1
|
Mazumder K, Aktar A, Kerr PG, Dash R, Blanchard CL, Gulzarul Aziz M, Farahnaky A. Insights into seed coats of nine cultivars of Australian lupin: Unravelling LC-QTOF MS-based biochemical profiles, nutritional, functional, antioxidant, and antidiabetic properties together with rationalizing antidiabetic mechanism by in silico approaches. Food Res Int 2024; 195:114970. [PMID: 39277267 DOI: 10.1016/j.foodres.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste'.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh; School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW, Australia.
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh
| | - Philip G Kerr
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Christopher L Blanchard
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
2
|
Liu J, Ma R, Fu B, Yang P, Zhang L, Zhang C, Chen Y, Sun L. Phytosterols in mountain cultivated ginseng, as master healthy ageing dietary supplement, activates steroid signaling in ageing Drosophila melanogaster. Exp Gerontol 2024; 195:112554. [PMID: 39179161 DOI: 10.1016/j.exger.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Mountain cultivated ginseng (MCG) is planted in mountain forests to simulate traditional wild ginseng; therefore, it has a greater pharmacological effect than cultivated ginseng (CG) in the garden; however, insufficient evidence confirms this theory. In light of the health-promoting and life-extending properties of ginseng, we analyzed the efficacy of MCG and CG. Initial observations revealed that the phytosterols content of MCG was higher than that of CG, with a positive correlation to the duration of growth. The distinction between phytosterols in MCG and in CG is predominately determined by the stigmasterol content using High-Performance Liquid Chromatography (HPLC). The lifespan of Drosophila melanogaster (fruit flies) that aged naturally was prolonged by phytosterols in MCG and CG and stigmasterols. Further, they prolonged healthy ageing as measured by progeny numbers, length of sleep, climbing distance, and survival following oxidative damage. The findings of behavioral observations revealed that phytosterols in MCG were more efficacious than in CG in promoting health maintenance and life extension; moreover, stigmasterol indicated that these effects were dose-dependent. Stigmasterols, phytosterols in MCG and CG have restored age-associated decreases in steroid hormone levels. Notably, molecular docking was predicted to promote stigmasterol's binding to the steroid hormone receptor ECR due to its similarity to steroid hormones. In addition, stigmasterols triggered the steroid hormone signaling pathway by increasing the activity of key genes Eip75B and Br in 20E signaling and Jhamt, HmGR, Met, and Kr-h1 in JH signaling. Phytosterols, as a natural product, regulated health and longevity as a dietary supplement similar to that of steroids, which supported the social requirements of healthy ageing.
Collapse
Affiliation(s)
- Jialiang Liu
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Rui Ma
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Baoyu Fu
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Pengdi Yang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Lili Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Chunyang Zhang
- Jilin Province Sericultural Scientific Research Institute, Jilin 132012, China
| | - Ying Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China.
| | - Liwei Sun
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130117, China.
| |
Collapse
|
3
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
4
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
5
|
Morimoto R, Isegawa Y. Anti-Influenza Virus Activity of Citrullus lanatus var. citroides as a Functional Food: A Review. Foods 2023; 12:3866. [PMID: 37893759 PMCID: PMC10606521 DOI: 10.3390/foods12203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza is an acute respiratory illness caused by the influenza virus, in response to which vaccines and antiviral drugs are administered. In recent years, the antiviral effects of plants and foods have garnered attention. This review is the first to summarize the therapeutic properties of wild watermelon (Citrullus lanatus var. citroides) against influenza from a phytochemical viewpoint. Wild watermelon is a wild plant with significant potential as a therapeutic candidate in antiviral strategies, when focused on its multiple anti-influenza functionalities. Wild watermelon juice inhibits viral growth, entry, and replication. Hence, we highlight the possibility of utilizing wild watermelon for the prevention and treatment of influenza with stronger antiviral activity. Phytochemicals and phytoestrogen (polyphenol, flavonoids, and prenylated compounds) in wild watermelon juice contribute to this activity and inhibit various stages of viral replication, depending on the molecular structure. Wild plants and foods closely related to the original species contain many natural compounds such as phytochemicals, and exhibit various viral growth inhibitory effects. These natural products provide useful information for future antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Health and Nutrition, Faculty of Human Life Science, Shikoku University, Tokushima 771-1192, Japan;
| | - Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Tabibi H, Yari Z. Hyperlipoproteinemia (a) and Phytoestrogen Therapy in Dialysis Patients: A Review. Clin Ther 2023; 45:e171-e175. [PMID: 37442657 DOI: 10.1016/j.clinthera.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE Hyperlipoproteinemia (a) is a prevalent complication in dialysis patients, with no valid treatment strategy. The aim of this narrative review was to investigate the clinical significance of hyperlipoproteinemia (a) and phytoestrogen therapy in dialysis patients. METHODS A comprehensive literature search of the published data was performed regarding the effects of phytoestrogen therapy on hyperlipoproteinemia (a) in dialysis patients. FINDINGS Hyperlipoproteinemia (a) occurs in dialysis patients due to decreased catabolism and increased synthesis of lipoprotein (a) [Lp(a)]. A few clinical trials have studied the effects of phytoestrogens on serum Lp(a). All studies of dialysis patients or nonuremic individuals with hyperlipoproteinemia (a), except one, showed that phytoestrogens could significantly reduce serum Lp(a) levels. However, all investigations of phytoestrogen therapy in individuals with normal serum Lp(a) levels showed that it had no effect on serum Lp(a). Phytoestrogens seem to have effects similar to those of estrogen in lowering Lp(a) concentrations. IMPLICATIONS Considering the high prevalence of hyperlipoproteinemia (a) in dialysis patients, phytoestrogen therapy is a reasonable approach for reducing serum Lp(a) levels and its complications in these patients.
Collapse
Affiliation(s)
- Hadi Tabibi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Estrugo CP, Rodríguez MT, de Guevara NML, Gómez JG, Ridocci F, Moro-Martín MT, Guinot M, Saz-Leal P, Nieto Magro C. Combination of Soy Isoflavones, 8-Prenylnaringenin and Melatonin Improves Hot Flashes and Health-Related Quality of Life Outcomes in Postmenopausal Women: Flavie Study. J Menopausal Med 2023; 29:73-83. [PMID: 37691315 PMCID: PMC10505517 DOI: 10.6118/jmm.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVES This study aims to investigate the effects of a combination of soy isoflavones, 8-prenylnaringenin (8-PN), and melatonin in postmenopausal women suffering from moderate-to-severe hot flashes (HFs). METHODS A multicenter, prospective, open-label study enrolled 44 postmenopausal women suffering from moderate-to-severe HFs (≥ 5 daily or ≥ 35 weekly) to receive 54.4 mg standardized soy isoflavones (including 24.5 mg genistein and 16.3 mg daidzein), 100 µg 8-PN, and 1 mg melatonin once daily for 12 weeks. The primary clinical outcomes included changes in health-related quality of life (HRQoL) scores (Menopause-Specific QoL questionnaire [MENQoL] and Cervantes Scale) and HFs following 4 and 12 weeks of treatment. Other analyses included treatment adherence, acceptability, tolerability, and safety. RESULTS All of the four domains of MENQoL questionnaire significantly improved at 4 weeks (P < 0.05) and 12 weeks (P < 0.001), affecting significantly the vasomotor, psychosocial, and physical spheres (41.2%, 26.3%, and 25.0%; 12 weeks improvements, respectively). Similarly, in the menopause (39.3%) and psychic (51.7%) domains (both P < 0.05 at 12 weeks), the global score of the Cervantes Scale significantly increased at 4 weeks (18.6%) and 12 weeks (35.4%). Accordingly, moderate-to-severe HFs significantly decreased at 4 weeks compared to baseline (41.7% reduction) and further reduced at 12 weeks (76.5%), including the total number of episodes. CONCLUSIONS Food supplements containing soy isoflavones, 8-PN, and melatonin showed an early and progressive benefit for reducing clinically significant HFs and for improving HRQoL across all domains, favorably affecting postmenopausal women's overall well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Misericordia Guinot
- Department of Obstetrics and Gynecology, Dra. Guinot's Surgery, Barcelona, Spain
| | - Paula Saz-Leal
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain.
| | - Concepción Nieto Magro
- Medical Affairs, Italfarmaco (ITF) Research Pharma Sociedad de Responsabilidad Limitada Unipersonal (SLU), Madrid, Spain
| |
Collapse
|
8
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
9
|
González-Salitre L, Guillermo González-Olivares L, Antobelli Basilio-Cortes U. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem 2023; 405:134959. [PMID: 36435101 DOI: 10.1016/j.foodchem.2022.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Lourdes González-Salitre
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico.
