1
|
Kim ED, Wu X, Lee S, Tibbs GR, Cunningham KP, Di Zanni E, Perez ME, Goldstein PA, Accardi A, Larsson HP, Nimigean CM. Propofol rescues voltage-dependent gating of HCN1 channel epilepsy mutants. Nature 2024; 632:451-459. [PMID: 39085604 PMCID: PMC11634041 DOI: 10.1038/s41586-024-07743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.
Collapse
Affiliation(s)
- Elizabeth D Kim
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Xiaoan Wu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Kevin P Cunningham
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- School of Life Sciences, University of Westminster, London, UK
| | - Eleonora Di Zanni
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Marta E Perez
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - H Peter Larsson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Abdallah BM, Elshoeibi AM, ElTantawi N, Arif M, Hourani RF, Akomolafe AF, Hamwi MN, Mahmood FR, Saracoglu KT, Saracoglu A, Chivese T. Comparison of postoperative pain in children after maintenance anaesthesia with propofol or sevoflurane: a systematic review and meta-analysis. Br J Anaesth 2024; 133:93-102. [PMID: 38670899 PMCID: PMC11213989 DOI: 10.1016/j.bja.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Propofol and sevoflurane are two of the most commonly used anaesthetics for paediatric surgery. Data from some clinical trials suggest that postoperative pain incidence is lower when propofol is used for maintenance of anaesthesia compared with sevoflurane, although this is not clear. METHODS This meta-analysis compared postoperative pain following maintenance of anaesthesia with propofol or sevoflurane in paediatric surgeries. PubMed Medline, Embase, Scopus, Web of Science and Cochrane Library were searched for randomised controlled trials (RCTs) that compared postoperative pain between sevoflurane and propofol anaesthesia in children. After quality assessment, a meta-analysis was carried out using bias-adjusted inverse heterogeneity methods, heterogeneity using I2 and publication bias using Doi plots. RESULTS In total, 13 RCTs with 1174 children were included. The overall synthesis suggested nearly two-fold higher odds of overall postoperative pain in the sevoflurane group compared with the propofol group (odds ratio [OR] 1.88, 95% confidence interval [CI] 1.12-3.15, I2=58.2%). Further, children in the sevoflurane group had higher odds of having higher pain scores (OR 3.18, 95% CI 1.83-5.53, I2=20.9%), and a 60% increase in the odds of requiring postoperative rescue analgesia compared with propofol (OR 1.60, 95% CI 0.89-2.88, I2=58.2%). CONCLUSIONS Children maintained on inhalational sevoflurane had higher odds of postoperative pain compared with those maintained on propofol. The results also suggest that sevoflurane is associated with higher odds of needing postoperative rescue analgesia compared with propofol. REGISTRATION The protocol for this systematic review and meta-analysis was registered on the International Prospective Register of Systematic Reviews (PROSPERO) with registration ID CRD42023445913.
Collapse
Affiliation(s)
| | | | | | - Mariah Arif
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Razan F Hourani
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Mahmoud N Hamwi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Kemal T Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ayten Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Aisha Bint Hamad Al-Attiyah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Tawanda Chivese
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
4
|
Doldur-Balli F, Smieszek SP, Keenan BT, Zimmerman AJ, Veatch OJ, Polymeropoulos CM, Birznieks G, Polymeropoulos MH. Screening effects of HCN channel blockers on sleep/wake behavior in zebrafish. Front Neurosci 2024; 18:1375484. [PMID: 38567282 PMCID: PMC10986788 DOI: 10.3389/fnins.2024.1375484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels generate electrical rhythmicity in various tissues although primarily heart, retina and brain. The HCN channel blocker compound, Ivabradine (Corlanor), is approved by the US Food and Drug Administration (FDA) as a medication to lower heart rate by blocking hyperpolarization activated inward current in the sinoatrial node. In addition, a growing body of evidence suggests a role for HCN channels in regulation of sleep/wake behavior. Zebrafish larvae are ideal model organisms for high throughput drug screening, drug repurposing and behavioral phenotyping studies. We leveraged this model system to investigate effects of three HCN channel blockers (Ivabradine, Zatebradine Hydrochloride and ZD7288) at multiple doses on sleep/wake behavior in wild type zebrafish. Results of interest included shorter latency to daytime sleep at 0.1 μM dose of Ivabradine (ANOVA, p: 0.02), moderate reduction in average activity at 30 μM dose of Zatebradine Hydrochloride (ANOVA, p: 0.024) in daytime, and increased nighttime sleep at 4.5 μM dose of ZD7288 (ANOVA, p: 0.036). Taken together, shorter latency to daytime sleep, decrease in daytime activity and increased nighttime sleep indicate that different HCN channel antagonists affected different parameters of sleep and activity.