1
|
Çali A, Çelik C. Determination of in vitro synergy and antibiofilm activities of antimicrobials and essential oil components. BIOFOULING 2024; 40:483-498. [PMID: 39069795 DOI: 10.1080/08927014.2024.2381587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Using existing adrentimicrobials with essential oil components to prevent antimicrobial resistance is an alternative strategy. This study aimed to evaluate the resistance status, synergistic combinations, and in vitro biofilm formation activities of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), Stenotrophomonas maltophilia and Candida albicans against antimicrobial agents and cinnamaldehyde, carvacrol, eugenol, limonene and eucalyptol. Antimicrobial activities were evaluated by microdilution, cytotoxicity by XTT, synergy by checkerboard and time-kill, and biofilm inhibition by microplate methods. Cinnamaldehyde and carvacrol showed strong antimicrobial activity. Synergistic effects were observed when using all essential oils with antimicrobials. Only two C. albicans isolates showed antagonism with cinnamaldehyde and fluconazole. The constituents showed cytotoxic effects in the L929 cell line (except limonene). A time-kill analysis revealed a bacteriostatic effect on S. maltophilia and MRSA isolates and a fungicidal effect on C. albicans isolates. These results are important for further research to improve antimicrobial efficacy or to develop new agents.
Collapse
Affiliation(s)
- Abdulhamit Çali
- Medical Laboratory Techniques, Vocational School of Health Services, Lokman Hekim University, Ankara, Turkey
| | - Cem Çelik
- Department of Medical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
2
|
Noui Mehidi I, Ait Ouazzou A, Tachoua W, Hosni K. Investigating the Antimicrobial Properties of Essential Oil Constituents and Their Mode of Action. Molecules 2024; 29:4119. [PMID: 39274967 PMCID: PMC11397014 DOI: 10.3390/molecules29174119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 09/16/2024] Open
Abstract
Essential oils (EOs) and plant extracts, rich in beneficial chemical compounds, have diverse applications in medicine, food, cosmetics, and agriculture. This study investigates the antibacterial activity of nine essential oil constituents (EOCs) against Escherichia coli, focusing on the effects of treatment pH and biosynthetic requirements. The impact of EOCs on bacterial inactivation in E. coli strains was examined using both nonselective and selective culture media. Computer-assisted drug design (CADD) methods were employed to identify critical binding sites and predict the main binding modes of ligands to proteins. The EOCs, including citral, α-terpinyl acetate, α-terpineol, and linalool, demonstrated significant bacterial inactivation, particularly under acidic conditions. This study revealed that EOCs have an effect on the presence of sublethal damage to both the cytoplasmic membrane and the outer membrane in Gram-negative bacteria. Adding penicillin G to the repair medium prevents the recovery of sublethal injuries in E. coli treated with α-terpinyl acetate, α-terpineol, linalool, and citral, indicating that peptidoglycan synthesis is essential for recovering from these injuries. However, penicillin G did not hinder the recovery process of most sublethally injured cells treated with the other assessed EOCs. Molecular docking studies revealed the favorable binding interactions of α-terpinyl acetate, α-terpineol, linalool, and citral with the β-lactamase enzyme Toho-1, indicating their potential as effective antibacterial agents. The findings suggest that EOCs could serve as viable alternatives to synthetic preservatives, offering new strategies for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ilham Noui Mehidi
- Natural Resources Valorization and Bioengineering Laboratory, University Benyoucef Benkhedda Algiers 1, Alger Centre 16000, Algeria
| | - Abdenour Ait Ouazzou
- Natural Resources Valorization and Bioengineering Laboratory, University Benyoucef Benkhedda Algiers 1, Alger Centre 16000, Algeria
- Department of Nature and Life Sciences, Faculty of Sciences, Algiers 1 University-Benyoucef Benkhedda, 2 Rue Didouche Mourad, Alger Centre 16000, Algeria
| | - Wafa Tachoua
- Department of Nature and Life Sciences, Faculty of Sciences, Algiers 1 University-Benyoucef Benkhedda, 2 Rue Didouche Mourad, Alger Centre 16000, Algeria
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-Chimique, Sidi Thabet 2020, Tunisia
| |
Collapse
|
3
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
4
|
Lyu C, Hu H, Cai L, He S, Xu X, Zhou G, Wang H. A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis. J Adv Res 2024:S2090-1232(24)00232-7. [PMID: 38852803 DOI: 10.1016/j.jare.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. OBJECTIVES This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. METHODS Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. RESULTS SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. CONCLUSION SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.
Collapse
Affiliation(s)
- Chongyang Lyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haijing Hu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuwen He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
5
|
Sardi JDCO, Derissi Braz Carlton J, Marcos CM, Fusco Almeida AM, Mendes Giannini MJS. Unveiling the functional significance of the 14.3.3 protein: A key player in Paracoccidioides brasiliensis biofilm formation. Microb Pathog 2024; 188:106537. [PMID: 38211834 DOI: 10.1016/j.micpath.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Janaina de Cássia Orlandi Sardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil; Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Jaqueline Derissi Braz Carlton
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil.
| |
Collapse
|
6
|
Zhang Z, Cui T, Tai L, Mu K, Shi Y, Chen F, Liao X, Hu X, Dong L. Effect of High-Pressure Micro-Fluidization on the Inactivation of Staphylococcus aureus in Liquid Food. Foods 2023; 12:4306. [PMID: 38231783 DOI: 10.3390/foods12234306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
High-pressure homogenization has been extensively studied for its excellent homogenization effect and the prospect of continuous liquid food production, but its sterilization ability still needs to be improved. In this study, we replaced the homogenization valve with two opposing diamond nozzles (0.05 mm inner diameter) so that the fluid collided at high velocity, corresponding to high-pressure micro-fluidization (HPM). Moreover, HPM treatment significantly inactivated Staphylococcus aureus ~7 log in the liquid with no detectable sub-lethal state at a pressure of 400 MPa and a discharge temperature of 50 °C. The sterilization effect of HPM on S. aureus subsp. aureus was attributed to a significantly disrupted cell structure and increased membrane permeability, which led to the leakage of intracellular proteins, resulting in bacterial death. At the same time, HPM treatment was able to significantly reduce the ability of S. aureus subsp. aureus to form biofilms, which, in turn, reduced its virulence. Finally, compared to the simulated system, more effective sterilization was observed in apple juice, with its color and pH remaining unchanged, which suggested that HPM can be used to process other liquid foods.
Collapse
Affiliation(s)
- Zequn Zhang
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Tianlin Cui
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Luyang Tai
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Kangyi Mu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Yicong Shi
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| | - Li Dong
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, No. 17, East Qinghua Road, Haidian District, Beijing 100083, China
| |
Collapse
|
7
|
Firdous S, Bhat SH, Aziz S, Jehangir M, Syeed S, Iqra Z, Ahmad MA, Rasool S, Khursheed A, Shalla AH, Ganaie AA, Rather MA. Antibacterial potential of Thymus linearis essential oil collected from Wasturwan mountain: A combination of experimental and theoretical studies involving in silico molecular docking simulation of the major compounds against Novobiocin-resistant mutant of DNA Gyrase-B. Microb Pathog 2023; 183:106280. [PMID: 37541555 DOI: 10.1016/j.micpath.2023.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Antibiotic resistant bacteria are immune to most antibiotics and are therefore very difficult to treat and in most cases lead to death. As such there is a pressing need for alternative and more efficient antibacterial drugs which can target these drug-resistant strains as well. The objective of this research work was to investigate the antibacterial properties of Thymus linearis essential oil (EO) against multiple disease-causing bacterial pathogens. Additionally, the study aimed to examine the molecular docking and molecular dynamic (MD) simulations of the primary components of the EO with the essential bacterial proteins and enzymes. Gas chromatography-mass spectrometry was employed to analyse the chemical composition of Thymus linearis EO. The initial screening for antibacterial properties involved the use of disc diffusion and microdilution techniques. Molecular docking studies were conducted utilising Autodock Vina. The outcomes were subsequently visualised through BIOVIA Discovery Studio. MD simulations were conducted using iMODS, an internet-based platform designed for MD simulations. The essential oil (EO) was found to contain 26 components, with thymol, carvacrol, p-cymene, and γ-terpinene being the primary constituents. The study findings revealed that Thymus linearis EO demonstrated antibacterial effects that were dependent on both the dose and time. The results of molecular docking studies revealed that the primary constituents of the EO, namely thymol, carvacrol, and p-cymene, exhibited robust interactions with the active site of the bacterial DNA gyrase enzyme. This finding provides an explanation for the antibacterial mechanism of the EO. The results indicate that Thymus linearis EO possesses potent antibacterial properties against the MDR microorganisms. Molecular docking analyses revealed that the essential oil's primary components interact with the amino acid residues of the DNA-Gyrase B enzyme, resulting in a favourable docking score.
