1
|
Ouyang Y, Zhou B, Chu L, Chen X, Hao Q, Lei J. Causal associations of tea consumption on risk of pancreatic adenocarcinoma and the mediating role of vascular endothelial growth factor D levels. Br J Nutr 2024; 132:1503-1512. [PMID: 39501829 DOI: 10.1017/s0007114524002393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Tea is one of the most widely consumed beverages in the world. However, the association between tea and risk of pancreatic adenocarcinoma remains controversial. This study aimed to investigate the causal relationship between tea consumption and risk of pancreatic adenocarcinoma and to explore their mediating effects. The two-sample Mendelian randomisation (MR) analysis showed an inverse causal relationship between tea intake and pancreatic adenocarcinoma (OR: 0·111 (0·02, 0·85), P < 0·04). To examine the mediating effects, we explored the potential mechanisms by which tea intake reduces the risk of pancreatic adenocarcinoma. Based on the oral bioavailability and drug-like properties in Traditional Chinese Medicine Systems Pharmacology database, we selected the main active ingredients of tea. We screened out the fifteen representative targeted genes by Pharmmapper database, and the gene ontology enrichment analysis showed that these targeted genes were related to vascular endothelial growth factor (VEGF) pathway. The two-step MR analysis of results showed that only VEGF-D played a mediating role, with a mediation ratio of 0·230 (0·066, 0·394). In conclusion, the findings suggest that VEGF-D mediates the effect of tea intake on the risk of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Yonghao Ouyang
- Research Institute of General Surgery, Jinling Hospital, Nanjing210000, People's Republic of China
| | - Beini Zhou
- Jiangxi Modern polytechnic college, Nanchang330000, People's Republic of China
| | - Lihua Chu
- Jinggangshan University, Ji'an3343000, People's Republic of China
| | - Xin Chen
- Jiangxi University Of Traditional Chinese Medicine, Nanchang330000, People's Republic of China
| | - Qiang Hao
- Research Institute of General Surgery, Jinling Hospital, Nanjing210000, People's Republic of China
| | - Jiajia Lei
- College of Food Science & Project Engineering, Wuhan Polytechnic University, Wuhan430023, People's Republic of China
| |
Collapse
|
2
|
Tian Y, Fan L, Xue H, Zhao X, Zheng J, Sun W, Yao M, Du W. Associations between tea-drinking habits and health-related quality of life in Chinese adults: a mediation analysis based on sleep quality. Int Health 2024; 16:653-663. [PMID: 38108796 PMCID: PMC11532667 DOI: 10.1093/inthealth/ihad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the association between tea-drinking habits and health-related quality of life (HRQoL) in Chinese adults and the mediating effect of sleep quality in this association. METHODS Data were derived from the 2020 Survey of Social Factors for Chronic Disease Prevention and Control among adults in Lishui District, Nanjing, Jiangsu Province, China. Tea-drinking habits were measured by participants' self-report. The HRQoL was measured using the 12-item Short Form Health Survey. Multiple linear regression modelling and mediating effects modelling were used for analyses. RESULTS Habitual tea drinking, frequent tea drinking (drinking tea 6-7 days per week), tea concentration and <10 g of tea per day were strongly associated with an increase in HRQoL among Chinese adults (all p<0.05). The association between tea-drinking habits and HRQoL among Chinese adults was more pronounced in the male population and in those ≥45 y of age (all p<0.05). Tea drinking habits may improve HRQoL in Chinese adults by enhancing sleep quality (all p<0.05). CONCLUSIONS Maintaining the habit of habitual tea drinking (6-7 days per week), in small amounts (<10 g tea per day) was conducive to improving HRQoL of Chinese adults by improving sleep quality.
Collapse
Affiliation(s)
- Yong Tian
- School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Lijun Fan
- School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Hui Xue
- School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Xinyu Zhao
- School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing 210009, Jiangsu Province, China
| | - Ji Zheng
- Lishui District Health Committee, No. 203 Wenchang Road, Lishui District, Nanjing, Jiangsu Province, China
| | - Wancai Sun
- Lishui District Health Committee, No. 203 Wenchang Road, Lishui District, Nanjing, Jiangsu Province, China
| | - Ming Yao
- Lishui District Health Committee, No. 203 Wenchang Road, Lishui District, Nanjing, Jiangsu Province, China
| | - Wei Du
- School of Public Health, Southeast University, No. 87, Dingjiaqiao, Gulou District, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
3
|
Zhou Y, Qin L, Li C, Zhu D, Liu B. EGCG enhances antitumor effect of apatinib in nonsmall cell lung cancer by targeting VEGF signaling to inhibit glycolysis. Drug Dev Res 2024; 85:e22239. [PMID: 39397333 DOI: 10.1002/ddr.22239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Nonsmall cell lung cancer (NSCLC), one of the most aggressive malignancies globally, is characterized by poor prognosis and limited life expectancy. Epigallocatechin-3-gallate (EGCG), a natural polyphenol found in green tea, has emerged as a promising anticancer agent due to its potent antitumor properties. However, the role and the underlying mechanisms of EGCG in NSCLC remain poorly understood. Hence, this research aimed to explore the effect of EGCG on the antitumor effect of apatinib in NSCLC through vascular endothelial growth factor (VEGF)-regulated glycolysis. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine staining, wound healing, transwell, terminal deoxynucleotidyl transferase dUTP nick-end labeling, and flow cytometry assays were carried out to evaluate the proliferation, migration, invasion, and apoptosis of H1299 cells, respectively. Furthermore, western blot analysis was used to detect the expressions of VEGF, p-vascular endothelial growth factor receptor-2, hypoxia-inducible factor 1α, neuropilin-1, phosphorylated-phosphatidylinositol 3-kinase, and phosphorylated-AKT. The transfection efficiency of H1299 cells with VEGF overexpression plasmid was also assessed by western blot analysis. Glycolysis was analyzed by estimating extracellular acidification rate, lactate concentration, glucose uptake, and the expressions of lactate dehydrogenase A, pyruvate kinase M2, and hexokinase 2. The results demonstrated that VEGF activated glycolysis in NSCLC cells. EGCG alone and apatinib alone or in combination inhibited cell viability, proliferation, invasion, migration, and glycolysis whereas promoted apoptosis in NSCLC cells. EGCG regulated glycolysis levels in NSCLC through VEGF overexpression, and enhanced the antitumor effect of apatinib in NSCLC through VEGF-regulated glycolysis. Taken together, EGCG strengthened the protective effects of apatinib in NSCLC through glycolysis mediated by VEGF.
Collapse
Affiliation(s)
- Yue Zhou
- College of Pharmacy, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Liqing Qin
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Chengpeng Li
- College of Pharmacy, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Danxue Zhu
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Bo Liu
- College of Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
5
|
Bishayee A, Penn A, Bhandari N, Petrovich R, DeLiberto LK, Burcher JT, Barbalho SM, Nagini S. Dietary plants for oral cancer prevention and therapy: A review of preclinical and clinical studies. Phytother Res 2024; 38:5225-5263. [PMID: 39193857 DOI: 10.1002/ptr.8293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024]
Abstract
Oral cancer is a disease with high mortality and rising incidence worldwide. Although fragmentary literature on the anti-oral cancer effects of plant products has been published, a comprehensive analysis is lacking. In this work, a critical and comprehensive evaluation of oral cancer preventative or therapeutic effects of dietary plants was conducted. An exhaustive analysis of available data supports that numerous dietary plants exert anticancer effects, including suppression of cell proliferation, viability, autophagy, angiogenesis, invasion, and metastasis while promoting cell cycle arrest and apoptosis. Plant extracts and products target several cellular mechanisms, such as the reversal of epithelial-to-mesenchymal transition and the promotion of oxidative stress and mitochondrial membrane dysfunction by modulation of various signaling pathways. These agents were also found to regulate cellular growth signaling pathways by action on extracellular signal-regulated kinase and mitogen-activated protein kinase, inflammation via modulation of cyclooxygenase (COX)-1, COX-2, and nuclear factor-κB p65, and metastasis through influence of cadherins and matrix metalloproteinases. In vivo studies support these findings and demonstrate a decrease in tumor burden, incidence, and hyperplastic and dysplastic changes. Clinical studies also showed decreased oral cancer risk. However, high-quality studies should be conducted to establish the clinical efficacy of these plants. Overall, our study supports the use of dietary plants, especially garlic, green tea, longan, peppermint, purple carrot, saffron, tomato, and turmeric, for oral cancer prevention and intervention. However, further research is required before clinical application of this strategy.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Amanda Penn
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Neha Bhandari
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Riley Petrovich
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jack T Burcher
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Sandra Maria Barbalho
- School of Food and Technology of Marilia, Marília, São Paulo, Brazil
- School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília, Sao Paulo, Brazil
| | - Siddavaram Nagini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
6
|
Andrade EDS, Santos RA, Guillermo LVC, Miyoshi N, Ferraz da Costa DC. Immunomodulatory Effects of Green Tea Catechins and Their Ring Fission Metabolites in a Tumor Microenvironment Perspective. Molecules 2024; 29:4575. [PMID: 39407505 PMCID: PMC11478201 DOI: 10.3390/molecules29194575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Green tea is the second most consumed beverage following water, and the health benefits provided by its consumption have been well established from research in recent decades. The main bioactive compounds found in all Camellia sinensis-based teas are catechins, which have been reported to have antioxidant, anticancer, anti-inflammatory, and immunomodulatory properties. Although most of the health benefits are well established, studies show that the intact catechins as found in tea are poorly absorbed in the digestive tract. These compounds are degraded and undergo ring fission by the gut microbiota, increasing their absorption. In this review, we gather knowledge of the health benefits of green tea catechins and their metabolites, with a particular emphasis on the immunomodulatory effects in a cancer microenvironment scenario.
