1
|
Guo F, Zheng H, Cao H, Wang Y, Zhi Y, Liu H, Li B, Wu J, Zhang K, Gao Y. Bergenin inhibits hepatic fat deposition by activating the AMPK signaling pathway, thereby attenuating alcoholic liver disease. Int Immunopharmacol 2024; 142:113169. [PMID: 39298826 DOI: 10.1016/j.intimp.2024.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Alcoholic liver disease (ALD) is a prevalent liver condition that arises from prolonged and excessive alcohol intake. Bergenin (BER) is an effective phytotherapeutic agent that exhibits pharmacological properties, including anti-inflammatory and anti-oxidative effects. To establish an in vivo model of ALD, C57BL/6 mice were continuously fed a high-fat diet (HFD) and administered alcohol gavage for 8 weeks, while concurrently administering BER and evaluated for therapeutic effects. After modeling, the therapeutic effects of BER were evaluated by observing histopathological changes and the detection of relevant biochemical indicators in mice. In addition, RNA sequencing of liver tissues was performed to analyze differentially expressed genes and to investigate the associated signaling pathways in order to elucidate the protective mechanisms of BER. These differentially expressed genes were mainly enriched in lipid metabolism pathways and the cytochrome P450 metabolism of exogenous substances. Subsequently, HepG2 was co-treated with sodium oleate (NaOA) and ethanol to establish an in vitro model, and the specific mechanism by which BER ameliorates ALD was further analyzed in depth. AMPK inhibitor, Compound C (CC), was demonstrated to significantly inhibit the regulation of lipid metabolism by BER in vitro. Finally, the differentially expressed genes selected were validated through qRT-PCR and Western blot analysis. Collectively, our findings revealed that BER effectively alleviated liver injury caused by alcohol and HFD in mice, significantly suppressing lipid deposition in ALD, enhancing alcohol metabolism, and mitigating oxidative stress.
Collapse
Affiliation(s)
- Fengyue Guo
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Huaping Zheng
- Affiliated Hospital of Guilin Medical University , Guilin Medical University, Guilin 541001, Guangxi, China
| | - Houkang Cao
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yongwang Wang
- Affiliated Hospital of Guilin Medical University , Guilin Medical University, Guilin 541001, Guangxi, China
| | - Yueping Zhi
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Haiping Liu
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Bo Li
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jianzhao Wu
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Kefeng Zhang
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China.
| | - Ya Gao
- Key Laboratory of Pharmacology for Prevention and Treatment of High Incidence Diseases in Guangxi Higher Education Institutions, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
2
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Li S, Jiang Y, Jiang L, Tuo Y, Mu G, Jiang S. New Insights into the Structure-Activity Relationship of a Novel Immunomodulatory Peptide (HPHPHLSF) from Casein Hydrolyzed by Kluyveromyces marxianus JY-1: Molecular Docking, Interaction Evaluation, and HOMO Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22158-22172. [PMID: 39316708 DOI: 10.1021/acs.jafc.4c06980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Casein is rich in immunomodulatory peptides. In this study, the release of casein-derived immunomodulatory peptides by Kluyveromyces marxianus JY-1 was investigated for the first time, and an immunosuppressive mouse model was used to evaluate the immunomodulatory activity in the casein hydrolysate. The results showed that the cellular and humoral immunity of immunosuppressed mice could be significantly enhanced by casein hydrolysate. Peptide HPHPHLSF with high immunomodulatory activity from casein hydrolysate was screened using the virtual screening technique. HPHPHLSF possessed strong immunomodulatory activity and significantly upregulated the expression of IL-6, IL-1β, and TNF-α. Next, the interaction of HPHPHLSF with TLR2/4 on the cell surface of RAW264.7 cells was further elucidated by molecular docking and combined analysis of double-stranded small interfering RNA and receptor inhibitors. Further, the results of the highest occupied molecular orbital energy distribution elucidated that the histidine active site C48═O49 played an important role in the immunomodulatory activity of HPHPHLSF. This study confirmed that casein hydrolyzed by K. marxianus JY-1 was a natural immunomodulator, while the structure-activity relationship analysis provided new theoretical and technical support for the targeted preparation and screening of casein-derived immunomodulatory peptides.