Collapse
Affiliation(s)
- Sameera Firdous
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Showkat H Bhat
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Safeena Aziz
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Muneeza Jehangir
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Sobiya Syeed
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Zainab Iqra
- CSIR Indian Institute of Integrative Medicine, Field Station, Pulwama, 192301, India
| | - Mohammad Abrar Ahmad
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Shahid Rasool
- CSIR Indian Institute of Integrative Medicine, Field Station, Pulwama, 192301, India
| | - Aadil Khursheed
- CSIR Indian Institute of Integrative Medicine, Field Station, Pulwama, 192301, India
| | - Aabid Hussain Shalla
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India
| | - Arsheed A Ganaie
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India; Centre for AYUSH Sciences, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India.
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, 192122, Jammu and Kashmir, India.
| |
Collapse
|
8
|
Guillén S, Nadal L, Halaihel N, Mañas P, Cebrián G. Genotypic and phenotypic characterization of a Salmonella Typhimurium strain resistant to pulsed electric fields. Food Microbiol 2023; 113:104285. [PMID: 37098417 DOI: 10.1016/j.fm.2023.104285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Pulsed Electric Fields (PEF) technology is regarded as one of the most interesting alternatives to current food preservation methods, due to its capability to inactivate vegetative microorganisms while leaving the product's organoleptic and nutritional properties mostly unchanged. However, many aspects regarding the mechanisms of bacterial inactivation by PEF are still not fully understood. The aim of this study was to obtain further insight into the mechanisms responsible for the increased resistance to PEF of a Salmonella Typhimurium SL1344 variant (SL1344-RS, Sagarzazu et al., 2013), and to quantify the impact that the acquisition of PEF resistance has on other aspects of S. enterica physiology, such as growth fitness, biofilm formation ability, virulence and antibiotic resistance. WGS, RNAseq and qRT-PCR assays indicated that the increased PEF resistance of the SL1344-RS variant is due to a higher RpoS activity caused by a mutation in the hnr gene. This increased RpoS activity also results in higher resistance to multiple stresses (acidic, osmotic, oxidative, ethanol and UV-C, but not to heat and HHP), decreased growth rate in M9-Gluconate (but not in TSB-YE or LB-DPY), increased ability to adhere to Caco-2 cells (but no significant change in invasiveness) and enhanced antibiotic resistance (to six out of eight agents). This study significantly contributes to the understanding of the mechanisms of the development of stress resistance in Salmonellae and underscores the crucial role played by RpoS in this process. Further studies are needed to determine whether this PEF-resistant variant would represent a higher, equal or lower associated hazard than the parental strain.
Collapse
Affiliation(s)
- S Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - L Nadal
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - N Halaihel
- Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain
| | - P Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - G Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
9
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
10
|
Wang W, Bao X, Bové M, Rigole P, Meng X, Su J, Coenye T. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models. Microbiol Spectr 2022; 10:e0169622. [PMID: 36194139 PMCID: PMC9602683 DOI: 10.1128/spectrum.01696-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are promising antibacterials for the development of novel antibiofilm drugs, but their antibiofilm activity in physiologically relevant model systems is poorly characterized. As the host microenvironment can interfere with the activity of the phytochemicals, mimicking the complex environment found in biofilm associated infections is essential to predict the clinical potential of novel phytochemical-based antimicrobials. In the present study, we examined the antibiofilm activity of borneol, citral, and combinations of both as well as their Pickering emulsions against Staphylococcus aureus and Pseudomonas aeruginosa in an in vivo-like synthetic cystic fibrosis medium (SCFM2) model, an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels), and an in vivo Galleria mellonella model. The Pickering emulsions demonstrated an enhanced biofilm inhibitory activity compared to both citral and the borneol/citral combination, reducing the minimum biofilm inhibitory concentration (MBIC) values up to 2 to 4 times against P. aeruginosa PAO1 and 2 to 8 times against S. aureus P8-AE1 in SCMF2. In addition, citral, the combination borneol/citral, and their Pickering emulsions can completely eliminate the established biofilm of S. aureus P8-AE1. The effectiveness of Pickering emulsions was also demonstrated in the wound model with a reduction of up to 4.8 log units in biofilm formation by S. aureus Mu50. Furthermore, citral and Pickering emulsions exhibited a significant degree of protection against S. aureus infection in the G. mellonella model. The present findings reveal the potential of citral- or borneol/citral-based Pickering emulsions as a type of alternative antibiofilm candidate to control pathogenicity in chronic infection. IMPORTANCE There is clearly an urgent need for novel formulations with antimicrobial and antibiofilm activity, but while there are plenty of studies investigating them using simple in vitro systems, there is a lack of studies in which (combinations of) phytochemicals are evaluated in relevant models that closely resemble the in vivo situation. Here, we examined the antibiofilm activity of borneol, citral, and their combination as well as Pickering emulsions (stabilized by solid particles) of these compounds. Activity was tested against Staphylococcus aureus and Pseudomonas aeruginosa in in vitro models mimicking cystic fibrosis sputum and wounds as well as in an in vivo Galleria mellonella model. The Pickering emulsions showed drastically increased antibiofilm activity compared to that of the compounds as such in both in vitro models and protected G. mellonella larvae from S. aureus-induced killing. Our data show that Pickering emulsions from phytochemicals are potentially useful for treating specific biofilm-related chronic infections.
Collapse
Affiliation(s)
- Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Pamplona Pagnossa J, Rocchetti G, Bezerra JDP, Batiha GES, El-Masry EA, Mahmoud MH, Alsayegh AA, Mashraqi A, Cocconcelli PS, Santos C, Lucini L, Hilsdorf Piccoli R. Untargeted Metabolomics Approach of Cross-Adaptation in Salmonella Enterica Induced by Major Compounds of Essential Oils. Front Microbiol 2022; 13:769110. [PMID: 35694295 PMCID: PMC9174793 DOI: 10.3389/fmicb.2022.769110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cross-adaptation phenomena in bacterial populations, induced by sublethal doses of antibacterial solutions, are a major problem in the field of food safety. In this regard, essential oils and their major compounds appear as an effective alternative to common sanitizers in food industry environments. The present study aimed to evaluate the untargeted metabolomics perturbations of Salmonella enterica serovar Enteritidis that has been previously exposed to the sublethal doses of the major components of essential oils: cinnamaldehyde, citral, and linalool (CIN, CIT, and LIN, respectively). Cinnamaldehyde appeared to be the most efficient compound in the assays evaluating the inhibitory effects [0.06% (v/v) as MBC]. Also, preliminary tests exhibited a phenotype of adaptation in planktonic and sessile cells of S. Enteritidis when exposed to sublethal doses of linalool, resulting in tolerance to previously lethal concentrations of citral. A metabolomics approach on S. Enteritidis provided an important insight into the phenomenon of cross-adaptation induced by sublethal doses of major compounds of some essential oils. In addition, according to the results obtained, when single molecules were used, many pathways may be involved in bacterial tolerance, which could be different from the findings revealed in previous studies regarding the use of phytocomplex of essential oils. Orthogonal projection to latent structures (OPLS) proved to be an interesting predictive model to demonstrate the adaptation events in pathogenic bacteria because of the global engagement to prevent and control foodborne outbreaks.
