1
|
Han Y, Liu S, Zhu J, Liu P, Meng Z, Li Y, Li S, Fan F, Zhang M, Liu H. Experimental study on the inhibitory effect of Halofuginone on NSCLC. Eur J Pharmacol 2025; 988:177221. [PMID: 39710292 DOI: 10.1016/j.ejphar.2024.177221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In recent decades, significant advancements have been achieved in non-small cell lung cancer (NSCLC) treatment. However, drug resistance, postoperative recurrence, distant metastasis, and other critical issues arise during NSCLC treatment. Natural products play a crucial role in the development of anti-tumor drugs. Halofuginone (HF) is a derivative of Febrifugine, an extract of Dichroa febrifuga Lour, a traditional Chinese medicine. Recent studies on HF have demonstrated its antitumor activity and great potential for clinical applications. However, its antitumor effects and mechanisms in NSCLC remain unknown. This study aimed to elucidate the antitumor effect of HF on NSCLC and preliminarily explore its mechanism of action. The proliferation-related assay revealed that HF could inhibit the proliferation of lung adenocarcinoma cells HCC827 and H1975. Network pharmacology of HF and NSCLC indicated that HF could induce cellular oxidative stress, and the antitumor effect was related to autophagy, apoptosis, and cell cycle arrest. Experimental analysis using flow cytometry and western blotting confirmed that HF indeed induced autophagy, enhanced apoptosis, and caused cell cycle arrest. The addition of N-acetyl-cysteamine acid inhibits the HF-induced increase in reactive oxygen species levels, inhibits autophagy and apoptosis, and alters cell cycle distribution. The HCC827 transplantation tumor animal model established that HF substantially inhibited the growth of transplanted tumors. These findings suggest that HF exerts a significant inhibitory effect on NSCLC in vivo and in vitro. The inhibitory effect of HF on NSCLC was associated with the increase of ROS in tumor cells, induction of autophagy and apoptosis, and cell cycle arrest.
Collapse
Affiliation(s)
- Yuehua Han
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Shiyao Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Juan Zhu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Peipei Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Zixuan Meng
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Yongping Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Shanshan Li
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Fangtian Fan
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Mengxiao Zhang
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| | - Hao Liu
- School of Pharmacy, Bengbu Medical University, Bengbu, China; Anhui Province Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China.
| |
Collapse
|
2
|
Rai S, Szaruga M, Pitera AP, Bertolotti A. Integrated stress response activator halofuginone protects mice from diabetes-like phenotypes. J Cell Biol 2024; 223:e202405175. [PMID: 39150520 PMCID: PMC11329777 DOI: 10.1083/jcb.202405175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues. We found that daily oral administration of HF increases glucose tolerance whilst reducing weight gain, insulin resistance, and serum insulin in DIO mice. Conversely, the ISR inhibitor GSK2656157, used at low doses to optimize its selectivity, aggravates glucose intolerance in DIO mice. Whilst loss of function mutations in mice and humans have revealed that PERK is the essential ISR kinase that protects from diabetes, our work demonstrates the therapeutic value of increasing ISR signaling by activating the related kinase GCN2 to reduce diabetes phenotypes in a DIO mouse model.
Collapse
Affiliation(s)
- Shashank Rai
- MRC Laboratory of Molecular Biology , Cambridge, UK
| | | | | | | |
Collapse
|
3
|
Yu SM, Zhao MM, Zheng YZ, Zhang JC, Liu ZP, Tu PF, Wang H, Wei CY, Zeng KW. Chemoproteomic Strategy Identifies PfUCHL3 as the Target of Halofuginone. Chembiochem 2024; 25:e202400269. [PMID: 38923255 DOI: 10.1002/cbic.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.
Collapse
Affiliation(s)
- Si-Miao Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong-Zhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ji-Chao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zheng-Ping Liu
- Shandong Academy of Pharmaceutical Sciences, Shandong Engineering Research Center of New Sustained and Controlled Release Formulations and Drug Targeted Delivery Systems, Jinan, 250101, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Chun-Yan Wei
- Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 5# Dong Dan San Tiao, Beijing, 100005, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
4
|
Lee DY, Kwon YN, Lee K, Kim SJ, Sung JJ. Dual effects of TGF-β inhibitor in ALS - inhibit contracture and neurodegeneration. J Neurochem 2024; 168:2495-2514. [PMID: 38515326 DOI: 10.1111/jnc.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
As persistent elevation of transforming growth factor-β (TGF-β) promotes fibrosis of muscles and joints and accelerates disease progression in amyotrophic lateral sclerosis (ALS), we investigated whether inhibition of TGF-β would be effective against both exacerbations. The effects of TGF-β and its inhibitor on myoblasts and fibroblasts were tested in vitro and confirmed in vivo, and the dual action of a TGF-β inhibitor in ameliorating the pathogenic role of TGF-β in ALS mice was identified. In the peripheral neuromuscular system, fibrosis in the muscles and joint cavities induced by excessive TGF-β causes joint contracture and muscular degeneration, which leads to motor dysfunction. In an ALS mouse model, an increase in TGF-β in the central nervous system (CNS), consistent with astrocyte activity, was associated with M1 microglial activity and pro-inflammatory conditions, as well as with neuronal cell death. Treatment with the TGF-β inhibitor halofuginone could prevent musculoskeletal fibrosis, resulting in the alleviation of joint contracture and delay of motor deterioration in ALS mice. Halofuginone could also reduce glial cell-induced neuroinflammation and neuronal apoptosis. These dual therapeutic effects on both the neuromuscular system and the CNS were observed from the beginning to the end stages of ALS; as a result, treatment with a TGF-β inhibitor from the early stage of disease delayed the time of symptom exacerbation in ALS mice, which led to prolonged survival.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Nam Kwon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwangkook Lee
- Research Department, Curamys Co., Ltd., Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| |
Collapse
|
5
|
Wang M, Xu XR, Bai QX, Wu LH, Yang XP, Yang DQ, Kuang HX. Dichroa febrifuga Lour.: A review of its botany, traditional use, phytochemistry, pharmacological activities, toxicology, and progress in reducing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118093. [PMID: 38537842 DOI: 10.1016/j.jep.2024.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dichroa febrifuga Lour., a toxic but extensively used traditional Chinese medicine with a remarkable effect, is commonly called "Changshan" in China. It has been used to treat malaria and many other parasitic diseases. AIM OF THE REVIEW The study aims to provide a current overview of the progress in the research on traditional use, phytochemistry, pharmacological activities, toxicology, and methods of toxicity reduction of D. febrifuga. Additionally, further research directions and development prospects for the plant were put forward. MATERIALS AND METHODS The article uses "Dichroa febrifuga Lour." "D. febrifuga" as the keyword and all relevant information on D. febrifuga was collected from electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), doctoral and master's dissertations and classic books about Chinese herbs. RESULTS 30 chemical compounds, including alkaloids, terpenoids, flavonoids and other kinds, were isolated and identified from D. febrifuga. Modern pharmacological studies have shown that these components have a variety of pharmacological activities, including anti-malarial activities, anti-inflammatory activities, anti-tumor activities, anti-parasitic activities and anti-oomycete activities. Meanwhile, alkaloids, as the material basis of its efficacy, are also the source of its toxicity. It can cause multiple organ damage, including liver, kidney and heart, and cause adverse reactions such as nausea and vomiting, abdominal pain and diarrhea. In the current study, the toxicity can be reduced by modifying the structure of the compound, processing and changing the dosage forms. CONCLUSIONS There are few studies on the chemical constituents of D. febrifuga, so the components and their structure characterization contained in it can become the focus of future research. In view of the toxicity of D. febrifuga, there are many methods to reduce it, but the safety and rationality of these methods need further study.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Rui Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Peng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
6
|
Zhou J, Xia M, Huang Z, Qiao H, Yang G, Qian Y, Li P, Zhang Z, Gao X, Jiang L, Wang J, Li W, Fang P. Structure-guided conversion from an anaplastic lymphoma kinase inhibitor into Plasmodium lysyl-tRNA synthetase selective inhibitors. Commun Biol 2024; 7:742. [PMID: 38890421 PMCID: PMC11189516 DOI: 10.1038/s42003-024-06455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.