Collapse
Affiliation(s)
- Siyi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yutong Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lai Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shujuan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Naseri S, Asgarpanah J, Ziai SA. Immunomodulatory and antioxidant effect of liposomal auraptene against cyclophosphamide-induced immunosuppression in BALB/c mice. Exp Gerontol 2024; 195:112552. [PMID: 39173782 DOI: 10.1016/j.exger.2024.112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Cyclophosphamide (CP), which is a commonly used chemotherapy drug, can lead to a range of side effects such as immunosuppression, bone marrow suppression, leukopenia, and oxidative stress. This study aims to explore the effects of Auraptene (AUR), which has immunomodulatory and antioxidant properties, on immune function in mice that are experiencing suppression induced by CP. MATERIALS AND METHODS The experiment involved 60 male BALB/c mice that underwent a 10-day treatment. On days 1, 3, and 9, CP was given at 80 mg/kg IP doses to induce immunosuppression. The mice were divided into five groups: Control group, CP group, CP + liposomal AUR 0.2 mg/kg (AUR 0.2), CP + liposomal AUR 0.25 mg/kg (AUR 0.25), and liposomal vehicle group. Various parameters were measured, including mouse weight, immune organ weight index (spleen and thymus), spleen and thymus histopathology, levels of inflammatory cytokines (IL2, IL10, IL4, IFN-γ), TH1/TH2 balance ratio, IgG and IgM immunoglobulin levels, white blood cell count, platelets, neutrophils, lymphocytes, and oxidative activity measured by MDA, SOD, and Total Antioxidant. RESULTS In the group treated with CP, the mice showed a significant decrease in weight compared to the control group. In contrast, the group treated with AUR maintained their weight and did not show a significant difference from the control group. AUR 0.25 reduced the damage to the spleen and thymus caused by CP. Additionally, AUR 0.25 demonstrated a significant decrease in IL4 and IL10 levels compared to the CP group (p = 0.04), approaching the levels of the control group. Furthermore, IL2 and IFN-γ levels in the AUR 0.25 group significantly increased (p = 0.04) compared to the CP group, reaching levels similar to the control group. AUR also increased serum IgM and IgG levels two to three times compared to the CP group, approaching the levels of the control group. MDA levels in the AUR 0.25 group decreased to normal and control levels. AUR 0.25 also showed increased SOD and Total Antioxidant levels. Additionally, white blood cells, platelets, neutrophils, and lymphocytes in the AUR group significantly increased compared to the CP group, reaching normal levels similar to the control group. The TH1/TH2 ratio in the AUR group exhibited a significant increase of two and a half times (p = 0.002) compared to the CP group. CONCLUSION These results show that AUR protects against the side effects of CP by increasing the function of the humoral and cellular immune system through the balance of TH1/TH2 and increasing the level of immunoglobulins, as well as increasing the antioxidant activity and the protective role of cytotoxicity.
Collapse
Affiliation(s)
- Saeed Naseri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jinous Asgarpanah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mady RF, El-Temsahy MM, Issa YA, Zaghloul AS, Khedr SI. MicroRNA mmu-miR-511-5p: A promising Diagnostic Biomarker in Experimental Toxoplasmosis Using Different Strains and Infective Doses in Mice with Different Immune States Before and After Treatment. Acta Parasitol 2024; 69:1253-1266. [PMID: 38743178 PMCID: PMC11182863 DOI: 10.1007/s11686-024-00851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Searching for a novel early diagnostic biomarker for toxoplasmosis, real-time-PCR was currently used to measure the serum mmu-miR-511-5p level in male Swiss-albino mice infected with either; ME49 or RH Toxoplasma gondii (T. gondii) strains. METHODS Three mice groups were used; (GI) constituted the non-infected control group, while (GII) and (GIII) were experimentally infected with ME49 or RH strains, respectively. GII mice were orally infected using 10 or 20 ME49 cysts (ME-10 and ME-20), both were subdivided into; non-treated (ME-10-NT and ME-20-NT) and were further subdivided into; immunocompetent (ME-10-IC and ME-20-IC) [euthanized 3-days, 1, 2, 6 or 8-weeks post-infection (PI)], and immunosuppressed using two Endoxan® injections (ME-10-IS and ME-20-IS) [euthanized 6- or 8-weeks PI], and spiramycin-treated (ME-10-SP and ME-20-SP) that received daily spiramycin, for one-week before euthanasia. GIII mice individually received 2500 intraperitoneal RH strain tachyzoites, then, were subdivided into; non-treated (RH-NT) [euthanized 3 or 5-days PI], and spiramycin-treated (RH-SP) that were euthanized 5 or 10-days PI (refer to the graphical abstract). RESULTS Revealed significant upregulation of mmu-miR-511-5p in GII, one-week PI, with gradually increased expression, reaching its maximum 8-weeks PI, especially in ME-20-NT group that received the higher infective dose. Immunosuppression increased the upregulation. Contrarily, treatment caused significant downregulation. GIII recorded significant upregulation 3-days PI, yet, treatment significantly decreased this expression. CONCLUSION Serum mmu-miR-511-5p is a sensitive biomarker for early diagnosis of ME49 and RH infection (as early as one-week and 3-days, respectively), and its expression varies according to T. gondii infective dose, duration of infection, spiramycin-treatment and host immune status.