| | - Ulin Antobelli Basilio-Cortes
- Área Académica de Biotecnología Agropecuaria, Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Carretera a Delta, Ejido Nuevo León s/n, C.P. 21705 Mexicali, Baja California, Mexico.
| |
Collapse
|
10
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
12
|
Morimoto R, Matsubara C, Hanada A, Omoe Y, Ogata T, Isegawa Y. Effect of Structural Differences in Naringenin, Prenylated Naringenin, and Their Derivatives on the Anti-Influenza Virus Activity and Cellular Uptake of Their Flavanones. Pharmaceuticals (Basel) 2022; 15:ph15121480. [PMID: 36558931 PMCID: PMC9785311 DOI: 10.3390/ph15121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines and antiviral drugs are widely used to treat influenza infection. However, they cannot rapidly respond to drug-resistant viruses. Therefore, new anti-influenza virus strategies are required. Naringenin is a flavonoid with potential for new antiviral strategies. In this study, we evaluated the antiviral effects of naringenin derivatives and examined the relationship between their cellular uptake and antiviral effects. Madin-Darby canine kidney (MDCK) cells were infected with the A/PR/8/34 strain and exposed to the compound-containing medium for 24 h. The amount of virus in the supernatant was calculated using focus-forming reduction assay. Antiviral activity was evaluated using IC50 and CC50 values. Cells were exposed to a constant concentration of naringenin or prenylated naringenin, and intracellular uptake and distribution were evaluated using a fluorescence microscope. Prenylated naringenin showed strong anti-influenza virus effects, and the amount of intracellular uptake was revealed by the strong intracellular fluorescence. In addition, intracellular distribution differed depending on the position of the prenyl group. The steric factor of naringenin is deeply involved in influenza A virus activity, and prenyl groups are desirable. Furthermore, the prenyl group affects cellular affinity, and the uptake mechanism differs depending on its position. These results provide important information on antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Chiaki Matsubara
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Akari Hanada
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Yuta Omoe
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Tokutaro Ogata
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
- Correspondence:
| |
Collapse
|
13
|
Sayas-Barberá E, Pérez-Álvarez JA, Navarro-Rodríguez de Vera C, Fernández-López M, Viuda-Martos M, Fernández-López J. Sustainability and Gender Perspective in Food Innovation: Foods and Food Processing Coproducts as Source of Macro- and Micro-Nutrients for Woman-Fortified Foods. Foods 2022; 11:foods11223661. [PMID: 36429253 PMCID: PMC9689430 DOI: 10.3390/foods11223661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Micro- and macro-nutrient deficiencies among women are considered a global issue that the food industry has not adequately considered until recently. The industry must provide and guarantee a diversity of food products worldwide that allow women to get a correct and balanced diet according their life stage. The food industry must focus on this challenge within a framework of sustainable production, minimizing the use of natural resources and avoiding the emission of waste and pollutants throughout the life cycle of food. Food coproducts are presented as potential bioactive functional compounds which can be useful for technological purposes, due to the fact that they can serve as non-chemical, natural and health-improving food ingredients. In this review, we focus on the potential use of food processing coproducts which must be part of a strategy to promote and improve women's health and well-being. This knowledge will make it possible to select potential ingredients from coproducts to be used in the fortification of foods intended for consumption by females and to introduce sustainability and gender perspectives into food innovation. The attainment of fortifications for foods for women has to be linked to the use of sustainable sources from food coproducts in order to be economically viable and competitive.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Jose Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Manuela Fernández-López
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena s/n, 30120 El Palmar, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966749784
| |
Collapse
|
14
|
Guo L, Zhao W, Wang Y, Yang Y, Wei C, Guo J, Dai J, Hirai MY, Bao A, Yang Z, Chen H, Li Y. Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases. FRONTIERS IN PLANT SCIENCE 2022; 13:1034625. [PMID: 36275607 PMCID: PMC9582842 DOI: 10.3389/fpls.2022.1034625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 μg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 μg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.
Collapse
Affiliation(s)
- Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Cuimei Wei
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jian Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Aike Bao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haijuan Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
15
|
Vesaghhamedani S, Ebrahimzadeh F, Najafi E, Shabgah OG, Askari E, Shabgah AG, Mohammadi H, Jadidi-Niaragh F, Navashenaq JG. Xanthohumol: An underestimated, while potent and promising chemotherapeutic agent in cancer treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:3-14. [PMID: 35405185 DOI: 10.1016/j.pbiomolbio.2022.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022]
Abstract
Today, there is a growing interest nowadays in the use of herbal substances as cancer therapeutic agents. Over recent years, Xanthohumol (XTL) has been brought out as a prenylated chalcone that is found in hops (Humulus lupulus) and beer. XTL is being investigated for its potential properties, and it has been found to have various biological effects, including anti-microbial, anti-viral, and immunomodulatory. Other than these biological effects, it has also been found that XTL exerts anti-tumor effects. In the beginning, XTL, by modulating cell signaling pathways, including ERK, AKT, NF-κB, AMPK, Wnt/β-catenin, and Notch signaling in cancer cells, inhibits tumor cell functions. Moreover, XTL, by inducing apoptotic pathways, either intrinsic or extrinsic, promotes cancer cell death and arrests the cell cycle. Furthermore, XTL inhibits metastasis, angiogenesis, cancer stemness, drug resistance, cell respiration, etc., which results in tumor aggressiveness inhibition. XTL has low solubility in water, and it has been hypothesized that some modifications, including biotinylation, can improve its pharmacogenetic characteristics. Additionally, XTL derivates such as dihydroXTL and tetrahydroXTL can be helpful for more anti-tumor activities. Using XTL with other anti-tumor agents is another approach to overcome tumor cell resistance. XTL or its derivatives, it is believed, might provide novel chemotherapeutic methods in future cancer therapy.
Collapse
Affiliation(s)
- Shadi Vesaghhamedani
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Najafi
- Division of Anatomy and Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
16
|
Park S, Sim KS, Hwangbo Y, Park SJ, Kim YJ, Kim JH. Naringenin and Phytoestrogen 8-Prenylnaringenin Protect against Islet Dysfunction and Inhibit Apoptotic Signaling in Insulin-Deficient Diabetic Mice. Molecules 2022; 27:molecules27134227. [PMID: 35807469 PMCID: PMC9268740 DOI: 10.3390/molecules27134227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
It has been shown that citrus flavanone naringenin and its prenyl derivative 8-prenylnaringenin (8-PN) possess various pharmacological activities in in vitro and in vivo models. Interestingly, it has been proposed that prenylation can enhance biological potentials, including the estrogen-like activities of flavonoids. The objective of this study was to investigate the anti-diabetic potential and molecular mechanism of 8-PN in streptozotocin (STZ)-induced insulin-deficient diabetic mice in comparison with naringenin reported to exhibit hypoglycemic effects. The oral administration of naringenin and 8-PN ameliorated impaired glucose homeostasis and islet dysfunction induced by STZ treatment. These protective effects were associated with the suppression of pancreatic β-cell apoptosis and inflammatory responses in mice. Moreover, both naringenin and 8-PN normalized STZ-induced insulin-signaling defects in skeletal muscles and apoptotic protein expression in the liver. Importantly, 8-PN increased the protein expression levels of estrogen receptor-α (ERα) in the pancreas and liver and of fibroblast growth factor 21 in the liver, suggesting that 8-PN could act as an ERα agonist in the regulation of glucose homeostasis. This study provides novel insights into the mechanisms underlying preventive effects of naringenin and 8-PN on the impairment of glucose homeostasis in insulin-deficient diabetic mice.
Collapse
Affiliation(s)
- Song Park
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
| | - Kyu-Sang Sim
- Biomaterials Research Institute, Kyochon F&B, Andong 36729, Korea;
| | - Yeop Hwangbo
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
| | - Sung-Jin Park
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (S.-J.P.); (Y.-J.K.)
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea; (S.-J.P.); (Y.-J.K.)
| | - Jun-Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Korea; (S.P.); (Y.H.)