Collapse
Affiliation(s)
- Jintong Zhou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mingyu Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhenghui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Hang Qiao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guang Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhaolun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Xinai Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Pengfei Fang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Di Dalmazi G, Giuliani C, Bucci I, Mascitti M, Napolitano G. Promising Role of Alkaloids in the Prevention and Treatment of Thyroid Cancer and Autoimmune Thyroid Disease: A Comprehensive Review of the Current Evidence. Int J Mol Sci 2024; 25:5395. [PMID: 38791433 PMCID: PMC11121374 DOI: 10.3390/ijms25105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Thyroid cancer (TC) and thyroid autoimmune disorders (AITD) are among the most common diseases in the general population, with higher incidence in women. Chronic inflammation and autoimmunity play a pivotal role in carcinogenesis. Some studies, indeed, have pointed out the presence of AITD as a risk factor for TC, although this issue remains controversial. Prevention of autoimmune disease and cancer is the ultimate goal for clinicians and scientists, but it is not always feasible. Thus, new treatments, that overcome the current barriers to prevention and treatment of TC and AITD are needed. Alkaloids are secondary plant metabolites endowed with several biological activities including anticancer and immunomodulatory properties. In this perspective, alkaloids may represent a promising source of prophylactic and therapeutic agents for TC and AITD. This review encompasses the current published literature on alkaloids effects on TC and AITD, with a specific focus on the pathways involved in TC and AITD development and progression.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Mascitti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Napolitano
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Kang C, Yun D, Yoon H, Hong M, Hwang J, Shin HM, Park S, Cheon S, Han D, Moon KC, Kim HY, Choi EY, Lee EY, Kim MH, Jeong CW, Kwak C, Kim DK, Oh KH, Joo KW, Lee DS, Kim YS, Han SS. Glutamyl-prolyl-tRNA synthetase (EPRS1) drives tubulointerstitial nephritis-induced fibrosis by enhancing T cell proliferation and activity. Kidney Int 2024; 105:997-1019. [PMID: 38320721 DOI: 10.1016/j.kint.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024]
Abstract
Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.
Collapse
Affiliation(s)
- Chaelin Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Haein Yoon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Minki Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Juhyeon Hwang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seokwoo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seongmin Cheon
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Young Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Tang D, Chen XH, Yu YD, Deng Y. Synthesis and evaluation of febrifugine derivatives as anticoccidial agents. Arch Pharm (Weinheim) 2024; 357:e2300540. [PMID: 38217306 DOI: 10.1002/ardp.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
A series of new febrifugine derivatives with a 4(3H)-quinazolinone scaffold were synthesized and evaluated for their anticoccidial activity both in vitro and in vivo. The targets' in vitro activity against Eimeria tenella was studied using quantitative real-time reverse transcription polymerase chain reaction and Madin-Darby bovine kidney cells. Most of these compounds demonstrated anticoccidial efficacy, with inhibition ratios ranging from 3.3% to 85.7%. Specifically, compounds 33 and 34 showed significant inhibitory effects on the proliferation of E. tenella and exhibited lower cytotoxicity compared to febrifugine. The IC50 values of compounds 33 and 34 were 3.48 and 1.79 μM, respectively, while the CC50 values were >100 μM for both compounds. Furthermore, in a study involving 14-day-old chickens infected with 5 × 104 sporulated oocysts, treatment with five selected compounds (22, 24, 28, 33, and 34), which exhibited in vitro inhibition rate of over 50% at 100 μM, at a dose of 40 mg/kg in daily feed for 8 consecutive days showed that compound 34 possessed moderate in vivo activity against coccidiosis, with an anticoccidial index of 164. Structure-activity relationship studies suggested that spirocyclic piperidine may be a preferable substructure to maintain high effectiveness in inhibiting Eimeria spp., when the side chain 1-(3-hydroxypiperidin-2-yl)propan-2-one was replaced.
Collapse
Affiliation(s)
- Da Tang
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| | - Xiao-Hu Chen
- Department of Clinical Laboratory, Rongchang District People's Hospital, Rongchang, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| | - Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang, China
| |
Collapse
|
10
|
Zhu J, Wei J, Lin Y, Tang Y, Su Z, Li L, Liu B, Cai X. Inhibition of IL-17 signaling in macrophages underlies the anti-arthritic effects of halofuginone hydrobromide: Network pharmacology, molecular docking, and experimental validation. BMC Complement Med Ther 2024; 24:105. [PMID: 38413973 PMCID: PMC10900594 DOI: 10.1186/s12906-024-04397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a prevalent autoimmune disease marked by chronic synovitis as well as cartilage and bone destruction. Halofuginone hydrobromide (HF), a bioactive compound derived from the Chinese herbal plant Dichroa febrifuga Lour., has demonstrated substantial anti-arthritic effects in RA. Nevertheless, the molecular mechanisms responsible for the anti-RA effects of HF remain unclear. METHODS This study employed a combination of network pharmacology, molecular docking, and experimental validation to investigate potential targets of HF in RA. RESULTS Network pharmacology analyses identified 109 differentially expressed genes (DEGs) resulting from HF treatment in RA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses unveiled a robust association between these DEGs and the IL-17 signaling pathway. Subsequently, a protein-protein interaction (PPI) network analysis revealed 10 core DEGs, that is, EGFR, MMP9, TLR4, ESR1, MMP2, PPARG, MAPK1, JAK2, STAT1, and MAPK8. Among them, MMP9 displayed the greatest binding energy for HF. In an in vitro assay, HF significantly inhibited the activity of inflammatory macrophages, and regulated the IL-17 signaling pathway by decreasing the levels of IL-17 C, p-NF-κB, and MMP9. CONCLUSION In summary, these findings suggest that HF has the potential to inhibit the activation of inflammatory macrophages through its regulation of the IL-17 signaling pathway, underscoring its potential in the suppression of immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Junping Zhu
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jiaming Wei
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Ye Lin
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoli Su
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, China.
- Guangxi Provincial Key Laboratory of Preventive and Therapeutic Research in Prevalent Diseases in West Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiong Cai
- Department of Rheumatology, First Hospital, School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
11
|
Tomazini BM, Tramujas L, Medrado FA, Gomes SPDC, Negrelli KL, Murinize GS, Santos RHN, Vianna BMP, Piotto BF, Veiga TS, do Santos BR, Peneluppi Horak AC, Lemos OMC, Lopes MDA, Olicheski BB, Campones DL, Peixoto LAA, Basilio ADAC, Gebara OCE, Lopes ATA, Saconato H, Valeis N, Miranda TA, Laranjeira LN, Santucci EV, Carlin AF, Esko JD, Gordts PLSM, Tsimikas S, Cavalcanti AB. Halofuginone for non-hospitalized adult patients with COVID-19 a multicenter, randomized placebo-controlled phase 2 trial. The HALOS trial. PLoS One 2024; 19:e0299197. [PMID: 38394069 PMCID: PMC10889621 DOI: 10.1371/journal.pone.0299197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Halofuginone (PJS-539) is an oral prolyl-tRNA synthetase inhibitor that has a potent in vitro activity against SARS-CoV-2 virus. The safety and efficacy of halofuginone in Covid-19 patients has not been studied. METHODS We conducted a phase II, randomized, double-blind, placebo-controlled, dose ranging, safety and tolerability trial of halofuginone in symptomatic (≤ 7 days), mostly vaccinated, non-hospitalized adults with mild to moderate Covid-19. Patients were randomized in a 1:1:1 ratio to receive halofuginone 0.5mg, 1mg or placebo orally once daily for 10 days. The primary outcome was the decay rate of the SARS-CoV-2 viral load logarithmic curve within 10 days after randomization. RESULTS From September 25, 2021, to February 3, 2022, 153 patients were randomized. The mean decay rate in SARS-CoV-2 viral load log10 within 10 days was -3.75 (95% CI, -4.11; -3.19) in the placebo group, -3.83 (95% CI, -4.40; -2.27) in the halofuginone 0.5mg group and -4.13 (95% CI, -4.69; -3.57) in the halofuginone 1mg group, with no statistically significant difference in between placebo vs. halofuginone 0.5mg (mean difference -0.08; 95% CI -0.82 to 0.66, p = 0.96) and between placebo vs. halofuginone 1mg (mean difference -0.38; 95% CI, -1.11; 0.36, p = 0.41). There was no difference on bleeding episodes or serious adverse events at 28 days. CONCLUSIONS Among non-hospitalized adults with mild to moderate Covid-19 halofuginone treatment was safe and well tolerated but did not decrease SARS-CoV-2 viral load decay rate within 10 days.