Collapse
Affiliation(s)
- Emmanuele D. S. Andrade
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
- Laboratory of Pathophysiology and Biochemistry of Nutrition, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University/UERJ, Rio de Janeiro 20550-013, Brazil;
| | - Ronimara A. Santos
- Laboratory of Pathophysiology and Biochemistry of Nutrition, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University/UERJ, Rio de Janeiro 20550-013, Brazil;
| | - Landi V. C. Guillermo
- Laboratory of Investigation on Mechanisms of Immunoregulation, Department of Microbiology and Parasitology, Biomedical Institute, Federal State University of Rio de Janeiro/UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Danielly C. Ferraz da Costa
- Laboratory of Pathophysiology and Biochemistry of Nutrition, Department of Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University/UERJ, Rio de Janeiro 20550-013, Brazil;
| |
Collapse
|
7
|
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024; 13:2708. [PMID: 39272474 PMCID: PMC11394233 DOI: 10.3390/foods13172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, and I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Jelena Tošović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
8
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
He L, Peng L, Wang L, Jiang X, Sun X, Li H, Lin T, Wu Z, Lin S. Investigation of folate-modified EGCG-loaded thermosensitive nanospheres inducing immunogenic cell death and damage-associated molecular patterns in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 714:149976. [PMID: 38677007 DOI: 10.1016/j.bbrc.2024.149976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The systemic treatment of advanced hepatocellular carcinoma is currently facing a bottleneck. EGCG, the primary active compound in green tea, exhibits anti-tumor effects through various pathways. However, there is a lack of study on EGCG-induced immunogenic cell death (ICD) in hepatocellular carcinoma. METHODS In a previous study, we successfully synthesized folate-modified thermosensitive nano-materials, encapsulated EGCG within nanoparticles using a hydration method, and established the EGCG nano-drug delivery system. The viability of HepG2 cells post-EGCG treatment was assessed via the MTT and EdU assays. Cell migration and invasion were evaluated through wound healing experiments, Transwell assays, and Annexin V-FITC/PI assay for apoptosis detection. Additionally, the expression levels of damage-associated molecular patterns (DAMPs) were determined using immunofluorescence, ATP measurement, RT-qPCR, and Western Blot. RESULTS The drug sensitivity test revealed an IC50 value of 96.94 μg/mL for EGCG in HepG2 cells after 48 h. EGCG at a low concentration (50 μg/mL) significantly impeded the migration and invasion of HepG2 cells, showing a clear dose-dependent response. Moreover, medium to high EGCG concentrations induced cell apoptosis in a dose-dependent manner and upregulated DAMPs expression. Immunofluorescence analysis demonstrated a notable increase in CRT expression following low-concentration EGCG treatment. As EGCG concentration increased, cell viability decreased, leading to CRT exposure on the cell membrane. EGCG also notably elevated ATP levels. RT-qPCR and Western Blot analyses indicated elevated expression levels of HGMB1, HSP70, and HSP90 following EGCG intervention. CONCLUSION EGCG not only hinders the proliferation, migration, and invasion of hepatocellular carcinoma cells and induces apoptosis, but also holds significant clinical promise in the treatment of malignant tumors by promoting ICD and DAMPs secretion.
Collapse
Affiliation(s)
- Li He
- Department of Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lianan Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - Xiaoyan Jiang
- Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xinfeng Sun
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Haiwen Li
- Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Tong Lin
- Department of Integrated Traditional and Western Medicine, Fujian Provincial Tumor Hospital, Fuzhou, China
| | - Zhulin Wu
- Department of Traditional Chinese Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Sen Lin
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Nie D, He X, Zheng H, Deng D, He F, Li R, Ni X, Li S, Xu F. Association between green tea intake and digestive system cancer risk in European and East Asian populations: a Mendelian randomization study. Eur J Nutr 2024; 63:1103-1111. [PMID: 38319384 DOI: 10.1007/s00394-023-03312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024]
Abstract
PURPOSE Previous observational studies have shown that green tea consumption is associated with a reduced incidence of digestive system cancers (DSCs). However, the observed association could be due to confounding factors. Therefore, we used a two-sample Mendelian randomization (MR) approach to assess the causal effect of green tea intake on the risk of five common DSCs. METHODS Independent genetic variants strongly associated with green tea consumption in European and East Asian populations were selected as instrumental variables in genome-wide association studies involving up to 64,949 European individuals and 152,653 East Asian individuals, respectively. The associations between genetic variants and DSCs were extracted from the FinnGen study and the Japan Biobank. The primary analysis was performed using random-effects inverse variance weighting (IVW). Other MR analyses, including weighted mode-based estimate, weighted-median, MR-Egger regression, Mendelian Randomization-Pleiotropy Residual Sum and Outlier (MR-PRESSO) analysis, were used for sensitivity analyses. In addition, a multivariate MR design was performed to adjust for smoking and alcohol consumption. RESULTS The IVW results showed no causal relationship between tea intake and DSCs risk in European population (esophagus cancer: odds ratio (OR) = 1.044, 95% confidence interval (CI) 0.992-1.099, p = 0.096; stomach cancer: OR = 0.988, 95% CI 0.963-1.014, p = 0.368; colorectal cancer: OR = 1.003, 95% CI 0.992-1.015, p = 0.588; liver cancer: OR = 0.996, 95% CI 0.960-1.032, p = 0.808; pancreatic cancer: OR = 0.990, 95% CI 0.965-1.015, p = 0.432). The MR-Egger regression, MR-PRESSO analysis and other methods also confirmed the reliability of the conclusion. Similarly, no significant association was found between green tea consumption and the incidence of DSCs among East Asians. This relationship is not significant even after adjusting for smoking and alcohol consumption (P > 0.05). CONCLUSION Our study provides evidence that genetically predicted green tea intake is not causally associated with the development of DSCs in the European and East Asian population.
Collapse
Affiliation(s)
- Duorui Nie
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyu He
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Zheng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Deyu Deng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fanghui He
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ruyi Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoting Ni
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shunxiang Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China.
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China.
| | - Fei Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, China.
