1
|
Sun J, Jiang Y, Fu J, He L, Guo X, Ye H, Yin C, Li H, Jiang H. Beneficial Effects of Epigallocatechin Gallate in Preventing Skin Photoaging: A Review. Molecules 2024; 29:5226. [PMID: 39598619 PMCID: PMC11596539 DOI: 10.3390/molecules29225226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Skin photoaging, primarily caused by ultraviolet (UV) radiation, leads to skin metabolic disorders, which have adverse psychological and physiological effects on individuals. However, traditional medications for repairing skin photoaging cause side effects. Natural bioactive compounds have been shown to prevent and treat skin photoaging with fewer side effects. Epigallocatechin gallate (EGCG), the main substance in tea polyphenols, is a natural bioactive compound with a range of properties. This review summarizes the beneficial effects and mechanisms of EGCG, as well as the application forms of EGCG in repairing photoaged skin. Results indicated that EGCG has repair effects, including improving elasticity, enhancing moisturization, inhibiting damage, and reducing pigmentation of photoaged skin. It has also been demonstrated that EGCG delivery systems, modified EGCG, and combinations with other bioactive substances could be used for repairing photoaged skin due to its poor stability and low bioavailability. EGCG effectively repairs various types of skin damage caused by UV radiation while maintaining normal skin structure and function. It is, therefore, an effective candidate for repairing photoaged skin. These results could provide references for the development and application of EGCG products for the treatment of photoaged skin.
Collapse
Affiliation(s)
- Jiaqiang Sun
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Yuelu Jiang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (H.L.)
| | - Jing Fu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Linlin He
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, China
| | - Xinmiao Guo
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Hua Ye
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Cuiyuan Yin
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (J.S.); (J.F.); (X.G.); (H.Y.); (C.Y.)
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (H.L.)
| | - Heyuan Jiang
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
2
|
Wei L, Yuan Y, Yang Z, Li Y, Wang T, Hu S, Cai B, Wang G. Ginsenoside Rb1 reduced ischemic stroke-induced apoptosis through endoplasmic reticulum stress-associated IRE1/TRAF2/JNK pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03292-4. [PMID: 39052059 DOI: 10.1007/s00210-024-03292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The neuroprotective function of ginsenoside Rb1 (GRb1) in cerebral ischemia-reperfusion (I/R) was lately emphasized. However, whether GRb1 plays a regulatory role on endoplasmic reticulum (ER) stress-associated pathway in cerebral I/R damage is still unclear. The aim of this study is to explore the function of GRb1 in cerebral ischemia-induced ER stress and the underlying mechanism related to IRE1/TRAF2/JNK pathway. Longa method, cerebral infarct volume, and HE staining were used to evaluate the efficacy of GRb1 in mice with a mouse model of middle cerebral artery occlusion reperfusion (MCAO/R). We also investigated the effect and mechanism of GRb1 against ischemic stroke using in vitro oxygen-glucose deprivation reperfusion (OGD/R) model. We found that GRb1 could improve neurological scores, infarct volume, and histological injury in ischemic mice. Ischemic attack also activated neuronal apoptosis and ER stress, and this effect was attenuated by GRb1. In addition, GRb1 significantly reduced I/R-induced IRE1-TRAF2 interaction, IRE1, and JNK phosphorylation. The present study also confirmed that GRb1 significantly improved OGD/R-induced PC12 cells injury. GRb1 could decrease ER stress in OGD/R-injured PC12 cells, which was reflected by the decreased expression of GRP78 and CHOP. The ER stress inducer tunicamycin partially prevented the effects of GRb1 on cell viability, ER stress, and apoptosis after OGD/R, whereas the ER stress inhibitor 4-PBA exerted the opposite effect. Moreover, GRb1 markedly decreased IRE1-TRAF2 interaction, IRE1, and JNK phosphorylation in the presence of OGD/R insult. Furthermore, JNK inhibitor SP600125 and IRE1 inhibitor DBSA pretreatment further promoted the inhibition of GRb1 on ER stress induction and cell damage induced by OGD/R. Molecular docking further elucidated that the mechanism by which GRb1 improves cerebral ischemia maybe related to its direct binding to the kinase domain of IRE1, which in turn inhibited the phosphorylation of IRE1. Collectively, these results demonstrated that GRb1 reduced ischemic stroke-induced apoptosis through the ER stress-associated IRE1/TRAF2/JNK pathway and GRb1 has the potential as a protective drug for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Liangli Wei
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqi Yuan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ziteng Yang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Li
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tingting Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shenglin Hu
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
3
|
Peng G, Li Y, Zeng Y, Sun B, Zhang L, Liu Q. Effect of glabridin combined with bakuchiol on UVB-induced skin damage and its underlying mechanism: An experimental study. J Cosmet Dermatol 2024; 23:2256-2269. [PMID: 38497297 DOI: 10.1111/jocd.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Research has demonstrated the anti-photoaging properties of glabridin and bakuchiol. METHODS The impact of glabridin, glabridin + bakuchiol, and bakuchiol on the levels of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in mice skin fibroblasts was observed. Furthermore, we investigated the potential roles of fibronectin (FN), interferon-γ (IFN-γ), interleukin-22 (IL-22), and transforming growth factor-β (TGF-β) in the tissues, and evaluated their impact on the enzymatic levels in the skin. In conjunction with transcriptomic analysis, metabolomic profiling, and network pharmacology, all samples underwent comprehensive metabolomic and principal component analysis. The Venny2.1 method was utilized to identify variances in shared metabolites between the treatment group and the UVB group, as well as between the UVB group and the control group. Subsequently, a cluster heat map was generated to forecast and analyze metabolic pathways and targets. RESULTS The outcomes from the hematoxylin and eosin and toluidine blue staining revealed that glabridin and bakuchiol markedly decreased dermal thickness and suppressed mast cell infiltration in photoaged mice. Immunohistochemistry and Elisa analysis revealed that glabridin and bakuchiol effectively attenuated the levels of pro-inflammatory factors, including IL-1β, tumor necrosis factor-α, IL-22, and IFN-γ. Furthermore, an increase in the levels of anti-inflammatory factors such as FN and TGF-β was also observed. The determination of the contents of superoxide dismutase, hydroxypropyltransferase and malondialdehyde in mice dorsal skin revealed that glabridin and bakuchiol not only elevated the levels of superoxide dismutase and hydroxyproline, but also reduced malondialdehyde content. Due to the limited number of shared differential metabolites exclusively within Kyoto Encyclopedia of Genes and Genomes, comprehensive pathway enrichment analysis was not feasible. CONCLUSION This study demonstrates that glabridin and bakuchiol effectively impede photoaging and alleviate skin inflammation in mice.
Collapse
Affiliation(s)
- Guanjie Peng
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yangsi Li
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Yiyan Zeng
- The First Affiliated Hospital Guizhou University of Chinese Medicine, Guiyang, China
| | - Bowen Sun
- Fankol Biotechnology (Guangzhou) Co., Ltd., guangzhou, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Qingqing Liu
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Dilnashin H, Birla H, Keswani C, Singh SS, Zahra W, Rathore AS, Singh R, Keshri PK, Singh SP. Neuroprotective Effects of Tinospora cordifolia via Reducing the Oxidative Stress and Mitochondrial Dysfunction against Rotenone-Induced PD Mice. ACS Chem Neurosci 2023; 14:3077-3087. [PMID: 37579290 DOI: 10.1021/acschemneuro.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| |
Collapse
|
5
|
Qiu L, Wang Y, Wang Y, Liu F, Deng S, Xue W, Wang Y. Ursolic Acid Ameliorated Neuronal Damage by Restoring Microglia-Activated MMP/TIMP Imbalance in vitro. Drug Des Devel Ther 2023; 17:2481-2493. [PMID: 37637267 PMCID: PMC10460164 DOI: 10.2147/dddt.s411408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose The oxygen and glucose deprivation-reoxygenation (OGDR) model is widely used to evaluate ischemic stroke and cerebral ischemia-reperfusion (I/R) injury in vitro. Excessively activated microglia produce pro-inflammatory mediators such as matrix metalloproteinases [MMPs] and their specific inhibitors, tissue inhibitors of metalloproteinases [TIMPs], causing neuronal damage. Ursolic acid (UA) acts as a neuroprotective agent in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model keeping the MMP/TIMP balance with underlying mechanisms unclear. Our study used OGDR model to determine whether and how UA reduces neuronal damage by reversing MMP/TIMP imbalance caused by microglia in I/R injury in vitro. Methods SH-SY5Y cells were first cultured with 95% N2 and 5% CO2 and then cultivated regularly for OGDR model. Cell viability was tested for a proper UA dose. We established a co-culture system with SH-SY5Y cells and microglia-conditioned medium (MCM) stimulated by lipopolysaccharide (LPS) and interferon-gamma (IFNγ). MMP9 and TIMP1 levels were measured with ELISA assay to confirm the UA effect. We added recombinant MMP9 (rMMP9) and TIMP1 neutralizing antibody (anti-TIMP1) for reconfirmation. Transmission electron microscopy was used to observe cell morphology, and flow cytometry and Annexin V-FITC and PI labeling for apoptotic conditions. We further measured the calcium fluorescence intensity in SH-SY5Y cells. Results The MCM significantly reduced cell viability of SH-SY5Y cells after OGDR (p<0.01), which was restored by UA (0.25 µM) (p<0.05), whereas lactate dehydrogenase activity, intraneuronal Ca2+ concentration, and apoptosis-related indexes were showed significant improvement after UA treatment (p<0.01). UA corrected the MMP/TIMP imbalance by decreasing MMP9 expression and increasing TIMP1 expression in the co-culture system (p<0.01) and the effects of UA on SH-SY5Y cells were mitigated by the administration of rMMP9 and anti-TIMP1 (p<0.01). Conclusion We demonstrated that UA inhibited microglia-induced neuronal cell death in an OGDR model of ischemic reperfusion injury by stabilizing the MMP9/TIMP1 imbalance.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yaxuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yuye Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
- Department of Neurology, China-Japan Friendship Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Fang Liu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
6
|
Molecular basis of skin photoaging and therapeutic interventions by plant-derived natural product ingredients: A comprehensive review. Heliyon 2023; 9:e13580. [PMID: 36895391 PMCID: PMC9988502 DOI: 10.1016/j.heliyon.2023.e13580] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin areas exposed to ultraviolet radiation (UV) from sunlight are more prone to photoaging than unexposed areas evidenced by several signs which include skin dryness, irregular pigmentation, lentigines, hyperpigmentation, wrinkling, and decreased elasticity. Plant-based natural product ingredients with therapeutic potential against skin photoaging are gaining more attention. This article aims the reviewing the research work done in exploring the cellular and molecular mechanisms involved in UV-induced skin photoaging, followed by summarizing the mechanistic insights involved in its therapeutics by natural product-based ingredients. In the mechanistic section of the convoluted procedure of photoaging, we described the effect of UV radiation (UVR) on different cellular macromolecules (direct damage) and subsequently, the deleterious consequences of UVR-generated reactive oxygen species (indirect damage) and signaling pathways activated or inhibited by UV induced ROS generation in various cellular pathologies of skin photoaging like inflammation, extracellular matrix degradation, apoptosis, mitochondrial dysfunction, and immune suppression. We also discussed the effect of UV radiation on the adipose tissue, and transient receptor potential cation channel V of photoaging skin. In the past few decades, mechanistic studies performed in this area have deciphered various therapeutic targets, opening avenues for different available therapeutic options against this pathological condition. So the remaining portion of the review deals with various natural product-based therapeutic agents available against skin photodamage.