Collapse
Affiliation(s)
- Jorge Pamplona Pagnossa
- Health and Biological Sciences Institute, Pontifical Catholic University–PUC Minas, Poços de Caldas, Brazil
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Eman A. El-Masry
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Mashraqi
- Biology Department, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Pier Sandro Cocconcelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco, Chile
- *Correspondence: Cledir Santos,
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | |
Collapse
|
12
|
Suriyaprom S, Mosoni P, Leroy S, Kaewkod T, Desvaux M, Tragoolpua Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants (Basel) 2022; 11:602. [PMID: 35326252 PMCID: PMC8945554 DOI: 10.3390/antiox11030602] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
Fruit is an essential part of the human diet and is of great interest because of its richness in phytochemicals. Various fruit extracts from citrus, berries and pomegranates have been shown to possess a broad spectrum of medicinal properties. Fruit phytochemicals are of considerable interest because of their antioxidant properties involving different mechanisms of action, which can act against different pathogenic bacteria. The antioxidant capacity of fruit phytochemicals involves different kinds of reactions, such as radical scavenging and chelation or complexation of metal ions. The interaction between fruit phytochemicals and bacteria has different repercussions: it disrupts the cell envelope, disturbs cell-cell communication and gene regulation, and suppresses metabolic and enzymatic activities. Consequently, fruit phytochemicals can directly inhibit bacterial growth or act indirectly by modulating the expression of virulence factors, both of which reduce microbial pathogenicity. The aim of this review was to report our current knowledge on various fruit extracts and their major bioactive compounds, and determine the effectiveness of organic acids, terpenes, polyphenols, and other types of phenolic compounds with antioxidant properties as a source of antimicrobial agents.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Pascale Mosoni
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Sabine Leroy
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
| | - Mickaël Desvaux
- Microbiologie Environnement Digestif et Santé (MEDiS) UMR454, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (P.M.); (S.L.)
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.)
- Research Center in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
14
|
Innovative next-generation therapies in combating multi-drug-resistant and multi-virulent Escherichia coli isolates: insights from in vitro, in vivo, and molecular docking studies. Appl Microbiol Biotechnol 2022; 106:1691-1703. [PMID: 35133473 DOI: 10.1007/s00253-022-11781-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Despite notable advances in vaccine and antimicrobial therapies, treatment failure has been increasingly reported worldwide. Of note, multi-drug-resistant (MDR) Escherichia coli (E. coli) strains have a considerable share in the evolution of this crisis. So, current practice guidelines are directed towards complementary and alternative therapies. Therefore, we evaluated the antibacterial and antivirulence activities of curcumin, thymol, and eugenol essential oils (EOs) as well as EOs-EOs and EOs-antibiotics interactions on MDR and multi-virulent E. coli isolates. Unfortunately, MDR E. coli could be isolated with a prevalence rate of 95.6% (86/90). Additionally, the majority of our isolates harbored both fimH (95.6%) and ompA (91.1%) genes, and half of them (45/90) were multi-virulent. Interestingly, all the tested EOs, especially curcumin, exhibited inhibitory activities against all MDR and multi-virulent E. coli isolates. The addition of thymol enhanced the antibacterial activities of curcumin and eugenol. Moreover, the activities of piperacillin/tazobactam and imipenem were increased by adding any one of the tested EOs. Regarding the antivirulence activities of the tested EOs, the cell surfaces of treated E. coli isolates under transmission electron microscope (TEM) were uneven. The cells appeared damaged and lost their appendages. Furthermore, EOs strongly reduced the transcription of ompA and fimH genes. The antibacterial and antivirulence activities of the used EOs were confirmed by in silico and mice protection assays. Hereby, we introduced the promising uses of curcumin, thymol, and eugenol oils as complementary and alternative therapies for combating MDR and multi-virulent E. coli isolates. KEY POINTS: • Our promising results confirmed that we were right for renewed interest of EOs. • The EOs, especially curcumin, can be used to prevent treatment failure. • We supposed a new pharmaceutical formulation of antibiotic powders dissolved in EOs.
Collapse
|
15
|
Guillén S, Marcén M, Fau E, Mañas P, Cebrián G. Relationship between growth ability, virulence, and resistance to food-processing related stresses in non-typhoidal Salmonellae. Int J Food Microbiol 2022; 361:109462. [PMID: 34749188 DOI: 10.1016/j.ijfoodmicro.2021.109462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The ability of Salmonella to resist and adapt to harsh conditions is one of the major features that have made this microorganism such a relevant health hazard. However, the impact of these resistance responses on other aspects of Salmonella physiology, such as virulence and growth ability, is still not fully understood. The objective of this study was to determine the maximum growth rates (in three different media), virulence (adhesion and invasion of Caco-2 cells), and other phenotypic characteristics (biofilm-forming ability and antimicrobial resistance) of 23 Salmonella strains belonging to different serovars, and to compare them with their previously determined stress resistance parameters. Significant differences (p < 0.05) in growth rates, virulence, and biofilm-forming ability were found among the 23 strains studied. Nevertheless, whereas less than 3-fold change between the lowest and the highest growth rate was observed, the percentage of cells capable of invading Caco-2 cells varied more than 100-fold, that to form biofilms more than 30-fold, and the antibiotic MICs varied up to 512-fold, among the different strains. Results indicate that those strains with the highest cell adhesion ability were not always the most invasive ones and suggest that, in general terms, a higher stress resistance did not imply a reduced growth ability (rate). Similarly, no association between stress resistance and biofilm formation ability (except for acid stress) or antibiotic resistance (with minor exceptions) was found. Our data also suggest that, in Salmonella, acid stress resistance would be associated with virulence, since a positive correlation of that trait with adhesion and a negative correlation with invasion was found. This study contributes to a better understanding of the physiology of Salmonella and the relationship between bacterial stress resistance, growth ability, and virulence. It also provides new data regarding intra-specific variability of a series of phenotypic characteristics of Salmonella that are relevant from the food safety perspective.
Collapse
Affiliation(s)
- Silvia Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Marcén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ester Fau
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Pilar Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Guillermo Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
16
|
Recovery and virulence factors of sublethally injured Staphylococcus aureus after ohmic heating. Food Microbiol 2021; 102:103899. [PMID: 34809931 DOI: 10.1016/j.fm.2021.103899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/20/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Ohmic heating (OH) is an alternative thermal processing technique, which is widely used to pasteurize or sterilize food. However, sublethally injured Staphylococcus aureus induced by OH is a great concern to food safety. The recovery of injured S. aureus by OH and virulence factor changes during recovery were investigated in this study. The liquid media (phosphate-buffered saline, buffered peptone water and nutrient broth (NB)), temperature (4, 25 and 37 °C) and pH (6.0, 7.2 and 8.0) influenced the recovery rate and the injured cells completely repaired in NB at 37 °C, pH 7.2 with the shortest time of 2 h. The biofilm formation ability, mannitol fermentation, hemolysis, and coagulase activities decreased in injured S. aureus and recovered during repair process. Quantitative real-time PCR showed the expression of sek, clfB and lukH involved in virulence factors increased during recovery. The results indicated that the virulence factors of injured S. aureus recovered after repair.
Collapse
|
17
|
Pourkhosravani E, Dehghan Nayeri F, Mohammadi Bazargani M. Decoding antibacterial and antibiofilm properties of cinnamon and cardamom essential oils: a combined molecular docking and experimental study. AMB Express 2021; 11:143. [PMID: 34704145 PMCID: PMC8548479 DOI: 10.1186/s13568-021-01305-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
This study sets out to compare the antibacterial and antibiofilm profiles of Ci/Ca EOs alone and in combination together against infectious bacterial strains. MIC assay was carried out to survey the effectiveness of prepared EOs by two-fold serial dilution method and MTT evaluation. Synergic antibacterial properties of EOs against target strains were studied by using checkerboard titration method. Biofilm growth and development were evaluated using CV and XTT reduction assays. Antibacterial activity was observed for EOs against both bacterial strains with stronger activity for CiEO against both bacteria. The synergistic antibacterial effect was observed only against B. subtilis. Based on the FIC index, combinations could not inhibit the growth of E. coli. The pure EOs and their combination inhibited cell attachment for both studied bacteria with stronger effect on E. coli. CV and XTT reduction assays results showed that Ci EO and its combination with CaEO had the highest antibiofilm activity at lowest MIC value 0.08% and 0.04/0.02% against biofilm formed by E. coli and B. subtilis respectively, indicating a high antibiofilm potential. Computational docking analyses also postulated that the active constituents of evaluated EOs have the potential to interact with different bacterial targets, suggested binding mode of action of EOs metabolites. By and large, synergistic anti-biofilm properties of EOs may provide further options for developing novel formula to inhibit a variety of infectious clinical and industrial strains without (or less) toxicity effects on human body. ![]()
Collapse
|
18
|
Abstract
Injudicious consumption of antibiotics in the past few decades has arisen the problem of resistance in pathogenic organisms against most antibiotics and antimicrobial agents. Scenarios of treatment failure are becoming more common in hospitals. This situation demands the frequent need for new antimicrobial compounds which may have other mechanisms of action from those which are in current use. Limonene can be utilized as one of the solutions to the problem of antimicrobial resistance. Limonene is a naturally occurring monoterpene with a lemon-like odor, which mainly present in the peels of citrus plants like lemon, orange, grapefruit, etc. The study aimed to enlighten the antimicrobial properties of limonene as per previous literature. Advantageous contributions have been made by various research groups in the study of the antimicrobial properties of limonene. Previous studies have shown that limonene not only inhibits disease-causing pathogenic microbes, however, it also protects various food products from potential contaminants. This review article contains information about the effectiveness of limonene as an antimicrobial agent. Apart from antimicrobial property, some other uses of limonene are also discussed such as its role as fragrance and flavor additive, as in the formation of nonalcoholic beverages, as solvent and cleaner in the petroleum industry, and as a pesticide. Antibacterial, antifungal, antiviral, and anti-biofilm properties of limonene may help it to be used in the future as a potential antimicrobial agent with minimal adverse effects. Some of the recent studies also showed the action of limonene against COVID-19 (Coronavirus). However, additional studies are requisite to scrutinize the possible mechanism of antimicrobial action of limonene.