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, China.
| |
Collapse
|
11
|
Meng X, Cui W, Liang Q, Zhang B, Wei Y. Trends and hotspots in tea and Alzheimer's disease research from 2014 to 2023: A bibliometric and visual analysis. Heliyon 2024; 10:e30063. [PMID: 38699003 PMCID: PMC11064447 DOI: 10.1016/j.heliyon.2024.e30063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Objectives The positive effects of tea on Alzheimer's disease (AD) have increasingly captured researchers' attention. Nevertheless, the quantitative comprehensive analysis in the relevant literatur is lack. This paper aims to thoroughly examine the current research status and hotspots from 2014 to 2023, providing a valuable reference for subsequent research. Methods Documents spanning from 2014 to 2023 were searched from the Web of Science, and the R software, VOSviewer, and Citespace software were used for analysis and visualization. Results A total of 374 documents were contained in the study. The rate of article publications exhibited a consistent increase each year from 2014 to 2023. Notably, China emerged as the leading country in terms of published articles, followed by the United States and India. Simultaneously, China is also in a leading position in cooperation with other countries. Molecules emerged as the most frequently published journal, while the Journal of Alzheimer's Disease secured the top spot in terms of citations. The identified main keywords included oxidative stress, amyloid, epigallocatechin gallate, and green tea polyphenol, among others. These focal areas delved into the antioxidative and anti-amyloid aggregation actions of tea's polyphenolic components. Furthermore, the particularly way in which epigallocatechin gallate delivers neuroprotective outcomes by influencing molecules related to AD represents a focal point of research. Conclusion The increasing attention from researchers on the role of tea in ameliorating AD positions it as a hot spot in the development of anti-AD drugs in the development of future. Through our generalized analysis of the current landscape and hotspots regarding tea's application in AD, this study provides an estimable reference for future research endeavors.
Collapse
Affiliation(s)
- Xuefang Meng
- Department of Pharmacy, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Wei Cui
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Qian Liang
- Department of Scientific Research, Wuming Hospital of Guangxi Medical University, Nanning, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yingxiu Wei
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Yao Q, Qiao H, Cheng Y, Du H, Zhang Y, Luo Y, Wang H, Liu S, Xu M, Xiong W. The role of green tea intake in thromboprophylaxis of venous thromboembolism in patients with cancer. Front Nutr 2024; 11:1296774. [PMID: 38757129 PMCID: PMC11096554 DOI: 10.3389/fnut.2024.1296774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background Green tea intake has been reported to improve the clinical outcomes of patients with cardiovascular diseases or cancer. It may have a certain role in the development of venous thromboembolism (VTE) among cancer patients. The current study aimed to address this issue, which has been understudied. Methods We carried out a retrospective study to explore the role of green tea intake in cancer patients. Patients with and without green tea intake were enrolled in a 1:1 ratio by using propensity scoring matching. The primary and secondary outcomes were VTE development and mortality 1 year after cancer diagnosis, respectively. Results The cancer patients with green tea intake (n = 425) had less VTE development (10 [2.4%] vs. 23 [5.4%], p = 0.021), VTE-related death (7 [1.6%] vs. 18 [4.2%], p = 0.026), and fatal pulmonary embolism (PE) (3 [0.7%] vs. 12 [2.8%], p = 0.019), compared with those without green tea intake (n = 425). No intake of green tea was correlated with an increase in VTE development (multivariate hazard ratio (HR) 1.758 [1.476-2.040], p < 0.001) and VTE-related mortality (HR 1.618 [1.242-1.994], p = 0.001), compared with green tea intake. Patients with green tea intake less than 525 mL per day had increased VTE development (area under the curve (AUC) 0.888 [0.829-0.947], p < 0.001; HR1.737 [1.286-2.188], p = 0.001) and VTE-related mortality (AUC 0.887 [0.819-0.954], p < 0.001; HR 1.561 [1.232-1.890], p = 0.016) than those with green tea intake more than 525 mL per day. Green tea intake caused a decrease in platelet (p < 0.001) instead of D-dimer (p = 0.297). The all-cause mortality rates were similar between green tea (39 [9.2%]) and non-green tea (48 [11.3%]) intake groups (p = 0.308), whereas the VTE-related mortality rate in the green tea intake group (7 [1.6%]) was lower than that of the non-green tea intake group (18 [4.2%]) (p = 0.026). The incidences of adverse events were similar between the green tea and non-green tea intake groups. Conclusion In conclusion, the current study suggests that green tea intake reduces VTE development and VTE-related mortality in cancer patients, most likely through antiplatelet mechanisms. Drinking green tea provides the efficacy of thromboprophylaxis for cancer patients.
Collapse
Affiliation(s)
- Qihuan Yao
- Department of Traditional Chinese Medicine, Kongjiang Hospital, Shanghai, China
| | - Hongwei Qiao
- Department of Medical Oncology, Kongjiang Hospital, Shanghai, China
| | - Yi Cheng
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - He Du
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji, University School of Medicine, Shanghai, China
| | - Yanbin Zhang
- Department of TCM Dermatology, Kongjiang Hospital, Shanghai, China
| | - Yong Luo
- Department of Pulmonary and Critical Care Medicine, Chongming Hospital, Shanghai University of Medicine and Health Science, Shanghai, China
| | - Hongwei Wang
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Song Liu
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mei Xu
- Department of General Practice, North Bund Community Health Service Center, Shanghai, China
| | - Wei Xiong
- Department of Pulmonary and Critical Care Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
14
|
Yavangi M, Rabiee S, Sanavi Farimani M, Khansary S, Farhadian M, Ranjbar A, Mahmoudi M, Karimi M, Barati S, Barati Mosleh A, Mohammadpour N. The effects of green tea tablets and metformin on ovulation and menstrual cycle regularity in women with polycystic ovary syndrome. J Med Life 2024; 17:109-115. [PMID: 38737668 PMCID: PMC11080502 DOI: 10.25122/jml-2022-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 05/14/2024] Open
Abstract
Polycystic ovary syndrome is the most common cause of oligo-ovulation and anovulation among women of reproductive age, contributing to infertility. This study aimed to compare the effects of green tea tablets and metformin on ovulation, menstrual cycle regularity, and antioxidant biomarkers in women with polycystic ovary syndrome (PCOS). In this clinical trial study, 94 women with PCOS were randomly assigned to three groups: green tea (n = 33), metformin (n = 29), and control (n = 32). Menstrual status and oxidative stress parameters, including total antioxidant capacity, thiol, and lipid peroxidation, were compared before and 3 months after the intervention among all three groups. Data analysis was conducted using SPSS software version 22 and employing the analysis of variance and paired t-tests. Following the intervention, the mean menstrual cycle duration in the green tea, metformin, and control groups was 32.22 ± 12.78, 48.72 ± 37.06, and 48.53 ± 31.04 days, respectively (P = 0.040). There was no statistically significant difference between the three groups in terms of biochemical, hormonal, and antioxidant indices before and after the intervention (P > 0.05). The intake of green tea tablets was associated with better outcomes in regulating the menstrual cycle in women with PCOS.
Collapse
Affiliation(s)
- Mahnaz Yavangi
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Rabiee
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Sanavi Farimani
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahede Khansary
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Minoo Mahmoudi
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Karimi
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Barati
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barati Mosleh
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Noushin Mohammadpour
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Koralahalli KP, Hussain S, Devarajan DW, Siddikuzzaman, Mariammal BGV. Molecular Actions of Enicostemma hyssopifolium Whole Plant Extract on HPV18-Infected Human Cervical Cancer (HeLa) Cells. Anticancer Agents Med Chem 2024; 24:1253-1263. [PMID: 38982697 DOI: 10.2174/0118715206296375240703115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Enicostemma hyssopifolium (E. hyssopifolium) contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of E. hyssopifolium on HPV18-containing HeLa cells. METHODS The methanol extract of E. hyssopifolium whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 μg/mL) to IC50 were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR. RESULTS A significant dose-dependent anti-proliferative activity (IC50 - 108.25±2 μg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 μg/mL of extract was found to result in a higher percent of cell cycle arrest at G0/G1 and G2M phases with more early apoptosis, while 160 μg/mL resulted in more cell cycle arrest at SUBG0 and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 μg/mL of extract (tail moments-19.536 ± 17.8), while 80 μg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 μg/mL of extract, while 80 μg/mL did not show a significant reduction. CONCLUSION The 160 μg/mL methanol extract of E. hyssopifolium demonstrated highly significant anti-cancer molecular effects in HeLa cells.
