Clin Microbiol Rev 2022; 35:e0001522. [PMID: 36165783 PMCID: PMC9769922 DOI: 10.1128/cmr.00015-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
All modern advances notwithstanding, pneumonia remains a common infection with substantial morbidity and mortality. Understanding of the etiology of pneumonia continues to evolve as new techniques enable identification of already known organisms and as new organisms emerge. We now review the etiology of pneumonia (at present often called "community-acquired pneumonia") beginning with classic bacteriologic techniques, which identified Streptococcus pneumoniae as the overwhelmingly common cause, to more modern bacteriologic studies, which emphasize Haemophilus influenzae, Staphylococcus aureus, Moraxella catarrhalis, Enterobacteriaceae, Pseudomonas, and normal respiratory flora. Urine antigen detection is useful in identifying Legionella and pneumococcus. The low yield of bacteria in recent studies is due to the failure to obtain valid sputum samples before antibiotics are administered. The use of high-quality sputum specimens enables identification of recognized ("typical") bacterial pathogens as well as a role for commensal bacteria ("normal respiratory flora"). Nucleic acid amplification technology for viruses has revolutionized diagnosis, showing the importance of viral pneumonia leading to hospitalization with or without coinfecting bacterial organisms. Quantitative PCR study of sputum is in its early stages of application, but regular detection of high counts of bacterial DNA from organisms that are not seen on Gram stain or grown in quantitative culture presents a therapeutic dilemma. This finding may reflect the host microbiome of the respiratory tract, in which case treatment may not need to be given for them. Finally, host transcriptional signatures might enable clinicians to distinguish between viral and bacterial pneumonia, an important practical consideration.
Collapse
Affiliation(s)
- Naomi J. Gadsby
- Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Daniel M. Musher
- Michael E. DeBakey Veterans Administration Medical Center, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Deng J, Li F, Zhang N, Zhong Y. Prevention and treatment of ventilator-associated pneumonia in COVID-19. Front Pharmacol 2022; 13:945892. [PMID: 36339583 PMCID: PMC9627032 DOI: 10.3389/fphar.2022.945892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 07/10/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is the most common acquired infection in the intensive care unit. Recent studies showed that the critical COVID-19 patients with invasive mechanical ventilation have a high risk of developing VAP, which result in a worse outcome and an increasing economic burden. With the development of critical care medicine, the morbidity and mortality of VAP remains high. Especially since the outbreak of COVID-19, the healthcare system is facing unprecedented challenges. Therefore, many efforts have been made in effective prevention, early diagnosis, and early treatment of VAP. This review focuses on the treatment and prevention drugs of VAP in COVID-19 patients. In general, prevention is more important than treatment for VAP. Prevention of VAP is based on minimizing exposure to mechanical ventilation and encouraging early release. There is little difference in drug prophylaxis from non-COVID-19. In term of treatment of VAP, empirical antibiotics is the main treatment, special attention should be paid to the antimicrobial spectrum and duration of antibiotics because of the existence of drug-resistant bacteria. Further studies with well-designed and large sample size were needed to demonstrate the prevention and treatment of ventilator-associated pneumonia in COVID-19 based on the specificity of COVID-19.
Collapse
Affiliation(s)
- Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fanglin Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Russo A, Olivadese V, Trecarichi EM, Torti C. Bacterial Ventilator-Associated Pneumonia in COVID-19 Patients: Data from the Second and Third Waves of the Pandemic. J Clin Med 2022; 11:jcm11092279. [PMID: 35566405 PMCID: PMC9100863 DOI: 10.3390/jcm11092279] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, many patients requiring invasive mechanical ventilation were admitted to intensive care units (ICU) for COVID-19-related severe respiratory failure. As a matter of fact, ICU admission and invasive ventilation increased the risk of ventilator-associated pneumonia (VAP), which is associated with high mortality rate and a considerable burden on length of ICU stay and healthcare costs. The objective of this review was to evaluate data about VAP in COVID-19 patients admitted to ICU that developed VAP, including their etiology (limiting to bacteria), clinical characteristics, and outcomes. The analysis was limited to the most recent waves of the epidemic. The main conclusions of this review are the following: (i) P. aeruginosa, Enterobacterales, and S. aureus are more frequently involved as etiology of VAP; (ii) obesity is an important risk factor for the development of VAP; and (iii) data are still scarce and increasing efforts should be put in place to optimize the clinical management and preventative strategies for this complex and life-threatening disease.