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Brendan T. Keenan
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amber J. Zimmerman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Gunther Birznieks
- Vanda Pharmaceuticals Inc., Pennsylvania, Washington, DC, United States
| | | |
Collapse
|
5
|
Kim D, Roh H, Lee HM, Kim SJ, Im M. Localization of hyperpolarization-activated cyclic nucleotide-gated channels in the vertebrate retinas across species and their physiological roles. Front Neuroanat 2024; 18:1385932. [PMID: 38562955 PMCID: PMC10982330 DOI: 10.3389/fnana.2024.1385932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
Collapse
Affiliation(s)
- Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hyeonhee Roh
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zou W, Zhang L, Hu Y, Gao Y, Zhang J, Zheng J. The role of TRPV ion channels in adipocyte differentiation: What is the evidence? Cell Biochem Funct 2024; 42:e3933. [PMID: 38269518 DOI: 10.1002/cbf.3933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Obesity is a complex disorder, and the incidence of obesity continues to rise at an alarming rate worldwide. In particular, the growing incidence of overweight and obesity in children is a major health concern. However, the underlying mechanisms of obesity remain unclear and the efficacy of several approaches for weight loss is limited. As an important calcium-permeable temperature-sensitive cation channel, transient receptor potential vanilloid (TRPV) ion channels directly participate in thermo-, mechano-, and chemosensory responses. Modulation of TRPV ion channel activity can alter the physiological function of the ion channel, leading to neurodegenerative diseases, chronic pain, cancer, and skin disorders. In recent years, increasing studies have demonstrated that TRPV ion channels are abundantly expressed in metabolic organs, including the liver, adipose tissue, skeletal muscle, pancreas, and central nervous system, which has been implicated in various metabolic diseases, including obesity and diabetes mellitus. In addition, as an important process for the pathophysiology of adipocyte metabolism, adipocyte differentiation plays a critical role in obesity. In this review, we focus on the role of TRPV ion channels in adipocyte differentiation to broaden the ideas for prevention and control strategies for obesity.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Zhou JS, Peng GF, Liang WD, Chen Z, Liu YY, Wang BY, Guo ML, Deng YL, Ye JM, Zhong ML, Wang LF. Recent advances in the study of anesthesia-and analgesia-related mechanisms of S-ketamine. Front Pharmacol 2023; 14:1228895. [PMID: 37781698 PMCID: PMC10539608 DOI: 10.3389/fphar.2023.1228895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Ketamine is a racemic mixture of equal amounts of R-ketamine and S-ketamine and is well known to anesthesiologists for its unique dissociative anesthetic properties. The pharmacological properties of ketamine, namely, its sympathetic excitation, mild respiratory depression, and potent analgesia, are still highly valued in its use as an anesthetic for some patients. In particular, since its advent, S-ketamine has been widely used as an anesthetic in many countries due to its increased affinity for NMDA receptors and its enhanced anesthetic and analgesic effects. However, the anesthetic and analgesic mechanisms of S-ketamine are not fully understood. In addition to antagonizing NMDA receptors, a variety of other receptors or channels may be involved, but there are no relevant mechanistic summaries in the literature. Therefore, the purpose of this paper is to review the mechanisms of action of S-ketamine on relevant receptors and systems in the body that result in its pharmacological properties, such as anesthesia and analgesia, with the aim of providing a reference for its clinical applications and research.