Collapse
Affiliation(s)
| | - Sardar Hussain
- Department of Biotechnology, Maharani`s Science College for Women, 570005, Mysore, India
| | - David Wilson Devarajan
- School of Science, Arts and Media, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India
| | - Siddikuzzaman
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, India
| | | |
Collapse
|
16
|
Santos RA, Pessoa HR, Daleprane JB, de Faria Lopes GP, da Costa DCF. Comparative Anticancer Potential of Green Tea Extract and Epigallocatechin-3-gallate on Breast Cancer Spheroids. Foods 2023; 13:64. [PMID: 38201092 PMCID: PMC10778335 DOI: 10.3390/foods13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Despite advances in diagnosis and therapy, breast cancer remains the leading cause of death in many countries. Green tea (GT) has been proposed to play a crucial role in cancer chemoprevention. Although extensive research has been conducted on GT phytochemicals, most experimental studies concentrate mainly on commercial formulations or isolated catechins. This study presents a comparative investigation into the anticancer properties of green tea extract (GTE) and epigallocatechin-3-gallate (EGCG) in a three-dimensional (3D) MCF-7 breast cancer cell culture. MCF-7 spheroids were exposed to GTE or EGCG, and effects on 3D culture formation, growth, cell viability, and migration were examined. GTE inhibits cell migration and the formation of breast cancer spheroids more effectively than EGCG, while inducing more pronounced morphological changes in the spheroids' structure. These findings suggest that the food matrix improves GTE effects on breast cancer spheroids, supporting the hypothesis that a mixture of phytochemicals might enhance its anticancer potential.
Collapse
Affiliation(s)
- Ronimara A. Santos
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions between Nutrition and Genetics, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil;
| | - Giselle Pinto de Faria Lopes
- Almirante Paulo Moreira Institute of Sea Studies, Division of Natural Products, Department of Marine Biotechnology, Arraial do Cabo 28930-000, Brazil;
| | - Danielly C. Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (H.R.P.)
| |
Collapse
|
17
|
Wei K, Wei Y, Zhou P, Zhu J, Peng L, Cheng L, Wang Y, Wei X. Preparation, Characterization, and Antioxidant Properties of Selenium-Enriched Tea Peptides. Foods 2023; 12:4105. [PMID: 38002163 PMCID: PMC10670339 DOI: 10.3390/foods12224105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The research on the activity of selenium (Se)-enriched agricultural products is receiving increasing attention since Se was recognized for its antioxidant activities and for its enhancement of immunity in trace elements. In this study, antioxidant Se-containing peptides, namely, Se-TAPepI-1 and Se-TAPepI-2, were optimally separated and prepared from Se-enriched tea protein hydrolysates by ultrafiltration and Sephadex G-25 purification, and subsequently, their physicochemical properties, oligopeptide sequence, and potential antioxidant mechanism were analyzed. Through the optimization of enzymatic hydrolysis conditions, the Se-enriched tea protein hydrolyzed by papain exhibited a better free radical scavenging activity. After separation and purification of hydrolysates, the two peptide fractions obtained showed significant differences in selenium content, amino acid composition, apparent morphology, peptide sequence, and free radical scavenging activity. Therein, two peptides from Se-TAPepI-1 included LPMFG (563.27 Da) and YPQSFIR (909.47 Da), and three peptides from Se-TAPepI-2 included GVNVPYK (775.42 Da), KGGPGG (552.24 Da), and GDEPPIVK (853.45 Da). Se-TAPepI-1 and Se-TAPepI-2 could ameliorate the cell peroxidation damage and inflammation by regulating NRF2/ARE pathway expression. Comparably, Se-TAPepI-1 showed a better regulatory effect than Se-TAPepI-2 due to their higher Se content, typical amino acid composition and sequence, higher surface roughness, and a looser arrangement in their apparent morphology. These results expanded the functional activities of tea peptide and provided the theoretical basis for the development of Se-containing peptides from Se-enriched tea as a potential natural source of antioxidant dietary supplements.
Collapse
Affiliation(s)
- Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Peng Zhou
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Lizeng Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| | - Yuanfeng Wang
- College of Life Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China;
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (K.W.); (Y.W.); (J.Z.); (L.P.); (L.C.)
| |
Collapse
|
18
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Zhu N, Lin S, Yu H, Huang W, Cao C. Association of Dietary Flavonoid Intake with Serum Cotinine Levels in the General Adult Population. Nutrients 2023; 15:4126. [PMID: 37836410 PMCID: PMC10574452 DOI: 10.3390/nu15194126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cotinine, the primary metabolite of nicotine, can be utilized as a marker for active smoking and as an indicator of exposure to secondhand smoke. However, the direct relationship between dietary flavonoid intake and serum cotinine levels remains a subject of ongoing investigation. In this study, we utilized data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 to assess the association between dietary flavonoid intake and serum cotinine levels in adults through multiple linear regression analysis. A weighted quantile sum (WQS) regression model was used to assess the association of the mixture of six dietary flavonoids with serum cotinine levels in adults, which could represent the overall effect of the mixture of six dietary flavonoids. We also conducted stratified analyses by smoke status to explore multiple linear regression associations between different flavonoid intake and serum cotinine levels. A total of 14,962 adults were included in the study. Compared to the group with the lowest dietary flavonoid intake, total flavonoid intake in the second (β = -0.29 [-0.44, -0.14]), third (β = -0.41 [-0.58, -0.24]), and highest groups (β = -0.32 [-0.49, -0.16]) was inversely related to the levels of serum cotinine after adjusting the full model. An RCS model showed that when the total dietary flavonoid intake was less than 99.61 mg/day, there was a negative linear association between dietary flavonoid intake and the serum cotinine. The WQS regression model also showed that the intake of a mixture of six dietary flavonoids was significantly negatively correlated with serum cotinine levels (β = -0.54 [-0.61, -0.46], p <0.01), with anthocyanins having the greatest effect (weights = 32.30%). Our findings imply a significant correlation between dietary flavonoid intake and serum cotinine levels among adults. The consumption of a combination of six dietary flavonoids was consistently linked to lower serum cotinine levels, with anthocyanins displaying the most pronounced impact.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Hang Yu
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Weina Huang
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| | - Chao Cao
- Key Laboratory of Respiratory Disease of Ningbo, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (N.Z.); (W.H.)
| |
Collapse
|
20
|
Maixent JM, Belaiba M, Pons O, Roulleau E, Bouajila J, Zeil JM. Biological Activities and Polyphenol Content of Qi Cha Tea ®, a Functional Beverage of White Tea Containing Botanicals and Dry Botanical Extracts with European Health Claims. PLANTS (BASEL, SWITZERLAND) 2023; 12:3231. [PMID: 37765396 PMCID: PMC10536379 DOI: 10.3390/plants12183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Infusions of Camellia sinensis leaves have been known for their health benefits. The Bio Concentrate Assets® (ABC) method is a method of enriching organic infusion leaves (from Camellia sinensis) with organic dry and concentrated extracts using organic acacia gum, and its application to white tea has provided Qi cha tea®. In the present study, the content of tea polyphenols and caffeine, and the biochemical properties of Qi cha tea® and its botanical constituents (elderberry, tulsi, Echinacea purpurea, orange peel, lemongrass, and acacia gum) were assessed. Antioxidant and cell viability activities were determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay in human Caco-2 and HCT-116 cell lines, and ascorbic acid and tamoxifen, respectively. The caffeine and polyphenol composition of Qi cha tea® was modified with less caffeine and gallic acid and more epigallocatechin gallate (EGCG) than the original white tea. The majority of the tested botanical samples including Qi cha tea® at 50 µg/mL show similar antioxidant activities, with the exception of Echinacea purpurea. The greatest effect was found for white tea. The antioxidant power of the Qi cha tea® (90% at 50 µg/mL for pressurized liquid extraction (PLE) was divided by approximately a factor of two (61% at 50 µg/mL for pressurized liquid extraction products (PLEP)), which corresponds to the 48.3% (mass/mass) white tea original content in the Qi cha tea®. Qi cha tea® shows the lowest cytotoxic activity in the viability of the two cell lines when compared to white tea. The application of the ABC method to Qi cha tea® using various botanicals and dry extract with acacia gum as blinder has allowed the development of a new innovative functional health beverage that complies with European health claims.