Collapse
|
19
|
Citral modulates virulence factors in methicillin-resistant Staphylococcus aureus. Sci Rep 2021; 11:16482. [PMID: 34389776 PMCID: PMC8363631 DOI: 10.1038/s41598-021-95971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for high morbidity and mortality rates. Citral has been studied in the pharmaceutical industry and has shown antimicrobial activity. This study aimed to analyze the antimicrobial activity of citral in inhibiting biofilm formation and modulating virulence genes, with the ultimate goal of finding a strategy for treating infections caused by MRSA strains. Citral showed antimicrobial activity against MRSA isolates with minimum inhibitory concentration (MIC) values between 5 mg/mL (0.5%) and 40 mg/mL (4%), and minimum bactericidal concentration (MBC) values between 10 mg/mL (1%) and 40 mg/mL (4%). The sub-inhibitory dose was 2.5 mg/mL (0.25%). Citral, in an antibiogram, modulated synergistically, antagonistically, or indifferent to the different antibiotics tested. Prior to evaluating the antibiofilm effects of citral, we classified the bacteria according to their biofilm production capacity. Citral showed greater efficacy in the initial stage, and there was a significant reduction in biofilm formation compared to the mature biofilm. qPCR was used to assess the modulation of virulence factor genes, and icaA underexpression was observed in isolates 20 and 48. For icaD, seg, and sei, an increase was observed in the expression of ATCC 33,591. No significant differences were found for eta and etb. Citral could be used as a supplement to conventional antibiotics for MRSA infections.
Collapse
|
20
|
Khare T, Anand U, Dey A, Assaraf YG, Chen ZS, Liu Z, Kumar V. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Front Pharmacol 2021; 12:720726. [PMID: 34366872 PMCID: PMC8334005 DOI: 10.3389/fphar.2021.720726] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Pune, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
21
|
López-Miranda S, Berdejo D, Pagán E, García-Gonzalo D, Pagán R. Modified cyclodextrin type and dehydration methods exert a significant effect on the antimicrobial activity of encapsulated carvacrol and thymol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3827-3835. [PMID: 33314093 DOI: 10.1002/jsfa.11017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The antimicrobial activity of essential oils and their constituents has led to increasing interest in using them as natural preservative agents. However, their high sensitivity to light and oxygen, their volatility and their low aqueous solubility are all obstacles to their application in the food, cosmetic or pharmaceutical industries. Encapsulation in cyclodextrins (CDs) is a solution for the application of such essential oils. RESULTS The complexation of carvacrol and thymol with hydroxypropyl (HP)-α-, HP-β- and HP-γ-CD, the behavior of the solid complexes prepared by freeze-drying and spray-drying methods and the antibacterial activity of solid complexes were studied. Kc values of HP-α- and HP-γ-CD complexes with carvacrol (118.4 and 365.7 L mol-1 ) and thymol (112.5 and 239.7 L mol -1 ) were far lower than those observed for HP-β-CD complexes with carvacrol (2268.2 L mol -1 ) and thymol (881.6 L mol -1 ). The lower stability of HP-α- and HP-γ-CD complexes increased the release of compounds, thereby affecting the antimicrobial activity of carvacrol and thymol to a lesser extent than complexation with HP-β-CD, normally used in the encapsulation of carvacrol and thymol. HP-β-CD encapsulation of carvacrol and thymol markedly reduced their antimicrobial activity. The freeze-drying method barely affected the antimicrobial activity of carvacrol and thymol after encapsulation, while spray drying could be considered for the production of solid complexes in combination with the appropriate CD. CONCLUSIONS It was thus demonstrated that HP-α- and HP-γ-CD are very suitable alternatives for the encapsulation of carvacrol and thymol with the purpose of preserving their bacteriostatic and bactericidal activities. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Santiago López-Miranda
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
22
|
Antimicrobial and antivirulence efficacies of citral against foodborne pathogen Vibrio parahaemolyticus RIMD2210633. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107507] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Hidayah AN, Wasito EB, Debora K, Basori A, Isnaeni I, Utomo B. Correlation between the Bacteriostatic and Bactericide Effect with Antibiofilm and Anticolony Spreading from Javanese Citronella Oil on Methicillin-Resistant Staphylococcus aureus (MRSA). FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v55i1.24277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium that has been resistant to various types of antibiotics, so it is not easy to be treated with antibiotics and needs other solutions. Javanese citronella oil distilled from the Cymbopogon nardus plant is proven to function as an antibacterial agent (bacteriostatic and bactericidal), fungicide and repellent. This study aimed to prove that there is a positive correlation between bacteriostatic and bactericidal effects with antibiofilm and anticolony spreading from Javanese citronella oil on MRSA. The intended antibiofilm is a barrier to biofilm formation and eradication. Bacteriostatic and antibiofilm effects were tested using microtiter plates assay, bactericidal effect test with subculture into the media and anticolony spreading effect test with spot inoculation in Tryptic Soy Broth media supplemented with 0.24% agar. The bacteriostatic effect test data were analyzed using paired t-test, bactericidal effect using the Friedman test, antibiofilm effect test using Kruskall-Wallis and the results of all the tests correlated using Pearson and Spearman correlation. The statistical significance used was p<0.05. The results showed that Javanese citronella oil had a bacteriostatic concentration of 0.02% (v/v) and bactericidal concentration of 0.78% (v/v). The Pearson correlation test showed that there was a negative correlation between bacteriostatic and bactericidal effects on biofilm formation with r = -0.956 (p = 0.000), but the correlation was positive for biofilm eradication with r = 0.918 (p = 0.000) and anticolony spreading with r = 1.000 (p = 0.000).
Collapse
|
24
|
Jang YS, Mosolygó T. Inhibition of Bacterial Biofilm Formation by Phytotherapeutics with Focus on Overcoming Antimicrobial Resistance. Curr Pharm Des 2021; 26:2807-2816. [PMID: 32048958 DOI: 10.2174/1381612826666200212121710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
Abstract
Bacteria within biofilms are more resistant to antibiotics and chemical agents than planktonic bacteria in suspension. Treatment of biofilm-associated infections inevitably involves high dosages and prolonged courses of antimicrobial agents; therefore, there is a potential risk of the development of antimicrobial resistance (AMR). Due to the high prevalence of AMR and its association with biofilm formation, investigation of more effective anti-biofilm agents is required. From ancient times, herbs and spices have been used to preserve foods, and their antimicrobial, anti-biofilm and anti-quorum sensing properties are well known. Moreover, phytochemicals exert their anti-biofilm properties at sub-inhibitory concentrations without providing the opportunity for the emergence of resistant bacteria or harming the host microbiota. With increasing scientific attention to natural phytotherapeutic agents, numerous experimental investigations have been conducted in recent years. The present paper aims to review the articles published in the last decade in order to summarize a) our current understanding of AMR in correlation with biofilm formation and b) the evidence of phytotherapeutic agents against bacterial biofilms and their mechanisms of action. The main focus has been put on herbal anti-biofilm compounds tested to date in association with Staphylococcus aureus, Pseudomonas aeruginosa and food-borne pathogens (Salmonella spp., Campylobacter spp., Listeria monocytogenes and Escherichia coli).