Collapse
Affiliation(s)
- Jian-shun Zhou
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Guan-fa Peng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Wei-dong Liang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Zhen Chen
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Ying-ying Liu
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Bing-yu Wang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Ming-ling Guo
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yun-ling Deng
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Jun-ming Ye
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Mao-lin Zhong
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| | - Li-feng Wang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, China
| |
Collapse
|
9
|
Pinares-Garcia P, Spyrou J, McKenzie CE, Forster IC, Soh MS, Mohamed Syazwan E, Atif M, Reid CA. Antidepressant-like activity of a brain penetrant HCN channel inhibitor in mice. Front Pharmacol 2023; 14:1159527. [PMID: 37234718 PMCID: PMC10206048 DOI: 10.3389/fphar.2023.1159527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Changes in Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel function have been linked to depressive-like traits, making them potential drug targets. However, there is currently no peer-reviewed data supporting the use of a small molecule modulator of HCN channels in depression treatment. Org 34167, a benzisoxazole derivative, has been patented for the treatment of depression and progressed to Phase I trials. In the current study, we analysed the biophysical effects of Org 34167 on HCN channels in stably transfected human embryonic kidney 293 (HEK293) cells and mouse layer V neurons using patch-clamp electrophysiology, and we utilised three high-throughput screens for depressive-like behaviour to assess the activity of Org 34167 in mice. The impact of Org 34167 on locomotion and coordination were measured by performing rotarod and ledged beam tests. Org 34167 is a broad-spectrum inhibitor of HCN channels, slowing activation and causing a hyperpolarising shift in voltage-dependence of activation. It also reduced I h-mediated sag in mouse neurons. Org 34167 (0.5 mg/kg) reduced marble burying and increased the time spent mobile in the Porsolt swim and tail suspension tests in both male and female BALB/c mice, suggesting reduced depressive-like behaviour. Although no adverse effects were seen at 0.5 mg/kg, an increase in dose to 1 mg/kg resulted in visible tremors and impaired locomotion and coordination. These data support the premise that HCN channels are valid targets for anti-depressive drugs albeit with a narrow therapeutic index. Drugs with higher HCN subtype selectivity are needed to establish if a wider therapeutic window can be obtained.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James Spyrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chaseley E. McKenzie
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ian C. Forster
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ming S. Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Erlina Mohamed Syazwan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mohammed Atif
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christopher A. Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
10
|
Wang X, Gan S, Zhang Z, Zhu P, Li CH, Luo F. HCN-Channel-Dependent Hyperexcitability of the Layer V Pyramidal Neurons in IL-mPFC Contributes to Fentanyl-Induced Hyperalgesia in Male Rats. Mol Neurobiol 2023; 60:2553-2571. [PMID: 36689134 DOI: 10.1007/s12035-023-03218-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Opioids are often first-line analgesics in pain therapy. However, prolonged use of opioids causes paradoxical pain, termed "opioid-induced hyperalgesia (OIH)." The infralimbic medial prefrontal cortex (IL-mPFC) has been suggested to be critical in inflammatory and neuropathic pain processing through its dynamic output from layer V pyramidal neurons. Whether OIH condition induces excitability changes of these output neurons and what mechanisms underlie these changes remains elusive. Here, with combination of patch-clamp recording, immunohistochemistry, as well as optogenetics, we revealed that IL-mPFC layer V pyramidal neurons exhibited hyperexcitability together with higher input resistance. In line with this, optogenetic and chemogenetic activation of these neurons aggravates behavioral hyperalgesia in male OIH rats. Inhibition of these neurons alleviates hyperalgesia in male OIH rats but exerts an opposite effect in male control rats. Electrophysiological analysis of hyperpolarization-activated cation current (Ih) demonstrated that decreased Ih is a prerequisite for the hyperexcitability of IL-mPFC output neurons. This decreased Ih was accompanied by a decrease in HCN1, but not HCN2, immunolabeling, in these neurons. In contrast, the application of HCN channel blocker increased the hyperalgesia threshold of male OIH rats. Consequently, we identified an HCN-channel-dependent hyperexcitability of IL-mPFC output neurons, which governs the development and maintenance of OIH in male rats.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sifei Gan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeru Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengfei Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
12
|
Lee JHA, Chen Q, Zhuo M. Synaptic Plasticity in the Pain-Related Cingulate and Insular Cortex. Biomedicines 2022; 10:2745. [PMID: 36359264 PMCID: PMC9687873 DOI: 10.3390/biomedicines10112745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 09/23/2023] Open
Abstract
Cumulative animal and human studies have consistently demonstrated that two major cortical regions in the brain, namely the anterior cingulate cortex (ACC) and insular cortex (IC), play critical roles in pain perception and chronic pain. Neuronal synapses in these cortical regions of adult animals are highly plastic and can undergo long-term potentiation (LTP), a phenomenon that is also reported in brain areas for learning and memory (such as the hippocampus). Genetic and pharmacological studies show that inhibiting such cortical LTP can help to reduce behavioral sensitization caused by injury as well as injury-induced emotional changes. In this review, we will summarize recent progress related to synaptic mechanisms for different forms of cortical LTP and their possible contribution to behavioral pain and emotional changes.