Collapse
Affiliation(s)
- Bruno Martins Tomazini
- Hcor Research Institute, São Paulo (SP), Brazil
- Brazilian Research in Intensive Care Network (BRICNet), São Paulo (SP), Brazil
- Hospital Sírio-Libanês, São Paulo (SP), Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aaron Foster Carlin
- Departments of Pathology and Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Jeffrey David Esko
- Department of Cellular and Molecular Medicine and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Phillip Leo Stephan Marie Gordts
- Department of Medicine, and Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, California, United States of America
| | - Alexandre Biasi Cavalcanti
- Hcor Research Institute, São Paulo (SP), Brazil
- Brazilian Research in Intensive Care Network (BRICNet), São Paulo (SP), Brazil
| |
Collapse
|
12
|
García-Rodríguez I, Moreni G, Capendale PE, Mulder L, Aknouch I, Vieira de Sá R, Johannesson N, Freeze E, van Eijk H, Koen G, Wolthers KC, Pajkrt D, Sridhar A, Calitz C. Assessment of the broad-spectrum host targeting antiviral efficacy of halofuginone hydrobromide in human airway, intestinal and brain organotypic models. Antiviral Res 2024; 222:105798. [PMID: 38190972 DOI: 10.1016/j.antiviral.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Giulia Moreni
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Pamela E Capendale
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Lance Mulder
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Ikrame Aknouch
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; Viroclinics Xplore, Schaijk, the Netherlands
| | - Renata Vieira de Sá
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105, BE, Amsterdam, the Netherlands
| | - Nina Johannesson
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Eline Freeze
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Hetty van Eijk
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Gerrit Koen
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Adithya Sridhar
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Carlemi Calitz
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Kundu G, Lambert TH. Electrochemical Vicinal C-H Difunctionalization of Saturated Azaheterocycles. J Am Chem Soc 2024; 146:1794-1798. [PMID: 38190508 PMCID: PMC10947584 DOI: 10.1021/jacs.3c12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A method to functionalize two vicinal C-H bonds of saturated azaheterocycles is described. The procedure involves subjecting the substrate to a mixture of hydrochloric acid, acetic acid, and acetic anhydride in an undivided electrochemical cell at a constant current, resulting in stereoselective conversion to the corresponding α-acetoxy-β-chloro derivative. The α-position can be readily substituted with a range of other groups, including alkyl, aryl, allyl, alkynyl, alkoxy, or azido functionalities. Furthermore, we demonstrate that the β-chloro position can be engaged in Suzuki cross-coupling. This protocol thus enables the rapid diversification of simple five-, six-, and seven-membered saturated azaheterocycles at two adjacent positions.
Collapse
Affiliation(s)
- Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Lee DK, Jo SH, Lee ES, Ha KB, Park NW, Kong DH, Park SI, Park JS, Chung CH. DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis. Diabetes Metab J 2024; 48:97-111. [PMID: 38173372 PMCID: PMC10850270 DOI: 10.4093/dmj.2022.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGRUOUND Nonalcoholic steatohepatitis (NASH) is a liver disease caused by obesity that leads to hepatic lipoapoptosis, resulting in fibrosis and cirrhosis. However, the mechanism underlying NASH is largely unknown, and there is currently no effective therapeutic agent against it. DWN12088, an agent used for treating idiopathic pulmonary fibrosis, is a selective prolyl-tRNA synthetase (PRS) inhibitor that suppresses the synthesis of collagen. However, the mechanism underlying the hepatoprotective effect of DWN12088 is not clear. Therefore, we investigated the role of DWN12088 in NASH progression. METHODS Mice were fed a chow diet or methionine-choline deficient (MCD)-diet, which was administered with DWN12088 or saline by oral gavage for 6 weeks. The effects of DWN12088 on NASH were evaluated by pathophysiological examinations, such as real-time quantitative reverse transcription polymerase chain reaction, immunoblotting, biochemical analysis, and immunohistochemistry. Molecular and cellular mechanisms of hepatic injury were assessed by in vitro cell culture. RESULTS DWN12088 attenuated palmitic acid (PA)-induced lipid accumulation and lipoapoptosis by downregulating the Rho-kinase (ROCK)/AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein-1c (SREBP-1c) and protein kinase R-like endoplasmic reticulum kinase (PERK)/α subunit of eukaryotic initiation factor 2 (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) signaling cascades. PA increased but DWN12088 inhibited the phosphorylation of nuclear factor-κB (NF-κB) p65 (Ser536, Ser276) and the expression of proinflammatory genes. Moreover, the DWN12088 inhibited transforming growth factor β (TGFβ)-induced pro-fibrotic gene expression by suppressing TGFβ receptor 1 (TGFβR1)/Smad2/3 and TGFβR1/glutamyl-prolyl-tRNA synthetase (EPRS)/signal transducer and activator of transcription 6 (STAT6) axis signaling. In the case of MCD-diet-induced NASH, DWN12088 reduced hepatic steatosis, inflammation, and lipoapoptosis and prevented the progression of fibrosis. CONCLUSION Our findings provide new insights about DWN12088, namely that it plays an important role in the overall improvement of NASH. Hence, DWN12088 shows great potential to be developed as a new integrated therapeutic agent for NASH.
Collapse
Affiliation(s)
- Dong-Keon Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Su Ho Jo
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Soo Lee
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyung Bong Ha
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Na Won Park
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Deok-Hoon Kong
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Sang-In Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Joon Seok Park
- Drug Discovery Center, Daewoong Pharmaceutical Co. Ltd., Seoul, Korea
| | - Choon Hee Chung
- Department of Internal Medicine and Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
15
|
Perea V, Baron KR, Dolina V, Aviles G, Kim G, Rosarda JD, Guo X, Kampmann M, Wiseman RL. Pharmacologic activation of a compensatory integrated stress response kinase promotes mitochondrial remodeling in PERK-deficient cells. Cell Chem Biol 2023; 30:1571-1584.e5. [PMID: 37922906 PMCID: PMC10842031 DOI: 10.1016/j.chembiol.2023.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
The integrated stress response (ISR) comprises the eIF2α kinases PERK, GCN2, HRI, and PKR, which induce translational and transcriptional signaling in response to diverse insults. Deficiencies in PERK signaling lead to mitochondrial dysfunction and contribute to the pathogenesis of numerous diseases. We define the potential for pharmacologic activation of compensatory eIF2α kinases to rescue ISR signaling and promote mitochondrial adaptation in PERK-deficient cells. We show that the HRI activator BtdCPU and GCN2 activator halofuginone promote ISR signaling and rescue ER stress sensitivity in PERK-deficient cells. However, BtdCPU induces mitochondrial depolarization, leading to mitochondrial fragmentation and activation of the OMA1-DELE1-HRI signaling axis. In contrast, halofuginone promotes mitochondrial elongation and adaptive mitochondrial respiration, mimicking regulation induced by PERK. This shows halofuginone can compensate for deficiencies in PERK signaling and promote adaptive mitochondrial remodeling, highlighting the potential for pharmacologic ISR activation to mitigate mitochondrial dysfunction and motivating the pursuit of highly selective ISR activators.