Collapse
Affiliation(s)
- Yun Su Jang
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tímea Mosolygó
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Papa R, Garzoli S, Vrenna G, Sabatino M, Sapienza F, Relucenti M, Donfrancesco O, Fiscarelli EV, Artini M, Selan L, Ragno R. Essential Oils Biofilm Modulation Activity, Chemical and Machine Learning Analysis. Application on Staphylococcus aureus Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2020; 21:E9258. [PMID: 33291608 PMCID: PMC7730550 DOI: 10.3390/ijms21239258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific community is continuously searching for natural and "green alternatives" to chemotherapeutic drugs, including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains, including reference and cystic fibrosis patients' isolated strains. The EOs biofilm modulation was assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and putative active components by means of machine learning algorithms application. Some EOs inhibited biofilm growth at 1.00% concentration, although lower concentrations revealed different biological profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus biofilm growth, which were characterized for their ability to alter the biofilm organization by means of SEM studies.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Manuela Sabatino
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Filippo Sapienza
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Ersilia Vita Fiscarelli
- Paediatric and Laboratory Department, Children’s Hospital and Institure Research Bambino Gesù, 00165 Rome, Italy;
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
26
|
Ebrahimi A, Rabiaee S, Lotfalian S, Habibian S. Effect of Clove Essential Oil (Syzygium aromaticum) on Some Virulence Factors of Staphylococcus aureus. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
27
|
Lemon Grass Essential Oil Does not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound. Foods 2020; 9:foods9050585. [PMID: 32380674 PMCID: PMC7278871 DOI: 10.3390/foods9050585] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
With strong antimicrobial properties, citral has been repeatedly reported to be the dominant component of lemongrass essential oil. Here, we report on a comparison of the antimicrobial and anticancer activity of citral and lemongrass essential oil. The lemongrass essential oil was prepared by the vacuum distillation of fresh Cymbopogon leaves, with a yield of 0.5% (w/w). Citral content was measured by gas chromatography/high-resolution mass spectrometry (GC-HRMS) and determined to be 63%. Antimicrobial activity was tested by the broth dilution method, showing strong activity against all tested bacteria and fungi. Citral was up to 100 times more active than the lemongrass essential oil. Similarly, both citral and essential oils inhibited bacterial communication and adhesion during P. aeruginosa and S. aureus biofilm formation; however, the biofilm prevention activity of citral was significantly higher. Both the essential oil and citral disrupted the maturated P. aeruginosa biofilm with the IC50 7.3 ± 0.4 and 0.1 ± 0.01 mL/L, respectively. Although it may seem that the citral is the main biologically active compound of lemongrass essential oil and the accompanying components have instead antagonistic effects, we determined that the lemongrass essential oil-sensitized methicillin-resistant S. aureus (MRSA) and doxorubicin-resistant ovarian carcinoma cells and that this activity was not caused by citral. A 1 mL/L dose of oil-sensitized MRSA to methicillin up to 9.6 times and a dose of 10 µL/L-sensitized ovarian carcinoma to doxorubicin up to 1.8 times. The mode of multidrug resistance modulation could be due to P-glycoprotein efflux pump inhibition. Therefore, the natural mixture of compounds present in the lemongrass essential oil provides beneficial effects and its direct use may be preferred to its use as a template for citral isolation.
Collapse
|
28
|
Gámez E, Elizondo-Castillo H, Tascon J, García-Salinas S, Navascues N, Mendoza G, Arruebo M, Irusta S. Antibacterial Effect of Thymol Loaded SBA-15 Nanorods Incorporated in PCL Electrospun Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E616. [PMID: 32230766 PMCID: PMC7221837 DOI: 10.3390/nano10040616] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
For the effective management of infected chronic wounds, the incorporation of antimicrobial drugs into wound dressings can increase their local availability at the infection site. Mesoporous silicon dioxide SBA-15 is an excellent drug carrier with tunable drug release kinetics. In this work, synthesized SBA-15 loaded with the natural antimicrobial compound thymol (THY) was incorporated into polycaprolactone (PCL) electrospun nanofibers to obtain an advanced wound dressing. Rod-shaped particles with internal parallel channels oriented along the longitudinal axis (diameter: 138 ± 30 nm, length: 563 ± 100 nm) were loaded with 70.8 wt.% of THY. Fiber mats were prepared using these particles as nanofillers within polycaprolactone (PCL) electrospun fibers. The resulting mats contained 5.6 wt.% of THY and more than half of this loading was released in the first 7 h. This release would prevent an initial bacterial colonization and also inhibit or eliminate bacterial growth as in vitro shown against Staphylococcus aureus ATCC 25923. Minimal inhibitory concentration (MIC: 0.07 mg/mL) and minimal bactericidal concentration (MBC: 0.11 mg/mL) of released THY were lower than the amount of free THY required, demonstrating the benefit of drug encapsulation for a more efficient bactericidal capacity due to the direct contact between mats and bacteria.
Collapse
Affiliation(s)
- Enrique Gámez
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Hellen Elizondo-Castillo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Jorge Tascon
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Sara García-Salinas
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
| | - Nuria Navascues
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Silvia Irusta
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (E.G.); (H.E.-C.); (J.T.); (S.G.-S.); (N.N.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain;
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Zhang D, Gan RY, Zhang JR, Farha AK, Li HB, Zhu F, Wang XH, Corke H. Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:1018-1055. [PMID: 33331691 DOI: 10.1111/1541-4337.12549] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
In recent decades, reduced antimicrobial effectiveness, increased bacterial infection, and newly emerged microbial resistance have become global public issues, leading to an urgent need to find effective strategies to counteract these problems. Strategies targeting bacterial virulence factors rather than bacterial survival have attracted increasing interest, since the modulation of virulence factors may prevent the development of drug resistance in bacteria. Spices are promising natural sources of antivirulence compounds owing to their wide availability, diverse antivirulence phytochemical constituents, and generally favorable safety profiles. Essential oils are the predominant and most important antivirulence components of spices. This review addresses the recent efforts of using spice essential oils to inhibit main bacterial virulence traits, including the quorum sensing system, biofilm formation, motility, and toxin production, with an intensive discussion of related mechanisms. We hope that this review can provide a better understanding of the antivirulence properties of spice essential oils, which have the potential to be used as antibiotic alternatives by targeting bacterial virulence.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Xiao-Hong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Chee E, Brown AC. Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria. Biomater Sci 2020; 8:1089-1100. [DOI: 10.1039/c9bm01393h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antibiotic drugs have revolutionized the field of medicine for almost 90 years. However, continued use has led to the rise of antibiotic resistant bacteria. To combat these bacteria, biomimetic material strategies have been investigated.
Collapse
Affiliation(s)
- Eunice Chee
- Joint Department of Biomedical Engineering
- North Carolina State University and University of North Carolina – Chapel Hill
- Raleigh
- USA
- Comparative Medicine Institute
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering
- North Carolina State University and University of North Carolina – Chapel Hill
- Raleigh
- USA
- Comparative Medicine Institute
| |
Collapse
|
31
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
32
|
Sim JXF, Khazandi M, Chan WY, Trott DJ, Deo P. Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Vet Dermatol 2019; 30:524-e159. [PMID: 31566822 DOI: 10.1111/vde.12794] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multidrug-resistant pathogens present a major global challenge in antimicrobial therapy and frequently complicate otitis externa in dogs. HYPOTHESIS/OBJECTIVES In vitro efficacy of oregano oil, thyme oil and their main phenolic constituents against bacterial and fungal isolates associated with canine otitis externa were investigated. It was hypothesized that the main phenolic components would have greater antimicrobial activity compared to the relative essential oil. METHODS AND MATERIALS Antimicrobial susceptibility testing was performed using broth microdilution with spot-plating technique to determine minimum inhibitory and bactericidal/fungicidal concentrations (MICs, MBCs and MFCs). A time-kill kinetics assay was performed to confirm the bactericidal and fungicidal activity of the oils and their phenolic constituents. One hundred bacterial and fungal isolates, including meticillin-susceptible Staphylococcus pseudintermedius (n = 10), meticillin-resistant S. pseudintermedius (n = 10), β-haemolytic Streptococcus spp. (n = 20), Pseudomonas aeruginosa (n = 20; including 10 isolates resistant to one or two antimicrobials), Proteus mirabilis (n = 20) and Malassezia pachydermatis (n = 20) from dogs with otitis externa were used. RESULTS Oregano oil, thyme oil, carvacrol and thymol exhibited antibacterial activity against all bacterial and fungal isolates tested. MIC90 values ranged from 0.015 to 0.03% (146-292 μg/mL) for the Gram-positive bacteria and P. mirabilis. For P. aeruginosa and M. pachydermatis, MIC90 values ranged from 0.09 to 0.25% (800-2,292 μg/mL). CONCLUSIONS AND CLINICAL SIGNIFICANCE Oregano oil, thyme oil, carvacrol and thymol showed good in vitro bactericidal and fungicidal activity against 100 isolates from dogs with otitis externa, including some highly drug-resistant isolates. These essential oils and their main phenolic constituents have the potential to be further investigated in vivo for the treatment of canine otitis externa.