Collapse
Affiliation(s)
- Rasha Fadly Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Mona Mohamed El-Temsahy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Medical Biochemistry, College of Medicine, Arab Academy of Science, Technology and Maritime transport, New Alamein campus, Egypt
| | - Aya Saied Zaghloul
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt
| | - Safaa Ibrahim Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, 2nd Floor, El Mowasah Medical and Educational Complex, Alexandria, Egypt.
| |
Collapse
|
6
|
Lee SY, Park SY, Park HJ. Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients 2024; 16:597. [PMID: 38474724 DOI: 10.3390/nu16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the immunomodulatory potential of Galium aparine L. (GAE) in immunodeficient animals. In this study, animals were categorized into five groups: the normal group, CYP group (cyclophosphamide intraperitoneal injection), GA5 group (cyclophosphamide + 5 μg GAE), GA50 group (cyclophosphamide + 50 μg GAE), and GA500 group (cyclophosphamide + 500 μg GAE). The CYP group exhibited significantly reduced spleen weights compared to the normal group, while the groups obtaining GAE displayed a dose-dependent increase in spleen weight. Furthermore, the GAE demonstrated dose-dependent enhancement of splenocyte proliferating activity, with significant increases observed in both LPS and ConA-induced assays. NK cell activity significantly increased in the GA50 and GA500 groups compared to the CYP group. Cytokine analysis revealed a significant increase in IL-6, TNF-α, and IFN-γ levels in ConA-induced splenocytes treated with GAE. Gene expression analysis identified 2434 DEG genes in the extract groups. Notable genes, such as Entpd1, Pgf, Thdb, Syt7, Sqor, and Rsc1al, displayed substantial differences in individual gene expression levels, suggesting their potential as target genes for immune enhancement. In conclusion, Galium aparine L. extract exhibits immunomodulatory properties. The observed gene expression changes further support the potential of Galium aparine L. extract as a natural agent for immune augmentation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seo-Yeon Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hee-Jung Park
- Department Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
7
|
Pimenta GF, Awata WMC, Orlandin GG, Silva-Neto JA, Assis VO, da Costa RM, Bruder-Nascimento T, Tostes RC, Tirapelli CR. Melatonin prevents overproduction of reactive oxygen species and vascular dysfunction induced by cyclophosphamide. Life Sci 2024; 338:122361. [PMID: 38158040 DOI: 10.1016/j.lfs.2023.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
AIMS Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.