- Correspondence: ; Tel.: +82-54-820-5846; Fax: +82-54-820-6264
| |
Collapse
|
17
|
Multitarget-Based Virtual Screening for Identification of Herbal Substances toward Potential Osteoclastic Targets. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Osteoporosis is a complex bone disease indicating porous bone with low bone mass density and fragility. Cathepsin K, V-ATPase, and αVβ3 integrin are exhibited as novel targets for osteoporosis treatment. Our preliminary study uses a state-of-the-art method, including target-based virtual screening and clustering methods to determine promising candidates with multitarget properties. Phytochemicals with osteoprotective properties from the literature are used to elucidate the molecular interactions toward three targets. The binding scores of compounds are normalized and rescored. The K-means and hierarchical clustering methods are applied to filter and define the promising compounds, and the silhouette analysis is supposed to validate the clustering method. We explore 108 herbal compounds by virtual screening and the cluster approach, and find that rutin, sagittatoside A, icariin, and kaempferitrin showed strong binding affinities against Cathepsin K, V-ATPase, and αVβ3 integrin. Dockings of candidates toward three targets also provide the protein-ligand interactions and crucial amino acids for binding. Our study provides a straightforward and less time-consuming approach to exploring the new multitarget candidates for further investigations, using a combination of in silico methods.
Collapse
|
18
|
Hanada A, Morimoto R, Horio Y, Shichiri M, Nakashima A, Ogawa T, Suzuki K, Sumitani H, Ogata T, Isegawa Y. Influenza virus entry and replication inhibited by 8-prenylnaringenin from Citrullus lanatus var. citroides (wild watermelon). Food Sci Nutr 2022; 10:926-935. [PMID: 35282012 PMCID: PMC8907720 DOI: 10.1002/fsn3.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/05/2022] Open
Abstract
We previously demonstrated the anti-influenza activity of Citrullus lanatus var. citroides (wild watermelon, WWM); however, the active ingredient was unknown. Here, we performed metabolomic analysis to evaluate the ingredients of WWM associated with antiviral activity. Many low-molecular weight compounds were identified, with flavonoids accounting for 35% of all the compounds in WWM juice. Prenylated flavonoids accounted for 30% of the flavonoids. Among the measurable components of phytoestrogens in WWM juice, 8-prenylnaringenin showed the highest antiviral activity. We synthesized 8-prenylnaringenin and used liquid chromatography-mass spectrometry to quantitate the active ingredient in WWM. The antiviral activities of 8-prenylnaringenin were observed against H1N1 and H3N2 influenza A subtypes and influenza B viruses. Moreover, 8-prenylnaringenin was found to inhibit virus adsorption and late-stage virus replication, suggesting that the mechanisms of action of 8-prenylnaringenin may differ from those of amantadine and oseltamivir. We confirmed that 8-prenylnaringenin strongly inhibited the viral entry of all the influenza virus strains that were examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. This result indicates that 8-prenylnaringenin may activate the host cell's defense mechanisms, rather than directly acting on the influenza virus. Since 8-prenylnaringenin did not inhibit late-stage virus replication of oseltamivir-resistant strains, 8-prenylnaringenin may interact directly with viral neuraminidase. These results are the first report on the anti-influenza virus activity of 8-prenylnaringenin. Our results highlight the potential of WWM and phytoestrogens to develop effective prophylactic and therapeutic approaches to the influenza virus.
Collapse
Affiliation(s)
- Akari Hanada
- Department of Food Sciences and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | - Ryosuke Morimoto
- Department of Food Sciences and NutritionMukogawa Women’s UniversityNishinomiyaJapan
- Present address:
Faculty of Human Life ScienceShikoku UniversityTokushimaJapan
| | - Yuka Horio
- Department of Food Sciences and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | - Mototada Shichiri
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)IkedaJapan
| | | | | | | | | | - Tokutaro Ogata
- Faculty of Health and Medical SciencesHokuriku UniversityKanazawaJapan
| | - Yuji Isegawa
- Department of Food Sciences and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| |
Collapse
|
19
|
Gomes D, Rodrigues LR, Rodrigues JL. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int J Food Microbiol 2022; 367:109588. [DOI: 10.1016/j.ijfoodmicro.2022.109588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
20
|
Sim KS, Park S, Seo H, Lee SH, Lee HS, Park Y, Kim JH. Comparative study of estrogenic activities of phytoestrogens using OECD in vitro and in vivo testing methods. Toxicol Appl Pharmacol 2022; 434:115815. [PMID: 34848279 DOI: 10.1016/j.taap.2021.115815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023]
Abstract
With growing scientific interest in phytoestrogens, a number of studies have investigated the estrogenic potential of phytoestrogens in a wide variety of assay systems. However, evaluations of individual phytoestrogens with different assay systems make it difficult for predicting their relative estrogenic potency. The objective of this study was to compare estrogenic properties of fifteen known phytoestrogens using an estrogen receptor-α (ER-α) dimerization assay and Organization for Economic Cooperation and Development (OECD) standardized methods including in vitro estrogen receptor (ER) transactivation assay using VM7Luc4E2 cells and in vivo uterotrophic assay using an immature rat model. Human ER-α dimerization assay showed positive responses of eight test compounds and negative responses of seven compounds. These results were consistently found in luciferase reporter assay results for evaluating ER transactivation ability. Seven test compounds exhibiting relatively higher in vitro estrogenic activities were subjected to uterotrophic bioassays. Significant increases in uterine weights were only found after treatments with biochanin A, 8-prenylnaringenin, and coumestrol. Importantly, their uterotrophic effects were lost when animals were co-treated with antagonist of ER, indicating their ER-dependent effects in the uterus. In addition, analysis of estrogen responsive genes revealed that these phytoestrogens regulated uterine gene expressions differently compared to estrogens. Test methods used in this study provided a high consistency between in vitro and in vivo results. Thus, they could be used as effective screening tools for phytoestrogens, particularly focusing on their interactions with ER-α.
Collapse
Affiliation(s)
- Kyu Sang Sim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea
| | - Song Park
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea
| | - Huiwon Seo
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Seok-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Jun Ho Kim
- Department of Food Science and Biotechnology, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
21
|
Occhialini G, Palani V, Wendlandt AE. Catalytic, contra-Thermodynamic Positional Alkene Isomerization. J Am Chem Soc 2021; 144:145-152. [PMID: 34968044 DOI: 10.1021/jacs.1c12043] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The positional isomerization of C═C double bonds is a powerful strategy for the interconversion of alkene regioisomers. However, existing methods provide access to thermodynamically more stable isomers from less stable starting materials. Here, we report the discovery of a dual catalyst system that promotes contra-thermodynamic positional alkene isomerization under photochemical irradiation, providing access to terminal alkene isomers directly from conjugated, internal alkene starting materials. The utility of the method is demonstrated in the deconjugation of diverse electron-rich/electron-poor alkenes and through strategic application to natural product synthesis. Mechanistic studies are consistent with a regiospecific bimolecular homolytic substitution (SH2') mechanism proceeding through an allyl-cobaloxime intermediate.
Collapse
Affiliation(s)
- Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vignesh Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Preparation of Hop Estrogen-Active Material for Production of Food Supplements. Molecules 2021; 26:molecules26196065. [PMID: 34641609 PMCID: PMC8512618 DOI: 10.3390/molecules26196065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
In recent years, the interest in the health-promoting effects of hop prenylflavonoids, especially its estrogenic effects, has grown. Unfortunately, one of the most potent phytoestrogens identified so far, 8-prenylnaringenin, is only a minor component of hops, so its isolation from hop materials for the production of estrogenically active food supplements has proved to be problematic. The aim of this study was to optimize the conditions (e.g., temperature, the length of the process and the amount of the catalyst) to produce 8-prenylnaringenin-rich material by the magnesium oxide-catalyzed thermal isomerization of desmethylxanthohumol. Under these optimized conditions, the yield of 8-prenylnaringenin was 29 mg per 100 gDW of product, corresponding to a >70% increase in its content relative to the starting material. This process may be applied in the production of functional foods or food supplements rich in 8-prenylnaringenin, which may then be utilized in therapeutic agents to help alleviate the symptoms of menopausal disorders.