Collapse
Affiliation(s)
- Jowenna Xiao Feng Sim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Manouchehr Khazandi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.,Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, 5371, Australia
| | - Wei Yee Chan
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, 5371, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, 5371, Australia
| | - Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
33
|
Marini E, Di Giulio M, Ginestra G, Magi G, Di Lodovico S, Marino A, Facinelli B, Cellini L, Nostro A. Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode. PLoS One 2019; 14:e0219038. [PMID: 31260476 PMCID: PMC6602199 DOI: 10.1371/journal.pone.0219038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022] Open
Abstract
Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 μg/mL for most of RGM isolates (32–512 μg/mL), MBCs were 2–4 times higher than MICs, and MICs of vapours were lower (16 μg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61–77%) and at concentration above the MIC (2–8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.
Collapse
Affiliation(s)
- Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gloria Magi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Bruna Facinelli
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
34
|
Patsilinakos A, Artini M, Papa R, Sabatino M, Božović M, Garzoli S, Vrenna G, Buzzi R, Manfredini S, Selan L, Ragno R. Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against Staphylococcus Species. Molecules 2019; 24:molecules24050890. [PMID: 30832446 PMCID: PMC6429525 DOI: 10.3390/molecules24050890] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/28/2022] Open
Abstract
Biofilm resistance to antimicrobials is a complex phenomenon, driven not only by genetic mutation induced resistance, but also by means of increased microbial cell density that supports horizontal gene transfer across cells. The prevention of biofilm formation and the treatment of existing biofilms is currently a difficult challenge; therefore, the discovery of new multi-targeted or combinatorial therapies is growing. The development of anti-biofilm agents is considered of major interest and represents a key strategy as non-biocidal molecules are highly valuable to avoid the rapid appearance of escape mutants. Among bacteria, staphylococci are predominant causes of biofilm-associated infections. Staphylococci, especially Staphylococcus aureus (S. aureus) is an extraordinarily versatile pathogen that can survive in hostile environmental conditions, colonize mucous membranes and skin, and can cause severe, non-purulent, toxin-mediated diseases or invasive pyogenic infections in humans. Staphylococcus epidermidis (S. epidermidis) has also emerged as an important opportunistic pathogen in infections associated with medical devices (such as urinary and intravascular catheters, orthopaedic implants, etc.), causing approximately from 30% to 43% of joint prosthesis infections. The scientific community is continuously looking for new agents endowed of anti-biofilm capabilities to fight S. aureus and S epidermidis infections. Interestingly, several reports indicated in vitro efficacy of non-biocidal essential oils (EOs) as promising treatment to reduce bacterial biofilm production and prevent the inducing of drug resistance. In this report were analyzed 89 EOs with the objective of investigating their ability to modulate bacterial biofilm production of different S. aureus and S. epidermidis strains. Results showed the assayed EOs to modulated the biofilm production with unpredictable results for each strain. In particular, many EOs acted mainly as biofilm inhibitors in the case of S. epidermidis strains, while for S. aureus strains, EOs induced either no effect or stimulate biofilm production. In order to elucidate the obtained experimental results, machine learning (ML) algorithms were applied to the EOs’ chemical compositions and the determined associated anti-biofilm potencies. Statistically robust ML models were developed, and their analysis in term of feature importance and partial dependence plots led to indicating those chemical components mainly responsible for biofilm production, inhibition or stimulation for each studied strain, respectively.
Collapse
Affiliation(s)
- Alexandros Patsilinakos
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
- Alchemical Dynamics s.r.l., 00125 Rome, Italy.
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | - Mijat Božović
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Podgorica, Montenegro.
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Raissa Buzzi
- Master Course in Cosmetic Sciences, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Stefano Manfredini
- Master Course in Cosmetic Sciences, Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
- Alchemical Dynamics s.r.l., 00125 Rome, Italy.
| |
Collapse
|
35
|
Owen L, White AW, Laird K. Characterisation and screening of antimicrobial essential oil components against clinically important antibiotic-resistant bacteria using thin layer chromatography-direct bioautography hyphenated with GC-MS, LC-MS and NMR. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:121-131. [PMID: 30280447 DOI: 10.1002/pca.2797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The antimicrobial activity of many essential oils (EOs) is well established, indicating that EOs may be a source of compounds for antimicrobial drug development. Thin layer chromatography-direct bioautography (TLC-DB) can quickly identify antimicrobial components in complex mixtures and can be applied to the screening of EOs for lead compounds. OBJECTIVES This study aimed to identify antimicrobial components of oregano, rosewood and cumin EOs against antibiotic-sensitive and -resistant bacteria using TLC-DB and a multi-faceted approach of GC-MS, LC-MS and NMR techniques to characterise bioactive compounds. The study also aimed to quantify the antimicrobial activity of bioactive compounds in order to evaluate their potential for the development of therapies against antibiotic-resistant bacteria. MATERIALS AND METHODS EOs were eluted on TLC plates and sprayed with a suspension of Staphylococcus aureus, Enterococcus faecium, Escherichia coli or Pseudomonas aeruginosa (antibiotic-sensitive and -resistant isolates). Zones of inhibition, visualised with iodonitrotetrazolium chloride, were subject to GC-MS, LC-MS and NMR to characterise the bioactive compounds. RESULTS Seven compounds were identified from the three EOs using GC-MS, while LC-MS and NMR failed to detect the presence of any further non-volatile or heat labile compounds. Carvacrol was most antimicrobial compound identified, with minimum inhibitory concentrations ranging 0.99-31.62 mM. CONCLUSION The identified antimicrobial compounds present in oregano, rosewood and cumin EOs including carvacrol may be candidates for the development of novel antimicrobial therapies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Lucy Owen
- Infectious Disease Research Group, School of Pharmacy, De Montfort University, Leicester, UK
| | - Alex W White
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Katie Laird
- Infectious Disease Research Group, School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
36
|
Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol 2019; 45:201-222. [PMID: 30786799 DOI: 10.1080/1040841x.2019.1573802] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococci are Gram-positive bacteria that are ubiquitous in the environment and able to form biofilms on a range of surfaces. They have been associated with a range of human health issues such as medical device-related infection, localized skin infection, or direct infection caused by toxin production. The extracellular material produced by these bacteria resists antibiotics and host defence mechanism which complicates the treatment process. The commonly reported Staphylococcus species are Staphylococcus aureus and S. epidermidis as they inhabit human bodies. However, the emergence of other staphylococci, such as S. haemolyticus, S. lugdunensis, S. saprophyticus, S. capitis, S. saccharolyticus, S. warneri, S. cohnii, and S. hominis, is also of concern and they have been associated with biofilm formation. This review critically assesses recent cases on the biofilm formation by S. aureus, S. epidermidis, and other staphylococci reported in health-related environments. The control of biofilm formation by staphylococci using natural compounds is specifically discussed as they represent potential anti-biofilm agents which may reduce the burden of antibiotic resistance.
Collapse
Affiliation(s)
- Yi Yi Yong
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| | - Gary A Dykes
- b School of Public Health , Curtin University , Bentley , Australia
| | - Wee Sim Choo
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| |
Collapse
|
37
|
Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM, Daglia M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. BIOFOULING 2018; 34:630-656. [PMID: 30067078 DOI: 10.1080/08927014.2018.1480756] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Carvacrol (5-isopropyl-2-methyl phenol) is a natural compound that occurs in the leaves of a number of plants and herbs including wild bergamot, thyme and pepperwort, but which is most abundant in oregano. The aim of this review is to analyse the scientific data from the last five years (2012-2017) on the antimicrobial and anti-biofilm activities of carvacrol, targeting different bacteria and fungi responsible for human infectious diseases. The antimicrobial and anti-biofilm mechanisms of carvacrol and its synergies with antibiotics are illustrated. The potential of carvacrol-loaded anti-infective nanomaterials is underlined. Carvacrol shows excellent antimicrobial and anti-biofilm activities, and is a very interesting bioactive compound against fungi and a wide range of Gram-positive and Gram-negative bacteria, and being active against both planktonic and sessile human pathogens. Moreover, carvacrol lends itself to being combined with nanomaterials, thus providing an opportunity for preventing biofilm-associated infections by new bio-inspired, anti-infective materials.