Collapse
Affiliation(s)
- Gustavo F Pimenta
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielly G Orlandin
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Julio A Silva-Neto
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Victor O Assis
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rafael M da Costa
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rita C Tostes
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia Cardiovascular, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Kim H, Hong JY, Lee J, Yeo C, Jeon WJ, Lee YJ, Ha IH. Immune-boosting effect of Yookgong-dan against cyclophosphamide-induced immunosuppression in mice. Heliyon 2024; 10:e24033. [PMID: 38293434 PMCID: PMC10826668 DOI: 10.1016/j.heliyon.2024.e24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Immune responses must be strictly regulated to prevent autoimmune and infectious diseases and to protect against infectious agents. As people age, their immunity wanes, leading to a decrease in lymphocyte production in bone marrow and thymus and a decline in the efficacy of mature lymphocytes in secondary lymphoid organs. This study explores the immune-boosting potential of Yookgong-dan (YGD) in enhancing the immune system by activating immune cells. In our in vitro experiments, cyclophosphamide (Cy) treatment led to a significant decrease in primary splenocyte viability. However, subsequent treatment with YGD significantly improved cell viability, with doses ranging between 1 and 25 μg/mL in Cy-treated splenocytes. Flow cytometry analysis demonstrated that the Cy group exhibited reduced positivity of CD3+ T cells and CD45+ leukocytes compared to the blank group. In contrast, treatment with YGD led to a notable, dose-responsive increase in these immune cell types. In our in vivo experiments, YGD was orally administered to Cy-induced immunosuppressed mice at 20 and 100 mg/kg doses for 10 days. The results indicated a dose-dependent elevation in immunoglobulin (Ig)G and IgM levels in the serum, emphasizing the immunostimulatory effect of YGD. Furthermore, the Cy-treated group showed decreased T cells, B (CD19+) cells, and leukocytes in the total splenocyte population. Yet, YGD treatment resulted in a dose-dependent reversal of this pattern, suggesting its ability to counter immunosuppression. Notably, YGD was found to effectively stimulate T (CD4+ and CD8+) lymphocyte subsets and natural killer cells, along with enhancing Th1/Th2 cytokines in immunosuppressed conditions. These outcomes correlated with the modulation of BCL-2 and BAX expression, which are critical for apoptosis. In conclusion, YGD has the potential to bolster immune functionality through the activation of immune cells, thereby enhancing the immune system's capacity to combat diseases and improve overall health and wellness.
Collapse
Affiliation(s)
- Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, South Korea
| |
Collapse
|
9
|
Jung J, Kim JS, Jeong UY, Bae UJ, Kim M, Park SY, Hwang IG, Heo JW, Shim CK, Ham JS, Lee SH. The Immune-Stimulating and Anti-Diabetic Effects of Allium hookeri Leaves Grown in a Plant Factory with Artificial Lights in Immunosuppressed Obese C57BL/6 Mice. Pharmaceuticals (Basel) 2024; 17:91. [PMID: 38256924 PMCID: PMC10818880 DOI: 10.3390/ph17010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated the immune-stimulating and anti-diabetic effects of Allium hookeri leaves grown in a plant factory with artificial lights. The immunomodulatory effects of A. hookeri leaves' ethanol extracts were evaluated with immune-related hematological factors in blood, the proliferation of splenocytes, NK cell activity, IgG and cytokine levels, and their mechanisms in immunosuppressed obese mice. Anti-diabetic effects were determined by the inhibitory activity against α-amylase and α-glucosidase in vitro and fasting blood glucose levels and biochemical factors in the serum of immunosuppressed obese mice. A. hookeri leaf extracts increased WBC and LYM counts, the proliferation of splenocytes, and serum IgG and IL-1β concentrations compared to those of the NC group, which was used as a negative control. A. hookeri leaf extracts also improved serum HDL levels while they decreased the activities of digestive enzymes, fasting blood glucose, and biochemical factors (ALT, AST, T-Chol, TG, LDL, and GLU). The expressions of IL-1β, JNK, c-Jun, p65, and iNOS in the thymus of immunosuppressed mice were activated by the treatment of A. hookeri leaf extracts. The results suggest that A. hookeri leaves grown in a plant factory with artificial lights also have immune-stimulatory and anti-diabetic effects and can be used as novel functional supplements to control related diseases and to improve public health.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ji-Su Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Un-Yul Jeong
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Ui-Jin Bae
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Mina Kim
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Shin-Young Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - In-Guk Hwang
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| | - Jeong-Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Chang-Ki Shim
- Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Jun-Sang Ham
- Department of Animal Biotechnology and Environment, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Sung-Hyen Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (J.J.); (J.-S.K.); (U.-Y.J.); (U.-J.B.); (M.K.); (S.-Y.P.); (I.-G.H.)