Collapse
|
23
|
Tung MC, Fung KM, Hsu HM, Tseng TS. Discovery of 8-prenylnaringenin from hop ( Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer's disease. RSC Adv 2021; 11:31062-31072. [PMID: 35498911 PMCID: PMC9041313 DOI: 10.1039/d1ra05311f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Monoacylglycerol lipase (MAGL), a serine hydrolase, converts endocannabinoid 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and plays a bidirectional role in controlling nueroinflammation. MAGL, involved in Alzheimer's and Parkinson's diseases, is a promising target for treatment of neurodegenerative disorders. However, the irreversible inhibitors of MAGL lead to the desensitization of CB1 receptors further impairing the benefits associated with the indirect CB1 stimulation. Therefore, development of potent reversible inhibitors from natural products (NPs) and traditional chinese medicines (TCMs) are safer and free from adverse side effects and feasible to avoid drawbacks which irreversible inhibitors cause. Here, we employed pharmacophore-based screening of drug candidates coupled with molecular docking, biochemical assay and Ligplot analyses to identify and characterize inhibitors targeting human MAGL (hMAGL). The built pharmacophore model, Phar-MAGL successfully identified inhibitors NP-2 (IC50 = 9.5 ± 1.2 μM), NP-5 (IC50 = 14.5 ± 1.3 μM), and NP-3 (IC50 = 15.2 ± 1.4 μM), which apparently attenuated the activities of hMAGL in vitro. The evident activities of the identified inhibitors against hMAGL showed that the pharmacophore model, Phar-MAGL is reliable and efficient in screening inhibitors against hMAGL. Our study successfully identified a natrual product inhibitor, NP-2 (8-PN), from the plant Humulus lupulus L. (hops) and its positive effects in neurogenesis and neurodifferentiation along with the evident inhibitory potency against hMAGL revealed the potential for further optimizing and developing into drugs to treat neuroinflammation, Alzheimer's and Parkinson's diseases. Discovery of natural product inhibitors against human monoacylglycerol lipase by pharmacophore-based drug screening, LibDock molecular docking and in vitro biochemical examinations.![]()
Collapse
Affiliation(s)
- Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital Taichung 435 Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Hsin-Mie Hsu
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| |
Collapse
|
24
|
Differences in the Levels of the Selected Phytoestrogens and Stable Isotopes in Organic vs. Conventional Hops and Beer. Foods 2021; 10:foods10081839. [PMID: 34441615 PMCID: PMC8394639 DOI: 10.3390/foods10081839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Xanthohumol (XN), isoxanthohumol (IX) and 8-prenylnaringenin (8-PN) are important prenylflavonoids present in hops with potential beneficial properties. In this study, we examined differences in the content of XN, IX and 8-PN in hops and beer produced under organic and conventional production regimes. A An ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method for analysing XN, IX and 8-PN in hops and beer was developed and validated, with LOQ ranging from 0.5 to 10 ng/mL. Finally, we examined 15N/14N and 12C/13C isotope ratios in the hops and beer using isotope ratio mass spectrometry (IRMS). The results show no statistically significant difference in the content of the selected prenylflavonoids between organic and conventionally produced hops and beer—in the whole sample group, as well as between the matched pairs. Stable isotope analysis indicated that only δ15N values are statistically higher in organically produced hops and beer. However, the differentiation according to the type of production could not be made solely based on the δ15N signature, but it could be used to provide supporting evidence.
Collapse
|
25
|
Alonso P, Albasanz JL, Martín M. Modulation of Adenosine Receptors by Hops and Xanthohumol in Cell Cultures. ACS Chem Neurosci 2021; 12:2373-2384. [PMID: 34156813 DOI: 10.1021/acschemneuro.1c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine receptors (ARs) have been involved in neurodegenerative diseases such as Alzheimer disease, where oxidative stress contributes to neurodegeneration and cell death. Therefore, there is increasing interest in developing antioxidative strategies to avoid or reduce neurodegeneration. We have previously described that different beer extracts modulate ARs and protect glioma and neuroblastoma cells from oxidative stress. The present work aimed to analyze the possible protective effect of hops (Humulus lupulus L.), a major component of beer, and xanthohumol on cell death elicited by oxidative stress and their modulation of ARs in rat C6 glioma and human SH-SY5Y neuroblastoma cells. Different extraction methods were employed in two hops varieties (Nugget and Columbus). Cell viability was determined by the XTT method in cells exposed to these hops extracts and xanthohumol. ARs were analyzed by radioligand binding and real-time PCR assays. Hops extract reverted the cell death observed under oxidative stress and modulated adenosine A1 and A2 receptors in both cell types. Xanthohumol was unable to revert the effect of oxidative stress in cell viability but it also modulated ARs similarly to hops. Therefore, healthy effects of beer described previously could be due, at least in part, to their content of hops and the modulation of ARs.
Collapse
Affiliation(s)
- Patricia Alonso
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José L. Albasanz
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic, Organic and Biochemistry. Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
26
|
Padgitt-Cobb LK, Kingan SB, Wells J, Elser J, Kronmiller B, Moore D, Concepcion G, Peluso P, Rank D, Jaiswal P, Henning J, Hendrix DA. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. THE PLANT GENOME 2021; 14:e20072. [PMID: 33605092 DOI: 10.1002/tpg2.20072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/03/2020] [Indexed: 05/25/2023]
Abstract
Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing and contain compounds of therapeutic interest including xanthohumol. Efforts to determine how biochemical pathways responsible for desirable traits are regulated have been challenged by the large (2.8 Gb), repetitive, and heterozygous genome of hop. We present a draft haplotype-phased assembly of the Cascade cultivar genome. Our draft assembly and annotation of the Cascade genome is the most extensive representation of the hop genome to date. PacBio long-read sequences from hop were assembled with FALCON and partially phased with FALCON-Unzip. Comparative analysis of haplotype sequences provides insight into selective pressures that have driven evolution in hop. We discovered genes with greater sequence divergence enriched for stress-response, growth, and flowering functions in the draft phased assembly. With improved resolution of long terminal retrotransposons (LTRs) due to long-read sequencing, we found that hop is over 70% repetitive. We identified a homolog of cannabidiolic acid synthase (CBDAS) that is expressed in multiple tissues. The approaches we developed to analyze the draft phased assembly serve to deepen our understanding of the genomic landscape of hop and may have broader applicability to the study of other large, complex genomes.
Collapse
Affiliation(s)
- Lillian K Padgitt-Cobb
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Sarah B Kingan
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Jackson Wells
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brent Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | - Paul Peluso
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - David Rank
- Pacific Biosciences of California, Menlo Park, CA, 94025, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | | | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
27
|
|
28
|
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021; 26:486. [PMID: 33477637 PMCID: PMC7831491 DOI: 10.3390/molecules26020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
This review reports recent knowledge on the role of ingredients (barley, hop and yeasts), including genetic factors, on the final yield of phenolic compounds in beer, and how these molecules generally affect resulting beer attributes, focusing mainly on new attempts at the enrichment of beer phenols, with fruits or cereals other than barley. An entire section is dedicated to health-related effects, analyzing the degree up to which studies, investigating phenols-related health effects of beer, have appropriately considered the contribution of alcohol (pure or spirits) intake. For such purpose, we searched Scopus.com for any kind of experimental model (in vitro, animal, human observational or intervention) using beer and considering phenols. Overall, data reported so far support the existence of the somehow additive or synergistic effects of phenols and ethanol present in beer. However, findings are inconclusive and thus deserve further animal and human studies.
Collapse
Affiliation(s)
- Roberto Ambra
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (S.L.)
| | | | | |
Collapse
|
29
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
30
|
Alcoholic and Non-Alcoholic Beer Modulate Plasma and Macrophage microRNAs Differently in a Pilot Intervention in Humans with Cardiovascular Risk. Nutrients 2020; 13:nu13010069. [PMID: 33379359 PMCID: PMC7823561 DOI: 10.3390/nu13010069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Beer is a popular beverage and some beneficial effects have been attributed to its moderate consumption. We carried out a pilot study to test if beer and non-alcoholic beer consumption modify the levels of a panel of 53 cardiometabolic microRNAs in plasma and macrophages. Seven non-smoker men aged 30–65 with high cardiovascular risk were recruited for a non-randomised cross-over intervention consisting of the ingestion of 500 mL/day of beer or non-alcoholic beer for 14 days with a 7-day washout period between interventions. Plasma and urine isoxanthohumol were measured to assess compliance with interventions. Monocytes were isolated and differentiated into macrophages, and plasma and macrophage microRNAs were analysed by quantitative real-time PCR. Anthropometric, biochemistry and dietary parameters were also measured. We found an increase in plasma miR-155-5p, miR-328-3p, and miR-92a-3p after beer and a decrease after non-alcoholic beer consumption. Plasma miR-320a-3p levels decreased with both beers. Circulating miR-320a-3p levels correlated with LDL-cholesterol. We found that miR-17-5p, miR-20a-5p, miR-145-5p, miR-26b-5p, and miR-223-3p macrophage levels increased after beer and decreased after non-alcoholic beer consumption. Functional analyses suggested that modulated microRNAs were involved in catabolism, nutrient sensing, Toll-like receptors signalling and inflammation. We concluded that beer and non-alcoholic beer intake modulated differentially plasma and macrophage microRNAs. Specifically, microRNAs related to inflammation increased after beer consumption and decreased after non-alcoholic beer consumption.