Collapse
Affiliation(s)
- Anna Marchese
- a Microbiology Section DISC-Ospedale Policlinico San Martino , University of Genoa , Genoa , Italy
| | - Carla Renata Arciola
- b Department of Experimental, Diagnostic and Specialty Medicine , University of Bologna , Bologna , Italy
- c Research Unit on Implant Infections , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Erika Coppo
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Ramona Barbieri
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Davide Barreca
- e Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Salima Chebaibi
- f Department of Health and Environment, Science Faculty , University Moulay Ismail , Meknes , Morocco
| | - Eduardo Sobarzo-Sánchez
- g Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Spain
- h Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud , Universidad Central de Chile , Chile
| | - Seyed Fazel Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Maria Daglia
- j Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section , University of Pavia , Pavia , Italy
| |
Collapse
|
38
|
Pradhan MS, Gunwal M, Shenoi P, Sonarkar S, Bhattacharya S, Badole G. Evaluation of pH and Chlorine Content of a Novel Herbal Sodium Hypochlorite for Root Canal Disinfection: An Experimental In vitro Study. Contemp Clin Dent 2018; 9:S74-S78. [PMID: 29962768 PMCID: PMC6006897 DOI: 10.4103/ccd.ccd_60_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Sodium hypochlorite (NaOCl) is widely used endodontic irrigant with its array of advantages and disadvantages. Addition of herbal agents to NaOCl might help in enhancing its efficacy. MATERIALS AND METHODS NaOCl was prepared using chlorinated lime, anhydrous sodium carbonate, and distilled water to obtain 6% fresh solution. Then, this solution was evaluated for its pH and chlorine content. The fresh herbal extract of Cymbopogon citratus (lemongrass), Mentha piperita (peppermint), and Ocimum sanctum (tulsi) was prepared from plant leaves. After which, various permutation and combinations were made, and it was found that 9:1 ratio was the most effective combination. The pH and percentage of free chlorine were evaluated and analyzed. RESULTS No statistical significant difference was found in pH content. However, significant difference was found between the groups for chlorine content (P < 0.05) of herbal NaOCl. CONCLUSION The current study presents a simplified method for preparation of herbal irrigating solution.
Collapse
Affiliation(s)
- Manjusha S. Pradhan
- Department of Conservative Dentistry and Endodontics, VSPM's Dental College and Research Center, Nagpur, Maharashtra, India
| | - Mohit Gunwal
- Department of Conservative Dentistry and Endodontics, Chhattisgarh Dental College and Research Institute, Chhattisgarh, India
| | - Pratima Shenoi
- Department of Conservative Dentistry and Endodontics, VSPM's Dental College and Research Center, Nagpur, Maharashtra, India
| | - Snehal Sonarkar
- Department of Conservative Dentistry and Endodontics, VSPM's Dental College and Research Center, Nagpur, Maharashtra, India
| | - Sangita Bhattacharya
- Department of Conservative Dentistry and Endodontics, VSPM's Dental College and Research Center, Nagpur, Maharashtra, India
| | - Gautam Badole
- Department of Conservative Dentistry and Endodontics, VSPM's Dental College and Research Center, Nagpur, Maharashtra, India
| |
Collapse
|
39
|
Owen L, Laird K. Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Crit Rev Microbiol 2018; 44:414-435. [PMID: 29319372 DOI: 10.1080/1040841x.2018.1423616] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance has increased dramatically in recent years, yet the antibiotic pipeline has stalled. New therapies are therefore needed to continue treating antibiotic resistant infections. One potential strategy currently being explored is the use of non-antibiotic compounds to potentiate the activity of currently employed antibiotics. Many natural products including Essential Oils (EOs) possess broad spectrum antibacterial activity and so have been investigated for this purpose. This article aims to review recent literature concerning the antibacterial activity of EOs and their interactions with antibiotics, with consideration of dual mechanisms of action of EOs and antibiotics as a potential solution to antibiotic resistance. Synergistic interactions between EOs and their components with antibiotics have been reported, including several instances of antibiotic resensitization in resistant isolates, in support of this strategy to control antibiotic resistance. However, a lack of consistency in methods and interpretation criteria makes drawing conclusions of efficacy of studied combinations difficult. Synergistic effects are often not explored beyond preliminary identification of antibacterial interactions and mechanism of action is rarely defined, despite many hypotheses and recommendations for future study. Much work is needed to fully understand EO-antibiotic associations before they can be further developed into novel antibacterial formulations.
Collapse
Affiliation(s)
- Lucy Owen
- a Infectious Disease Research Group, The School of Pharmacy , De Montfort University , Leicester , UK
| | - Katie Laird
- a Infectious Disease Research Group, The School of Pharmacy , De Montfort University , Leicester , UK
| |
Collapse
|
40
|
|
41
|
Gupta P, Patel DK, Gupta VK, Pal A, Tandon S, Darokar MP. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:85-96. [PMID: 28899514 DOI: 10.1016/j.phymed.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/23/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Staphylococcus aureus (SA), is a major human pathogen causing wide range of clinical infections, which has been further complicated by drug resistance like methicillin resistant S. aureus (MRSA), vancomycin intermediate S. aureus (VISA)/vancomycin resistant S. aureus (VRSA), etc. The present study was aimed at determining anti-staphylococcal potential of citral against drug resistant clinical isolates alone and in combination with antibiotics. PURPOSE To assess the potential of citral in combination with norfloxacin in treating drug resistant infections of SA. STUDY DESIGN In the present study, synergistic interaction of citral and norfloxacin against drug resistant SA strains was evaluated. Further the efficacy and possible mechanism of action of the combination was also evaluated using in vitro and in vivo assays. METHOD The anti-staphylococcal activity of each of the monoterpene and the antibiotic was determined in terms of MIC and the effective concentration of both compounds in combination was obtained by checkerboard assay. In vivo efficacy and oral acute toxicity was evaluated in Swiss albino mice model. To understand the mechanism of action, time-kill curve, bacteriolysis, leakage, membrane depolarization, salt tolerance and ethidium bromide efflux assays were performed. RESULTS Citral was found effective against clinical isolates of SA with MIC values ranging from 75 to 150 µg ml-1 exhibiting bacteriostatic activity. Citral interacted synergistically, reducing MIC of norfloxacin up to 32-folds with FICI ≤ 0.50. Citral did not affect cell wall, but could damage cell membrane, inhibit efflux pump and affect the membrane potential. Citral could reduce the staphylococcal load of spleen and liver tissues in a dose-dependent manner which was further reduced when used in combination with norfloxacin. Citral did not exhibit any mortality or morbidity up to 500 mg kg-1 body weight and found to prolong the post-antibiotic effect of norfloxacin. CONCLUSION Based on these observations, citral could be a lead candidate phytomolecule for further developing it into an anti-staphylococcal agent. The observations of combination study will help in reducing the burden of antibiotics leading to delayed resistance development.
Collapse
Affiliation(s)
- Priyanka Gupta
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Dinesh Kumar Patel
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Vivek Kumar Gupta
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Anirban Pal
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Sudeep Tandon
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - M P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| |
Collapse
|
42
|
Vasconcelos SECB, Melo HM, Cavalcante TTA, Júnior FEAC, de Carvalho MG, Menezes FGR, de Sousa OV, Costa RA. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. Altern Ther Health Med 2017; 17:462. [PMID: 28915875 PMCID: PMC5602841 DOI: 10.1186/s12906-017-1968-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/08/2017] [Indexed: 11/28/2022]
Abstract
Background The emergence of multidrug-resistant bacteria is a worldwide concern and in order to find an alternative to this problem, the occurrence of antimicrobial compounds in Plectranthus amboinicus essential oil was investigated. Thus, this study aims to determine susceptibility of Staphylococcus aureus isolated from food to antibiotics, P. amboinicus essential oil (PAEO) and carvacrol. Methods Leaves and stem of P. amboinicus were used for extraction of essential oil (PAEO) by hydrodistillation technique and EO chemical analysis was performed by gas chromatography coupled to a mass spectrometer. S. aureus strains (n = 35) isolated from food and S. aureus ATCC 6538 were used to evaluate the antimicrobial and antibiofilm activity of PAEO and carvacrol. All strains (n = 35) were submitted to antimicrobial susceptibility profile by disk diffusion method. Determination of MIC and MBC was performed by microdilution technique and antibiofilm activity was determined by microtiter-plate technique with crystal violet assay and counting viable cells in Colony Forming Units (CFU). Results Carvacrol (88.17%) was the major component in the PAEO. Antibiotic resistance was detected in 28 S. aureus strains (80%) and 12 strains (34.3%) were oxacillin and vancomycin-resistant (OVRSA). From the 28 resistant strains, 7 (25%) showed resistance plasmid of 12,000 bp. All strains (n = 35) were sensitive to PAEO and carvacrol, with inhibition zones ranging from 16 to 38 mm and 23 to 42 mm, respectively. The lowest MIC (0.25 mg mL−1) and MBC (0.5 mg mL−1) values were observed when carvacrol was used against OVRSA. When a 0.5 mg mL−1 concentration of PAEO and carvacrol was used, no viable cells were found on S. aureus biofilm. Conclusion The antibacterial effect of carvacrol and PAEO proves to be a possible alternative against planktonic forms and staphylococcal biofilm.