Collapse
|
7
|
Zhang S, Zhang X, Wang X, Li C, He C, Luo T, Ge P. Maltol inhibits oxygen glucose deprivation‑induced chromatinolysis in SH‑SY5Y cells by maintaining pyruvate level. Mol Med Rep 2023; 27:75. [PMID: 36799163 PMCID: PMC9950851 DOI: 10.3892/mmr.2023.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Maltol, a chemical isolated from ginseng root, has shown treatment effects on several pathological processes including osteoarthritis, diabetic peripheral neuropathy and liver fibrosis. Nevertheless, its effect on ischemia‑induced neuron death remains elusive. In the present study, the treatment effect of maltol on ischemia‑induced neuron damage was investigated by using oxygen and glucose deprivation (OGD) model in SH‑SY5Y cells. In vitro studies revealed that maltol protected SH‑SY5Y cells against OGD‑induced chromatinolysis by inhibiting two reactive oxygen species (ROS)‑regulated pathways. One was DNA double‑strand breaks and the other was nuclear translocation of apoptosis inducing factor. Mechanistically, maltol not only inhibited OGD‑induced depletion of glutathione and cysteine by maintaining cystine/glutamate antiporter (xCT) level, but also abrogated OGD‑induced catalase downregulation. Meanwhile, maltol also alleviated OGD‑induced inactivation of mTOR by attenuating OGD‑induced depletion of adenosine triphosphate and pyruvate and downregulation of pyruvate kinase M2, indicating that maltol inhibited the glycolysis dysfunction caused by OGD. Considering that activated mammalian target of the rapamycin (mTOR) could lead to enhanced xCT expression and decreased catalase degradation by autophagy, these findings indicated that maltol attenuated OGD‑induced ROS via inhibition of mTOR inactivation by maintaining pyruvate level. Taken together, it was demonstrated that maltol prevented OGD‑induced chromatinolysis in SH‑SY5Y cells via inhibiting pyruvate depletion.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Zhang
- Department of Public Health, New York University, New York, NY 10016, USA
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chuan He
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Pengfei Ge, Department of Neurosurgery, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
8
|
Jenkins TA. Metabolic Syndrome and Vascular-Associated Cognitive Impairment: a Focus on Preclinical Investigations. Curr Diab Rep 2022; 22:333-340. [PMID: 35737273 PMCID: PMC9314301 DOI: 10.1007/s11892-022-01475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impairment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed. RECENT FINDINGS Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction. While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, replication in patients still needs to be demonstrated.
Collapse
Affiliation(s)
- Trisha A Jenkins
- Human Biosciences, School of Health and Biomedical Sciences, STEM College, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
9
|
Song X, Zhang L, Hui X, Sun X, Yang J, Wang J, Wu H, Wang X, Zheng Z, Che F, Wang G. Selenium-containing protein from selenium-enriched Spirulina platensis antagonizes oxygen glucose deprivation-induced neurotoxicity by inhibiting ROS-mediated oxidative damage through regulating MPTP opening. PHARMACEUTICAL BIOLOGY 2021; 59:629-638. [PMID: 34062090 PMCID: PMC8172226 DOI: 10.1080/13880209.2021.1928715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) (syn. Arthrospira platensis [Microcoleaceae]) showed novel antioxidant activity. However, the protective effect of Se-SP against oxygen glucose deprivation (OGD)-induced neural apoptosis has not been reported yet. OBJECTIVE To verify whether Se-SP can inhibit OGD-induced neural apoptosis and explore the underlying mechanism. MATERIALS AND METHODS Primary hippocampal neurons were separated from Sprague-Dawley (SD) rats. 95% N2 + 5% CO2 were employed to establish OGD model. Neurons were treated with 5 and 10 µg/mL Se-SP under OGD condition for 6 h. Neurons without treatment were the control group. Neural viability and apoptosis were detected by MTT, immunofluorescence and western blotting methods. RESULTS Se-SP significantly improved neuronal viability (from 57.2% to 94.5%) and inhibited apoptosis in OGD-treated primary neurons (from 45.6% to 6.3%), followed by improved neuronal morphology and caspases activation. Se-SP co-treatment also effectively suppressed OGD-induced DNA damage by inhibiting ROS accumulation in neurons (from 225.6% to 106.3%). Additionally, mitochondrial dysfunction was also markedly improved by Se-SP co-treatment via balancing Bcl-2 family expression. Moreover, inhibition of mitochondrial permeability transition pore (MPTP) by CsA (an MPTP inhibitor) dramatically attenuated OGD-induced ROS generation (from 100% to 56.2%), oxidative damage, mitochondrial membrane potential (MPP) loss (from 7.5% to 44.3%), and eventually reversed the neuronal toxicity and apoptosis (from 57.4% to 79.6%). DISCUSSION AND CONCLUSIONS Se-SP showed enhanced potential to inhibit OGD-induced neurotoxicity and apoptosis by inhibiting ROS-mediated oxidative damage through regulating MPTP opening, indicating that selenium-containing protein showed broad application in the chemoprevention and chemotherapy against human ischaemic brain injury.
Collapse
Affiliation(s)
- Xiaojie Song
- Department of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Lijun Zhang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Xin Hui
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Xiangfu Sun
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Juntao Yang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Jinlei Wang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xianjun Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Zuncheng Zheng
- Department of Rehabilitation, Taian City Central Hospital, Taian, ChinaShandong
| | - Fengyuan Che
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Guojun Wang
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| |
Collapse
|
10
|
Niu Z, Shi Y, Li J, Qiao S, Du S, Chen L, Tian H, Wei L, Cao H, Wang J, Gao L. Protective effect of rapamycin in models of retinal degeneration. Exp Eye Res 2021; 210:108700. [PMID: 34245755 DOI: 10.1016/j.exer.2021.108700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is a complex retinal disease with no viable treatment strategy. The causative mechanistic pathway for this disease is not yet clear. Therefore, it is highly warranted to screen effective drugs to treat AMD. Rapamycin are known to inhibit inflammation and has been widely used in the clinic as an immunosuppressant. This study aimed to investigate the protective effect of rapamycin on the AMD retinal degeneration model. The AMD models were established by injection of 35 mg/kg sodium iodate (NaIO3) into the tail vein. Then the treated mice intraperitoneally received rapamycin (2 mg/kg) once a day. The histomorphological analysis showed that rapamycin could inhibit retinal structure damage and apoptosis. Experiments revealed that rapamycin significantly attenuated inflammatory response and oxidative stress. Our experimental results demonstrated that rapamycin has protected the retinal against degeneration induced by NaIO3. The therapeutic effect was more significant after 7 days of treatment. Therefore, our study potentially provides a powerful experimental support for the treatment of AMD.