Collapse
Affiliation(s)
- Jean Michel Maixent
- Pierre Deniker Clinical Research Unit, Henri Laborit University Hospital, University of Poitiers, F-86000 Poitiers, France;
- Laboratory Impact of Physical Activity, Health (I.A.P.S.) Toulon University, F-83000 Toulon, France;
- School of Sciences, Poitiers University, F-86000 Poitiers, France
| | - Meriam Belaiba
- Laboratoire de Génie Chimique, University Paul Sabatier, CNRS, INPT, UPS, F-31100 Toulouse, France; (M.B.); (J.B.)
| | - Olivier Pons
- Laboratory Impact of Physical Activity, Health (I.A.P.S.) Toulon University, F-83000 Toulon, France;
| | - Enora Roulleau
- Pierre Deniker Clinical Research Unit, Henri Laborit University Hospital, University of Poitiers, F-86000 Poitiers, France;
- School of Sciences, Poitiers University, F-86000 Poitiers, France
- Thés de la Pagode, 4, Avenue Bertie Albrecht, 75008 Paris, France;
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, University Paul Sabatier, CNRS, INPT, UPS, F-31100 Toulouse, France; (M.B.); (J.B.)
| | - Jean-Marc Zeil
- Thés de la Pagode, 4, Avenue Bertie Albrecht, 75008 Paris, France;
| |
Collapse
|
21
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
22
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
23
|
Parekh N, Garg A, Choudhary R, Gupta M, Kaur G, Ramniwas S, Shahwan M, Tuli HS, Sethi G. The Role of Natural Flavonoids as Telomerase Inhibitors in Suppressing Cancer Growth. Pharmaceuticals (Basel) 2023; 16:ph16040605. [PMID: 37111362 PMCID: PMC10143453 DOI: 10.3390/ph16040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled growth and spread of abnormal cells. While cancer can be challenging and life-altering, advances in research and development have led to the identification of new promising anti-cancer targets. Telomerase is one such target that is overexpressed in almost all cancer cells and plays a critical role in maintaining telomere length, which is essential for cell proliferation and survival. Inhibiting telomerase activity can lead to telomere shortening and eventual cell death, thus presenting itself as a potential target for cancer therapy. Naturally occurring flavonoids are a class of compounds that have already been shown to possess different biological properties, including the anti-cancer property. They are present in various everyday food sources and richly present in fruits, nuts, soybeans, vegetables, tea, wine, and berries, to name a few. Thus, these flavonoids could inhibit or deactivate telomerase expression in cancer cells by different mechanisms, which include inhibiting the expression of hTERT, mRNA, protein, and nuclear translocation, inhibiting the binding of transcription factors to hTERT promoters, and even telomere shortening. Numerous cell line studies and in vivo experiments have supported this hypothesis, and this development could serve as a vital and innovative therapeutic option for cancer. In this light, we aim to elucidate the role of telomerase as a potential anti-cancer target. Subsequently, we have illustrated that how commonly found natural flavonoids demonstrate their anti-cancer activity via telomerase inactivation in different cancer types, thus proving the potential of these naturally occurring flavonoids as useful therapeutic agents.
Collapse
Affiliation(s)
- Neel Parekh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai 400056, India
| | - Ashish Garg
- Department of P.G. Studies and Research in Chemistry and Pharmacy, Rani Durgavati University Jabalpur, Jabalpur 482001, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar, Deemed to be University, Ambala 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile Parle (W), Mumbai 400056, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar, Deemed to be University, Ambala 133207, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
24
|
Xia Q, Li J, Shen Y, Zhang D. Tea Drinking and the Risk of Carcinoma of the Urinary Bladder: A Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2891120. [PMID: 37064949 PMCID: PMC10104736 DOI: 10.1155/2023/2891120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 04/18/2023]
Abstract
Objective For evaluation of the correlation between tea drinking and the risk of carcinoma of the urinary bladder. Methods By searching PubMed, Embase, and Cochrane Library databases, the original studies on tea drinking and carcinoma of the urinary bladder risk were collected, the data were extracted, and meta-analysis package 5.2-0 of R language was used for meta-analysis. Results This study contained 11 researches, composed of 7686 patients and 10320 controls. Tea drinking was not linked to carcinoma of the urinary bladder risk (OR:1.02, 95%CI: 0.95-1.11). Conclusion Tea drinking may not be linked to carcinoma of the urinary bladder, but more definitive results are needed from higher-quality trials.
Collapse
Affiliation(s)
- Qier Xia
- Suzhou Medical College of Soochow University, Soochow 215000, China
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158, Shangtang Road, Xiacheng District, Hangzhou 310014, Zhejiang, China
- Department of Urology, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Jun Li
- Department of Urology, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Yifan Shen
- Department of Urology, Pudong New Area People's Hospital, Shanghai 201299, China
| | - Dahong Zhang
- Suzhou Medical College of Soochow University, Soochow 215000, China
- Department of Urology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, No. 158, Shangtang Road, Xiacheng District, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
25
|
Kumar T, Rai AK, Dwivedi A, Kumar R, Rai AK. Investigation and Comparison of Nutritional Supplements (Elements and Compounds) in Various Tea Leaves using Spectroscopic Techniques. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2023. [DOI: 10.1007/s40010-023-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
26
|
Shirakami Y, Kato J, Maeda T, Ideta T, Imai K, Sakai H, Shiraki M, Shimizu M. Skeletal muscle atrophy is exacerbated by steatotic and fibrotic liver-derived TNF-α in senescence-accelerated mice. J Gastroenterol Hepatol 2023; 38:800-808. [PMID: 36890117 DOI: 10.1111/jgh.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND AND AIM Although liver diseases, including non-alcoholic steatohepatitis, are associated with skeletal muscle atrophy, the mechanism behind their association has not been fully elucidated. In this study, the effects of aging and non-alcoholic steatohepatitis on the skeletal muscle, and the interaction between the liver and muscle were investigated using a diet-induced non-alcoholic steatohepatitis model in senescence-accelerated mice. METHODS A total of four groups of senescence-accelerated mice and the control mice were fed either a non-alcoholic steatohepatitis-inducing or control diet, and their livers and skeletal muscles were removed for examinations. RESULTS In the senescence-accelerated/non-alcoholic steatohepatitis group, serum level of alanine aminotransferase was markedly elevated and histopathology of non-alcoholic steatohepatitis was significant. Skeletal muscles were also markedly atrophied. The expression of the ubiquitin ligase Murf1 in the muscle was significantly increased with muscle atrophy, while that of Tnfa was not significantly different. In contrast, the hepatic Tnfa expression and serum TNF-α levels were significantly increased in the senescence-accelerated/non-alcoholic steatohepatitis group. These results suggest that liver-derived TNF-α might promote muscle atrophy associated with steatohepatitis and aging through Murf-1. The metabolomic analysis of skeletal muscle indicated higher spermidine and lower tryptophan levels in the steatohepatitis-diet group. CONCLUSIONS The findings of this study revealed an aspect of liver-muscle interaction, which might be important in developing treatments for sarcopenia associated with liver diseases.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Junichi Kato
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshihide Maeda
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takayasu Ideta
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kenji Imai
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroyasu Sakai
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Makoto Shiraki
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
27
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
28
|
Dietary Flavonoid Intake and Cancer Mortality: A Population-Based Cohort Study. Nutrients 2023; 15:nu15040976. [PMID: 36839330 PMCID: PMC9967058 DOI: 10.3390/nu15040976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Cancer is a leading cause of death worldwide, posing a huge burden upon society and individuals. The adequate intake of fruit and vegetables is reported to be an effective strategy for primary cancer prevention. Fruits and vegetables are rich in nutrients, such as vitamins and flavonoids, which may reduce the occurrence and progression of cancers. However, the importance of each flavonoid and the sub-classes remains controversial regarding cancer mortality. The population benefiting from increased flavonoid intake has not been determined. An estimation of cancer mortality by flavonoid intake is not established. We explored the association between the intake of flavonoids and cancer mortality amongst 14,029 participants in the National Health and Nutrition Examination Survey. During a median follow-up of 117 months, 405 cancer deaths were confirmed. Being in the second, third, and fourth quartiles of flavonol intake, the cancer mortality was inversely associated with the intake of flavonols (multivariate analysis HR (95% CI] 0.58 [0.36, 0.91], p = 0.02, Q1 vs. Q2; 0.55 [0.31, 0.96], p = 0.04, Q1 vs. Q3; 0.54 [0.30, 0.99], p = 0.05, Q1 vs. Q4, respectively). Potential effects of dietary flavonol intake against cancer death was observed especially in participants aged 50 or above, males, whites, former smokers, people who used to drink or drink alcohol mildly, people without hyperlipidemia, and people with hypertension. Moreover, the dietary intakes of peonidin, naringenin, and catechin were inversely associated with cancer mortality (multivariate HR [95% CI] 0.93 [0.88,0.98], p = 0.01; 0.97 (0.95,1.00), p = 0.03; 0.98 (0.96,1.00), p = 0.05, respectively). Furthermore, a nomogram based on flavonol intake is feasible for assessing cancer mortality for each participant. Taken together, our results could improve personalized nutrition amongst cancer patients.