Collapse
Affiliation(s)
- Valerie Perea
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kelsey R Baron
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vivian Dolina
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giovanni Aviles
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158, USA
| | - Grace Kim
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xiaoyan Guo
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158, USA; Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Martin Kampmann
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Khan D, Fox PL. Aminoacyl-tRNA synthetase interactions in SARS-CoV-2 infection. Biochem Soc Trans 2023; 51:2127-2141. [PMID: 38108455 PMCID: PMC10754286 DOI: 10.1042/bst20230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that serve a foundational role in the efficient and accurate translation of genetic information from messenger RNA to proteins. These proteins play critical, non-canonical functions in a multitude of cellular processes. Multiple viruses are known to hijack the functions of aaRSs for proviral outcomes, while cells modify antiviral responses through non-canonical functions of certain synthetases. Recent findings have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronaviral disease 19 (COVID-19), utilizes canonical and non-canonical functions of aaRSs, establishing a complex interplay of viral proteins, cellular factors and host aaRSs. In a striking example, an unconventional multi-aaRS complex consisting of glutamyl-prolyl-, lysyl-, arginyl- and methionyl-tRNA synthetases interact with a previously unknown RNA-element in the 3'-end of SARS-CoV-2 genomic and subgenomic RNAs. This review aims to highlight the aaRS-SARS-CoV-2 interactions identified to date, with possible implications for the biology of host aaRSs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
17
|
Shao M, Hou M, Li S, Qi W. The Mechanism of IL-17 Regulating Neutrophils Participating in Host Immunity of RVVC Mice. Reprod Sci 2023; 30:3610-3622. [PMID: 37438557 DOI: 10.1007/s43032-023-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Vulvovaginal candidiasis (VVC) and recurrent vulvovaginal candidiasis (RVVC) are the most common lower genital tract infections in reproductive women. In recent years, the research on its pathogenesis mainly focuses on vaginal local immunity and IL-17 as key factors in adaptive immunity, attracting much attention. However, the role of IL-17 in local immunity in VVC and RVVC is poorly understood. At the same time, neutrophils are considered the most effective way to control and eliminate candidal infection and have a controversial role in VVC and RVVC. In this study, we built a mouse RVVC model. After analyzing the vaginal lavage solution of RVVC mice with an inflammatory factor antibody chip and ELISA, we found that IL-17 may play a protective role in RVVC. The experiment of constructing RVVC mice with different concentrations of IL-17 using halofuginone and comparing the vaginal fungi load and vaginal epithelial damage verified that IL-17 had a protective effect in RVVC. In addition, in vitro and in vivo studies found that IL-17 can promote neutrophil apoptosis and recruit neutrophils in the vagina. The neutrophils in the vagina can secrete IL-17 in an autocrine manner. These two may be why IL-17 plays a protective role in RVVC. In summary, the study suggests that IL-17-mediated regulation of neutrophil function is involved in host immune response to RVVC, which helps us to further understand the potential mechanism of IL-17 in RVVC.
Collapse
Affiliation(s)
- Mingkun Shao
- Department of OB&GYN, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Mengyao Hou
- Department of OB&GYN, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Sainan Li
- Department of OB&GYN, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Wenjin Qi
- Department of OB&GYN, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
18
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
19
|
Xie SC, Griffin MDW, Winzeler EA, Ribas de Pouplana L, Tilley L. Targeting Aminoacyl tRNA Synthetases for Antimalarial Drug Development. Annu Rev Microbiol 2023; 77:111-129. [PMID: 37018842 DOI: 10.1146/annurev-micro-032421-121210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Infections caused by malaria parasites place an enormous burden on the world's poorest communities. Breakthrough drugs with novel mechanisms of action are urgently needed. As an organism that undergoes rapid growth and division, the malaria parasite Plasmodium falciparum is highly reliant on protein synthesis, which in turn requires aminoacyl-tRNA synthetases (aaRSs) to charge tRNAs with their corresponding amino acid. Protein translation is required at all stages of the parasite life cycle; thus, aaRS inhibitors have the potential for whole-of-life-cycle antimalarial activity. This review focuses on efforts to identify potent plasmodium-specific aaRS inhibitors using phenotypic screening, target validation, and structure-guided drug design. Recent work reveals that aaRSs are susceptible targets for a class of AMP-mimicking nucleoside sulfamates that target the enzymes via a novel reaction hijacking mechanism. This finding opens up the possibility of generating bespoke inhibitors of different aaRSs, providing new drug leads.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA;
| | - Lluis Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain;
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Leann Tilley
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; , ,
| |
Collapse
|
20
|
Perea V, Baron KR, Dolina V, Aviles G, Rosarda JD, Guo X, Kampmann M, Wiseman RL. Pharmacologic Activation of a Compensatory Integrated Stress Response Kinase Promotes Mitochondrial Remodeling in PERK-deficient Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532186. [PMID: 36945406 PMCID: PMC10029010 DOI: 10.1101/2023.03.11.532186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The integrated stress response (ISR) comprises the eIF2α kinases PERK, GCN2, HRI, and PKR, which induce translational and transcriptional signaling in response to diverse insults. Deficiencies in PERK signaling lead to mitochondrial dysfunction and contribute to the pathogenesis of numerous diseases. We define the potential for pharmacologic activation of compensatory eIF2α kinases to rescue ISR signaling and promote mitochondrial adaptation in PERK-deficient cells. We show that the HRI activator BtdCPU and GCN2 activator halofuginone promote ISR signaling and rescue ER stress sensitivity in PERK-deficient cells. However, BtdCPU induces mitochondrial depolarization, leading to mitochondrial fragmentation and activation of the OMA1-DELE1-HRI signaling axis. In contrast, halofuginone promotes mitochondrial elongation and adaptive mitochondrial respiration, mimicking regulation induced by PERK. This shows halofuginone can compensate for deficiencies in PERK signaling and promote adaptive mitochondrial remodeling, highlighting the potential for pharmacologic ISR activation to mitigate mitochondrial dysfunction and motivating the pursuit of highly-selective ISR activators.
Collapse
Affiliation(s)
- Valerie Perea
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Authors contributed equally
| | - Kelsey R. Baron
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Authors contributed equally
| | - Vivian Dolina
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Giovanni Aviles
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158
| | - Jessica D. Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Xiaoyan Guo
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158
- Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT 06030
| | - Martin Kampmann
- Department of Biophysics and Biochemistry and Institute for Neurodegenerative Diseases, UCSF, San Francisco, CA 94158
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
21
|
Takeuchi M, Teshima M, Okubo S, Aoki S. In silico
and
in vitro
Identification of Compounds with Dual Pharmacological Activity against Metionyl‐tRNA Synthetase and Isoleucyl‐tRNA Synthetase of
Staphylococcus aureus. ChemistrySelect 2023. [DOI: 10.1002/slct.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Masamune Takeuchi
- Department of Bioscience & Bioinformatics Kyushu Institute of Technology 680-4 Kawadu Iizuka Fukuoka Japan. (Shunsuke Aoki
| | - Mio Teshima
- Department of Bioscience & Bioinformatics Kyushu Institute of Technology 680-4 Kawadu Iizuka Fukuoka Japan. (Shunsuke Aoki
| | - Saya Okubo
- Department of Bioscience & Bioinformatics Kyushu Institute of Technology 680-4 Kawadu Iizuka Fukuoka Japan. (Shunsuke Aoki
| | - Shunsuke Aoki
- Department of Bioscience & Bioinformatics Kyushu Institute of Technology 680-4 Kawadu Iizuka Fukuoka Japan. (Shunsuke Aoki
| |
Collapse
|
22
|
Pham TV, Ngo HPT, Nguyen NH, Do AT, Vu TY, Nguyen MH, Do BH. The anti-inflammatory activity of the compounds isolated from Dichroa febrifuga leaves. Saudi J Biol Sci 2023; 30:103606. [PMID: 36910464 PMCID: PMC9999195 DOI: 10.1016/j.sjbs.2023.103606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Dichroa febrifuga Lour. is a traditional medicinal herb that has been applied in the treatment of malaria and some other infectious diseases. Studies recently have focused on the anti-inflammation of the extracts of Dichroa febrifuga Lour. although there have not many reports about which compounds play the essential role. Therefore, in this study, we isolated hydrangenoside C (1), isoarborinol (2), and methyl 1,3,4,6-tetra-O-acetyl-fructofuranoside (3) from the leaves of Dichroa febrifuga. Subsequently, the anti-inflammatory property of 1-3 was assessed using an in vivo assay of edema mouse model which was induced by carrageenan. Out of the three, 2 inhibited the edema effectively and dose-dependently, similarly to diclofenac while there was no obvious activity observed in 1 and 3. The in silico results demonstrated that 2 enables binding to 5-LOX and PLA2 via generating h-bonds. This is the first study to mention the anti-inflammation of 2 in Dichroa febrifuga Lour., and would be a contribution to further studies to elucidate the promising bioactivities of this compound.