Collapse
Affiliation(s)
- Jung-Hyun Alex Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiyu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
13
|
Ozturk H, Basoglu H, Yorulmaz N, Aydin-Abidin S, Abidin I. Fisetin decreases the duration of ictal-like discharges in mouse hippocampal slices. J Biol Phys 2022; 48:355-368. [PMID: 35948819 PMCID: PMC9411310 DOI: 10.1007/s10867-022-09612-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
There is an increasing interest in the biological and therapeutic effects of fisetin, a natural phenolic compound. Fisetin has affinity on some neuronal targets and may have the potential to modulate neuronal activity. In this study the effects of acute application of fisetin on synchronized events were evaluated electro-physiologically. Besides, interaction of fisetin with closely related channels were investigated in silico. Acute horizontal hippocampal slices were obtained from 32- to 36-day-old C57BL/6 mice. Extracellular field potentials were recorded from CA3 region of the hippocampus. Bath application of 4 aminopyridine (4AP, 100 µM) initiated ictal- and interictal-like synchronized epileptiform discharges in the brain slices. Fifty micromolar fisetin was applied to the recording chamber during the epileptiform activity. The duration and frequencies of both ictal-like and interictal-like activities were calculated from the electrophysiological records. Molecular docking was performed to reveal interaction of fisetin on GABA-A, NMDA, AMPA receptors, and HCN2 channel, which are neuronal structures directly involved in recorded activity. Although fisetin does not affect basal neuronal activity in brain slice, it reduced the duration of ictal-like discharges significantly. Molecular docking results indicated that fisetin has no effect on GABA-A, NMDA, and AMPA receptors. However, fisetin binds to the (5JON) HCN2 channel strongly with the binding energy of -7.66 kcal/mol. Reduction on the duration of 4AP-induced ictal-like discharges can be explained as HCN channels can cause an inhibitory effect via enhancing M-type K + channels which increase K outward currents.
Collapse
Affiliation(s)
- Hilal Ozturk
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
- Department of Biophysics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Harun Basoglu
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Nuri Yorulmaz
- Department of Physics, Faculty of Science, Harran University, Sanliurfa, Turkey
| | - Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ismail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
14
|
Han Y, Iyamu ID, Clutter MR, Mishra RK, Lyman KA, Zhou C, Michailidis I, Xia MY, Sharma H, Luan CH, Schiltz GE, Chetkovich DM. Discovery of a small-molecule inhibitor of the TRIP8b-HCN interaction with efficacy in neurons. J Biol Chem 2022; 298:102069. [PMID: 35623388 PMCID: PMC9243175 DOI: 10.1016/j.jbc.2022.102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 10/27/2022] Open
Abstract
Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Matthew R Clutter
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| | - Kyle A Lyman
- Department of Neurology, Stanford University, Palo Alto, California, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis Michailidis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Y Xia
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Horrick Sharma
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University, Chicago, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
15
|
Shimizu M, Mi X, Toyoda F, Kojima A, Ding WG, Fukushima Y, Omatsu-Kanbe M, Kitagawa H, Matsuura H. Propofol, an Anesthetic Agent, Inhibits HCN Channels through the Allosteric Modulation of the cAMP-Dependent Gating Mechanism. Biomolecules 2022; 12:biom12040570. [PMID: 35454159 PMCID: PMC9032835 DOI: 10.3390/biom12040570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Propofol is a broadly used intravenous anesthetic agent that can cause cardiovascular effects, including bradycardia and asystole. A possible mechanism for these effects is slowing cardiac pacemaker activity due to inhibition of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. However, it remains unclear how propofol affects the allosteric nature of the voltage- and cAMP-dependent gating mechanism in HCN channels. To address this aim, we investigated the effect of propofol on HCN channels (HCN4 and HCN2) in heterologous expression systems using a whole-cell patch clamp technique. The extracellular application of propofol substantially suppressed the maximum current at clinical concentrations. This was accompanied by a hyperpolarizing shift in the voltage dependence of channel opening. These effects were significantly attenuated by intracellular loading of cAMP, even after considering the current modification by cAMP in opposite directions. The differential degree of propofol effects in the presence and absence of cAMP was rationalized by an allosteric gating model for HCN channels, where we assumed that propofol affects allosteric couplings between the pore, voltage-sensor, and cyclic nucleotide-binding domain (CNBD). The model predicted that propofol enhanced autoinhibition of pore opening by unliganded CNBD, which was relieved by the activation of CNBD by cAMP. Taken together, these findings reveal that propofol acts as an allosteric modulator of cAMP-dependent gating in HCN channels, which may help us to better understand the clinical action of this anesthetic drug.