Collapse
Affiliation(s)
- Zhanyu Niu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jiande Li
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Shufan Qiao
- Colloge of Life Sciences, Northwest Normal University, Lanzhou, 730000, China.
| | - Shaobo Du
- School of Stomatology of Lanzhou University, Lanzhou, 730000, China.
| | - Linchi Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Huanbing Tian
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Li Wei
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Autophagy in vascular dementia and natural products with autophagy regulating activity. Pharmacol Res 2021; 170:105756. [PMID: 34237440 DOI: 10.1016/j.phrs.2021.105756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023]
Abstract
Chronic Cerebral Hypoperfusion(CCH)-induced vascular dementia(VD) is a common neurodegenerative disease which seriously affects the patient's quality of life. Therefore, it is critical to find an effective treatment of VD. Autophagy is a natural regulated mechanism that can remove dysfunctional proteins and organelles, however, over-activation or under-activation can of autophagy can induce the apoptosis of cells. Although autophagy plays a role in the central nervous system is unquestionable, the effects of autophagy in the ischemic brain are still controversial. Some autophagy regulators have been tested, suggesting that both activation and inhibition of autophagy can improve the cognitive function. This article reviews the role of autophagy in CCH-induced VD to discuss whether autophagy has the potential to become a target for drug development and provides several potential compounds for treating vascular dementia.
Collapse
|
12
|
Luo ZB, Xuan MF, Han SZ, Li ZY, Khan N, Quan BH, Yin XJ, Kang JD. Ginsenoside Rb1 protects porcine oocytes against methylglyoxal damage thus it improves the quality of parthenogenetic activation and in vitro fertilization embryos. ENVIRONMENTAL TOXICOLOGY 2021; 36:586-597. [PMID: 33236476 DOI: 10.1002/tox.23063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Panax ginseng, a functional food, has been widely used as an edible nourishment and medicinal supplement. Ginsenoside Rb1 is a major bioactive ingredient of ginseng, which shows very specific anti-apoptosis and anti-oxidant activities. Methylglyoxal (MGO) is one of intermediate products of glucose metabolism, which is absorbed easily from high sugar foods or carbonated beverages. It may involve in a variety of detrimental processes in vivo. However, it has not been fully explored the effects of ginsenoside Rb1 on MGO-induced oocytes damage. This study found that MGO-induced DNA damage and mitochondrial dysfunction result in the failure of porcine oocytes maturation and low in vitro development capacity of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos. Conversely, Rb1 supplementation recovered the rate of maturation, and improved in vitro development capacity of PA and IVF embryos. Rb1 also provided porcine oocytes a lower level of reactive oxygen species production, higher level of ATP content and mitochondrial membrane potential, and stimulated pluripotency gene expression in blastocysts. The findings of this study reveal ginsenoside Rb1 protects porcine oocyte from the cytotoxicity effects of methylglyoxal and provides novel perspectives for the protection of reproduction system by functional food of ginseng.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Sheng-Zhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Nasar Khan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Jilin, China
| |
Collapse
|
13
|
Sun W, Ge Y, Cui J, Yu Y, Liu B. Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:87-97. [PMID: 33981825 PMCID: PMC8065260 DOI: 10.1016/j.omto.2021.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Although oxaliplatin is an effective chemotherapeutic drug commonly used for colorectal cancer (CRC) treatment, drug resistance usually occurs during the long-term use of it. It is urgent to create strategies to reduce the resistance of CRC cells to oxaliplatin. Oxaliplatin-resistant CRC cells (OR-SW480 and OR-HT29) were acquired through long-term exposure of CRC cells to oxaliplatin. It was found that OR-SW480 and OR-HT29 cells exhibited obvious lower sensitivity and a higher metabolism rate of glucose compared to their parental SW480 and HT29 cells, respectively. However, combination with scutellarin significantly resensitized the OR-SW480 and OR-HT29 cells to oxaliplatin-induced cytotoxicity. Mechanically, overexpression of pyruvate kinase isoenzyme M2 (PKM2) was responsible for the resistance to oxaliplatin in OR-SW480 and OR-HT29. Combination with scutellarin was able to inhibit the PKM2 activity and thus reduced the production of adenosine triphosphate (ATP) to sensitize the oxaliplatin-induced mitochondrial apoptosis pathway in both OR-SW480 and OR-HT29 cells. It was indicated that scutellarin resensitizes oxaliplatin-resistant CRC cells to oxaliplatin treatment through inhibition of PKM2.
Collapse
Affiliation(s)
- Wei Sun
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Ge
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junpeng Cui
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yifan Yu
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baolin Liu
- The Sixth Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
14
|
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1525. [PMID: 33313270 PMCID: PMC7729308 DOI: 10.21037/atm-20-6909] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Panax notoginseng saponins (PNS), also called "sanqi" in Chinese, are the main active ingredients which are extracted from the root of Panax notoginseng (Burk.) F. H. Chen., and they have been traditionally used as a medicine in China for hundreds of years with magical medicinal value. PNS have varied biological functions, such as anti-inflammatory effects, anti-cancer effects, anti-neurotoxicity, and the prevention of diabetes. Nervous system disorders, a spectrum of diseases originating from the nervous system, have a significant impact on all aspects of patients' lives. Due to the dramatic gains in global life expectancy, the prevalence of nervous system disorders is growing gradually. Even if the mechanism of these diseases is still not clear, they are mainly characterized by neuronal dysfunction and neuronal death. Consequently, it is essential to find measures to slow down or prevent the onset of these diseases. At present, traditional Chinese medicines, as well as their active components, have gained widespread popularity in preventing and treating these diseases because of their merits, especially PNS. In this review, we predominantly address the recent advances in PNS researches and their biological functions, and highlight their applications in nervous system disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke.
Collapse
Affiliation(s)
- Jing Qu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repairing, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruihua Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Kang ZC, Wang HG, Yang YL, Zhao XY, Zhou QM, Yang YL, Yang JY, Du GH. Pinocembrin Ameliorates Cognitive Impairment Induced by Vascular Dementia: Contribution of Reelin-dab1 Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3577-3587. [PMID: 32943845 PMCID: PMC7481311 DOI: 10.2147/dddt.s249176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022]
Abstract
Background As a substrate of apoER2, Reelin has been verified to exert neuroprotection by preventing memory impairment. Pinocembrin is the most abundant natural flavonoid found in propolis, and it has been used to exert neuroprotection, blood–brain barrier protection, anti-oxidation, and inflammation diminishing, both in vitro and in vivo. However, the roles and molecular mechanisms of pinocembrin in neurobehavioral outcomes and neuronal repair after vascular dementia are still under investigation. Purpose To explore the role of pinocembrin in the involvement of the Reelin-dab1 signaling pathway in improving memory impairment, both in cell culture and animals experiments. Material and Methods Behavioral tests were conducted on day 48 to confirm the protection of pinocembrin against cognitive impairment. Cell and molecular biology experiments demonstrated that the Reelin-dab1 pathway mediates the underlying mechanism of cognitive improvement by pinocembrin. Results It was showed that pinocembrin alleviated learning and memory deficits induced by vascular dementia, by inducing the expression of Reelin, apoER2, and p-dab1 in the hippocampus. The expression of Reelin and p-dab1 was both inhibited following Reelin RNA interference in SH-SY5Y prior to oxygen glucose deprivation (OGD) injury, suggesting that Reelin played a core role in pinocembrin’s effect on OGD in vitro. Conclusion Pinocembrin improves the cognition via the Reelin-dab1 signaling pathway.
Collapse
Affiliation(s)
- Ze-Chun Kang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, People's Republic of China.,Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hai-Gang Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Lin Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiao-Yue Zhao
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi-Meng Zhou
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying-Lin Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Guan-Hua Du
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, People's Republic of China.,Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
16
|
Yan Y, Chen L, Zhou J, Xie L. SNHG12 inhibits oxygen‑glucose deprivation‑induced neuronal apoptosis via the miR‑181a‑5p/NEGR1 axis. Mol Med Rep 2020; 22:3886-3894. [PMID: 33000228 PMCID: PMC7533499 DOI: 10.3892/mmr.2020.11459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence has indicated that long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of ischemic stroke. It has been reported that small nucleolar RNA host gene 12 (SNHG12) serves a critical role in ischemic stroke by acting as a competitive endogenous RNA (ceRNA). SNHG12 competes with various microRNAs (miRs) to regulate RNA transcription of specific targets. However, the effect of SNHG12 on oxygen-glucose deprivation (OGD)-induced neuronal apoptosis has rarely been reported. The present study demonstrated that SNHG12 expression was downregulated in OGD-injured SH-SY5Y cells. Furthermore, miR-181a-5p was reported as a target of SNHG12 and was negatively regulated by SNHG12. Moreover, NEGR1 was a target of miR-181a-5p, which functions as a negative regulator of NEGR1 in OGD-induced neuronal apoptosis. In summary, the results strongly confirmed the hypothesis that SNHG12 functions as a ceRNA for miR-181a-5p and regulates the expression of NEGR1 thus inhibiting OGD-induced apoptosis of SH-SY5Y cells. Neuronal apoptosis aggravates brain damage during ischemic stroke, indicating that the activation of SNHG12 and NEGR1 expression and inhibition of miR-181a-5p may be a novel strategy for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yangtian Yan
- Department of Neurology, Wenling Hospital of Traditional Chinese Medicine, Wenling, Zhejiang 317500, P.R. China
| | - Li Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiajun Zhou
- Department of Neurology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Liquan Xie
- Department of Gerontology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
17
|
Sowmithra S, Jain NK, Datta I. Evaluating In Vitro Neonatal Hypoxic-Ischemic Injury Using Neural Progenitors Derived from Human Embryonic Stem Cells. Stem Cells Dev 2020; 29:929-951. [DOI: 10.1089/scd.2020.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sowmithra Sowmithra
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Nishtha Kusum Jain
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
18
|
Das M, Basu S, Banerjee B, Jana K, Sen A, Datta G. Renoprotective effect of Capsicum annum against ethanol-induced oxidative stress and renal apoptosis. J Food Biochem 2020; 45:e13325. [PMID: 32573796 DOI: 10.1111/jfbc.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022]
Abstract
The present study explored the ameliorative potency of aqueous extract of Capsicum annum (AqCA), against oxidative imbalance and renal toxicity induced by ethanol. Randomly grouped male Wistar rats (n = 6), were marked as ethanol-treated (2 g/kg bw, i.p.), CA125 (125 mg/kg bw, i.p.), CA250 (250 mg/kg bw, i.p.), ethanol pre-treated with CA (similar doses), and control (0.5 ml normal saline, i.p.), and treated for 30 consecutive days. Biochemical analysis of tissue and serum parameters was performed, along with histopathological and histochemical studies. Also, we performed TUNEL assay and western blotting for our experimental groups. Statistical analysis revealed significant (p ≤ .001) alteration in the levels of antioxidant enzymes, serum urea, creatinine, pro-inflammatory cytokines, and cleaved caspases, along with histopathological alterations in the ethanol-treated group. Prior treatment with AqCA prevented ethanol-induced alterations in tissue and serum parameters. These findings indicate that the extract of CA can protect renal cells from ethanol-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis. PRACTICAL APPLICATIONS: Chronic alcohol consumption is a major public health concern that leads to various diseases and social problems as well. It affects both the affluent and non-affluent society equally. Alcohol (ethanol) is a renowned hepato-toxicant and a well-documented risk factor for oxidative stress, with less known effect on the kidney. Thus, it is essential to investigate the effect of alcohol metabolism on the kidney to find a remedy to prevent it. The present investigation depicts the anti-oxidative and anti-inflammatory role of Capsicum annum against ethanol-induced renal damage. The outcome of this study can be utilized in the future for phytotherapeutic herbal drug formulation. Besides, the bioactive components identified in the study can be further explored by researchers or pharmaceutical corporates for potential therapeutic purpose against renal impairment.