Collapse
|
19
|
The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11040437. [PMID: 35453189 PMCID: PMC9025156 DOI: 10.3390/antibiotics11040437] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The multiplex PCR is a powerful and efficient tool that was widely used during the COVID-19 pandemic to diagnose SARS-CoV-2 infections and that has applications for bacterial identification, as well as determining bacterial resistance to antibiotics. Therefore, this study aimed to determine the usability of multiplex PCR, especially in patients self-medicated with antibiotics, where bacterial cultures often give false-negative results. A cross-sectional study was developed in two COVID-19 units, where 489 eligible patients were included as antibiotic takers and non-antibiotic takers. Antibiotic takers used mostly over-the-counter medication; they suffered significantly more chronic respiratory conditions and were self-medicated most often with cephalosporins (41.4%), macrolide (23.2%), and penicillin (19.7%). The disease severity in these patients was significantly higher than in non-antibiotic takers, and bacterial superinfections were the most common finding in the same group (63.6%). Antibiotic takers had longer hospital and ICU admissions, although the mortality rate was not significantly higher than in non-antibiotic takers. The most common bacteria involved in secondary infections were Staphylococcus aureus (22.2%), Pseudomonas aeruginosa (27.8%), and Klebsiellaspp (25.0%). Patients self-medicating with antibiotics had significantly higher rates of multidrug resistance. The multiplex PCR test was more accurate in identifying multidrug resistance and resulted in a quicker initiation of therapeutic antibiotics compared with instances where a bacterial culture was initially performed, with an average of 26.8 h vs. 40.4 h, respectively. The hospital stay was also significantly shorter by an average of 2.5 days when PCR was used as an initial assessment tool for secondary bacterial infections. When adjusted for age, COVID-19 severity, and pulmonary disease, over-the-counter use of antibiotics represented a significant independent risk factor for a prolonged hospitalization (AOR = 1.21). Similar findings were observed for smoking status (AOR = 1.44), bacterial superinfection (AOR = 1.52), performing only a conventional bacterial culture (AOR = 1.17), and a duration of more than 48 h for bacterial sampling from the time of hospital admission (AOR = 1.36). Multiplex PCR may be a very effective method for diagnosing secondary bacterial infections in COVID-19 individuals self-medicating with antibiotics. Utilizing this strategy as an initial screen in COVID-19 patients who exhibit signs of sepsis and clinical deterioration will result in a faster recovery time and a shorter period of hospitalization.
Collapse
|
20
|
Riccò M, Ferraro P, Peruzzi S, Zaniboni A, Ranzieri S. SARS-CoV-2-Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020-2021). Microorganisms 2022; 10:499. [PMID: 35336074 PMCID: PMC8951730 DOI: 10.3390/microorganisms10030499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Legionnaires' Disease (LD) is a severe, sometimes fatal interstitial pneumonia due to Legionella pneumophila. Since the inception of the SARS-CoV-2 pandemic, some contradictory reports about the effects of lockdown measures on its epidemiology have been published, but no summary evidence has been collected to date. Therefore, we searched two different databases (PubMed and EMBASE) focusing on studies that reported the occurrence of LD among SARS-CoV-2 cases. Data were extracted using a standardized assessment form, and the results of such analyses were systematically reported, summarized, and compared. We identified a total of 38 articles, including 27 observational studies (either prospective or retrospective ones), 10 case reports, and 1 case series. Overall, data on 10,936 SARS-CoV-2 cases were included in the analyses. Of them, 5035 (46.0%) were tested for Legionella either through urinary antigen test or PCR, with 18 positive cases (0.4%). A pooled prevalence of 0.288% (95% Confidence Interval (95% CI) 0.129-0.641), was eventually calculated. Moreover, detailed data on 19 co-infections LD + SARS-CoV-2 were obtained (males: 84.2%; mean age: 61.9 years, range 35 to 83; 78.9% with 1 or more underlying comorbidities), including 16 (84.2%) admissions to the ICU, with a Case Fatality Ratio of 26.3%. In summary, our analyses suggest that the occurrence of SARS-CoV-2-Legionella infections may represent a relatively rare but not irrelevant event, and incident cases are characterized by a dismal prognosis.
Collapse
Affiliation(s)
- Matteo Riccò
- AUSL–IRCCS di Reggio Emilia, Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), Local Health Unit of Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Pietro Ferraro
- Servizio di Medicina del Lavoro, ASL di Foggia, 71121 Foggia, Italy;
| | - Simona Peruzzi
- AUSL–IRCCS di Reggio Emilia, Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, 42016 Guastalla, Italy;
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.Z.); (S.R.)
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.Z.); (S.R.)
| |
Collapse
|