Collapse
Affiliation(s)
- Morihiro Shimizu
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
- Correspondence: ; Tel.: +81-77-548-2152; Fax: +81-77-548-2348
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (M.S.); (A.K.); (Y.F.); (H.K.)
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan; (X.M.); (F.T.); (M.O.-K.); (H.M.)
| |
Collapse
|
16
|
Mok K, Tsoi H, Man EPS, Leung M, Chau KM, Wong L, Chan W, Chan S, Luk M, Chan JY, Leung JK, Chan YH, Batalha S, Lau V, Siu DC, Lee TK, Gong C, Khoo U. Repurposing hyperpolarization-activated cyclic nucleotide-gated channels as a novel therapy for breast cancer. Clin Transl Med 2021; 11:e578. [PMID: 34841695 PMCID: PMC8567035 DOI: 10.1002/ctm2.578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are members of the voltage-gated cation channel family known to be expressed in the heart and central nervous system. Ivabradine, a small molecule HCN channel-blocker, is FDA-approved for clinical use as a heart rate-reducing agent. We found that HCN2 and HCN3 are overexpressed in breast cancer cells compared with normal breast epithelia, and the high expression of HCN2 and HCN3 is associated with poorer survival in breast cancer patients. Inhibition of HCN by Ivabradine or by RNAi, aborted breast cancer cell proliferation in vitro and suppressed tumour growth in patient-derived tumour xenograft models established from triple-negative breast cancer (TNBC) tissues, with no evident side-effects on the mice. Transcriptome-wide analysis showed enrichment for cholesterol metabolism and biosynthesis as well as lipid metabolism pathways associated with ER-stress following Ivabradine treatment. Mechanistic studies confirmed that HCN inhibition leads to ER-stress, in part due to disturbed Ca2+ homeostasis, which subsequently triggered the apoptosis cascade. More importantly, we investigated the synergistic effect of Ivabradine and paclitaxel on TNBC and confirmed that both drugs acted synergistically in vitro through ER-stress to amplify signals for caspase activation. Combination therapy could suppress tumour growth of xenografts at much lower doses for both drugs. In summary, our study identified a new molecular target with potential for being developed into targeted therapy, providing scientific grounds for initiating clinical trials for a new treatment regimen of combining HCN inhibition with chemotherapy.
Collapse
Affiliation(s)
- Ka‐Chun Mok
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ho Tsoi
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ellen PS Man
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Man‐Hong Leung
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ka Man Chau
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lai‐San Wong
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Wing‐Lok Chan
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sum‐Yin Chan
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Mai‐Yee Luk
- Department of Clinical OncologyQueen Mary HospitalHong KongHong Kong
| | - Jessie Y.W. Chan
- Department of SurgeryPamela Youde Nethersole Eastern HospitalHong KongHong Kong
| | - Jackie K.M. Leung
- Department of SurgeryPamela Youde Nethersole Eastern HospitalHong KongHong Kong
| | | | - Sellma Batalha
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Virginia Lau
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - David C.W. Siu
- Department of MedicineThe University of Hong KongHong KongHong Kong
| | - Terence K.W. Lee
- Department of Applied Biology & Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Chun Gong
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Ui‐Soon Khoo
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
17
|
The HCN channel as a pharmacological target: Why, where, and how to block it. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:173-181. [PMID: 34303730 DOI: 10.1016/j.pbiomolbio.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, expressed in a variety of cell types and in all tissues, control excitation and rhythm. Since their discovery in neurons and cardiac pacemaker cells, they attracted the attention of medicinal chemistry and pharmacology as novel targets to shape (patho)physiological mechanisms. To date, ivabradine represents the first-in-class drug as specific bradycardic agent in cardiac diseases; however, new applications are emerging in parallel with the demonstration of the involvement of different HCN isoforms in central and peripheral nervous system. Hence, the possibility to target specific isoforms represents an attractive development in this field; indeed, HCN1, HCN2 or HCN4 specific blockers have shown promising features in vitro and in vivo, with remarkable pharmacological differences likely depending on the diverse functional role and tissue distribution. Here, we show a recently developed compound with high potency as HCN2-HCN4 blocker; because of its unique profile, this compound may deserve further investigation.