Collapse
Affiliation(s)
- Moumita Das
- Department of Physiology, Rammohan College, Kolkata, India
| | - Subhashree Basu
- Department of Physiology, Tamralipta Mahavidyalaya, Tamluk, India
| | | | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Anurupa Sen
- Department of Physiology, City College, Kolkata, India
| | | |
Collapse
|
19
|
Lin CH, Nicol CJ, Cheng YC, Yen C, Wang YS, Chiang MC. Neuroprotective effects of resveratrol against oxygen glucose deprivation induced mitochondrial dysfunction by activation of AMPK in SH-SY5Y cells with 3D gelatin scaffold. Brain Res 2020; 1726:146492. [DOI: 10.1016/j.brainres.2019.146492] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
|
20
|
Chang P, Tian Y, Williams AM, Bhatti UF, Liu B, Li Y, Alam HB. Inhibition of Histone Deacetylase 6 Protects Hippocampal Cells Against Mitochondria-mediated Apoptosis in a Model of Severe Oxygen-glucose Deprivation. Curr Mol Med 2019; 19:673-682. [DOI: 10.2174/1566524019666190724102755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase (HDAC) 6 inhibitors have demonstrated
significant protective effects in traumatic injuries. However, their roles in neuroprotection
and underlying mechanisms are poorly understood. This study sought to investigate the
neuroprotective effects of Tubastatin A (Tub-A), an HDAC6 inhibitor, during oxygenglucose
deprivation (OGD) in HT22 hippocampal cells.
Methods:
HT22 hippocampal cells were exposed to OGD. Cell viability and cytotoxicity
were assessed by cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release
assay. Cellular apoptosis was assessed by Terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) assay. Mitochondria membrane potential was detected using
JC-1 dye. Expressions of acetylated α-tubulin, α-tubulin, cytochrome c, VDAC, Bax, Bcl-
2, cleaved caspase 3, phosphorylated Akt, Akt, phosphorylated GSK3β and GSK3β
were analyzed by Western blot analysis.
Results:
Tub-A induced acetylation of α-tubulin, demonstrating appropriate efficacy.
Tub-A significantly increased cell viability and attenuated LDH release after exposure to
OGD. Furthermore, Tub-A treatment blunted the increase in TUNEL-positive cells
following OGD and preserved the mitochondrial membrane potential. Tub-A also
attenuated the release of cytochrome c from the mitochondria into the cytoplasm and
suppressed the ratio of Bax/Bcl-2 and cleaved caspase 3. This was mediated, in part, by
the increased phosphorylation of Akt and GSK3β signaling pathways.
Conclusion:
HDAC 6 inhibition, using Tub-A, protects against OGD-induced injury in
HT22 cells by modulating Akt/GSK3β signaling and inhibiting mitochondria-mediated
apoptosis.
Collapse
Affiliation(s)
- Panpan Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron M. Williams
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Umar F. Bhatti
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Baoling Liu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Hasan B. Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
21
|
Huang X, Li N, Pu Y, Zhang T, Wang B. Neuroprotective Effects of Ginseng Phytochemicals: Recent Perspectives. Molecules 2019; 24:E2939. [PMID: 31416121 PMCID: PMC6720911 DOI: 10.3390/molecules24162939] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
As our global population ages, the treatment of neurodegenerative diseases is critical to our society. In recent years, researchers have begun to study the role of biologically active chemicals from plants and herbs to gain new inspiration and develop new therapeutic drugs. Ginseng (Panax ginseng C.A. Mey.) is a famous Chinese herbal medicine with a variety of pharmacological activities. It has been used to treat various diseases since ancient times. Extensive research over the years has shown that ginseng has potential as a neuroprotective drug, and its neuroprotective effects can be used to treat and prevent neurological damage or pathologically related diseases (such as Alzheimer's disease, Parkinson's disease, Huntington's disease, depression symptoms, and strokes). Moreover, evidence for the medicinal and health benefits of ginsenoside, its main active ingredient, in the prevention of neurodegenerative diseases is increasing, and current clinical results have not reported any serious adverse reactions to ginseng. Therefore, we briefly review the recent research and development on the beneficial effects and mechanisms of ginseng and its main active ingredient, ginsenoside, in the prevention and treatment of neurodegenerative diseases, hoping to provide some ideas for the discovery and identification of ginseng neuroprotection.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Research Institute of KPC Pharmaceuticals, Inc., Kunming 650106, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
22
|
Zheng C, Zhou M, Sun J, Xiong H, Peng P, Gu Z, Deng Y. The protective effects of liraglutide on AD-like neurodegeneration induced by oxidative stress in human neuroblastoma SH-SY5Y cells. Chem Biol Interact 2019; 310:108688. [PMID: 31173752 DOI: 10.1016/j.cbi.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) has neuroprotective properties in Alzheimer's disease (AD). In this study, our aim is to explore the neuroprotective effects of liraglutide, a GLP-1 analogue, on AD-like neurodegeneration induced by H2O2 in human neuroblastoma SH-SY5Y cells. Cytotoxicity was determined by MTT assay and lactate dehydrogenase level was monitored by LDH assay. The level of lipid peroxidation and cell apoptosis rate were measured by malondialdehyde (MDA) assay and Annexin V-FITC/propidium iodide (PI) staining. Western blotting was used to assess the expression of Bcl-2, Bax, caspase-3, tau and the Akt/GSK-3β. Liraglutide pre-treatment enhanced cell viability with reduced cytotoxicity, lipid peroxidationand and apoptosis. In addition, pre-treatment of liraglutide displayed that increased the expression of the pro-survival Bcl-2 and reduced pro-apoptotic Bax with ameliorated the hyperphosphorylation of tau and Akt/GSK-3β signaling pathway in H2O2 stressed SH-SY5Y cells. These finding provided evidences that liraglutide protected the H2O2 induced AD-like neurodegeneration through improving Akt/GSK-3β signaling pathway. These results suggest that liraglutide may have potential values for the treatment for AD.
Collapse
Affiliation(s)
- Chen Zheng
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China; Department of Physiology, Zunyi Medical University, Zunyi, China
| | - Mei Zhou
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China; Department of Pathology, Tianjin People's Hospital, Tianjin, China
| | - Hui Xiong
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Peng Peng
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Zhongya Gu
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China
| | - Yanqiu Deng
- Pathophysiology Department, School of Basic Medical College, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Effects of Red Ginseng on Neural Injuries with Reference to the Molecular Mechanisms. J 2019. [DOI: 10.3390/j2020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red ginseng, as an effective herbal medicine, has been traditionally and empirically used for the treatment of neuronal diseases. Many studies suggest that red ginseng and its ingredients protect the brain and spinal cord from neural injuries such as ischemia, trauma, and neurodegeneration. This review focuses on the molecular mechanisms underlying the neuroprotective effects of red ginseng and its ingredients. Ginsenoside Rb1 and other ginsenosides are regarded as the active ingredients of red ginseng; the anti-apoptotic, anti-inflammatory, and anti-oxidative actions of ginsenosides, together with a series of bioactive molecules relevant to the above actions, appear to account for the neuroprotective effects in vivo and/or in vitro. Moreover, in this review, the possibility is raised that more effective or stable neuroprotective derivatives based on the chemical structures of ginsenosides could be developed. Although further studies, including clinical trials, are necessary to confirm the pharmacological properties of red ginseng and its ingredients, red ginseng and its ingredients could be promising candidate drugs for the treatment of neural injuries.