Collapse
|
43
|
Vetas D, Dimitropoulou E, Mitropoulou G, Kourkoutas Y, Giaouris E. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite. Int J Food Microbiol 2017. [DOI: 10.1016/j.ijfoodmicro.2017.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
In Vitro Antibacterial and Antibiofilm Activity of Lippia alba Essential Oil, Citral, and Carvone against Staphylococcus aureus. ScientificWorldJournal 2017; 2017:4962707. [PMID: 28845443 PMCID: PMC5560023 DOI: 10.1155/2017/4962707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/21/2017] [Indexed: 01/26/2023] Open
Abstract
In vitro antimicrobial and antibiofilm activities of the Lippia alba essential oil and its major components (citral and carvone) against Staphylococcus aureus were investigated. Essential oils (LA1EO, LA2EO, and LA3EO) were extracted from the aerial parts of three L. alba specimens by hydrodistillation and analyzed by gas chromatography coupled to a mass spectrometer. Minimum Inhibitory Concentrations (MIC) and Minimum Bacterial Concentration (MBC) were determined by the microdilution method. For the antibiofilm assays, the biomass formation in the biofilm was evaluated by the microtiter-plate technique with the crystal violet (CV) assay and the viability of the bacterial cells was analyzed. All oils and their major components presented antibacterial activity, and the lowest MIC and MBC values were 0.5 mg mL−1 when LA1EO and citral were used. Potential inhibition (100%) of S. aureus biofilm formation at the concentration of 0.5 mg mL−1 of all EOs was observed. However, the elimination of biofilm cells was confirmed at concentrations of 1 mg mL−1, 2 mg mL−1, 2 mg mL−1, and 0.5 mg mL−1 for LA1EO, LA2EO, LA3EO, and citral, respectively. The results obtained in the present research point to the promising antibacterial and antibiofilm potential of L. alba EOs against S. aureus, a species of recognized clinical interest.
Collapse
|
45
|
Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed Pharmacother 2017; 87:321-331. [PMID: 28064105 DOI: 10.1016/j.biopha.2016.12.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022] Open
Abstract
Herbal medicines have been routinely employed all over the world dated back from the ancient time and have been identified by patients and physicians for their excellent therapeutic value as they have lower adverse effects when compared with the modern medicines. Phytotherapeutics requires a scientific technique to deliver the active herbal extract in a controlled manner to avoid repeated administration and increase patient compliance. This can be reached by fabricating a novel drug delivery systems (NDDS) for herbal components. NDDSs does not only decrease the repeated dose to overcome ineffectiveness, but also help to increase potency by decreasing toxicity and elevating drug bioavailability. Nano-sized DDS of herbal drugs have a potential application for improving the activity and countering the problems related to herbal medicines. Hence, application of nanocarriers as an NDDS in the traditional herbal medicine system is important to treat more chronic diseases like infectious endocarditis.
Collapse
Affiliation(s)
- Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Razi Herbal Medicine Research Center, Lorestan University of Medical Science, Khorramabad, Iran.
| | - Maryam Soleimaninejad
- Babol University of Medical Sciences, Babol, Iran; Student of Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Aiyelabegan T Hammed
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
He X, Hao D, Liu C, Zhang X, Xu D, Xu X, Wang J, Wu R. Effect of Supplemental Oregano Essential Oils in Diets on Production Performance and Relatively Intestinal Parameters of Laying Hens. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajmb.2017.71006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Tofiño-Rivera A, Ortega-Cuadros M, Galvis-Pareja D, Jiménez-Rios H, Merini LJ, Martínez-Pabón MC. Effect of Lippia alba and Cymbopogon citratus essential oils on biofilms of Streptococcus mutans and cytotoxicity in CHO cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:749-754. [PMID: 27765606 DOI: 10.1016/j.jep.2016.10.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Caries is a public health problem, given that it prevails in 60 to 90% of the school-age global population. Multiple factors interact in its etiology, among them dental plaque is necessary to have lactic acid producing microorganisms like Streptococcus from he Mutans group. Existing prevention and treatment measures are not totally effective and generate adverse effects, which is why it is necessary to search for complementary strategies for their management. AIM The study sought to evaluate the eradication capacity of Streptococcus mutans biofilms and the toxicity on eukaryotic cells of Lippia alba and Cymbopogon citratus essential oils. METHODOLOGY Essential oils were extracted from plant material through steam distillation and then its chemical composition was determined. The MBEC-high-throughput (MBEC-HTP) (Innovotech, Edmonton, Alberta, Canada) assay used to determine the eradication concentration of S. mutans ATCC 35668 strain biofilms. Cytotoxicity was evaluated on CHO cells through the MTT cell proliferation assay. RESULTS The major components in both oils were Geraniol and Citral; in L. alba 18.9% and 15.9%, respectively, and in C. citratus 31.3% and 26.7%. The L. alba essential oils presented eradication activity against S. mutans biofilms of 95.8% in 0.01mg/dL concentration and C. citratus essential oils showed said eradication activity of 95.4% at 0.1, 0.01mg/dL concentrations and of 93.1% in the 0.001mg/dL concentration; none of the concentrations of both essential oils showed toxicity on CHO cells during 24h. CONCLUSION The L. alba and C. citratus essential oils showed eradication activity against S. mutans biofilms and null cytotoxicity, evidencing the need to conduct further studies that can identify their active components and in order to guide a safe use in treating and preventing dental caries.
Collapse
Affiliation(s)
- A Tofiño-Rivera
- PhD in Science, Corporación Colombiana de Investigación, C.I Motilonia, Codazzi, Cesar, Colombia; CIENCIAUDES Research Group, Faculty of Health, University of Santander, Valledupar, Colombia.
| | | | | | - H Jiménez-Rios
- CIENCIAUDES Research Group, Faculty of Health, University of Santander, Valledupar, Colombia.
| | - L J Merini
- INTA Agricultural Experimental Station, Anguil, Argentina.
| | - M C Martínez-Pabón
- POPCAD Research Group, Laboratory of Oral Microbiology, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.
| |
Collapse
|
48
|
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res 2016; 196:44-68. [PMID: 28164790 DOI: 10.1016/j.micres.2016.12.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
In recent years, many studies have shown that phytochemicals exert their antibacterial activity through different mechanisms of action, such as damage to the bacterial membrane and suppression of virulence factors, including inhibition of the activity of enzymes and toxins, and bacterial biofilm formation. In this review, we summarise data from the available literature regarding the antibacterial effects of the main phytochemicals belonging to different chemical classes, alkaloids, sulfur-containing phytochemicals, terpenoids, and polyphenols. Some phytochemicals, besides having direct antimicrobial activity, showed an in vitro synergistic effect when tested in combination with conventional antibiotics, modifying antibiotic resistance. Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects.
Collapse
Affiliation(s)
| | - Erika Coppo
- Sezione di Microbiologia DISC University of Genoa, Italy
| | - Anna Marchese
- Sezione di Microbiologia DISC-IRCCS San Martino-IST University of Genoa, Italy.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain; Dirección de Investigación, Universidad Central de Chile, Santiago, Chile
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci Rep 2016; 6:38126. [PMID: 27905512 PMCID: PMC5131480 DOI: 10.1038/srep38126] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
Quorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
50
|
Wang J, Vermerris W. Antimicrobial Nanomaterials Derived from Natural Products-A Review. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E255. [PMID: 28773379 PMCID: PMC5502919 DOI: 10.3390/ma9040255] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023]
Abstract
Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. The availability of these novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics.
Collapse
Affiliation(s)
- Ji Wang
- Department of Microbiology & Cell Science, IFAS, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, IFAS, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|