Collapse
|
18
|
Chin KJ, Lirk P, Hollmann MW, Schwarz SKW. Mechanisms of action of fascial plane blocks: a narrative review. Reg Anesth Pain Med 2021; 46:618-628. [PMID: 34145073 DOI: 10.1136/rapm-2020-102305] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Fascial plane blocks (FPBs) target the space between two fasciae, rather than discrete peripheral nerves. Despite their popularity, their mechanisms of action remain controversial, particularly for erector spinae plane and quadratus lumborum blocks. OBJECTIVES This narrative review describes the scientific evidence underpinning proposed mechanisms of action, highlights existing knowledge gaps, and discusses implications for clinical practice and research. FINDINGS There are currently two plausible mechanisms of analgesia. The first is a local effect on nociceptors and neurons within the plane itself or within adjacent muscle and tissue compartments. Dispersion of local anesthetic occurs through bulk flow and diffusion, and the resulting conduction block is dictated by the mass of local anesthetic reaching these targets. The extent of spread, analgesia, and cutaneous sensory loss is variable and imperfectly correlated. Explanations include anatomical variation, factors governing fluid dispersion, and local anesthetic pharmacodynamics. The second is vascular absorption of local anesthetic and a systemic analgesic effect at distant sites. Direct evidence is presently lacking but preliminary data indicate that FPBs can produce transient elevations in plasma concentrations similar to intravenous lidocaine infusion. The relative contributions of these local and systemic effects remain uncertain. CONCLUSION Our current understanding of FPB mechanisms supports their demonstrated analgesic efficacy, but also highlights the unpredictability and variability that result from myriad factors at play. Potential strategies to improve efficacy include accurate deposition close to targets of interest, injections of sufficient volume to encourage physical spread by bulk flow, and manipulation of concentration to promote diffusion.
Collapse
Affiliation(s)
- Ki Jinn Chin
- Department of Anesthesiology and Pain Medicine, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Philipp Lirk
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Markus W Hollmann
- Department of Anaesthesiology, Amsterdam University Medical Centres, Amsterdam Medical Centre, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anaesthesiology (L·E·I·C·A), Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Stephan K W Schwarz
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
20
|
Zhong W, Darmani NA. The HCN Channel Blocker ZD7288 Induces Emesis in the Least Shrew ( Cryptotis parva). Front Pharmacol 2021; 12:647021. [PMID: 33995059 PMCID: PMC8117105 DOI: 10.3389/fphar.2021.647021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Subtypes (1-4) of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in the central and peripheral nervous systems, as well as the cells of smooth muscles in many organs. They mainly serve to regulate cellular excitability in these tissues. The HCN channel blocker ZD7288 has been shown to reduce apomorphine-induced conditioned taste aversion on saccharin preference in rats suggesting potential antinausea/antiemetic effects. Currently, in the least shew model of emesis we find that ZD7288 induces vomiting in a dose-dependent manner, with maximal efficacies of 100% at 1 mg/kg (i.p.) and 83.3% at 10 µg (i.c.v.). HCN channel subtype (1-4) expression was assessed using immunohistochemistry in the least shrew brainstem dorsal vagal complex (DVC) containing the emetic nuclei (area postrema (AP), nucleus tractus solitarius and dorsal motor nucleus of the vagus). Highly enriched HCN1 and HCN4 subtypes are present in the AP. A 1 mg/kg (i.p.) dose of ZD7288 strongly evoked c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem DVC, but not in the in the enteric nervous system in the jejunum, suggesting a central contribution to the evoked vomiting. The ZD7288-evoked c-Fos expression exclusively occurred in tryptophan hydroxylase 2-positive serotonin neurons of the dorsal vagal complex, indicating activation of serotonin neurons may contribute to ZD7288-induced vomiting. To reveal its mechanism(s) of emetic action, we evaluated the efficacy of diverse antiemetics against ZD7288-evoked vomiting including the antagonists/inhibitors of: ERK1/2 (U0126), L-type Ca2+ channel (nifedipine); store-operated Ca2+ entry (MRS 1845); T-type Ca2+ channel (Z944), IP3R (2-APB), RyR receptor (dantrolene); the serotoninergic type 3 receptor (palonosetron); neurokinin 1 receptor (netupitant), dopamine type 2 receptor (sulpride), and the transient receptor potential vanilloid 1 receptor agonist, resiniferatoxin. All tested antiemetics except sulpride attenuated ZD7288-evoked vomiting to varying degrees. In sum, ZD7288 has emetic potential mainly via central mechanisms, a process which involves Ca2+ signaling and several emetic receptors. HCN channel blockers have been reported to have emetic potential in the clinic since they are currently used/investigated as therapeutic candidates for cancer therapy related- or unrelated-heart failure, pain, and cognitive impairment.