| |
Collapse
|
10
|
Akhilesh, Chouhan D, Ummadisetty O, Verma N, Tiwari V. Bergenin ameliorates chemotherapy-induced neuropathic pain in rats by modulating TRPA1/TRPV1/NR2B signalling. Int Immunopharmacol 2023; 125:111100. [PMID: 38149571 DOI: 10.1016/j.intimp.2023.111100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most prominent and incapacitating complication associated with chemotherapeutic regimens. The exact mechanisms underlying CINP are not fully understood yet, which hampers the development of effective therapeutics. The current study has been designed to investigate the effect of bergenin on CINP and dissect the underlying cellular and molecular mechanisms. Behavioural responsiveness assays were conducted in rats before and after CINP induction and at different time points post-bergenin treatment. We also measured alterations in tight junction proteins, pro-inflammatory cytokines, microglia activity, transient receptor potential (TRP) channels (TRPV1, TRPA1 and TRPM8) and N-methyl-D-aspartate receptor subtype 2 (NR2B) in dorsal root ganglion (DRG) and spinal tissues of neuropathic rats. Bergenin treatment leads to a significant and dose-dependent reduction in evoked and spontaneous ongoing pain without causing central side effects in neuropathic rats. Furthermore, treatment with bergenin and gabapentin did not affect the baseline pain threshold in healthy, non-chemotherapy-treated rats, as evaluated through tail-flick and tail-clip assays. Chemotherapy administration leads to a significant activation of TRP channels, concurrent with microglial activation, disruption of spinal cord tight junction proteins, and subsequent infiltration of pro-inflammatory cytokines, as well as NR2B activation. Notably, bergenin treatment effectively reversed all of these alterations, with the exception of TRPM8, in both the DRG and spinal cord of neuropathic rats. Findings from the present study suggests that bergenin mitigates neuropathic pain by modulating the TRPA1/TRPV1/NR2B signalling and presents a promising therapeutic avenue for the treatment of chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
11
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
12
|
Zhang D, Jia M, Wang C, Li Y, Ma C, Zhu G, Ma R, Wen D, Jia X, Xu G, Zhang X, Cong B. CCK2-receptor deficiency impairs immune balance by influencing CD4 + T cells development by inhibiting cortical-thymic-epithelial-cells. Exp Biol Med (Maywood) 2023; 248:1718-1731. [PMID: 37787155 PMCID: PMC10792431 DOI: 10.1177/15353702231198083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 10/04/2023] Open
Abstract
Immune balance is crucial for an organism's survival and is inseparable from the regulation of the nervous system. Accumulating evidence indicates that cholecystokinin (CCK) plays an important role in mediating the immune response through the activation of cholecystokinin receptors (CCKRs). However, it remains unclear whether CCKRs deficiency may impair immune balance. Here, we showed that CCK2R-deficient adult mice were immunocompromised and had an increased risk of shock and even death in an endotoxemia (ETM)/endotoxin shock (ES) model. In addition, in both adult and juvenile mice, CCK2R deficiency not only influenced the development of CD4 single-positive (SP) thymocytes in thymic positive selection but also decreased the population of CD3+ CD4+ T cells in the spleen. More importantly, CCK2R deficiency inhibited the expression of major histocompatibility complex class II (MHC II) and CD83 on cortical thymic epithelial cells (cTECs) in juvenile and adult mice. Overall, our study suggests that CCK2R is essential for maintaining CD4+ T cell development in the thymus and reveals that CCK2R plays an important role in maintaining immune balance.
Collapse
Affiliation(s)
- Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050017, China
| | - Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guiyun Zhu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Rufei Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
13
|
Zhang ZD, Tao Q, Bai LX, Qin Z, Liu XW, Li SH, Yang YJ, Ge WB, Li JY. The Transport and Uptake of Resveratrol Mediated via Glucose Transporter 1 and Its Antioxidant Effect in Caco-2 Cells. Molecules 2023; 28:4569. [PMID: 37375124 DOI: 10.3390/molecules28124569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 μM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 μM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Wen-Bo Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
14
|
Song X, Xue L, Geng X, Wu J, Wu T, Zhang M. Structural Characteristics and Immunomodulatory Effects of Melanoidins from Black Garlic. Foods 2023; 12:foods12102004. [PMID: 37238824 DOI: 10.3390/foods12102004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Melanoidins are considered to have several biological activities. In this study, black garlic melanoidins (MLDs) were collected using ethanol solution extraction; 0%, 20%, and 40% ethanol solutions were used for chromatography. Three kinds of melanoidins were produced by macroporous resin, named MLD-0, MLD-20, and MLD-40. The molecular weight was determined, and the infrared and microscopic structures were studied. In addition, Balb/c mice were induced with cyclophosphamide (CTX) to establish an immune deficiency model to evaluate the immune efficacy of black garlic melanoidins (MLDs). The results showed that MLDs restored the proliferation and phagocytosis ability of macrophages, and the proliferation activity of B lymphocytes in the MD group was 63.32% (♀) and 58.11% (♂) higher than that in the CTX group, respectively. In addition, MLDs alleviated the abnormal expression of serum factors such as IFN-γ, IL-10, and TNF-α. 16SrDNA sequencing of intestinal fecal samples of mice showed that MLDs changed the structure and quantity of intestinal flora, and especially that the relative abundance of Bacteroidaceae was significantly increased. The relative abundance of Staphylococcaceae was significantly reduced. These results showed that MLDs improved the diversity of intestinal flora in mice, and improved the adverse state of immune organs and immune cells. The experiments confirm that black garlic melanoidins have potential value in immune activity, which provides an important basis for the development and utilization of melioidosis.