Collapse
|
24
|
Anis E, Zafeer MF, Firdaus F, Islam SN, Fatima M, Mobarak Hossain M. Evaluation of phytomedicinal potential of perillyl alcohol in an in vitro Parkinson's Disease model. Drug Dev Res 2018; 79:218-224. [PMID: 30188583 DOI: 10.1002/ddr.21436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 11/10/2022]
Abstract
Preclinical Research & Development Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects approximately 10 million people worldwide. The risk of developing PD and similar neurodegenerative disorders increases with age and an estimated 4% people are diagnosed with the disease before reaching the age of 50. Oxidative stress, cytotoxicity, and mitochondrial dysfunction are common features exhibited in the development of PD. The 6-hyroxydopamine (6-OHDA) model of PD is one of the most well characterized and studied models of the disease. 6-OHDA, a neurotoxin, can induce most characteristic features of the disease, including mitochondrial dysfunction in-vivo and in-vitro. SH-SY5Y is a neuroblastoma cell line of human origin that has been used for dose response studies on PD in the past. Based on previous data, we have used SH-SY5Y cells as an in-vitro model of PD to analyse the phytomedicinal potential of perillyl alcohol (PA), a monoterpenoid obtained from essential oils of various plants such as sage, peppermint and lavender. We have found that pretreatment with PA (10 μM and 20 μM) mitigated 6-OHDA (150 μM) induced cytotoxicity in a dose-dependent manner. We observed marked restoration of cell viability and mitochondrial membrane potential (MMP) as well as reduced reactive oxygen species generation, Cytochrome c immunofluorescence and DNA fragmentation after treatment with PA. On the basis of on our data, we have come to the conclusion that PA demonstrates sufficient neuroprotective activity to provide new avenues in therapy of PD and its apparent target being restoration of MMP can lead to better understanding of the disease.
Collapse
Affiliation(s)
- Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.,Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mahino Fatima
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
25
|
Zhou P, Xie W, Sun Y, Dai Z, Li G, Sun G, Sun X. Ginsenoside Rb1 and mitochondria: A short review of the literature. Mol Cell Probes 2018; 43:1-5. [PMID: 30529056 DOI: 10.1016/j.mcp.2018.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria play a central role in various critical cellular processes, including energy synthesis, energy supply and apoptosis. Panax notoginseng, a commonly used traditional Chinese medicine, has various pharmacological effects on the human body. Ginsenosides are representative bioactive components of P. notoginseng. Recently, more attention has focused on ginsenoside Rb1 as an antioxidative and anti-inflammatory agent that can protect the nervous system and the cardiovascular system. Numerous studies have shown that Rb1 exerts these effects by regulating mitochondrial energy metabolism, mitochondrial fission and fusion, apoptosis, oxidative stress and reactive oxygen species release, mitophagy and mitochondrial membrane potential. Thus, the mitochondria are pivotal targets of Rb1. This review summarized the available reports of the effects of ginsenoside Rb1 on the regulation of mitochondria and showed that it has a promising role in treating mitochondrial diseases.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yifan Sun
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing, 100020, China
| | - Ziru Dai
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
26
|
Oh DR, Kim Y, Choi EJ, Jo A, Shin J, Kang H, Lee SG, Kim J, Kim YR, Choi CY. Antidepressant Effects of Vaccinium bracteatum via Protection Against Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-20. [PMID: 30284467 DOI: 10.1142/s0192415x18500775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The present study evaluates the anti-oxidative stress activity of Vaccinium bracteatum Thunb. fruit extract (VBFW) to identify the mechanisms responsible for its antidepressant-like effects. To evaluate the antidepressant and anti-oxidant effects of VBFW, malondialdehyde (MDA), serotonin transporter (SERT), and monoamine oxidase A (MAO-A) levels were measured in a mouse model of chronic restraint stress (CRS). The underlying mechanisms preventing oxidative stress and neuronal apoptosis were investigated using in vitro models of hydrogen peroxide (H2O[Formula: see text]-induced neuronal damage. The results showed that VBFW treatment (200[Formula: see text]mg/kg) significantly reduced MDA, SERT, and MAO-A levels in the prefrontal cortex of CRS mice. Furthermore, VBFW (30[Formula: see text][Formula: see text]g/mL) exhibited protective effects against H2O2-induced cell death via inhibition of the H2O2-induced increase in Bax and decrease in Bcl-2 levels within the mitochondria of SH-SY5Y cells. Furthermore, VBFW (10 and 30[Formula: see text][Formula: see text]g/mL) exerted protective effects against H2O2-induced cell death through inhibition of key mitochondria-associated apoptotic proteins such as cytochrome c, caspase-3 and PARP. Additionally, VBFW (10 and 30[Formula: see text][Formula: see text]g/mL) could improve the activity of anti-oxidant enzymes (such as SOD and catalase) in H2O2-treated SH-SY5Y cells. These results suggest that the antidepressant and anti-oxidant effects of VBFW might be mediated by the regulation of SERT and MAO-A, and possibly associated with regulation of oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Dool-Ri Oh
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
- † College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yujin Kim
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Eun-Jin Choi
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Ara Jo
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Jawon Shin
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Huwon Kang
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Seul-Gi Lee
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Jaeyong Kim
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| | - Young Ran Kim
- † College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chul Yung Choi
- * Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR), Jeollanamdo 59338, Republic of Korea
| |
Collapse
|
27
|
Platelet mitochondrial dysfunction and the correlation with human diseases. Biochem Soc Trans 2017; 45:1213-1223. [PMID: 29054925 DOI: 10.1042/bst20170291] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
The platelet is considered as an accessible and valuable tool to study mitochondrial function, owing to its greater content of fully functional mitochondria compared with other metabolically active organelles. Different lines of studies have demonstrated that mitochondria in platelets have function far more than thrombogenesis regulation, and beyond hemostasis, platelet mitochondrial dysfunction has also been used for studying mitochondrial-related diseases. In this review, the interplay between platelet mitochondrial dysfunction and oxidative stress, mitochondrial DNA lesions, electron transfer chain impairments, mitochondrial apoptosis and mitophagy has been outlined. Meanwhile, considerable efforts have been made towards understanding the role of platelet mitochondrial dysfunction in human diseases, such as diabetes mellitus, sepsis and neurodegenerative disorders. Alongside this, we have also articulated our perspectives on the development of potential biomarkers of platelet mitochondrial dysfunction in mitochondrial-related diseases.
Collapse
|
28
|
Oguchi T, Ono R, Tsuji M, Shozawa H, Somei M, Inagaki M, Mori Y, Yasumoto T, Ono K, Kiuchi Y. Cilostazol Suppresses Aβ-induced Neurotoxicity in SH-SY5Y Cells through Inhibition of Oxidative Stress and MAPK Signaling Pathway. Front Aging Neurosci 2017; 9:337. [PMID: 29089887 PMCID: PMC5651005 DOI: 10.3389/fnagi.2017.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive form of dementia, characterized by memory impairment and cognitive dysfunction. AD is mainly characterized by the deposition of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles in the brain, along with neuronal degeneration and high levels of oxidative stress. Cilostazol (CSZ) was recently found to suppress the progression of cognitive decline in patients with stable AD receiving acetylcholinesterase inhibitors. This present study aimed to clarify the mechanism by which CSZ protects neurons from degeneration associated with Aβ(1-42). We used Aβ(1-42) to induce neurotoxicity in human neuroblastoma SH-SY5Y cells. Cells were pretreated with CSZ before co-treatment with Aβ. To evaluate the effect of CSZ on oxidative stress, we examined levels of reactive oxygen species (ROS), nicotinamide adenine dinucleotide phosphate oxidase (Nox) activity, mRNA expression of NOX4, and Cu/Zn-Superoxide Dismutase (SOD), as well as apoptosis biomarkers [MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), caspase-3 and -9 activities and staining of annexin V]. We also assayed the activity of mitogen-activated protein kinases (MAPK): p38 MAPK and extracellular signal-regulated kinase1/2 (ERK1/2), and biomarkers of mitochondrial function (Bcl-2 and Bax), and cyclic adenosine monophosphate response element-binding protein (CREB). Aβ-induced oxidative stress (ROS, NOX4 activity, and expression of NOX mRNA), caspase activation (caspase-3 and -9), and p38 MAPK phosphorylation were suppressed by co-treatment with CSZ, but not by ERK1/2 activation. In addition, pretreatment with CSZ suppressed Aβ-induced apoptosis and increased cell viability via suppression of Bax (a proapoptotic protein), upregulation of Bcl-2 (an antiapoptotic protein) and Cu/Zn-SOD (a superoxide scavenging enzyme), and phosphorylation of CREB. These findings suggested that CSZ could counteract neurotoxicity through multiple mechanisms, one mechanism involving the attenuation of oxidative stress by suppressing NOX activity and Nox mRNA expression in Aβ-induced neurotoxicity and another involving the anti-neurotoxic effect via the ERK1/2/phosphorylated CREB pathway.