Collapse
Affiliation(s)
| | - N. A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
21
|
Sun N, Gao P, Li Y, Yan Z, Peng Z, Zhang Y, Han F, Qi X. Screening and Identification of Key Common and Specific Genes and Their Prognostic Roles in Different Molecular Subtypes of Breast Cancer. Front Mol Biosci 2021; 8:619110. [PMID: 33644115 PMCID: PMC7905399 DOI: 10.3389/fmolb.2021.619110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/08/2021] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is one of the most common cancers. Although the present molecular classification improves the treatment effect and prognosis of breast cancer, the heterogeneity of the molecular subtype remains very complex, and the applicability and effectiveness of treatment methods are still limited leading to poorer patient prognosis than expected. Further identification of more refined molecular typing based on gene expression profile will yield better understanding of the heterogeneity, improving treatment effects and prolonging prognosis of patients. Here, we downloaded the mRNA expression profiles and corresponding clinical data of patients with breast cancer from public databases and performed typical molecular typing using PAM50 (Prediction Analysis of Microarray 50) method. Comparative analyses were performed to screen the common and specific differentially expressed genes (DEGs) between cancer and corresponding para-cancerous tissues in each breast cancer subtype. The GO and KEGG analyses of the DEGs were performed to enrich the common and specific functional progress and signaling pathway involved in breast cancer subtypes. A total of 38 key common and specific DEGs were identified and selected based on the validated results, GO/KEGG enrichments, and the priority of expression, including four common DEGs and 34 specific DEGs in different subtypes. The prognostic value of these key common and specific DEGs was further analyzed to obtain useful potential markers in clinic. Finally, the potential roles and the specific prognostic values of the common and specific DEGs were speculated and summarized in total breast cancer and different subtype breast cancer based on the results of these analyses. The findings of our study provide the basis of more refined molecular typing of breast cancer, potential new therapeutic targets and prognostic markers for different breast cancer subtypes
Collapse
Affiliation(s)
- Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pingping Gao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanling Li
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zaihui Peng
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Cook DC, Goldstein PA. Non-canonical Molecular Targets for Novel Analgesics: Intracellular Calcium and HCN Channels. Curr Neuropharmacol 2021; 19:1937-1951. [PMID: 33463473 PMCID: PMC9185781 DOI: 10.2174/1570159x19666210119153047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pain is a prevalent biopsychosocial condition that poses a significant challenge to healthcare providers, contributes substantially to a disability, and is a major economic burden worldwide. An overreliance on opioid analgesics, which primarily target the μ-opioid receptor, has caused devastating morbidity and mortality in the form of misuse and overdose-related death. Thus, novel analgesic medications are needed that can effectively treat pain and provide an alternative to opioids. A variety of cellular ion channels contribute to nociception, the response of the sensory nervous system to a noxious stimulus that commonly leads to pain. Ion channels involved in nociception may provide a suitable target for pharmacologic modulation to achieve pain relief. This narrative review summarizes the evidence for two ion channels that merit consideration as targets for non-opioid pain medications: ryanodine receptors (RyRs), which are intracellular calcium channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which belong to the superfamily of voltage-gated K+ channels. The role of these channels in nociception and neuropathic pain is discussed and suitability as targets for novel analgesics and antihyperalgesics is considered.