Collapse
|
31
|
Ramirez-Expósito MJ, Martínez-Martos JM, Cantón-Habas V, Carrera-González MDP. Moderate Beer Consumption Modifies Tumoral Growth Parameters and Pyrrolidone Carboxypeptidase Type-I and Type-II Specific Activities in the Hypothalamus-Pituitary-Mammary Gland Axis in an Animal Model of Breast Cancer. Nutr Cancer 2020; 73:2695-2707. [PMID: 33305601 DOI: 10.1080/01635581.2020.1856891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS To determine the effect of moderate alcoholic and nonalcoholic beer consumption on tumoral growth parameters, the histopathology, pyrrolidone carboxypeptidase type I (Pcp I), and type II (Pcp II) specific activities in the hypothalamus-pituitary-mammary gland axis, and the circulating levels of estradiol (E2) and progesterone (P4) in rats with N-methyl-N-nitrosourea (NMU) induced mammary tumors. MATERIAL AND METHODS Food and drink intake, weight gain and tumor growth parameters were collected. The malignant phenotype of the tumor was performed using the Scarff-Bloom-Richardson grading method. Pcp specific activities were fluorometrically analyzed using pyroglutamyl-β-naphthylamide as substrate. Circulating steroid hormones were determined. RESULTS Differences were found in tumoral parameters, depending on the drink. Animals that were given alcohol-containing beer (A/C) beer to drink showed the lowest values of hypothalamic Pcp I, in association with the lowest levels of circulating E2. The significant decrease in Pcp I activity in all NMU-treated groups suggest a clear role of the Pcp I in the tumoral process, and A/C beer interferes with it. DISCUSSION Moderate consumption of alcoholic beer would have beneficial effects against mammary tumors through the modification of the endocrine status mediated by GnRH due to changes on Pcp I and II activities at different levels.
Collapse
Affiliation(s)
- María Jesús Ramirez-Expósito
- Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain.,Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain
| | - José Manuel Martínez-Martos
- Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain.,Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain
| | - Vanesa Cantón-Habas
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| | - María Del Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, University of Jaén, Jaén, Spain.,Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba. IMIBIC, Córdoba, Spain
| |
Collapse
|
32
|
Torrens-Mas M, Roca P. Phytoestrogens for Cancer Prevention and Treatment. BIOLOGY 2020; 9:E427. [PMID: 33261116 PMCID: PMC7759898 DOI: 10.3390/biology9120427] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are a large group of natural compounds found in more than 300 plants. They have a close structural similarity to estrogens, which allow them to bind to both estrogen receptors (ER), ERα and ERβ, presenting a weak estrogenic activity. Phytoestrogens have been described as antioxidant, anti-inflammatory, anti-thrombotic, anti-allergic, and anti-tumoral agents. Their role in cancer prevention has been well documented, although their impact on treatment efficiency is controversial. Several reports suggest that phytoestrogens may interfere with the effect of anti-cancer drugs through the regulation of oxidative stress and other mechanisms. Furthermore, some phytoestrogens could exert a protective effect on healthy cells, thus reducing the secondary effects of cancer treatment. In this review, we have studied the recent research in this area to find evidence for the role of phytoestrogens in cancer prevention and therapy efficacy.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut, Universitat de les Illes Balears, 07122 Palma, Spain;
- Instituto de Investigación Sanitaria Illes Balears, 07010 Palma, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
33
|
Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies. Nutrients 2020; 12:nu12102907. [PMID: 32977511 PMCID: PMC7598193 DOI: 10.3390/nu12102907] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 01/04/2023] Open
Abstract
The consumption of plant-based food is important for health promotion, especially concerning the prevention and management of chronic diseases. Flavonoids are the main bioactive compounds in citrus fruits, with multiple beneficial effects, especially antidiabetic effects. We systematically review the potential antidiabetic action and molecular mechanisms of citrus flavonoids based on in vitro and in vivo studies. A search of the PubMed, EMBASE, Scopus, and Web of Science Core Collection databases for articles published since 2010 was carried out using the keywords citrus, flavonoid, and diabetes. All articles identified were analyzed, and data were extracted using a standardized form. The search identified 38 articles, which reported that 19 citrus flavonoids, including 8-prenylnaringenin, cosmosiin, didymin, diosmin, hesperetin, hesperidin, isosiennsetin, naringenin, naringin, neohesperidin, nobiletin, poncirin, quercetin, rhoifolin, rutin, sineesytin, sudachitin, tangeretin, and xanthohumol, have antidiabetic potential. These flavonoids regulated biomarkers of glycemic control, lipid profiles, renal function, hepatic enzymes, and antioxidant enzymes, and modulated signaling pathways related to glucose uptake and insulin sensitivity that are involved in the pathogenesis of diabetes and its related complications. Citrus flavonoids, therefore, are promising antidiabetic candidates, while their antidiabetic effects remain to be verified in forthcoming human studies.
Collapse
|
34
|
Tronina T, Popłoński J, Bartmańska A. Flavonoids as Phytoestrogenic Components of Hops and Beer. Molecules 2020; 25:molecules25184201. [PMID: 32937790 PMCID: PMC7570471 DOI: 10.3390/molecules25184201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The value of hops (Humulus lupulus L.) in beer production has been undisputed for centuries. Hops is rich in humulones and lupulones which gives the characteristic aroma and bitter taste, and preserves this golden drink against growing bacteria and molds. Besides α- and β-acids, the lupulin glands of hop cones excrete prenylated flavonoids, which exhibit a broad spectrum of biological activities and therefore has therapeutic potential in humans. Recently, interest in hops was raised due to hop prenylated flavanones which show extraordinary estrogen activities. The strongest known phytoestrogen so far is 8-prenylnaringenin (8-PN), which along with 6-prenylanaringenin (6-PN), 6,8-diprenylnaringenin (6,8-DPN) and 8-geranylnaringenin (8-GN) are fundamental for the potent estrogen activity of hops. This review provides insight into the unusual hop phytoestrogens and shows numerous health benefits associated with their wide spectrum of biological activities including estrogenic, anticancer, neuropreventive, antinflamatory, and antimicrobial properties, which were intensively studied, and potential applications of these compounds such as, as an alternative to hormone replacement therapy (HRT).
Collapse
|
35
|
Effects of the Non-Alcoholic Fraction of Beer on Abdominal Fat, Osteoporosis, and Body Hydration in Women. Molecules 2020; 25:molecules25173910. [PMID: 32867219 PMCID: PMC7503904 DOI: 10.3390/molecules25173910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
Several studies have shown that binge drinking of alcoholic beverages leads to non-desirable outcomes, which have become a serious threat to public health. However, the bioactive compounds in some alcohol-containing beverages might mitigate the negative effects of alcohol. In beer, the variety and concentration of bioactive compounds in the non-alcoholic fraction suggests that its consumption at moderate levels may not only be harmless but could also positively contribute to an improvement of certain physiological states and be also useful in the prevention of different chronic diseases. The present review focuses on the effects of non-alcoholic components of beer on abdominal fat, osteoporosis, and body hydration in women, conditions selected for their relevance to health and aging. Although beer drinking is commonly believed to cause abdominal fat deposition, the available literature indicates this outcome is inconsistent in women. Additionally, the non-alcoholic beer fraction might improve bone health in postmenopausal women, and the effects of beer on body hydration, although still unconfirmed seem promising. Most of the health benefits of beer are due to its bioactive compounds, mainly polyphenols, which are the most studied. As alcohol-free beer also contains these compounds, it may well offer a healthy alternative to beer consumers.