Collapse
|
29
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
30
|
Effects of a Semisynthetic Catechin on Phosphatidylglycerol Membranes: A Mixed Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010422. [PMID: 36615630 PMCID: PMC9824143 DOI: 10.3390/molecules28010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Catechins have been shown to display a great variety of biological activities, prominent among them are their chemo preventive and chemotherapeutic properties against several types of cancer. The amphiphilic nature of catechins points to the membrane as a potential target for their actions. 3,4,5-Trimethoxybenzoate of catechin (TMBC) is a modified structural analog of catechin that shows significant antiproliferative activity against melanoma and breast cancer cells. Phosphatidylglycerol is an anionic membrane phospholipid with important physical and biochemical characteristics that make it biologically relevant. In addition, phosphatidylglycerol is a preeminent component of bacterial membranes. Using biomimetic membranes, we examined the effects of TMBC on the structural and dynamic properties of phosphatidylglycerol bilayers by means of biophysical techniques such as differential scanning calorimetry, X-ray diffraction and infrared spectroscopy, together with an analysis through molecular dynamics simulation. We found that TMBC perturbs the thermotropic gel to liquid-crystalline phase transition and promotes immiscibility in both phospholipid phases. The modified catechin decreases the thickness of the bilayer and is able to form hydrogen bonds with the carbonyl groups of the phospholipid. Experimental data support the simulated data that locate TMBC as mostly forming clusters in the middle region of each monolayer approaching the carbonyl moiety of the phospholipid. The presence of TMBC modifies the structural and dynamic properties of the phosphatidylglycerol bilayer. The decrease in membrane thickness and the change of the hydrogen bonding pattern in the interfacial region of the bilayer elicited by the catechin might contribute to the alteration of the events taking place in the membrane and might help to understand the mechanism of action of the diverse effects displayed by catechins.
Collapse
|
31
|
Jia L, Chen Y, Liu C, Luan Y, Jia M. Genetically predicted green tea intake and the risk of arterial embolism and thrombosis. Front Med (Lausanne) 2023; 10:1156254. [PMID: 37035310 PMCID: PMC10075307 DOI: 10.3389/fmed.2023.1156254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background In previous observational studies, green tea intake has been demonstrated to protect against arterial embolism and thrombosis. However, whether there is a causative connection between green tea intake and arterial embolism and thrombosis is currently unclear. Methods A two-sample Mendelian randomization (MR) study has been designed to explore whether there is a causal association between green tea intake and arterial embolism and thrombosis by acquiring exposure and outcome data from previously published research. Data from the MRC-IEU (data on green tea intake, 64,949 participants) consortium and the FinnGen project (data on arterial embolism and thrombosis, 278 cases of arterial thrombosis and 92,349 control participants) has been utilized to determine the causal impact of green tea intake on arterial embolism and thrombosis. Results We found that genetically predicted green tea intake was causally associated with a lower risk of arterial embolism and thrombosis (IVW odds ratio [OR] per SD decrease in green tea intake = 0.92 [95% confidence interval, 0.85-0.99]; p = 0.032). Moreover, the sensitivity analysis (both MR Egger regression and weighted median) yielded comparable estimates but with low precision. No directional pleiotropic effect between green tea intake and arterial embolism and thrombosis was observed in both funnel plots and MR-Egger intercepts. Conclusions Our study provided causal evidence that genetically predicted green tea intake may be a protective factor against arterial embolism and thrombosis.
Collapse
|
32
|
In Vitro Antithrombotic, Antitumor and Antiangiogenic Activities of Green Tea Polyphenols and Its Main Constituent Epigallocatechin-3-gallate. Processes (Basel) 2022. [DOI: 10.3390/pr11010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The balance between embolic risk and bleeding represents a clinical challenge in cancer patient treatment, encouraging studies on adjuvant oncologic treatments. Thereby, this study evaluated the in vitro effect of green tea extract (GTE) and epigallocatechin-3-gallate (EGCG) on hemostasis modulation and the antineoplastic effect on melanoma cells (B16-F10) by applying platelet aggregation, angiogenesis and viability cell assays. The results displayed a significant platelet antiaggregant effect, corresponding to 50 and 80% for the extract and EGCG, respectively, compared to the negative control. Furthermore, both GTE and EGCG exhibited antitumor effects by reducing melanoma cell growth by 25 and 50%, respectively, verified by cellular apoptosis. Regarding angiogenesis, these substances inhibited blood vessel formation, reaching about 25% and 99% for GTE and EGCG at 100 μg/mL, respectively. Moreover, TNF-α cell stimulation evidenced VEGF and IL-8 secretion inhibition at 55 and 20% with GTE, while EGCG promoted an inhibition around 78% for both VEGF and IL-8. The results indicate the promising performance of GTE and EGCG as an option for treating cancer and its side effects. Nonetheless, further studies are required to elucidate their action mechanism on clotting, cell death and angiogenesis.
Collapse
|
33
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
34
|
Zhang X, Huang H, Sun S, Li D, Sun L, Li Q, Chen R, Lai X, Zhang Z, Zheng X, Wong WL, Wen S. Induction of Apoptosis via Inactivating PI3K/AKT Pathway in Colorectal Cancer Cells Using Aged Chinese Hakka Stir-Fried Green Tea Extract. Molecules 2022; 27:molecules27238272. [PMID: 36500365 PMCID: PMC9737789 DOI: 10.3390/molecules27238272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiying Huang
- Tea Research Institute, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou 514071, China
| | - Shili Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Lingli Sun
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ruohong Chen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, China
- Correspondence: (W.-L.W.); (S.W.)
| | - Shuai Wen
- Tea Research Institute, Guangdong Key Laboratory of Tea Resources Innovation & Utilization/Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (W.-L.W.); (S.W.)
| |
Collapse
|
35
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
36
|
Anticancer natural products targeting immune checkpoint protein network. Semin Cancer Biol 2022; 86:1008-1032. [PMID: 34838956 DOI: 10.1016/j.semcancer.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.
Collapse
|
37
|
Trisha AT, Shakil MH, Talukdar S, Rovina K, Huda N, Zzaman W. Tea Polyphenols and Their Preventive Measures against Cancer: Current Trends and Directions. Foods 2022; 11:3349. [PMID: 36359962 PMCID: PMC9658101 DOI: 10.3390/foods11213349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 07/30/2023] Open
Abstract
Cancer is exerting an immense strain on the population and health systems all over the world. Green tea because of its higher simple catechin content (up to 30% on dry weight basis) is greatly popular as an anti-cancer agent which is found to reduce the risks of cancer as well as a range of other diseases. In addition, several in vitro and in vivo studies have shown that green tea possesses copious health benefits like anti-diabetic, anti-obese, anti-inflammatory, neuro-protective, cardio-protective, etc. This review highlights the anti-carcinogenic effects of green tea catechins integrating the recent information to gain a clear concept. Special emphasis was given to the effectiveness of green tea polyphenols (GTP) in the prevention of cancer. Overall, green tea has been found to be effective to reduce the risks of breast cancer, ovarian cancer, liver cancer, colorectal cancer, skin cancer, prostate cancer, oral cancer, etc. However, sufficient information was not found to support that green tea consumption reduces the risk of lung cancer, esophageal cancer, or stomach cancer. The exciting data integrated into this article will increase interest in future researchers to garner more fruitful information on the relevant topics.
Collapse
Affiliation(s)
- Anuva Talukder Trisha
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mynul Hasan Shakil
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Suvro Talukdar
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wahidu Zzaman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
38
|
Zhang Z, Zhu Q, Wang S, Shi C. Epigallocatechin-3-gallate inhibits the formation of neutrophil extracellular traps and suppresses the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 pathway. Mol Cell Biochem 2022; 478:887-898. [PMID: 36112238 DOI: 10.1007/s11010-022-04550-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1β, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1β and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.