Collapse
Affiliation(s)
- Xiwang Song
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangyu Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoyuan Geng
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianfu Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
15
|
Jo KA, Kim KJ, Park SY, Jeon JY, Hwang JE, Kim JY. Evaluation of the Effects of Euglena gracilis on Enhancing Immune Responses in RAW264.7 Cells and a Cyclophosphamide-Induced Mouse Model. J Microbiol Biotechnol 2023; 33:493-499. [PMID: 36788460 PMCID: PMC10164725 DOI: 10.4014/jmb.2212.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
In this study we evaluated the immune-enhancing effects of β-glucan, the main component of Euglena gracilis (Euglena), and Euglena on inflammatory factor expression in RAW264.7 macrophages and ICR mice with cyclophosphamide-induced immunosuppression. Macrophages were treated with β-glucan or Euglena for 48 h. The β-glucan and Euglena groups exhibited higher levels of inducible nitric oxide synthase, nitric oxide, and tumor necrosis factor (TNF)-α than the control (vehicle alone) group. Animals were fed saline and β-glucan (400 mg/kg body weight (B.W.)) or Euglena (400 or 800 mg/kg B.W.) for 19 days, and on days 17-19, cyclophosphamide (CCP, 80 mg/kg B.W.) was administered to induce immunosuppression in the ICR mouse model. CCP reduced the body weight, spleen index, and cytokine expression of the mice. To measure cytokine and receptor expression, splenocytes were treated with concanavalin A (ConA) or lipopolysaccharide (LPS) as a mitogen for 24 h. In vivo, ConA stimulation significantly upregulated the expression of interferon (IFN)-γ, interleukin (IL)-10, IL-12 receptor β1, IL-1β, and IL-2 in splenocytes from the β-glucan- or Euglena-treated groups compared with those in the splenocytes from the CCP-treated group; LPS stimulation increased the levels of the cytokines TNF-α, IL-1β, and IL-6 in splenocytes from the β-glucan- or Euglena-treated groups compared with those from the CCP-treated group, but most of these differences were not significant. These results demonstrate the effect of Euglena in ameliorating macrophages and immunosuppression in CCP-treated mice. Thus, Euglena has the potential to enhance macrophage- and splenocyte-mediated immune-stimulating responses.
Collapse
Affiliation(s)
- Kyeong Ah Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
16
|
Chemistry and Pharmacology of Bergenin or Its Derivatives: A Promising Molecule. Biomolecules 2023; 13:biom13030403. [PMID: 36979338 PMCID: PMC10046151 DOI: 10.3390/biom13030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Bergenin is a glycosidic derivative of trihydroxybenzoic acid that was discovered in 1880 by Garreau and Machelart from the rhizomes of the medicinal plant Bergenia crassifolia (currently: Saxifraga crassifolia—Saxifragaceae), though was later isolated from several other plant sources. Since its first report, it has aroused interest because it has several pharmacological activities, mainly antioxidant and anti-inflammatory. In addition to this, bergenin has shown potential antimalarial, antileishmanial, trypanocidal, antiviral, antibacterial, antifungal, antinociceptive, antiarthritic, antiulcerogenic, antidiabetic/antiobesity, antiarrhythmic, anticancer, hepatoprotective, neuroprotective and cardioprotective activities. Thus, this review aimed to describe the sources of isolation of bergenin and its in vitro and in vivo biological and pharmacological activities. Bergenin is distributed in many plant species (at least 112 species belonging to 34 families). Both its derivatives (natural and semisynthetic) and extracts with phytochemical proof of its highest concentration are well studied, and none of the studies showed cytotoxicity for healthy cells.