Collapse
|
36
|
Lammel C, Zwirchmayr J, Seigner J, Rollinger JM, de Martin R. Peucedanum ostruthium Inhibits E-Selectin and VCAM-1 Expression in Endothelial Cells through Interference with NF-κB Signaling. Biomolecules 2020; 10:E1215. [PMID: 32825714 PMCID: PMC7563923 DOI: 10.3390/biom10091215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Twenty natural remedies traditionally used against different inflammatory diseases were probed for their potential to suppress the expression of the inflammatory markers E-selectin and VCAM-1 in a model system of IL-1 stimulated human umbilical vein endothelial cells (HUVEC). One third of the tested extracts showed in vitro inhibitory effects comparable to the positive control oxozeaenol, an inhibitor of TAK1. Among them, the extract derived from the roots and rhizomes of Peucedanum ostruthium (i.e., Radix Imperatoriae), also known as masterwort, showed a pronounced and dose-dependent inhibitory effect. Reporter gene analysis demonstrated that inhibition takes place on the transcriptional level and involves the transcription factor NF-κB. A more detailed analysis revealed that the P. ostruthium extract (PO) affected the phosphorylation, degradation, and resynthesis of IκBα, the activation of IKKs, and the nuclear translocation of the NF-κB subunit RelA. Strikingly, early effects on this pathway were less affected as compared to later ones, suggesting that PO may act on mechanism(s) that are downstream of nuclear translocation. As the majority of cognate NF-κB inhibitors affect upstream events such as IKK2, these findings could indicate the existence of targetable signaling events at later stages of NF-κB activation.
Collapse
Affiliation(s)
- Christoph Lammel
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Julia Zwirchmayr
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Jaqueline Seigner
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria;
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße 17, 1090 Vienna, Austria; (C.L.); (J.S.); (R.d.M.)
| |
Collapse
|
37
|
Boronat A, Soldevila-Domenech N, Rodríguez-Morató J, Martínez-Huélamo M, Lamuela-Raventós RM, de la Torre R. Beer Phenolic Composition of Simple Phenols, Prenylated Flavonoids and Alkylresorcinols. Molecules 2020; 25:E2582. [PMID: 32498371 PMCID: PMC7321207 DOI: 10.3390/molecules25112582] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Beer is a fermented beverage with beneficial phenolic compounds and is widely consumed worldwide. The current study aimed to describe the content of three families of phenolic compounds with relevant biological activities: prenylated flavonoids (from hops), simple phenolic alcohols (from fermentation) and alkylresorcinols (from cereals) in a large sample of beers (n = 45). The prenylated flavonoids analyzed were xanthohumol, isoxanthohumol, 6- and 8-prenylnaringenin. The total prenylated flavonoids present in beer ranged from 0.0 to 9.5 mg/L. The simple phenolic alcohols analyzed were tyrosol and hydroxytyrosol, ranging from 0.2 to 44.4 and 0.0 to 0.1 mg/L, respectively. Our study describes, for the first time, the presence of low amounts of alkylresorcinols in beer, in concentrations ranging from 0.02 to 11.0 µg/L. The results in non-alcoholic beer and the differences observed in the phenolic composition among different beer types and styles highlight the importance of the starting materials and the brewing process (especially fermentation) on the final phenolic composition of beer. In conclusion, beer represents a source of phenolic compounds in the diet that could act synergistically, triggering beneficial health effects in the context of its moderate consumption.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
| | - Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Medtep Inc., 08025 Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| | - Miriam Martínez-Huélamo
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramanet, Spain;
| | - Rosa M. Lamuela-Raventós
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramanet, Spain;
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Dr. Aiguader 88, 08003 Barcelona, Spain; (A.B.); (N.S.-D.); (J.R.-M.)
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 80, 08003 Barcelona, Spain
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
38
|
van Breemen RB, Chen L, Tonsing-Carter A, Banuvar S, Barengolts E, Viana M, Chen SN, Pauli GF, Bolton JL. Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5212-5220. [PMID: 32285669 PMCID: PMC8071352 DOI: 10.1021/acs.jafc.0c01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Botanical dietary supplements produced from hops (Humulus lupulus) containing the chemopreventive compound xanthohumol and phytoestrogen 8-prenylnaringenin are used by women to manage menopausal symptoms. Because of the long half-lives of prenylated hop phenols and reports that they inhibit certain cytochrome P450 enzymes, a botanically authenticated and chemically standardized hop extract was tested for Phase I pharmacokinetic drug interactions. Sixteen peri- and postmenopausal women consumed the hop extract twice daily for 2 weeks, and the pharmacokinetics of tolbutamide, caffeine, dextromethorphan, and alprazolam were evaluated before and after supplementation as probe substrates for the enzymes CYP2C9, CYP1A2, CYP2D6, and CYP3A4/5, respectively. The observed area under the time-concentration curves were unaffected, except for alprazolam which decreased 7.6% (564.6 ± 46.1 h·μg/L pre-hop and 521.9 ± 36.1 h·μg/L post-hop; p-value 0.047), suggesting minor induction of CYP3A4/5. No enzyme inhibition was detected. According to FDA guidelines, this hop dietary supplement caused no clinically relevant pharmacokinetic interactions with respect to CYP2C9, CYP1A2, CYP2D6, or CYP3A4/5. The serum obtained after consumption of the hop extract was analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry to confirm compliance. Abundant Phase II conjugates of the hop prenylated phenols were observed including monoglucuronides and monosulfates as well as previously unreported diglucuronides and sulfate-glucuronic acid diconjugates.
Collapse
Affiliation(s)
- Richard B. van Breemen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
- To whom correspondence should be addressed Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, 2900 SW Campus Way, Corvallis, OR 97331, Tel: 541-737-5078, Fax: 541-737-5077,
| | - Luying Chen
- Linus Pauling Institute, College of Pharmacy, Oregon State University, 2900 SW Campus Way, Corvallis, OR, 97331
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Alyssa Tonsing-Carter
- Clinical and Healthcare Research Policy Division, National Institutes of Health, 6705 Rockledge Dr., Suite 750, Bethesda, MD 20817
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Suzanne Banuvar
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Elena Barengolts
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Marlos Viana
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| | - Judy L. Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 S. Wood St., Chicago, IL 60612
| |
Collapse
|
39
|
Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol Nutr Food Res 2020; 64:e1900952. [PMID: 32196920 DOI: 10.1002/mnfr.201900952] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Indexed: 12/23/2022]
Abstract
The full consensus on the role of dietary polyphenols as human-health-promoting compounds remains elusive. The two-way interaction between polyphenols and gut microbiota (GM) (i.e., modulation of GM by polyphenols and their catabolism by the GM) is determinant in polyphenols' effects. The identification of human metabotypes associated with a differential gut microbial metabolism of polyphenols has opened new research scenarios to explain the inter-individual variability upon polyphenols consumption. The metabotypes unequivocally identified so far are those involved in the metabolism of isoflavones (equol and(or) O-desmethylangolesin producers versus non-producers) and ellagic acid (urolithin metabotypes, including producers of only urolithin-A (UM-A), producers of urolithin-A, isourolithin-A, and urolithin-B (UM-B), and non-producers (UM-0)). In addition, the microbial metabolites (phenolic-derived postbiotics) such as equol, urolithins, valerolactones, enterolactone, and enterodiol, and 8-prenylnaringenin, among others, can exert differential health effects. The knowledge is updated and position is taken here on i) the two-way interaction between GM and polyphenols, ii) the evidence between phenolic-derived postbiotics and health, iii) the role of metabotypes as biomarkers of GM and the clustering of individuals depending on their metabotypes (metabotyping) to explain polyphenols' effects, and iv) the gut microbial metabolism of catecholamines to illustrate the intersection between personalized nutrition and precision medicine.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Francisco Abraham Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
40
|
Boeira CP, Piovesan N, Flores DCB, Soquetta MB, Lucas BN, Heck RT, Alves JDS, Campagnol PCB, Dos Santos D, Flores EMM, da Rosa CS, Terra NN. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food Chem 2020; 319:126553. [PMID: 32197214 DOI: 10.1016/j.foodchem.2020.126553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/05/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
Abstract
The development of natural additives is considered an important research topic. In this work, the use of Cymbopogon citratus (CC) extract as a natural additive for chicken sausage refrigerated was investigated. The CC extract was characterized by electrospray ionization with high-resolution time-of-flight mass spectrometry (ESI-ToF-MS) and the identified compounds were directly related to the antioxidant activity demonstrated by CC in the fresh sausage. In total, 31 phytochemical compounds were identified, and 27 of these still were not described in the literature for CC. The antimicrobial activity showed that CC extract is a potential antibacterial agent. Besides, the results showed that CC extract reduced lipid oxidation compared to synthetic additive. The sensorial characteristics were maintained, demonstrating good acceptability by the consumer. The results confirmed that CC can keep the quality of chicken sausage refrigerated for up to 42 days of storage.