Collapse
Affiliation(s)
- Zhuoxian Zhang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiuli Zhu
- Department of Genetics, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Siya Wang
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch Of The First Affiliated Hospital Of Nanchang University, No.7889, Changdong avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
39
|
Li T, Yan B, Xiao X, Zhou L, Zhang J, Yuan Q, Shan L, Wu H, Efferth T. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin. FASEB J 2022; 36:e22426. [PMID: 35779042 DOI: 10.1096/fj.202200261r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
As a major tea component, theabrownin represents a promising anti-cancer candidate. However, its effect on the melanoma is unknown. To evaluate the in vitro and in vivo anti-melanoma efficacy of TB, we conducted cell viability, immunostaining, comet, and TUNEL assays on human A375 melanoma cells, and employed a zebrafish xenograft model of A375 cells. Real-time PCR (qPCR) and western blot were conducted to explore the molecular mechanisms of TB. In vitro, TB significantly inhibited the proliferation of A375 cells, and A375 cells showed the highest inhibitory rate among the other melanoma cell line (A875) and human dermal fibroblasts. TB triggered DNA damage and induced apoptosis of A375 cells and significantly inhibited the growth of A375 xenograft tumors in zebrafishes. Several key molecular events were activated by TB, including DNA damage-associated p53 and NF-κB pathways, through up-regulation of GADD45α, γ-H2A.X, phospho-ATM(p-ATM), phospho-ATR (p-ATR), phospho-p53 (p-p53), phospho-IKKα/β (p-IKKα/β), phospho-p65 (p-p65), etc. However, the TB-activated molecular events were counteracted by either knockdown of p53 or p65, and only dual knockdown of both p53 and p65 completed counteracted the anti-melanoma efficacy of TB. In conclusion, TB triggered DNA damage and thereby inhibited proliferation and induced cellular senescence and apoptosis of melanoma cells through mechanisms mediated by p53/NF-κB signaling crosstalk. This is the first report on the efficacy and mechanisms of TB on melanoma cells, making TB a promising candidate for anti-melanoma agent development.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional cell preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
40
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022; 11:cells11142209. [PMID: 35883653 PMCID: PMC9318484 DOI: 10.3390/cells11142209] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, Saint Louis, MO 63130, USA;
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA;
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Mohammad Ashraf
- Department of Chemistry, Bundelkhand University Jhansi, Jhansi 284128, Uttar Pradesh, India;
| | - Ramesh Raliya
- IFFCO Nano Biotechnology Research Center, Kalol 382423, Gujarat, India;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence:
| |
Collapse
|
41
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
42
|
Effect of Green Tea on Weight Gain and Semen Quality of Rabbit Males. Vet Sci 2022; 9:vetsci9070321. [PMID: 35878338 PMCID: PMC9322994 DOI: 10.3390/vetsci9070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of the current study was to evaluate the action of the green tea plant (Camellia sinensis, L) on male rabbit reproduction and some non-reproductive indexes. Male rabbits were fed either a standard diet (control group) or a diet enriched with green tea powder (experimental groups; E): 5 g (E1) or 20 g (E2) per 100 kg of the milled complete feed mixture. Weight gain, sperm concentration, total and progressive motility, as well as haematological, and biochemical parameters and changes in testicular tissue histomorphology were evaluated. Feeding with green tea, at both tested concentrations, decreased weight gain per week and the total average weight gain compared to the control group (p < 0.05). Furthermore, green tea decreased sperm concentration, motility and progressive motility in the group fed with a lower dose (5 g) of green tea powder (p < 0.05), whilst a higher dose (20 g) was neutral. Some haematological and biochemical indexes, like medium-size cell count (MID), mean corpuscular haemoglobin concentration (MCHC), platelet percentage (PCT), levels of phosphorus (P) and total proteins (TP) were decreased in one or both experimental groups (p < 0.05), whilst the triglyceride level (TG) was increased in the E2 group (p < 0.05). The thicknesses of the testicular seminiferous tubules and epithelial layer were not affected by any concentration of green tea powder (p > 0.05). These observations suggest that green tea in the diet may have an adverse effect on rabbit growth and sperm quality, but their effect may be potentially dose-dependent.
Collapse
|
43
|
Komatsuzaki Y, Lukowiak K. Epicatechin Alters the Activity of a Neuron Necessary for Long-Term Memory of Aerial Respiratory Behavior in Lymnaea stagnalis. Zoolog Sci 2022; 39. [DOI: 10.2108/zs220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yoshimasa Komatsuzaki
- College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|
44
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
45
|
Sun L, Wen S, Li Q, Lai X, Chen R, Zhang Z, Cao J, Sun S. Theaflavin-3,3'-di-gallate represses prostate cancer by activating the PKCδ/aSMase signaling pathway through a 67 kDa laminin receptor. Food Funct 2022; 13:4421-4431. [PMID: 35302141 DOI: 10.1039/d1fo04198c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer is a major cause of morbidity and mortality in men. Theaflavin-3,3'-digallate (TF-3) is an important functional ingredient of black tea. We aimed to evaluate the cytotoxic effects of TF-3 on prostate cancer and to identify the underlying molecular mechanism. In this study, we explored the effects of TF-3 on prostate cancer in PC-3 cells and in NOD/SCID mice with prostate cancer. The results demonstrated that TF-3 inhibited prostate cancer cell proliferation by regulating the PKCδ/aSMase signaling pathway. The anti-prostate cancer effect of TF-3 was attributed to the expression of the 67 kDa laminin receptor (67LR), which is overexpressed in various cancers, playing a vital role in the growth and metastasis of tumor cells. Stable knockdown of 67LR could efficiently inhibit TF-3 induced apoptosis and cell cycle arrest in PC-3 cells, through interacting with the PKCδ/aSMase signaling pathway. In vivo studies also confirmed the above findings that TF-3 effectively inhibited tumor growth in terms of tumor volume. TF-3 treatment can significantly inhibit tumor growth and up-regulate the phosphorylation of PKCδ and the expression of aSMase in tumor xenografts developed by subcutaneously implanting PC-3 cells and 67LR-overexpressing PC-3 cells in mice. However, in tumor xenografts formed by subcutaneously implanting 67LR-knockdown PC-3 cells, TF-3 has no significant effect on PKCδ/aSMase pathway regulation and tumor growth inhibition.
Collapse
Affiliation(s)
- Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
46
|
Farabegoli F, Pinheiro M. Epigallocatechin-3-Gallate Delivery in Lipid-Based Nanoparticles: Potentiality and Perspectives for Future Applications in Cancer Chemoprevention and Therapy. Front Pharmacol 2022; 13:809706. [PMID: 35496283 PMCID: PMC9046542 DOI: 10.3389/fphar.2022.809706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoprevention is a strategy aimed to not only reduce the risk but also delay the development or recurrence of cancer. An ideal chemopreventive agent is not dangerous and ought not to result in side effects or damage to human health. In this context, epigallocatechin-3-gallate (EGCG) is considered a suitable chemopreventive agent, but its clinical use is limited by many factors, namely, the difference in source, administration, individual metabolism, absorption, and distribution. Genetic and dietary differences greatly cause this variability, which has limited the rational use of EGCG in chemoprevention and, particularly, the definition of a safe and efficient concentration. In the present mini review, the main limitations to a complete understanding of the use of EGCG as a chemopreventive agent will be briefly illustrated. This review also indicates the introduction and trialing of lipid-based nanoparticles (NPs) as a proper strategy to deliver EGCG at a well-defined concentration for better investigation of the chemopreventive activity. Finally, some examples of cancers that might benefit from EGCG treatment in different stages of the disease are proposed.