Collapse
|
17
|
Qin X, Zhang B, Sun X, Zhang M, Xiao D, Lin S, Liu Z, Cui W, Lin Y. Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7793-7803. [PMID: 36745737 DOI: 10.1021/acsami.2c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Xiaoqin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
18
|
Kim HI, Kim DS, Jung Y, Sung NY, Kim M, Han IJ, Nho EY, Hong JH, Lee JK, Boo M, Kim HL, Baik S, Jung KO, Lee S, Kim CS, Park J. Immune-Enhancing Effect of Sargassum horneri on Cyclophosphamide-Induced Immunosuppression in BALB/c Mice and Primary Cultured Splenocytes. Molecules 2022; 27:8253. [PMID: 36500343 PMCID: PMC9738764 DOI: 10.3390/molecules27238253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Sargassum horneri (SH) is a seaweed that has several features that benefit health. In this study, we investigated the immune-enhancing effect of SH, focusing on the role of spleen-mediated immune functions. Chromatographic analysis of SH identified six types of monosaccharide contents, including mannose, rhamnose glucose, galactose xylose and fucose. SH increased cell proliferation of primary cultured naïve splenocytes treated with or without cyclophosphamide (CPA), an immunosuppression agent. SH also reversed the CPA-induced decrease in Th1 cytokines. In vivo investigation revealed that SH administration can increase the tissue weight of major immune organs, such as the spleen and thymus. A similar effect was observed in CPA-injected immunosuppressed BALB/c mice. SH treatment increased the weight of the spleen and thymus, blood immune cell count and Th1 cytokine expression. Additionally, the YAC-1-targeting activities of natural killer cells, which are important in innate immunity, were upregulated upon SH treatment. Overall, our study demonstrates the immune-enhancing effect of SH, suggesting its potential as a medicinal or therapeutic agent for pathologic conditions involving immunosuppression.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Yunu Jung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Minjee Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - In-Jun Han
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Eun Yeong Nho
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Joon Ho Hong
- Nano Bio Research Center, Jeonnam Bioindustry Foundation, Jangsung 57248, Republic of Korea
| | - Jin-Kyu Lee
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Yang X, Liu H, Yang J, Ma Z, Guo P, Chen H, Gao D. Purification, structural characterization and immunological activity of Sibiraea laexigata (L.) Maxim polysaccharide. Front Nutr 2022; 9:1013020. [PMID: 36185700 PMCID: PMC9521201 DOI: 10.3389/fnut.2022.1013020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating stomach discomfort and indigestion for a long time in china. Polysaccharides have been identified as one of the major bioactive compounds in the SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE) method was employed in polysaccharides extraction derived from SLM using polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides (SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the preliminarily structure of the two factions were characterized by chemical composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%), respectively. The results of structural characterization from FT-IR, 1H NMR, and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond. Furthermore, it was found that SLMPs-1-1 could increase the levels of tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-1 could participate in immunosuppressive protection of Cy-treated mice. These findings suggested that the potential of SLMPs-1-1 as an alternative immunostimulator could be used in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xuhua Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Honghai Liu
- Technology Research and Development Center, Gansu Tobacco Industry Co., Ltd., Lanzhou, China
| | - Jutian Yang
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Penghui Guo
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
| | - Hong Chen
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dandan Gao
- China-Malaysia National Joint Laboratory, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, China
- Taizishan Ecosystem Observatory of Carbon Neutralization, Northwest Minzu University, Lanzhou, China
- *Correspondence: Dandan Gao,
| |
Collapse
|
20
|