Collapse
Affiliation(s)
- Caroline Pagnossim Boeira
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil.
| | - Natiéli Piovesan
- Federal Institute of Rio Grande do Norte, BR-405, 59900-000 Pau dos Ferros, RN, Brazil
| | - Déborah Cristina Barcelos Flores
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Marcela Bromberger Soquetta
- Department of Chemical Engineering, Technology Center, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 9B, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Bruna Nichelle Lucas
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rosane Teresinha Heck
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jamila Dos Santos Alves
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Paulo Cezar Bastianello Campagnol
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Dos Santos
- Department of Chemical, Center for Natural and Exact Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 21, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Erico Marlon Moraes Flores
- Department of Chemical, Center for Natural and Exact Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 21, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Claudia Severo da Rosa
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Nelcindo Nascimento Terra
- Department of Science and Technology in Food, Center of Rural Sciences, Universidade Federal de Santa Maria (UFSM), Av. Roraima No. 1000, Building 42, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
41
|
Chukicheva IY, Fedorova IV, Kolegova ТА, Kutchin A. Prenylation of 4-Methylphenol. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients 2020; 12:nu12020513. [PMID: 32085443 PMCID: PMC7071307 DOI: 10.3390/nu12020513] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 01/26/2023] Open
Abstract
Sakuranetin belongs to the group of methoxylated flavanones. It is widely distributed in Polyomnia fruticosa and rice, where it acts as a phytoalexin. Other natural sources of this compound are, among others, grass trees, shrubs, flowering plants, cheery, and some herbal drugs, where it has been found in the form of glycosides (mainly sakuranin). Sakuranetin has antiproliferative activity against human cell lines typical for B16BL6 melanoma, esophageal squamous cell carcinoma (ESCC) and colon cancer (Colo 320). Moreover, sakuranetin shows antiviral activity towards human rhinovirus 3 and influenza B virus and was reported to have antioxidant, antimicrobial, antiinflammatory, antiparasitic, antimutagenic, and antiallergic properties. The aim of this review is to present the current status of knowledge of pro-health properties of sakuranetin.
Collapse
|
43
|
Ayabe T, Fukuda T, Ano Y. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules 2020; 10:E131. [PMID: 31940997 PMCID: PMC7022854 DOI: 10.3390/biom10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Dementia and cognitive decline are global public health problems. Moderate consumption of alcoholic beverages reduces the risk of dementia and cognitive decline. For instance, resveratrol, a polyphenolic compound found in red wine, has been well studied and reported to prevent dementia and cognitive decline. However, the effects of specific beer constituents on cognitive function have not been investigated in as much detail. In the present review, we discuss the latest reports on the effects and underlying mechanisms of hop-derived bitter acids found in beer. Iso-α-acids (IAAs), the main bitter components of beer, enhance hippocampus-dependent memory and prefrontal cortex-associated cognitive function via dopamine neurotransmission activation. Matured hop bitter acids (MHBAs), oxidized components with β-carbonyl moieties derived from aged hops, also enhance memory functions via norepinephrine neurotransmission-mediated mechanisms. Furthermore, the effects of both IAAs and MHBAs are attenuated by vagotomy, suggesting that these bitter acids enhance cognitive function via vagus nerve stimulation. Moreover, supplementation with IAAs attenuates neuroinflammation and cognitive impairments in various rodent models of neurodegeneration including Alzheimer's disease. Daily supplementation with hop-derived bitter acids (e.g., 35 mg/day of MHBAs) may be a safe and effective strategy to stimulate the vagus nerve and thus enhance cognitive function.
Collapse
Affiliation(s)
- Tatsuhiro Ayabe
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan; (T.F.); (Y.A.)
| | | | | |
Collapse
|
44
|
Costa JPL, Brito HO, Galvão-Moreira LV, Brito LGO, Costa-Paiva L, Brito LMO. Randomized double-blind placebo-controlled trial of the effect of Morus nigra L. (black mulberry) leaf powder on symptoms and quality of life among climacteric women. Int J Gynaecol Obstet 2019; 148:243-252. [PMID: 31736077 DOI: 10.1002/ijgo.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/03/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To test the efficacy of Morus nigra L. (MN) leaf powder for treating climacteric symptoms by comparison with hormone therapy (HT) and placebo. METHODS A randomized controlled trial among 62 climacteric women attending Hospital of the Federal University of Maranhão, Brazil. Women were divided into MN, HT, and placebo groups, and received 250 mg of MN leaf powder, 1 mg of estradiol, or placebo for 60 days. Primary outcomes were the Blatt-Kupperman index (BKI) for climacteric symptoms and SF-36 health questionnaire scores. RESULTS Baseline sociodemographic variables, BKI scores, symptoms, and SF-36 domains did not differ among the groups. There was a reduction in mean BKI in the MN (17.5 vs 9.7, P<0.001), HT (15.4 vs 8.6, P=0.001), and placebo (16.1 vs 12.4, P=0.040) groups. Analysis of quality of life (QoL) showed that functional capacity (P=0.006), vitality (P=0.031), mental health (P=0.017), and social aspect (P<0.01) improved after treatment in the MN group. The HT group showed improvement in emotional limitation (P=0.040), and the placebo group showed better functional capacity (P=0.030) after treatment. CONCLUSIONS Climacteric symptoms and QoL improved after administration of 250 mg of MN leaf powder for 60 days, similar to the effects of HT. The trial is registered in the Brazilian Registry of Clinical Trials (REBEC) under registration number RBR-9t4xxk.
Collapse
Affiliation(s)
- Joyce P L Costa
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luis, Maranhão, Brazil
| | - Haissa O Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luis, Maranhão, Brazil
| | | | - Luiz G O Brito
- Department of Obstetrics and Gynecology, State University of Campinas, São Paulo, Brazil
| | - Lucia Costa-Paiva
- Department of Obstetrics and Gynecology, State University of Campinas, São Paulo, Brazil
| | - Luciane M O Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, São Luis, Maranhão, Brazil
| |
Collapse
|
45
|
Levisson M, Araya-Cloutier C, de Bruijn WJC, van der Heide M, Salvador López JM, Daran JM, Vincken JP, Beekwilder J. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13478-13486. [PMID: 31016981 PMCID: PMC6909231 DOI: 10.1021/acs.jafc.9b01367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Prenylated flavonoids possess a wide variety of biological activities, including estrogenic, antioxidant, antimicrobial, and anticancer activities. Hence, they have potential applications in food products, medicines, or supplements with health-promoting activities. However, the low abundance of prenylated flavonoids in nature is limiting their exploitation. Therefore, we investigated the prospect of producing prenylated flavonoids in the yeast Saccharomyces cerevisiae. As a proof of concept, we focused on the production of the potent phytoestrogen 8-prenylnaringenin. Introduction of the flavonoid prenyltransferase SfFPT from Sophora flavescens in naringenin-producing yeast strains resulted in de novo production of 8-prenylnaringenin. We generated several strains with increased production of the intermediate precursor naringenin, which finally resulted in a production of 0.12 mg L-1 (0.35 μM) 8-prenylnaringenin under shake flask conditions. A number of bottlenecks in prenylated flavonoid production were identified and are discussed.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Wouter J. C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Menno van der Heide
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - José Manuel Salvador López
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Jean-Marc Daran
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Jules Beekwilder
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| |
Collapse
|
46
|
Li XL, Sui L, Lin FH, Lian Y, Ai LZ, Zhang Y. Differential effects of genistein and 8-prenylgenistein on reproductive tissues in immature female mice. PHARMACEUTICAL BIOLOGY 2019; 57. [PMID: 30946631 PMCID: PMC6461073 DOI: 10.1080/13880209.2019.1590422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT We identified an active prenylated derivative of genistein, 8-prenylgenistein (8PG) from Erythrina variegata L. (Leguminosae) and found that 8PG increased osteoprotective effects of genistein in oestrogen-deficient mice. OBJECTIVE This study investigated and compared the oestrogenic effects of genistein and 8PG on uterus and vagina of immature mice. MATERIALS AND METHODS Immature female CD-1 mice were orally treated with vehicle (Control, n = 10) or genistein (75 mg/kg, n = 10) or 8PG with low (8PG-L, 75 mg/kg, n = 10) and high dose (8PG-H, 150 mg/kg, n = 10) for 7 consecutive days by intragastric gavage. The uterus and vagina were harvested for histological and molecular measurements. RESULTS Treatment with genistein and 8PG-H significantly increased uterus index (1.98 ± 0.21 & 1.49 ± 0.16 mg/g) and vagina index (3.83 ± 0.11 & 3.13 ± 0.25 mg/g) as compared to untreated control (uterus, 1.12 ± 0.13 mg/g; vagina, 2.32 ± 0.18 mg/g). Accordingly, both genistein and 8PG-H made vaginal cells keratinized and induced uterine and vaginal hypertrophy associated with the endometrial proliferation. 8PG-L did not affect oestrus cycle and histology of uterus and vagina. Treatment of immature mice with genistein or 8PG-H upregulated protein expression of oestrogen receptor-α (ER-α) and proliferating cell nuclear antigen (PCNA), but 8PG-L did not alter ER-α and PCNA expression in uterus and vagina. CONCLUSION This study indicated that 8-prenylgenistein exerted oestrogenic effects in immature female mice. The efficacy and safety of 8-prenylgenistein when applied in improving oestrogen deficiency-induced syndrome requires further elucidation.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Li Sui