Collapse
Affiliation(s)
- Ty Viet Pham
- Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue City, Viet Nam
| | - Hang Phuong Thi Ngo
- Faculty of Biology, University of Education, Hue University, 34 Le Loi, Hue City, Viet Nam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Viet Nam
| | - Anh Thu Do
- Department of International Business Administration, Ho Chi Minh University of Foreign Languages - Information Technology, Viet Nam
| | - Thien Y Vu
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Minh Hien Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Bich Hang Do
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
23
|
Lin M, Song X, Zuo R, Zheng Y, Hu S, Gao S, Chen L, Zhu Y, Xu X, Liu M, Zhang J, Jiang S, Guo D. Nano-encapsulation of halofuginone hydrobromide enhances anticoccidial activity against Eimeria tenella in chickens. Biomater Sci 2023; 11:1725-1738. [PMID: 36648120 DOI: 10.1039/d2bm01543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coccidiosis is a worldwide epidemic intestinal disease with high incidence, which causes huge economic losses. Halofuginone hydrobromide (HF) is widely applied as an effective anticoccidial drug in the poultry industry. However, its therapeutic efficacy is severely restrained due to toxic effects, poor aqueous solubility and low permeability. Nanotechnology can improve the biological effect of drugs, and thus, reduce administered doses and toxic effects. The objective of this study was to investigate the therapeutic and preventive potential of novel HF-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles (HTPM) for preventing coccidiosis in chickens. The HTPM were approximately spherical with a hydrodynamic diameter of 12.65 ± 0.089 nm, a zeta potential of 8.03 ± 0.242 mV, a drug loading of 14.04 ± 0.12%, and an encapsulation efficiency of 71.1 ± 4.15%. HF was encapsulated in the polymer micelles through interactions with TPGS, as characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Cellular take up assays showed that TPGS polymer micelles could enhance drug internalization to alleviate intestinal apoptosis induced by coccidiosis and promote the necrosis of second-generation merozoites of E. tenella. Notably, clinical trials proved that 1.5 mg L-1 HTPM had a stronger anticoccidial effect on E. tenella than that of 3 mg kg-1 HF premix. Amplicon sequencing identified that HTPM could alleviate coccidiosis by restoring the structure of the gut microbiome. These findings indicated that the anticoccidial efficacy of HF was significantly enhanced after being encapsulated in polymer micelles, and further demonstrated the potential protective application of nano-encapsulating anticoccidial drugs as a promising approach to control coccidiosis in poultry. In summary, HTPM hold huge potential as an effective therapeutic agent for coccidiosis.
Collapse
Affiliation(s)
- Mengjuan Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Runan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yuling Zheng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shiheng Hu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lu Chen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yuan Zhu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Moxin Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
24
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
25
|
Alsibaee AM, Al-Yousef HM, Al-Salem HS. Quinazolinones, the Winning Horse in Drug Discovery. Molecules 2023; 28:molecules28030978. [PMID: 36770645 PMCID: PMC9919317 DOI: 10.3390/molecules28030978] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Quinazolines are nitrogen-containing heterocycles that consist of a benzene ring fused with a pyrimidine ring. Quinazolinones, oxidized quinazolines, are promising compounds with a wide range of biological activities. In the pharmaceutical field, quinazolinones are the building blocks of more than 150 naturally occurring alkaloids isolated from different plants, microorganisms, and animals. Scientists give a continuous interest in this moiety due to their stability and relatively easy methods for preparation. Their lipophilicity is another reason for this interest as it helps quinazolinones in penetration through the blood-brain barrier which makes them suitable for targeting different central nervous system diseases. Various modifications to the substitutions around the quinazolinone system changed their biological activity significantly due to changes in their physicochemical properties. Structure-activity relationship (SAR) studies of quinazolinone revealed that positions 2, 6, and 8 of the ring systems are significant for different pharmacological activities. In addition, it has been suggested that the addition of different heterocyclic moieties at position 3 could increase activity. In this review, we will highlight the chemical properties of quinazolinones, including their chemical reactions and different methods for their preparation. Moreover, we will try to modify some of the old SAR studies according to their updated biological activities in the last twelve years.
Collapse
Affiliation(s)
- Aishah M. Alsibaee
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
| | - Huda S. Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
- Correspondence: or
| |
Collapse
|
26
|
Kurata K, James-Bott A, Tye MA, Yamamoto L, Samur MK, Tai YT, Dunford J, Johansson C, Senbabaoglu F, Philpott M, Palmer C, Ramasamy K, Gooding S, Smilova M, Gaeta G, Guo M, Christianson JC, Payne NC, Singh K, Karagoz K, Stokes ME, Ortiz M, Hagner P, Thakurta A, Cribbs A, Mazitschek R, Hideshima T, Anderson KC, Oppermann U. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. Blood Cancer J 2023; 13:12. [PMID: 36631435 PMCID: PMC9834298 DOI: 10.1038/s41408-023-00787-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Collapse
Affiliation(s)
- Keiji Kurata
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, 02138, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Leona Yamamoto
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Mehmet K Samur
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Filiz Senbabaoglu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Charlotte Palmer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Karthik Ramasamy
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Sarah Gooding
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7LD, UK
| | - Mihaela Smilova
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Giorgia Gaeta
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Manman Guo
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Maria Ortiz
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | | | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
- Bristol Myers Squibb, Summit, NJ, 07901, USA
| | - Adam Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
27
|
Induction of ATF4-Regulated Atrogenes Is Uncoupled from Muscle Atrophy during Disuse in Halofuginone-Treated Mice and in Hibernating Brown Bears. Int J Mol Sci 2022; 24:ijms24010621. [PMID: 36614063 PMCID: PMC9820832 DOI: 10.3390/ijms24010621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-β (TGF-β) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-β inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-β/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-β/BMP balance and could be used to preserve muscle mass during catabolic situations.
Collapse
|
28
|
Mi L, Zhang Y, Su A, Tang M, Xing Z, He T, Wu W, Li Z. Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Zhang J, Xu Z, Li Y, Hu Y, Tang J, Xu J, Luo Y, Wu F, Sun X, Tang Y, Wang S. Theranostic mesoporous platinum nanoplatform delivers halofuginone to remodel extracellular matrix of breast cancer without systematic toxicity. Bioeng Transl Med 2022. [DOI: 10.1002/btm2.10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jie Zhang
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ziqing Xu
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yang Li
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yongzhi Hu
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jiajia Tang
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jiaqi Xu
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yafei Luo
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Feiyun Wu
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
30
|
Zhang S, Cai J, Xie Y, Zhang X, Yang X, Lin S, Xiang W, Zhang J. Anti-Phytophthora Activity of Halofuginone and the Corresponding Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12364-12371. [PMID: 36126316 DOI: 10.1021/acs.jafc.2c04266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Febrifugine, a natural alkaloid, exhibits specific anti-phytophthora activity; however, its mode of action is unclear. In this study, halofuginone, a synthetic derivative of febrifugine, showed significantly higher anti-phytophthora activities than those of febrifugine and the commercial drug metalaxyl against Phytophthora sojae, Phytophthora capsici, and Phytophthora infestans with effective concentration for 50% inhibition (EC50) values of 0.665, 0.673, and 0.178 μg/mL, respectively. Proline could alleviate the growth inhibition of halofuginone on P. capsici, implying that halofuginone might target prolyl-tRNA synthetase (PcPRS). The anti-phytophthora mechanism of halofuginone was then investigated by molecular docking, fluorescence titration, and enzymatic inhibition assays. The results revealed that halofuginone could bind to PcPRS and shared a similar binding site with the substrate proline. Point mutations at Glu316 and Arg345 led to 24.5 and 16.1% decreases in the enzymatic activity of PcPRS but 816.742- and 459.557-fold increases in the resistance to halofuginone, respectively. The results further confirmed that halofuginone was a competitive inhibitor of proline against PcPRS, and Glu316 and Arg345 played important roles in the binding of halofuginone and proline. Taken together, the results indicated that halofuginone is an alternative anti-phytophthora drug candidate and that PcPRS represents a potential target for the development of new pesticides.