Collapse
Affiliation(s)
- Tatsunori Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan.,Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Ran Ono
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Hidenobu Shozawa
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Masayuki Somei
- Department of Anesthesiology, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Manami Inagaki
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Yukiko Mori
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan.,Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Taro Yasumoto
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan.,Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
29
|
Fernández-Moriano C, González-Burgos E, Iglesias I, Lozano R, Gómez-Serranillos MP. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS One 2017; 12:e0182933. [PMID: 28813475 PMCID: PMC5558939 DOI: 10.1371/journal.pone.0182933] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
Background Ginseng (Panax sp.) is a drug with multiple pharmacological actions that has been largely used in traditional medicines for the treatment of many health problems. In the therapy of neurodegenerative disorders, it has been employed due to its capacity to strengthen mental processes by enhancing cognitive performance and psychological function. Current work aimed at evaluating the adaptogenic potential of Rb1 and Rg1 against oxidative-stress mediated degeneration in a model of nervous cells. Methods Oxidative stress and mitochondrial dysfunction were achieved by exposing SH-SY5Y cells to the mitochondrial complex I inhibitor rotenone. The cytoprotective activity of pre-treatments with ginsenosides Rb1 and Rg1 against rotenone was assessed by determining biochemical markers regarding oxidative stress (ROS scavenging, glutathione and lipid peroxidation levels, SOD activity and Nrf2 activation) and apoptosis-related alterations (mitochondrial membrane potential, calcium levels, aconitase activity and pro/antiapoptotic proteins). Their capacity to cross the blood brain barrier was also estimated. Results At their optimal doses, ginsenosides Rb1 and Rg1 significantly ameliorated redox status within the cells; they reduced ROS and TBARS levels and improved the glutathione system, as well as they enhanced SOD activity and Nrf2 pathway activation. They protected neuronal cells against MMP loss, calcium homeostasis disruption and aconitase inhibition. Consequently, apoptotic cell death was attenuated by the pre-treatment with ginsenosides, as evidenced by the reduction in caspase-3 and Bax, and the increase in Bcl-2 expressions; also, lower levels of cytochrome C were found in the cytosol. Poor BBB permeation was demonstrated for both ginsenosides. Conclusions In conclusion, ginsenosides Rb1 and Rg1 exhibit neuroprotective potential which is achieved, at least in part, via mitochondrial protection and the plausible involvement of Nrf2 pathway activation. Our results contribute to validate the traditional use of ginseng for cognitive-enhancing purposes and provide basis to encourage further research on the potential of ginsenosides in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Elena González-Burgos
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Irene Iglesias
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Rafael Lozano
- Department of Inorganic Chemistry, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - M. Pilar Gómez-Serranillos
- Department of Pharmacology, School of Pharmacy, University Complutense of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
张 配, 刘 芳, 高 娇, 马 琳, 孙 小, 郑 海, 刘 浩, 赵 素. [Small interfering RNA-mediated monocarboxylate transporter 1 silencing enhances sensitivity of nasopharyngeal carcinoma HNE1/DDP cells to cisplatin-induced apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:883-888. [PMID: 28736362 PMCID: PMC6765516 DOI: 10.3969/j.issn.1673-4254.2017.07.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of small interfering RNA (siRNA)-mediated silencing of monocarboxylate transporter 1 (MCT1) on the sensitivity of drug-resistant nasopharyngeal carcinoma HNE1/DDP cells to cisplatin (DDP)-induced apoptosis and explore the possible mechanism. METHODS The expression of MCT1 was analyzed in HNE1 and HNE1/DDP cells and in HNE1/DDP cells transfected with siRNA using Western blot. MTT assay was used to assess the inhibitory effect of different concentrations of DDP alone or in combination with MCT1 siRNA on the proliferation of HNE1/DDP cells. The apoptosis of cells treated with MCT1 siRNA or/and DDP (8 µmol/L) was assessed using flow cytometry with PI staining, and the mitochondrial membrane potential was detected using JC-1 staining assay; the expressions of Mcl-1, Bak, Bcl-2, and Bax were analyzed using Western blotting. RESULTS HNE1/DDP cells showed a high expression of MCT1, and MCT1 silencing using siRNA significantly increased the sensitivity of HNE1/DDP cells to DDP (P<0.05) and partly reversed DDP resistance of the cells. MCT1 silencing enhanced the sensitivity of HNE1/DDP cells to DDP-induced apoptosis. Treatment of HNE1/DDP cells with MCT1 siRNA combined with 8 µmol/L DDP for 24 h resulted in an apoptotic rate of (51.23∓2.86)%, significantly higher than that in cells treated with MCT1 siRNA or DDP alone (P<0.05). The combined treatment also reduced the mitochondrial membrane potential, down-regulated the expression of Mcl-1 and Bcl-2, and up-regulated the expression of Bax in the DDP-resistant cells. CONCLUSION MCT1 siRNA can enhance the sensitivity of HNE1/DDP cells to DDP-induced apoptosis, the mechanism of which may involve the down-regulation of Mcl-1 and Bcl-2 and up-regulation of Bax expression.
Collapse
Affiliation(s)
- 配 张
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 芳 刘
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 娇 高
- 蚌埠医学院第一附属医院 骨科,安徽 蚌埠 233004Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 琳艳 马
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 小锦 孙
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 海伦 郑
- 蚌埠医学院第一附属医院 消化科,安徽 蚌埠 233004Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 浩 刘
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| | - 素容 赵
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College/Anhui Provincial Engineering Technology Research Center of Biochemical Pharmaceuticals, Anhui Bengbu 233030, China
| |
Collapse
|
31
|
Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng C.A. Meyer. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:118-124. [PMID: 28412215 DOI: 10.1016/j.jep.2017.04.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ginsenoside Rb1, a 20 (S)-protopanaxadiol, is a major active ingredient of Panax ginseng C.A. Meyer, which as the King of Chinese herbs, has been wildly used for the treatment of central nervous system diseases. Previous studies have shown that 20 (S)-protopanaxadiol possesses a novel antidepressant-like effect in the treatment of depression, whereas ginsenoside Rb1 in depression has been rarely reported. AIM OF THE REVIEW The present study was to investigate the antidepressant-like effect of ginsenoside Rb1 and its relevant mechanisms. MATERIALS AND METHODS The whole experiment was divided into two parts: one part we examined the antidepressant-like effect of ginsenoside Rb1 with open-field test (OFT), tail suspension test (TST), forced swim test (FST), 5-HTP induced head-twitch and reserpine response in mice, another part we used chronic unpredicted mild stress (CUMS) model to further explore the antidepressant-like effect of ginsenoside Rb1 with caffeine, fluoxetine and p-Chlorophenylalanine (PCPA) in rats. Furthermore, the levels of monoamine neurotransmitters of NE, 5-HT, DA and their metabolites 5-HIAA, DOPAC, HVA were all measured by ELISA kits after the CUMS protocol. RESULTS Our data indicated that 7 days treatment with ginsenoside Rb1 (4, 8, 10mg/kg, p.o.) significantly decreased immobility time in the FST and TST in mice, and played important roles in mice which were induced by 5-HTP (200mg/kg, i.p.) and reserpine (4mg/kg, i.p.). On the basis of CUMS model, 21 days treatment with ginsenoside Rb1 not only had effective interactions with caffeine (5mg/kg, i.p.), fluoxetine (1mg/kg, i.p.) and PCPA (100mg/kg, i.p.), but also significantly up-regulated the 5-HT, 5-HIAA, NE and DA levels in CUMS rats' brain, whereas HVA and DOPAC had no significant difference. Moreover, there was no alteration in spontaneous locomotion in any experimental group. CONCLUSIONS These results suggest that ginsenoside Rb1 exhibits significant antidepressant-like effect in behavioral tests, chronic animal model and drug interactions, its mechanisms mainly mediated by central neurotransmitters of serotonergic, noradrenergic and dopaminergic systems.
Collapse
Affiliation(s)
- Guo-Li Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhong-Mei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Gang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
32
|
Wang YJ, Yan J, Zou XL, Guo KJ, Zhao Y, Meng CY, Yin F, Guo L. Bone marrow mesenchymal stem cells repair cadmium-induced rat testis injury by inhibiting mitochondrial apoptosis. Chem Biol Interact 2017; 271:39-47. [PMID: 28457857 DOI: 10.1016/j.cbi.2017.04.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022]
Abstract
Cadmium is a highly toxic metal with widespread exposure to people that can cause tissue injuries that lack effective treatment. The aim of this project was to uncover whether bone marrow mesenchymal stem cells (BMSCs) can repair cadmium-induced rat testis injury and to explore the role of mitochondrial apoptosis in this process. To this end, 21 adult male Wistar rats were randomly divided into control, model and therapy groups, 7 each, and were administered 0, 0.4 and 0.4 mg/kg body weight CdCl2 saline solution, respectively, by intraperitoneal injection 5 times per week for 5 weeks. Then, rats in the therapy group were treated with 107 BMSCs by retro-orbital injections, while the others were given equal volumes of phosphate buffered saline. Following 2-week BMSCs-treatment, the therapy rats were heavier than the model rats, despite there being no difference in testicular cadmium contents between these groups, which were both significantly higher than the control group. BMSCs were observed in the testis of the therapy rats, in which pathological changes improved significantly compared with the model group. Expression of the apoptosis-associated proteins Bim, Bax, Cytochrome C, Caspase-3, active-Caspase-3 and AIF increased, while Bcl-2 was reduced significantly in rat testes of model group compared with the other groups. Based on these findings, we conclude that cadmium can accumulate in rat testes where it caused severe tissue injury, BMSCs can be localized to the injured testicular tissue of rats and repair the tissue injury, these reparative effects may be highly related with mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Jun Yan
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Xiao-Li Zou
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ke-Jun Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Yue Zhao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Chun-Yang Meng
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Screening and identification of neuroprotective compounds produced by Lactobacillus paracasei subsp. paracasei NTU 101. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Banerjee B, Chakraborty S, Ghosh D, Raha S, Sen PC, Jana K. Benzo(a)pyrene Induced p53 Mediated Male Germ Cell Apoptosis: Synergistic Protective Effects of Curcumin and Resveratrol. Front Pharmacol 2016; 7:245. [PMID: 27551266 PMCID: PMC4976231 DOI: 10.3389/fphar.2016.00245] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 12/02/2022] Open
Abstract
Benzo(a)pyrene (B(a)P) is an environmental toxicant that induces male germ cell apoptosis. Curcumin and resveratrol are phytochemicals with cytoprotective and anti-oxidative properties. At the same time resveratrol is also a natural Aryl hydrocarbon Receptor (AhR) antagonist. Our present study in isolated testicular germ cell population from adult male Wistar rats, highlighted the synergistic protective effect of curcumin and resveratrol against B(a)P induced p53 mediated germ cell apoptosis. Curcumin-resveratrol significantly prevented B(a)P induced decrease in sperm cell count and motility, as well as increased serum testosterone level. Curcumin-resveratrol co-treatment actively protected B(a)P induced testicular germ cell apoptosis. Curcumin-resveratrol co-treatment decreased the expression of pro-apoptotic proteins like cleaved caspase 3, 8 and 9, cleaved PARP, Apaf1, FasL, tBid. Curcumin-resveratrol co-treatment decreased Bax/Bcl2 ratio, mitochondria to cytosolic translocation of cytochrome c and activated the survival protein Akt. Curcumin-resveratrol decreased the expression of p53 dependent apoptotic genes like Fas, FasL, Bax, Bcl2, and Apaf1. B(a)P induced testicular reactive oxygen species (ROS) generation and oxidative stress were significantly ameliorated with curcumin and resveratrol. Curcumin-resveratrol co-treatment prevented B(a)P induced nuclear translocation of AhR and CYP1A1 (Cytochrome P4501A1) expression. The combinatorial treatment significantly inhibited B(a)P induced ERK 1/2, p38 MAPK and JNK 1/2 activation. B(a)P treatment increased the expression of p53 and its phosphorylation (p53 ser 15). Curcumin-resveratrol co-treatment significantly decreased p53 level and its phosphorylation (p53 ser 15). The study concludes that curcumin-resveratrol synergistically modulated MAPKs and p53, prevented oxidative stress, regulated the expression of pro and anti-apoptotic proteins as well as the proteins involved in B(a)P metabolism thus protected germ cells from B(a)P induced apoptosis.