Collapse
Affiliation(s)
- Daniel C. Cook
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
23
|
Liang Y, Xu Z, Wu X, Pang J, Zhou P, Cao Y. Inhibition of hyperpolarization-activated cyclic nucleotide-gated channels with natural flavonoid quercetin. Biochem Biophys Res Commun 2020; 533:952-957. [PMID: 33008592 DOI: 10.1016/j.bbrc.2020.09.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
Abstract
Quercetin is a natural flavonoid which has been reported to be analgesic in different animal models of pain. However, the mechanism underlying the pain-relieving effects is still unclear. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in controlling pacemaker activity in cardiac and nervous systems, making the channel a new target for therapeutic exploration. In this study, we explored a series of flavonoids for their modulation on HCN channels. Among all tested flavonoids, quercetin was the most potent inhibitor for HCN channels with an IC50 value of 27.32 ± 1.19 μM for HCN2. Furthermore, quercetin prominently left shifted the voltage-dependent activation curves of HCN channels and decelerated deactivation process. The results presented herein firstly characterize quercetin as a novel and potent inhibitor for HCN channels, which represents a novel structure for future drug design of HCN channel inhibitors.
Collapse
Affiliation(s)
- Yemei Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Selected Ionotropic Receptors and Voltage-Gated Ion Channels: More Functional Competence for Human Induced Pluripotent Stem Cell (iPSC)-Derived Nociceptors. Brain Sci 2020; 10:brainsci10060344. [PMID: 32503260 PMCID: PMC7348931 DOI: 10.3390/brainsci10060344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/09/2023] Open
Abstract
Preclinical research using different rodent model systems has largely contributed to the scientific progress in the pain field, however, it suffers from interspecies differences, limited access to human models, and ethical concerns. Human induced pluripotent stem cells (iPSCs) offer major advantages over animal models, i.e., they retain the genome of the donor (patient), and thus allow donor-specific and cell-type specific research. Consequently, human iPSC-derived nociceptors (iDNs) offer intriguingly new possibilities for patient-specific, animal-free research. In the present study, we characterized iDNs based on the expression of well described nociceptive markers and ion channels, and we conducted a side-by-side comparison of iDNs with mouse sensory neurons. Specifically, immunofluorescence (IF) analyses with selected markers including early somatosensory transcription factors (BRN3A/ISL1/RUNX1), the low-affinity nerve growth factor receptor (p75), hyperpolarization-activated cyclic nucleotide-gated channels (HCN), as well as high voltage-gated calcium channels (VGCC) of the CaV2 type, calcium permeable TRPV1 channels, and ionotropic GABAA receptors, were used to address the characteristics of the iDN phenotype. We further combined IF analyses with microfluorimetric Ca2+ measurements to address the functionality of these ion channels in iDNs. Thus, we provide a detailed morphological and functional characterization of iDNs, thereby, underpinning their enormous potential as an animal-free alternative for human specific research in the pain field for unveiling pathophysiological mechanisms and for unbiased, disease-specific personalized drug development.
Collapse
|
25
|
LaRese TP, Rheaume BA, Abraham R, Eipper BA, Mains RE. Sex-Specific Gene Expression in the Mouse Nucleus Accumbens Before and After Cocaine Exposure. J Endocr Soc 2019; 3:468-487. [PMID: 30746506 PMCID: PMC6364626 DOI: 10.1210/js.2018-00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
The nucleus accumbens plays a major role in the response of mammals to cocaine. In animal models and human studies, the addictive effects of cocaine and relapse probability have been shown to be greater in females. Sex-specific differential expression of key transcripts at baseline and after prolonged withdrawal could underlie these differences. To distinguish between these possibilities, gene expression was analyzed in four groups of mice (cycling females, ovariectomized females treated with estradiol or placebo, and males) 28 days after they had received seven daily injections of saline or cocaine. As expected, sensitization to the locomotor effects of cocaine was most pronounced in the ovariectomized mice receiving estradiol, was greater in cycling females than in males, and failed to occur in ovariectomized/placebo mice. After the 28-day withdrawal period, RNA prepared from the nucleus accumbens of the individual cocaine- or saline-injected mice was subjected to RNA sequencing analysis. Baseline expression of 3% of the nucleus accumbens transcripts differed in the cycling female mice compared with the male mice. Expression of a similar number of transcripts was altered by ovariectomy or was responsive to estradiol treatment. Nucleus accumbens transcripts differentially expressed in cycling female mice withdrawn from cocaine exhibited substantial overlap with those differentially expressed in cocaine-withdrawn male mice. A small set of transcripts were similarly affected by cocaine in the placebo- or estradiol-treated ovariectomized mice. Sex and hormonal status have profound effects on RNA expression in the nucleus accumbens of naive mice. Prolonged withdrawal from cocaine alters the expression of a much smaller number of common and sex hormone-specific transcripts.
Collapse
Affiliation(s)
- Taylor P LaRese
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Ron Abraham
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|