Collapse
Affiliation(s)
- Saisai Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Jialing Cai
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Yimeng Xie
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Xinyu Zhang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin150081, China
| | - Xilang Yang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Shenyuan Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang110866, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| | - Ji Zhang
- School of Life Science, Northeast Agricultural University, Harbin150030, China
| |
Collapse
|
31
|
Mo C, Zhao J, Liang J, Wang H, Chen Y, Huang G. Exosomes: A novel insight into traditional Chinese medicine. Front Pharmacol 2022; 13:844782. [PMID: 36105201 PMCID: PMC9465299 DOI: 10.3389/fphar.2022.844782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exosomes are small extracellular vesicles and play an essential role in the mediation of intercellular communication both in health and disease. Traditional Chinese medicine (TCM) has historically been used to maintain human health and treat various diseases up till today. The interplay between exosomes and TCM has attracted researchers’ growing attention. By integrating the available evidence, TCM formulas and compounds isolated from TCM as exosome modulators have beneficial effects on multiple disorders, such as tumors, kidney diseases, and hepatic disease, which may associate with inhibiting cells proliferation, anti-inflammation, anti-oxidation, and attenuating fibrosis. Exosomes, a natural delivery system, are essential in delivering compounds isolated from TCM to target cells or tissues. Moreover, exosomes may be the potential biomarkers for TCM syndromes, providing strategies for TCM treatment. These findings may provide a novel insight into TCM from exosomes and serve as evidence for better understanding and development of TCM.
Collapse
Affiliation(s)
- Chao Mo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Nephrology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingyan Liang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiling Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Guodong Huang
- Department of Nephrology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Guodong Huang,
| |
Collapse
|
32
|
Ucaryilmaz Metin C, Ozcan G. Comprehensive bioinformatic analysis reveals a cancer-associated fibroblast gene signature as a poor prognostic factor and potential therapeutic target in gastric cancer. BMC Cancer 2022; 22:692. [PMID: 35739492 PMCID: PMC9229147 DOI: 10.1186/s12885-022-09736-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the deadliest cancers, currently available therapies have limited success. Cancer-associated fibroblasts (CAFs) are pivotal cells in the stroma of gastric tumors posing a great risk for progression and chemoresistance. The poor prognostic signature for CAFs is not clear in gastric cancer, and drugs that target CAFs are lacking in the clinic. In this study, we aim to identify a poor prognostic gene signature for CAFs, targeting which may increase the therapeutic success in gastric cancer. METHODS We analyzed four GEO datasets with a network-based approach and validated key CAF markers in The Cancer Genome Atlas (TCGA) and The Asian Cancer Research Group (ACRG) cohorts. We implemented stepwise multivariate Cox regression guided by a pan-cancer analysis in TCGA to identify a poor prognostic gene signature for CAF infiltration in gastric cancer. Lastly, we conducted a database search for drugs targeting the signature genes. RESULTS Our study revealed the COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC as the key CAF markers in gastric cancer. Analysis of the TCGA and ACRG cohorts validated their upregulation and poor prognostic significance. The stepwise multivariate Cox regression elucidated COL1A1 and COL5A1, together with ITGA4, Emilin1, and TSPAN9 as poor prognostic signature genes for CAF infiltration. The search on drug databases revealed collagenase clostridium histolyticum, ocriplasmin, halofuginone, natalizumab, firategrast, and BIO-1211 as the potential drugs for further investigation. CONCLUSIONS Our study demonstrated the central role of extracellular matrix components secreted and remodeled by CAFs in gastric cancer. The gene signature we identified in this study carries high potential as a predictive tool for poor prognosis in gastric cancer patients. Elucidating the mechanisms by which the signature genes contribute to poor patient outcomes can lead to the discovery of more potent molecular-targeted agents and increase the therapeutic success in gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, Koc University School of Medicine, 34450, Istanbul, Turkey.
| |
Collapse
|
33
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
34
|
Zuo R, Zhang Y, Chen X, Hu S, Song X, Gao X, Gong J, Ji H, Yang F, Peng L, Fang K, Lv Y, Zhang J, Jiang S, Guo D. Orally Administered Halofuginone-Loaded TPGS Polymeric Micelles Against Triple-Negative Breast Cancer: Enhanced Absorption and Efficacy with Reduced Toxicity and Metastasis. Int J Nanomedicine 2022; 17:2475-2491. [PMID: 35668999 PMCID: PMC9166452 DOI: 10.2147/ijn.s352538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Background Halofuginone (HF)-loaded TPGS polymeric micelles (HTPM) were successfully fabricated using the thin-film hydration technique. HTPM via intravenous injection have been demonstrated to exert an excellent anticancer effect against triple-negative breast cancer (TNBC) cells and subcutaneous xenografts. In the present study, we further explored the potential treatment effect and mechanism of orally administered HTPM alone and in combination with surgical therapy on TNBC in subcutaneous and orthotopic mouse models. Methods Herein, the stability and in vitro release behavior of HTPM were first evaluated in the simulated gastrointestinal fluids. Caco-2 cell monolayers were then used to investigate the absorption and transport patterns of HF with/without encapsulation in TPGS polymeric micelles. Subsequently, the therapeutic effect of orally administered HTPM was checked on subcutaneous xenografts of TNBC in nude mice. Ultimately, orally administered HTPM, combined with surgical therapy, were utilized to treat orthotopic TNBC in nude mice. Results Our data confirmed that HTPM exhibited good stability and sustained release in the simulated gastrointestinal fluids. HF was authenticated to be a substrate of P-glycoprotein (P-gp), and its permeability across Caco-2 cell monolayers was markedly enhanced via heightening intracellular absorption and inhibiting P-gp efflux due to encapsulation in TPGS polymeric micelles. Compared with HF alone, HTPM showed stronger tumor-suppressing effects in subcutaneous xenografts of MDA-MB-231 cells when orally administered. Moreover, compared with HTPM or surgical therapy alone, peroral HTPM combined with partial surgical excision synergistically retarded the growth of orthotopic TNBC. Fundamentally, HTPM orally administered at the therapeutic dose did not cause any pathological injury, while HF alone led to weight loss and jejunal bleeding in the investigated mice. Conclusion Taken together, HTPM could be applied as a potential anticancer agent for TNBC by oral administration.
Collapse
Affiliation(s)
- Runan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Yan Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaorong Chen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Shiheng Hu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Fengzhu Yang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Kun Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Yingjun Lv
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Junren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| |
Collapse
|
35
|
K Zaidan R, Evans P. Stereoselective synthesis of analogues of deoxyfebrifugine. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211047209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation of six new optically active analogues of the natural product febrifugine (1) is reported. These analogues, lacking the hydroxy group from the natural product, were prepared from optically active N-protected S-pelletierine (7) and differ in terms of the specific quinazolinone portion included. The required S-7 (80% enantiomeric excess) was prepared from an asymmetric Mannich reaction between piperideine (8) and acetone in the presence of l-proline. The differently substituted quinazolinone used in this study (10a–10g) was either commercially available or was prepared from the corresponding substituted anthranilic acid and were installed via a bromination–alkylation sequence. N-Deprotection of the subsequent adducts (12a–12g) gave target compounds 13a–13f and completed the synthetic sequence.