Collapse
Affiliation(s)
- Bhaswati Banerjee
- Division of Molecular Medicine, Bose Institute, Calcutta Improvement Trust Scheme VIIM Kolkata, India
| | - Supriya Chakraborty
- Division of Molecular Medicine, Bose Institute, Calcutta Improvement Trust Scheme VIIM Kolkata, India
| | - Debidas Ghosh
- Department of Bio-Medical Laboratory Science and Management, Vidyasagar University Midnapore, India
| | - Sanghamitra Raha
- Department of Biotechnology and Integrated Sciences, Visva Bharati Shantiniketan, India
| | - Parimal C Sen
- Division of Molecular Medicine, Bose Institute, Calcutta Improvement Trust Scheme VIIM Kolkata, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Calcutta Improvement Trust Scheme VIIM Kolkata, India
| |
Collapse
|
35
|
Resveratrol ameliorates benzo(a)pyrene-induced testicular dysfunction and apoptosis: involvement of p38 MAPK/ATF2/iNOS signaling. J Nutr Biochem 2016; 34:17-29. [DOI: 10.1016/j.jnutbio.2016.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 11/20/2022]
|
36
|
Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: A review. Brain Res Bull 2016; 125:30-43. [DOI: 10.1016/j.brainresbull.2016.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
|
37
|
Feng C, Luo T, Zhang S, Liu K, Zhang Y, Luo Y, Ge P. Lycopene protects human SH‑SY5Y neuroblastoma cells against hydrogen peroxide‑induced death via inhibition of oxidative stress and mitochondria‑associated apoptotic pathways. Mol Med Rep 2016; 13:4205-14. [PMID: 27035331 PMCID: PMC4838073 DOI: 10.3892/mmr.2016.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/14/2016] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death.
Collapse
Affiliation(s)
- Chunsheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuyan Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanhong Zhang
- Department of Emergent Medicine, People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
38
|
Tang B, Tang F, Li B, Yuan S, Xu Q, Tomlinson S, Jin J, Hu W, He S. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2016; 6:12654-67. [PMID: 25909224 PMCID: PMC4494964 DOI: 10.18632/oncotarget.3705] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) removes ubiquitin from histones, thus regulating gene transcription. The expression frequency and expression levels of USP22 were significantly higher in hepatocellular carcinoma (HCC) than in normal liver tissues. High USP22 expression in HCC was significantly correlated with clinical stage and tumor grade. Kaplan-Meier analysis showed that elevated USP22 expression predicted poorer overall survival and recurrence-free survival. High USP22 expression was also associated with shortened survival time in patients at advanced tumor stages and with high grade HCC. Multivariate analyses revealed that USP22 expression is an independent prognostic parameter in HCC. These findings provide evidence that high USP22 expression might be important in tumor progression and serves as an independent molecular marker for poor HCC prognosis. Thus, USP22 overexpression identifies patients at high risk and represents a novel therapeutic molecular target for this tumor.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Fang Tang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Qing Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| | - Wei Hu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Songqing He
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
39
|
YiQiFuMai Powder Injection Ameliorates Cerebral Ischemia by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5493279. [PMID: 27087890 PMCID: PMC4818822 DOI: 10.1155/2016/5493279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 02/05/2023]
Abstract
YiQiFuMai (YQFM) powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER) stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO-) injured mice and the oxygen-glucose deprivation- (OGD-) induced pheochromocytoma (PC12) cells. The results showed that single administration of YQFM (1.342 g/kg, i.p.) could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF) after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL) could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathways in vivo and in vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases.
Collapse
|
40
|
Nataraj J, Manivasagam T, Justin Thenmozhi A, Essa MM. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr Neurosci 2016; 20:351-359. [PMID: 26856988 DOI: 10.1080/1028415x.2015.1135559] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease, manifested due to the loss of dopaminergic neurons, which ultimately leads to impaired movement in elderly populations. The pathogenesis of PD is associated with numerous factors including oxidative stress, mitochondrial dysfunction and apoptosis. There is no effective therapy available to cure or halt the progression of this disease still now. Asiatic acid (AA) is a triterpene extracted from Centella asiatica has been reported as an antioxidant and anti-inflammatory agent, that offers neuroprotection against glutamate toxicity. Therefore, in this study, we have investigated the effect of AA in a rotenone (an inhibitor of mitochondrial complex I) induced in vitro model of PD. Following the exposure of SH-SY5Y cells to rotenone, there was a marked overproduction of ROS, mitochondrial dysfunction (as indexed by the decrease in mitochondrial membrane potential) and apoptosis (Hoechst and dual staining, comet assay; expressions of pro-apoptotic and anti-apoptotic indices). Pre-treatment with AA reversed these changes might be due to its antioxidant, mitoprotective and anti-apoptotic properties. However further extensive studies on in vivo models of PD are warranted to prove AA neuroprotective effect before entering into the clinical trial.
Collapse
Affiliation(s)
- Jagatheesan Nataraj
- a Department of Biochemistry and Biotechnology , Faculty of Science, Annamalai University , Annamalai Nagar , Tamilnadu 608 002 , India
| | - Thamilarasan Manivasagam
- a Department of Biochemistry and Biotechnology , Faculty of Science, Annamalai University , Annamalai Nagar , Tamilnadu 608 002 , India
| | - Arokiasamy Justin Thenmozhi
- a Department of Biochemistry and Biotechnology , Faculty of Science, Annamalai University , Annamalai Nagar , Tamilnadu 608 002 , India
| | - Musthafa Mohamed Essa
- b Department of Food Science and Nutrition , CAMS, Sultan Qaboos University , Muscat , Oman.,c Ageing and Dementia Research Group , Sultan Qaboos University , Muscat , Oman
| |
Collapse
|
41
|
Chang R, Zhou R, Qi X, Wang J, Wu F, Yang W, Zhang W, Sun T, Li Y, Yu J. Protective effects of aloin on oxygen and glucose deprivation-induced injury in PC12 cells. Brain Res Bull 2016; 121:75-83. [PMID: 26772628 DOI: 10.1016/j.brainresbull.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
The present study aims to determine whether aloin could protect cells from ischemic and reperfusion injury in vitro and to elucidate the related mechanisms. Oxygen and glucose deprivation model in PC12 cells was used in the present study. 2-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assay and Hoechst 33342 nuclear staining were used to evaluate the protective effects of aloin, at concentrations of 10, 20, or 40 μg/mL in PC12 cells. PCR was applied to detect fluorescence caspase-3, Bax and Bcl-2 mRNA expression in PC12 cells. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were evaluated by biochemical method. The concentration of intracellular-free calcium [Ca(2+)]i, mitochondrial membrane potential (MMP) were determined to estimate the degree of neuronal damage. It was shown that aloin (10, 20, and 40 μg/mL) significantly attenuated PC12 cells damage with characteristics of an increased injured cells absorbance of MTT and releases of LDH, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-reoxygenation. Meanwhile pretreatment with aloin significantly reduced injury-induced intracellular ROS, increased MMP (P<0.01), but it inhibited [Ca(2+)]i (P<0.01) elevation in a dose-dependent manner. Furthermore, pre-treatment with aloin significantly up-regulated Bcl-2 mRNA expression, down-regulated Bax mRNA expression and consequently activated caspase-3 mRNA expression in a dose-dependent manner. The results indicated that the protection of aloin on OGD-induced apoptosis in PC12 cells is associated with its suppression on OGD-induced oxidative stress and protection on mitochondrial function and inhibition of caspase activity. Alion could be a promising candidate in the development of a novel class of anti-ischemic agent.