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Fu-Hui Lin
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, P. R. China
| | - Yin Lian
- Department of Orthopaedic, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, P. R. China
| | - Lian-Zhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, P. R. China
- CONTACT Yan Zhang Spine Disease Research Institute, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Room 908, Building #12, 725 South Wanping Road, Shanghai200032, China
| |
Collapse
|
47
|
Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 2019; 60:3492-3505. [PMID: 31782326 DOI: 10.1080/10408398.2019.1696278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate alcohol consumption has been associated with beneficial effects on human health. Specifically, consumption of red wine and beer has shown a J-shape relation with many important diseases. While a role of ethanol cannot be excluded, the high content of polyphenols in both beverages has been proposed to contribute to these effects, with beer having the advantage over wine that it is lower in alcohol. In addition to ethanol, beer contains a wide variety of compounds with known medicinal potential such as kaempferol, quercetin, tyrosol and phenolic acids, and it is the main dietary source for the flavones xanthohumol and 8-prenylnaringenin, and bitter acids such as humulones and lupulones. Clinical and pre-clinical evidence for the protective effects of moderate beer consumption against cardiovascular disease and other diseases has been accumulating since the 1990s, and the non-alcoholic compounds of beer likely exert most of the observed beneficial effects. In this review, we summarize and discuss the effects of beer consumption in health and disease as well as the clinical potential of its non-alcoholic compounds which may be promising candidates for new therapies against common chronic diseases.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
48
|
Fang JB, Nikolić D, Lankin DC, Simmler C, Chen SN, Ramos Alvarenga RF, Liu Y, Pauli GF, van Breemen RB. Formation of (2 R)- and (2 S)-8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11650-11656. [PMID: 31554401 PMCID: PMC6942495 DOI: 10.1021/acs.jafc.9b04657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Occurring in hops (Humulus lupulus) and beer as a racemic mixture, (2R,2S)-8-prenylnaringenin (8-PN) is a potent phytoestrogen in hop dietary supplements used by women as alternatives to conventional hormone therapy. With a half-life exceeding 20 h, 8-PN is excreted primarily as 8-PN-7-O-glucuronide or 8-PN-4'-O-glucuronide. Human liver microsomes and 11 recombinant human UDP-glucuronosyltransferases (UGTs) were used to catalyze the formation of the two oxygen-linked glucuronides of purified (2R)-8-PN and (2S)-8-PN, which were subsequently identified using mass spectrometry and nuclear magnetic resonance spectroscopy. Formation of (2R)- and (2S)-8-PN-7-O-glucuronides predominated over the 8-PN-4'-O-glucuronides except for intestinal UGT1A10, which formed more (2S)-8-PN-4'-O-glucuronide. (2R)-8-PN was a better substrate for all 11 UGTs except for UGT1A1, which formed more of both (2S)-8-PN glucuronides than (2R)-8-PN glucuronides. Although several UGTs conjugated both enantiomers of 8-PN, some conjugated just one enantiomer, suggesting that human phenotypic variation might affect the routes of metabolism of this chiral estrogenic constituent of hops.
Collapse
Affiliation(s)
- Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Rene F. Ramos Alvarenga
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Richard B. van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, OR 97331, USA
| |
Collapse
|
49
|
Komrakova M, Rechholtz C, Pohlmann N, Lehmann W, Schilling AF, Wigger R, Sehmisch S, Hoffmann DB. Effect of alendronate or 8-prenylnaringenin applied as a single therapy or in combination with vibration on muscle structure and bone healing in ovariectomized rats. Bone Rep 2019; 11:100224. [PMID: 31516917 PMCID: PMC6728878 DOI: 10.1016/j.bonr.2019.100224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Bisphosphonate alendronate (ALN), phytoestrogen 8-prenylnaringenin (8-PN) and the whole body vibration exert a favorable effect on osteoporotic bone. However, the impact of these treatments and the combination of pharmacological therapies with biomechanical stimulation on muscle and bone has not yet been explored in detail. The effect of ALN and 8-PN and their combination with the vibration (Vib) on skeletal muscle and bone healing was investigated in ovariectomized (Ovx) rats. Three-month old rats were Ovx (n = 78), or left intact (Non-Ovx; n = 12). Five weeks after Ovx, all rats were treated according to the group assignment (n = 12/13): 1) Non-Ovx; 2) Ovx; 3) Ovx + Vib; 4) Ovx + ALN; 5) Ovx + ALN + Vib; 6): Ovx + 8-PN; 7) Ovx + 8-PN + Vib. Treatments with ALN (0.58 mg/kg BW, in food), 8-PN (1.77 mg/kg BW, daily s.c. injections) and/or with vertical vibration (0.5 mm, 35 Hz, 1 g, 15 min, 2×/day, 5×/week) were conducted for ten weeks. Nine weeks after Ovx, all rats underwent bilateral tibia osteotomy with plate osteosynthesis and were sacrificed six weeks later. Vibration increased fiber size and capillary density in muscle, enlarged callus area and width, and decreased callus density in tibia, and elevated alkaline phosphatase in serum. ALN and ALN + Vib enhanced capillarization and lactate dehydrogenase activity in muscle. In tibia, ALN slowed bone healing, ALN + Vib increased callus width and density, enhanced callus formation rate and expression of osteogenic genes. 8-PN and 8-PN + Vib decreased fiber size and increased capillary density in muscle; callus density and cortical width were reduced in tibia. Vibration worsened 8-PN effect on bone healing decreasing the callus width and area. Our data suggest that Vib, ALN, 8-PN, or 8-PN + Vib do not appear to aid bone healing. ALN + Vib improved bone healing; however application is questionable since single treatments impaired bone healing. Muscle responds to the anti-osteoporosis treatments and should be included in the evaluation of the drugs. Vibration (Vib) was beneficial for muscle structure, it tended to interfere with early bone healing. Alendronate (ALN) enhanced capillary density and metabolism in muscle, slowed bone healing. 8-Prenylnaringenin (8-PN) had favorable effects on muscle, for bone healing it was disadvantageous. 8PN + Vib further worsened 8-PN effect on bone, ALN + Vib improved bone healing. Muscles respond to anti-osteoporosis treatments, their analysis should be included in the evaluation of drugs.
Collapse
Affiliation(s)
- M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - C Rechholtz
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - N Pohlmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - W Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - A F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - R Wigger
- Department of Animal Sciences, University of Goettingen, Albrecht-Thaer-Weg 3, 37075 Goettingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
50
|
Logan IE, Miranda CL, Lowry MB, Maier CS, Stevens JF, Gombart AF. Antiproliferative and Cytotoxic Activity of Xanthohumol and Its Non-Estrogenic Derivatives in Colon and Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2019; 20:ijms20051203. [PMID: 30857300 PMCID: PMC6429097 DOI: 10.3390/ijms20051203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
Xanthohumol (XN), a prenylated flavonoid found in hops, inhibits growth in a variety of cancer cell lines; however, its use raises concerns as gut microbiota and the host’s hepatic cytochrome P450 enzymes metabolize it into the most potent phytoestrogen known, 8-prenylnaringenin (8-PN). The XN derivatives dihydroxanthohumol (DXN) and tetrahydroxanthohumol (TXN) are not metabolized into 8-PN and they show higher tissue concentrations in vivo compared with XN when orally administered to mice at the same dose. Here we show that DXN and TXN possess improved anti-proliferative activity compared with XN in two colon (HCT116, HT29) and two hepatocellular (HepG2, Huh7) carcinoma cell lines, as indicated by their respective IC50 values. Furthermore, XN, DXN, and TXN induce extensive apoptosis in all these carcinoma cell lines. Finally, TXN induces G0/G1 cell cycle arrest in the colon carcinoma cell line HT29. Our findings suggest that DXN and TXN could show promise as therapeutic agents against colorectal and liver cancer in preclinical studies without the drawback of metabolism into a phytoestrogen.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Cristobal L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Malcolm B Lowry
- Department of Microbiology, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|