Collapse
Affiliation(s)
- Raed K Zaidan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
- Department of Chemistry, College of Science, University of Basra, Basra, Iraq
| | - Paul Evans
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Yin J, Li C, Ye C, Ruan Z, Liang Y, Li Y, Wu J, Luo Z. Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput Struct Biotechnol J 2022; 20:824-837. [PMID: 35126885 PMCID: PMC8802458 DOI: 10.1016/j.csbj.2022.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ARDS, acute respiratory distress syndrome
- CEP, Cepharanthine
- COVID-19 pandemic
- COVID-19, coronavirus disease 2019
- CRS, cytokine release syndrome
- CTD, C-terminal domain
- Drug target
- EMA, European Medicines Agency
- ERGIC, endoplasmic reticulum-Golgi intermediate compartment
- FDA, U.S. Food and Drug Administration
- JAK, Janus kinase
- MODS, multiple organ dysfunction syndrome
- NMPA, National Medical Products Administration
- NTD, N-terminal domain
- Nbs, nanobodies
- RBD, receptor-binding domain
- RdRp, RNA dependent RNA polymerase
- SARS-CoV-2
- SARS-CoV-2 variants
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- STAT, Signal Transducer and Activator of Transcription
- TCM, traditional Chinese medicine
- TCZ, Tocilizumab
- Therapeutic strategies
- VOC, variants of concern
- VOI, variants of interest
- VUM, variants under monitoring
- mAb, monoclonal antibody
- α1AT, alpha-1 antitrypsin
Collapse
Affiliation(s)
- Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Chengcheng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Chunhong Ye
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, PR China
- Foshan Institute of Medical Microbiology, Foshan 528315, PR China
| |
Collapse
|
37
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
38
|
Deng Y, Mu H, Li HB, Fu LZ, Tang D, Wu T, Huang SH, Li CH. In Vitro Anti-Toxoplasma gondii Activity Evaluation of a New Series of Quinazolin-4(3H)-one Derivatives. Chem Biodivers 2021; 18:e2100687. [PMID: 34726832 DOI: 10.1002/cbdv.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis post serious threaten to human health, leading to severely eye and brain disease, especially for immunocompromised patients and pregnant women. The multiple side effects and long dosing period of current main treatment regiments calls for high effective and low toxicity anti-toxoplasmosis drugs. Herein, we report our efforts to synthesize a series of 2-(piperazin-1-yl)quinazolin-4(3H)-one derivatives and investigate their activity against Toxoplasma gondii tachyzoites in vitro based on cell phenotype screening. Among the 26 compounds, 8w and 8x with diaryl ether moiety at the side chain of piperazine exhibited good efficacy to inhibit T. gondii, with IC50 values of 4 μM and 3 μM, respectively. Structure-activity relationship (SAR) studies implies that hydrophobic aryl at the side chain would be preferred for improvement of activity. Molecular docking study reveals these two compounds appeared high affinity to TgCDPK1 by interaction with the hydrophobic pocket of ATP-binding cleft.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hao Mu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Hong-Bo Li
- Chengdu Hyperway Pharmaceuticals Co., Ltd., Chengdu, China
| | - Li-Zhi Fu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Da Tang
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Tao Wu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| | - Shu-Heng Huang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, 51 Changlong Avenue, Rongchang District, 402460, China
| |
Collapse
|
39
|
Wang J, Wang B, Lv X, Wang Y. Halofuginone functions as a therapeutic drug for chronic periodontitis in a mouse model. Int J Immunopathol Pharmacol 2021; 34:2058738420974893. [PMID: 33259259 PMCID: PMC7716055 DOI: 10.1177/2058738420974893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bo Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Center, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingjie Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi, China
- Yingjie Wang, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, the Hospital of Stomatology, the Fourth Military Medical University, Xi’an, Shaanxi 710032, China.
| |
Collapse
|
40
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
41
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
42
|
Differential Effects of Halofuginone Enantiomers on Muscle Fibrosis and Histopathology in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22137063. [PMID: 34209117 PMCID: PMC8268105 DOI: 10.3390/ijms22137063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(−)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form’s effect. No effect was observed for (−)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (−)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (−)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.
Collapse
|
43
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Tuncer F, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nat Commun 2021; 12:3907. [PMID: 34162861 PMCID: PMC8222394 DOI: 10.1038/s41467-021-24156-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Travis B Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John W Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mads B Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Daniel P Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | | | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA
| | - Michael M Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bill B Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA, USA.
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Okaniwa M, Shibata A, Ochida A, Akao Y, White KL, Shackleford DM, Duffy S, Lucantoni L, Dey S, Striepen J, Yeo T, Mok S, Aguiar ACC, Sturm A, Crespo B, Sanz LM, Churchyard A, Baum J, Pereira DB, Guido RVC, Dechering KJ, Wittlin S, Uhlemann AC, Fidock DA, Niles JC, Avery VM, Charman SA, Laleu B. Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as Plasmodium Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infect Dis 2021; 7:1680-1689. [PMID: 33929818 PMCID: PMC8204304 DOI: 10.1021/acsinfecdis.1c00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Prolyl-tRNA synthetase
(PRS) is a clinically validated antimalarial
target. Screening of a set of PRS ATP-site binders, initially designed
for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives representing a novel antimalarial scaffold. Evidence designates
cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains
and development of liver schizonts. No cross-resistance with strains
resistant to other known antimalarials was noted. In addition, a similar
level of growth inhibition was observed against clinical field isolates
of Pf and P. vivax. The slow killing
profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However,
potent blood stage and antischizontal activity are compelling for
causal prophylaxis which does not require fast onset of action. Achieving
sufficient on-target selectivity appears to be particularly challenging
and should be the primary focus during the next steps of optimization
of this chemical series. Encouraging preliminary off-target profile
and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives represent a promising starting point for the identification
of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.
Collapse
Affiliation(s)
- Masanori Okaniwa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akira Shibata
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anna Caroline C. Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Angelika Sturm
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Benigno Crespo
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Laura M. Sanz
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Dhelio B. Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, Rondonia 76812-329, Brazil
| | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Koen J. Dechering
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| |
Collapse
|
45
|
Shetshak MA, Jatau ID, Suleiman MM, Ameh MP, Gabriel A, Akefe IO. In Vitro Anticoccidial Activities of the Extract and Fractions of Garcinia kola (Heckel h.) Against Eimeria tenella Oocyst. Recent Pat Biotechnol 2021; 15:76-84. [PMID: 33511943 DOI: 10.2174/1872208315666210129095213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Commercial poultry farming is expanding every day and contributing to the provision of affordable and high-quality protein. However, this sector is confronted with many diseases of which coccidiosis is among the most important. There are many registered patents affirming the health benefits of Garcinia kola in poultry. OBJECTIVE Evaluation of in vitro anticoccidial activities of the extracts and fractions of Garcinia kola against Eimeria tenella oocyst was carried out. METHODS Fresh seeds of G. kola were collected, dried under shade at room temperature, and pulverized using a mortar and a pestle. The powder was exhaustively extracted with a soxhlet apparatus using 70% methanol, and the crude methanol extract (CME) was concentrated to dryness using a rotary evaporator. The CME was further partitioned using butanol, ethylacetate, and n-hexane. The CME, butanol fraction (BTF), ethylacetate fraction (EAF), and hexane fraction (HXF) were concentrated in vacuo and tested for the presence of phytochemical constituents using standard procedures. Similarly, the CME, butanol, ethyl acetate, and hexane fractions were evaluated in vitro for oocyst sporulation inhibition. RESULTS Phytochemical analysis revealed the presence of cardiac glycosides, saponins, carbohydrates, steroids/triterpenes, tannins, flavonoids, and alkaloids in the CME and BTF. The EAF contains all the metabolites mentioned except saponins. Similarly, HXF contains only cardiac glycosides, tannins, and steroids/ triterpenes. The CME and BTF caused a concentration-dependent increase in the inhibition of sporulation of unsporulated oocysts of E. tenella. In the acute toxicity studies, the CME did not produce any toxic effect or mortality at doses between 10 and 5000 mg/kg. The CME was then considered safe, and the LD50 was assumed to be >5000 mg/kg. CONCLUSION The data obtained in this study suggested that the crude methanol extract (CME) of G. kola could be an appreciable beneficial effect as an anticoccidial agent against Eimeria tenella oocyst.