Collapse
Affiliation(s)
- Renyuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fan Wu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenli Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wannian Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China; Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
42
|
Li YH, Li YY, Fan GW, Yu JH, Duan ZZ, Wang LY, Yu B. Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition. Chin J Integr Med 2016:10.1007/s11655-015-2433-6. [PMID: 26740222 DOI: 10.1007/s11655-015-2433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the role of ginsenoside Rb1 (Gs-Rb1) in cardioprotection against ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) injury and to explore whether the cardioprotective action is mediated via attenuating the formation of mitochondrial permeability transition pore (mPTP). METHODS A Langendorff-perfused model of rat heart was employed. I/R injury was induced by breaking off perfusion for 40 min then reperfusion for 60 min. Gs-Rb1 (100 μmol/L) were administrated for 10 min before I/R. Infarct size was estimated by the 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Lactate dehydrogenase (LDH) and creatine kinase (CK) released from effluents were measured. Transmission electron microscopy was performed to assess morphological difference between cardiac mitochondrial isolated from I/R rats and Gs-Rb1 pretreated rats. Western blot analysis was used to determine phosphorylation of protein kinase B/Akt, and its downstream target glycogen synthase kinase 3β (GSK-3β). Incubation isolated cardiac mitochondria with Gs-Rb1, Ca2+-induced opening of the mPTP was assessed by the reduction of absorbance at 520 nm (A520). Neonatal rat cardiomyocytes were subjected to hypoxia 9 h followed by reoxygenation 4 h to induce H/R injury. After pretreated with different concentration of Gs-Rb1 (6.25, 25, 100 μmol/L ), cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) method. The membrane potential was estimated by Rh123 fluorescence. mPTP opening was measured using the probe calcein-AM. RESULTS Gs-Rb1 100 μmol/L significantly reduced the infarct size of hearts (26.39%±11.67% vs. I/R group 56.68%±5.88%, P<0.01). Compared with the I/R group, Gs-Rb1 pretreatment decreased LDH and CK levels in the coronary effluent (P<0.05 or P<0.01) as well as attenuated destructive ultrastructure induced by I/R. The protective effect of Gs-Rb1 involved in phosphorylating protein kinase B/PKB (Akt) and GSK-3β. In mitochondria isolated from rat hearts, significant inhibition of Ca2+-induced swelling was observed in samples that were pretreated with Gs-Rb1 (6.25, 25, 100, 400 μmol/L) for 10 min. When cardiomyocytes were isolated from neonatal rat and subjected to H/R, cell viability was increased with treatment of Gs-Rb1 (6.25, 25, 100 μmol/L ). Gs-Rb1 inhibited mPTP opening and restored subsequent loss of mitochondrial membrane potential. CONCLUSION Gs-Rb1 presents cardioprotective effect against I/R or H/R injury which involves in activating Akt, phosphorylating GSK-3β and inhibiting mPTP opening.
Collapse
Affiliation(s)
- Yu-Hong Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan-Yan Li
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guan-Wei Fan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jia-Hui Yu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhen-Zhen Duan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ling-Yan Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- State Key Laboratory of Modern Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
43
|
Jiang LH, Yuan XL, Yang NY, Ren L, Zhao FM, Luo BX, Bian YY, Xu JY, Lu DX, Zheng YY, Zhang CJ, Diao YM, Xia BM, Chen G. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway. J Steroid Biochem Mol Biol 2015; 152:45-52. [PMID: 25864625 DOI: 10.1016/j.jsbmb.2015.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
We previously reported that daucosterol (a sterolin) up-regulates the expression of insulin-like growth factor I (IGF1)(1) protein in neural stem cells. In this study, we investigated the effects of daucosterol on the survival of cultured cortical neurons after neurons were subjected to oxygen and glucose deprivation and simulated reperfusion (OGD/R)(2), and determined the corresponding molecular mechanism. The results showed that post-treatment of daucosterol significantly reduced neuronal loss, as well as apoptotic rate and caspase-3 activity, displaying the neuroprotective activity. We also found that daucosterol increased the expression level of IGF1 protein, diminished the down-regulation of p-AKT(3) and p-GSK-3β(4), thus activating the AKT(5) signal pathway. Additionally, it diminished the down-regulation of the anti-apoptotic proteins Mcl-1(6) and Bcl-2(7), and decreased the expression level of the pro-apoptotic protein Bax(8), thus raising the ratio of Bcl-2/Bax. The neuroprotective effect of daucosterol was inhibited in the presence of picropodophyllin (PPP)(9), the inhibitor of insulin-like growth factor I receptors (IGF1R)(10). Our study provided information about daucosterol as an efficient and inexpensive neuroprotectants, to which the IGF1-like activity of daucosterol contributes. Daucosterol could be potentially developed as a medicine for ischemic stroke treatment.
Collapse
Affiliation(s)
- Li-hua Jiang
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-lin Yuan
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Nian-yun Yang
- Department of Pharmacogonosy, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Li Ren
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Feng-ming Zhao
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Ban-xin Luo
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Yao-yao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Jian-ya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Da-xiang Lu
- School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yuan-yuan Zheng
- School of Medicine, Jinan University, Guangzhou 510632, China
| | | | - Yuan-ming Diao
- School of Basic Medical Science,Guangzhou University of Chinese Medicine, Guangzhou 510006,China
| | - Bao-mei Xia
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China
| | - Gang Chen
- Laboratory of Integrative Biomedicine of Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210038, China; Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
44
|
Rastogi V, Santiago-Moreno J, Doré S. Ginseng: a promising neuroprotective strategy in stroke. Front Cell Neurosci 2015; 8:457. [PMID: 25653588 PMCID: PMC4299449 DOI: 10.3389/fncel.2014.00457] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022] Open
Abstract
Ginseng is one of the most widely used herbal medicines in the world. It has been used in the treatment of various ailments and to boost immunity for centuries; especially in Asian countries. The most common ginseng variant in traditional herbal medicine is ginseng, which is made from the peeled and dried root of Panax Ginseng. Ginseng has been suggested as an effective treatment for a vast array of neurological disorders, including stroke and other acute and chronic neurodegenerative disorders. Ginseng’s neuroprotective effects are focused on the maintenance of homeostasis. This review involves a comprehensive literature search that highlights aspects of ginseng’s putative neuroprotective effectiveness, focusing on stroke. Attenuation of inflammation through inhibition of various proinflammatory mediators, along with suppression of oxidative stress by various mechanisms, including activation of the cytoprotective transcriptional factor Nrf2, which results in decrease in reactive oxygen species, could account for its neuroprotective efficacy. It can also prevent neuronal death as a result of stroke, thus decreasing anatomical and functional stroke damage. Although there are diverse studies that have investigated the mechanisms involved in the efficacy of ginseng in treating disorders, there is still much that needs to be clarified. Both in vitro and in vivo studies including randomized controlled clinical trials are necessary to develop in-depth knowledge of ginseng and its practical applications.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Juan Santiago-Moreno
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| | - Sylvain Doré
- Departments of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Psychiatry, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA ; Departments of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
45
|
Wang X, Yu S, Wang CY, Wang Y, Liu HX, Cui Y, Zhang LD. Advanced glycation end products induce oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In Vitro Cell Dev Biol Anim 2014; 51:204-9. [DOI: 10.1007/s11626-014-9823-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022]
|
46
|
Zhang Q, Yang B, Zhai X, Zhao K, Wu Z, Zhu Q, Zhang J, Wei X, Zhao Y, Cai J, Zhu Z. Protective Effects of Ginsenosides Rb2 on Irradiation-Induced Hematopoietic System Injury in the Mice. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.524.527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Gong G, Yuan L, Cai L, Ran M, Zhang Y, Gong H, Dai X, Wu W, Dong H. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons. PLoS One 2014; 9:e105944. [PMID: 25237906 PMCID: PMC4169508 DOI: 10.1371/journal.pone.0105944] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.
Collapse
Affiliation(s)
- Gu Gong
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Libang Yuan
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Maorong Ran
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Yulan Zhang
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Huaqu Gong
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Xuemei Dai
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Wei Wu
- Department of Anesthesia, General Hospital of Chengdu Military Area Command, Chengdu, Sichuan, China
| | - Hailong Dong
- Department of Anesthesia, the Fourth Military Medical University Xijing Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
48
|
Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. Int J Mol Sci 2014; 15:15426-42. [PMID: 25257523 PMCID: PMC4200757 DOI: 10.3390/ijms150915426] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/16/2022] Open
Abstract
Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.
Collapse
|
49
|
Water-soluble coenzyme q10 inhibits nuclear translocation of apoptosis inducing factor and cell death caused by mitochondrial complex I inhibition. Int J Mol Sci 2014; 15:13388-400. [PMID: 25089873 PMCID: PMC4159800 DOI: 10.3390/ijms150813388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.
Collapse
|
50
|
GAO ZHITAO, ZHU MOLI, WU YAPING, GAO PAN, QIN ZHIHAI, WANG HUI. Interferon-λ1 induces G1 phase cell cycle arrest and apoptosis in gastric carcinoma cells in vitro. Oncol Rep 2014; 32:199-204. [DOI: 10.3892/or.2014.3185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
|