Collapse
Affiliation(s)
- Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- *Correspondence: Fulvia Farabegoli,
| | - Marina Pinheiro
- LAQV, Rede de Química e Tecnologia (REQUIMTE), University of Porto, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
47
|
del Moral-Morales A, Salgado-Albarrán M, Ortiz-Gutiérrez E, Pérez-Hernández G, Soto-Reyes E. Transcriptomic and Drug Discovery Analyses Reveal Natural Compounds Targeting the KDM4 Subfamily as Promising Adjuvant Treatments in Cancer. Front Genet 2022; 13:860924. [PMID: 35480330 PMCID: PMC9036480 DOI: 10.3389/fgene.2022.860924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
KDM4 proteins are a subfamily of histone demethylases that target the trimethylation of lysines 9 and 36 of histone H3, which are associated with transcriptional repression and elongation respectively. Their deregulation in cancer may lead to chromatin structure alteration and transcriptional defects that could promote malignancy. Despite that KDM4 proteins are promising drug targets in cancer therapy, only a few drugs have been described as inhibitors of these enzymes, while studies on natural compounds as possible inhibitors are still needed. Natural compounds are a major source of biologically active substances and many are known to target epigenetic processes such as DNA methylation and histone deacetylation, making them a rich source for the discovery of new histone demethylase inhibitors. Here, using transcriptomic analyses we determined that the KDM4 family is deregulated and associated with a poor prognosis in multiple neoplastic tissues. Also, by molecular docking and molecular dynamics approaches, we screened the COCONUT database to search for inhibitors of natural origin compared to FDA-approved drugs and DrugBank databases. We found that molecules from natural products presented the best scores in the FRED docking analysis. Molecules with sugars, aromatic rings, and the presence of OH or O- groups favor the interaction with the active site of KDM4 subfamily proteins. Finally, we integrated a protein-protein interaction network to correlate data from transcriptomic analysis and docking screenings to propose FDA-approved drugs that could be used as multitarget therapies or in combination with the potential natural inhibitors of KDM4 enzymes. This study highlights the relevance of the KDM4 family in cancer and proposes natural compounds that could be used as potential therapies.
Collapse
Affiliation(s)
- Aylin del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
- *Correspondence: Ernesto Soto-Reyes, ; Gerardo Pérez-Hernández,
| |
Collapse
|
48
|
Çavuşoğlu D, Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Mitigative effect of green tea extract against mercury(II) chloride toxicity in Allium cepa L. model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27862-27874. [PMID: 34981388 PMCID: PMC8723811 DOI: 10.1007/s11356-021-17781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/23/2021] [Indexed: 05/06/2023]
Abstract
Mercury (Hg) is a highly toxic heavy metal for all organisms. In the present study, the mitigative role of 190 mg/L and 380 mg/L doses of green tea extract (GTex) against mercury(II) chloride (HgCI2)-induced toxicity was evaluated in Allium cepa L. For this aim, selected physiological, genotoxicity, and biochemical parameters as well as meristematic cell injuries in the roots were investigated. Ratios of catechin and caffeine in GTex were determined by HPLC analysis. Also, free radical scavenging activity of GTex was tested against superoxide and hydrogen peroxide radicals. As a result of HgCI2 application, germination percentage, root elongation, weight gain, and mitotic index (MI) declined, while the frequency of micronucleus (MN), chromosomal abnormalities (CAs), and meristematic cell damages increased. HgCI2 administration also led to a significant increase in malondialdehyde content, superoxide dismutase, and catalase activities which are signs of oxidative stress. On contrary, applications of GTex together with HgCI2 reduced HgCI2-induced adverse effects in all parameters in a dose-dependent manner. Antioxidant components in GTex were listed as caffeine, epigallocatechin gallate, epigallocatechin, epicatechin gallate, and catechin according to their abundance. GTex exhibited a strong scavenging ability in the presence of superoxide and hydrogen peroxide radicals. The present study revealed the strong protective capacity of GTex against HgCI2-induced toxicity in A. cepa owing to its high antioxidant content with a multifaceted perspective. With this study, a reliable starting point was established for future studies investigating the more common and diverse use of GTex against toxic substances.
Collapse
Affiliation(s)
- Dilek Çavuşoğlu
- Department of Plant and Animal Production, Atabey Vocational High School, Isparta University of Applied Sciences, Isparta, Turkey
| | - Oksal Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey.
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Sebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
49
|
Santos RA, Andrade EDS, Monteiro M, Fialho E, Silva JL, Daleprane JB, Ferraz da Costa DC. Green Tea ( Camellia sinensis) Extract Induces p53-Mediated Cytotoxicity and Inhibits Migration of Breast Cancer Cells. Foods 2021; 10:foods10123154. [PMID: 34945706 PMCID: PMC8701076 DOI: 10.3390/foods10123154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Green tea (GT) has been shown to play an important role in cancer chemoprevention. However, the related molecular mechanisms need to be further explored, especially regarding the use of GT extract (GTE) from the food matrix. For this study, epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were identified in GTE, representing 42 and 40% of the total polyphenols, respectively. MDA-MB-231 (p53-p.R280K mutant) and MCF-7 (wild-type p53) breast tumor cells and MCF-10A non-tumoral cells were exposed to GTE for 24–48 h and cell viability was assessed in the presence of p53 inhibitor pifithrin-α. GTE selectively targeted breast tumor cells without cytotoxic effect on non-tumoral cells and p53 inhibition led to an increase in viable cells, especially in MCF-7, suggesting the involvement of p53 in GTE-induced cytotoxicity. GTE was also effective in reducing MCF-7 and MDA-MD-231 cell migration by 30 and 50%, respectively. An increment in p53 and p21 expression stimulated by GTE was observed in MCF-7, and the opposite phenomenon was found in MDA-MB-231 cells, with a redistribution of mutant-p53 from the nucleus and no differences in p21 levels. All these findings provide insights into the action of GTE and support its anticarcinogenic potential on breast tumor cells.
Collapse
Affiliation(s)
- Ronimara A. Santos
- Laboratory for Studies of Interactions between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (E.D.S.A.); (J.B.D.)
| | - Emmanuele D. S. Andrade
- Laboratory for Studies of Interactions between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (E.D.S.A.); (J.B.D.)
| | - Mariana Monteiro
- Laboratory of Functional Foods, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.M.); (E.F.)
| | - Eliane Fialho
- Laboratory of Functional Foods, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (M.M.); (E.F.)
| | - Jerson L. Silva
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julio B. Daleprane
- Laboratory for Studies of Interactions between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (E.D.S.A.); (J.B.D.)
| | - Danielly C. Ferraz da Costa
- Laboratory for Studies of Interactions between Nutrition and Genetics, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil; (R.A.S.); (E.D.S.A.); (J.B.D.)
- Correspondence:
| |
Collapse
|
50
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-colored foods, such as broccoli, sprouts, soybean, and green leafy vegetables are considered one of the representative healthy foods for containing various functional ingredients that can combat chronic diseases, including diabetes, obesity, and cancer. Herein, we reviewed the anti-cancer activities and the underlying mechanisms of some important bioactive compounds, such as sulforaphane, catechins, chlorophyll, isoflavone, indole dervatives, and lutein, present in green-colored foods. In vivo and clinical studies suggest that sulforaphane, a sulfur-containing compound found in cruciferous vegetables, can ameliorate prostate and breast cancer symptoms by arresting cell-cycle progression and modulating Ki67 and HDAC expression. A green tea compound, known as epigallocatechin-3-gallate (EGCG), has shown remarkable anti-cancer effects against prostate cancer and lung adenocarcinoma in human trials through its antioxidative defense and immunomodulatory functions. Chlorophyll, a natural pigment found in all green plants, can regulate multiple cancer-related genes, including cyclin D1, CYP1A, CYP1B1, and p53. Epidemiological studies indicate that chlorophyll can substantially reduce aflatoxin level and can mitigate colon cancer in human subjects. Remarkably, the consumption of soy isoflavone has been found to be associated with the lower incidence and mortality of breast and prostate cancers in East Asia and in Canada. In vivo and in vitro data point out that isoflavone has modulatory effects on estrogen and androgen signaling pathways and the expression of MAPK, NfκB, Bcl-2, and PI3K/AKT in different cancer models. Other green food bioactive compounds, such as indole derivatives and lutein, also exhibited suppressing effects in rodent models of lung, liver, stomach, cervical, and prostate cancers. In addition, some micronutrients, such as folate, riboflavin, retinoic acid, and vitamin D3 present in green foods, also showed potential cancer suppressing effects. Taken together, these data suggest potential chemopreventive functions of the bioactive compounds from green-colored foods. This paper could be beneficial for further research on the anti-carcinogenic effects of green-colored food-derived compounds, in order to develop green chemotherapeutics for cancers.
Collapse
|