Collapse
Affiliation(s)
- Manji A Shetshak
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Isa D Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammed M Suleiman
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Matthew P Ameh
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Ada Gabriel
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Isaac O Akefe
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
46
|
Brainard J, Hammer CC, Hunter PR, Katzer F, Hurle G, Tyler K. Efficacy of halofuginone products to prevent or treat cryptosporidiosis in bovine calves: a systematic review and meta-analyses. Parasitology 2021; 148:408-419. [PMID: 33261668 PMCID: PMC11010047 DOI: 10.1017/s0031182020002267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 01/20/2023]
Abstract
A prior systematic review on the efficacy of halofuginone (HFG) treatment to prevent or treat cryptosporidiosis in bovine calves was inconclusive. We undertook an updated synthesis and meta-analyses on key outcomes for the treatment of calves with HFG. Evaluated outcomes were oocyst shedding, diarrhoea, mortality and weight gain. Experiments had to describe results for same age animals in contemporary arms. Most doses were 100-150 mcg kg-1 day-1. Results were subgrouped by study design, experiments with the lowest risk of bias and lack of industry funding. Eighteen articles were found that described 25 experiments. Most evidence came from randomized controlled trials in Europe. Significantly lower incidence of oocyst shedding, diarrhoea burden and mortality was reported when treatment started before calves were 5 days old. Most studies reported on outcomes for animals up to at least 28 days old. Publication bias was possible in all outcomes and seemed especially likely for diarrhoea outcomes. Beneficial results when HFG treatment was initiated in calves older than 5 days were also found. Prophylactic treatment to prevent cryptosporidiosis is effective in preventing multiple negative outcomes and is beneficial to calf health and will result in a reduction of environmental contamination by Cryptosporidium oocysts.
Collapse
Affiliation(s)
- Julii Brainard
- Norwich Medical School, University of East Anglia, NR4 7TJ, Norwich, UK
| | | | - Paul R. Hunter
- Norwich Medical School, University of East Anglia, NR4 7TJ, Norwich, UK
| | - Frank Katzer
- The Moredun Research Institute, Pentlands Science Park, Midlothian EH26 0PZ, Penicuik, UK
| | - Georgina Hurle
- Norwich Medical School, University of East Anglia, NR4 7TJ, Norwich, UK
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, NR4 7TJ, Norwich, UK
| |
Collapse
|
47
|
Sandoval DR, Clausen TM, Nora C, Cribbs AP, Denardo A, Clark AE, Garretson AF, Coker JKC, Narayanan A, Majowicz SA, Philpott M, Johansson C, Dunford JE, Spliid CB, Golden GJ, Payne NC, Tye MA, Nowell CJ, Griffis ER, Piermatteo A, Grunddal KV, Alle T, Magida JA, Hauser BM, Feldman J, Caradonna TM, Pu Y, Yin X, McVicar RN, Kwong EM, Weiss RJ, Downes M, Tsimikas S, Smidt AG, Ballatore C, Zengler K, Evans RM, Chanda SK, Croker BA, Leibel SL, Jose J, Mazitschek R, Oppermann U, Esko JD, Carlin AF, Gordts PLSM. The Prolyl-tRNA Synthetase Inhibitor Halofuginone Inhibits SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791697 PMCID: PMC8010724 DOI: 10.1101/2021.03.22.436522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone 1 , a compound in clinical trials for anti-fibrotic and anti-inflammatory applications 2 , as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry 3 . We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry and is 1,000-fold more potent than Remdesivir 4 . Inhibition of HS biosynthesis and SARS-CoV-2 infection depends on specific inhibition of PRS, possibly due to translational suppression of proline-rich proteins. We find that pp1a and pp1ab polyproteins of SARS-CoV-2, as well as several HS proteoglycans, are proline-rich, which may make them particularly vulnerable to halofuginone's translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a near-term clinical trial candidate for the treatment of COVID-19.
Collapse
|
48
|
Eleftheriadis T, Pissas G, Crespo M, Filippidis G, Antoniadis N, Liakopoulos V, Stefanidis I. The effect of anti‑HLA class I antibodies on the immunological properties of human glomerular endothelial cells and their modification by mTOR inhibition or GCN2 kinase activation. Mol Med Rep 2021; 23:355. [PMID: 33760196 PMCID: PMC7974416 DOI: 10.3892/mmr.2021.11994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 11/06/2022] Open
Abstract
In antibody‑mediated rejection (ABMR), the graft endothelium is at the forefront of the kidney transplant against the assault from the recipient's humoral immune system, and is a target of the latter. The present study investigated the effect of antibodies against human leukocyte antigen (HLA) class I (anti‑HLAI) on the immunological properties of human glomerular endothelial cells. Additionally, the effect of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) inhibitor (everolimus), or the general control nonderepressible 2 kinase (GCN2K) activator (halofuginone) on anti‑HLAI antibody‑mediated alterations was assessed. Cell integrity was examined, an lactate dehydrogenase (LDH) release assay was performed and cleaved caspase‑3 levels were determined. Furthermore, cell proliferation was analyzed by performing a bromodeoxyuridine assay and the cellular proteins involved in signal transduction or immune effector mechanisms were assessed via western blotting. IL‑8, monocyte chemoattractive protein‑1 (MCP‑1), von Willebrand factor (vWF) and transforming growth factor‑beta 1 (TGF‑β1) were assayed via ELISA. The results revealed that anti‑HLAI triggered integrin signaling, activated mTOR and GCN2K, preserved cell integrity and promoted cell proliferation. Additionally, by increasing intercellular adhesion molecule 1 (ICAM‑1), HLA‑DR, IL‑8 and MCP‑1 levels, anti‑HLAI enhanced the ability of immune cells to interact with endothelial cells thus facilitating graft rejection. Contrarily, by upregulating CD46 and CD59, anti‑HLAI rendered the endothelium less vulnerable to complement‑mediated injury. Finally, by enhancing vWF and TGF‑β1, anti‑HLAI may render the endothelium prothrombotic and facilitate fibrosis and graft failure, respectively. According to our results, mTORC1 inhibition and GCN2K activation may prove useful pharmaceutical targets, as they prevent cell proliferation and downregulate ICAM‑1, IL‑8, MCP‑1 and TGF‑β1. mTORC1 inhibition also decreases vWF.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Marta Crespo
- Nephrology Department, Hospital del Mar, Mar Health Park, Hospital del Mar Medical Research Institute, Barcelona 08003, Spain
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Nikolaos Antoniadis
- Organ Transplant Unit, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa 41110, Greece
| |
Collapse
|
49
|
Bai Y, Wang Y, Li Q, Dou L, Liu M, Shao S, Zhu J, Shen J, Wang Z, Wen K, Yu W. Binding affinity-guided design of a highly sensitive noncompetitive immunoassay for small molecule detection. Food Chem 2021; 351:129270. [PMID: 33640770 DOI: 10.1016/j.foodchem.2021.129270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Small molecules are immunochemically classified as hapten that lacking of at least two epitopes, usually using competitive format for establishing immunoassays. However, theoretically, noncompetitive immunoassay format is more sensitive and has a wider analytical range. In the present study, a novel hapten of halofuginone was synthesized and used to produce a monoclonal antibody (mAb). By analyzing the binding kinetics, we found that the affinity of analyte-enzyme to mAb was much greater than that of analyte, which could result in a low sensitivity of competitive assay format. Based on this, we established a novel noncompetitive immunoassay by using a replacement approach. The noncompetitive format has obvious advantages in sensitivity and analytical range, which promoted approximately 3.5- and 5-fold, respectively, compared to the competitive immunoassay. Ultimately, the newly designed noncompetitive immunoassay in this work will provide insights as well as alternative method to traditional small molecule competitive assays.
Collapse
Affiliation(s)
- Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Yahui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Qiang Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianyu Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, 100193 Beijing, People's Republic of China.
| |
Collapse
|
50
|
Chen Y, Lear TB, Evankovich JW, Larsen MB, Lin B, Alfaras I, Kennerdell JR, Salminen L, Camarco DP, Lockwood KC, Liu J, Myerburg MM, McDyer JF, Liu Y, Finkel T, Chen BB. A high throughput screen for TMPRSS2 expression identifies FDA-approved and clinically advanced compounds that can limit SARS-CoV-2 entry. RESEARCH SQUARE 2020:rs.3.rs-48659. [PMID: 32818215 PMCID: PMC7430593 DOI: 10.21203/rs.3.rs-48659/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds. Among these, homoharringtonine and halofuginone appear the most potent agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrated marked resistance to SARS-CoV-2 pseudoviral infection. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat COVID-19 infection.
Collapse
Affiliation(s)
- Yanwen Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John W. Evankovich
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads B. Larsen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bo Lin
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Irene Alfaras
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | | | - Laura Salminen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Daniel P. Camarco
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Jie Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Michael M. Myerburg
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John F. McDyer
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|