Ali MS, Lee EB, Quah Y, Birhanu BT, Suk K, Lim SK, Park SC. Heat-killed Limosilactobacillus reuteri PSC102 Ameliorates Impaired Immunity in Cyclophosphamide-induced Immunosuppressed Mice. Front Microbiol 2022; 13:820838. [PMID: 36033865 PMCID: PMC9413535 DOI: 10.3389/fmicb.2022.820838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The immune functions of heat-killed Limosilactobacillus reuteri PSC102 (hLR) were investigated in cyclophosphamide (CP)-treated immunosuppressed mice. BALB/c mice were randomly divided into five groups: normal control group, CP group, CP treated with levamisole (positive control group), and CP treated with low- and high-dose hLR. After receiving the samples for 21 days, mice were sacrificed, and different parameters, such as immune organ index, immune blood cells, splenocyte proliferation, lymphocyte subpopulations, cytokines, and immunoglobulins, were analyzed. Results showed that the immune organ (thymus and spleen) indices of hLR treatment groups were significantly increased compared to the CP group (p < 0.05). hLR administration prevented CP-induced reduction in the numbers of white blood cells, lymphocytes, midrange absolute, and granulocytes, providing supporting evidence for hematopoietic activities. Splenocyte proliferation and T-lymphocyte (CD4+ and CD8+) subpopulations were also significantly augmented in mice treated with hLR compared to the CP group (p < 0.05). Moreover, Th1-type [interferon-γ, interleukin (IL)-2, and tumor necrosis factor-α] and Th2-type (IL-4 and IL-10) immune factors and immunoglobulin (IgG) showed significant increasing trends (p < 0.05). Additionally, the other proinflammatory cytokines (IL-1β and IL-6) were also significantly elevated (p < 0.05). Taken together, this investigation suggested that orally administered hLR could recover immunosuppression caused by CP and be considered a potential immunostimulatory agent for the treatment of immunosuppressive disorders.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Yixian Quah
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
- *Correspondence: Seung-Chun Park,
| |
Collapse
|
21
|
Cao S, Yang Y, Liu S, Shao Z, Chu X, Mao W. Immunomodulatory Activity In Vitro and In Vivo of a Sulfated Polysaccharide with Novel Structure from the Green Alga Ulvaconglobata Kjellman. Mar Drugs 2022; 20:md20070447. [PMID: 35877740 PMCID: PMC9320874 DOI: 10.3390/md20070447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
Collapse
Affiliation(s)
- Sujian Cao
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China;
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
22
|
Li Z, Li X, Cai Z, Jin G, Ahn DU, Huang X. Immunomodulatory Effects of Chicken Soups Prepared with the Native Cage-free Chickens and the Commercial Caged Broilers. Poult Sci 2022; 101:102053. [PMID: 35986946 PMCID: PMC9411684 DOI: 10.1016/j.psj.2022.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to compare the immunomodulatory effects of the chicken soups prepared with the native free-range chickens and the commercial caged broilers in the immunosuppressive mice. The immunosuppressive mice model was established by the intraperitoneal injection of 100 mg of cyclophosphamide (CTX) per kg body weight. The powders of Gushi Chicken Soup (GCS), Honglashan Chicken Soup (HCS), and Cobb Broiler Soup (CBS) were prepared by high-pressure stewing followed by spray drying. The chicken soups' nutrient content and the effects of three chicken soups on the body weight, organ index, blood index, and serum cytokine and immunoglobulin contents in the immunosuppressive mice were determined. The three chicken soups promoted the recovery of immunosuppressive mice, but the expression mechanisms were different. The GCS was more effective than the HCS and CBS in restoring blood index, promoting cytokine secretion, and increasing immunoglobulin content (P < 0.05). The HCS stimulated the Th1-type immune response and promoted immunoglobulin secretion (P < 0.05), while the CBS increased the production of CD4+ and promoted the T-cell functions better than other soups (P < 0.05). Although soups from the native free-range chickens and the commercial caged broilers showed distinctly different mechanisms in promoting immunity, both could be used as potential immunomodulators.
Collapse
Affiliation(s)
- Zuyue Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaomeng Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Guofeng Jin
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dong Uk Ahn
- Animal Science Department, Iowa State University, Ames, USA
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
23
|
Yang L, Zheng Y, Miao YM, Yan WX, Geng YZ, Dai Y, Wei ZF. Bergenin, a PPARγ agonist, inhibits Th17 differentiation and subsequent neutrophilic asthma by preventing GLS1-dependent glutaminolysis. Acta Pharmacol Sin 2022; 43:963-976. [PMID: 34267342 PMCID: PMC8975945 DOI: 10.1038/s41401-021-00717-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-β, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 μM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 μM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.
Collapse
Affiliation(s)
- Ling Yang
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yun Zheng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yu-meng Miao
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Wen-xin Yan
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yan-zhi Geng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yue Dai
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhi-feng Wei
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
24
|
Li Q, Zhang C, Xilin T, Ji M, Meng X, Zhao Y, Siqin B, Zhang N, Li M. Effects of Koumiss on Intestinal Immune Modulation in Immunosuppressed Rats. Front Nutr 2022; 9:765499. [PMID: 35242793 PMCID: PMC8886295 DOI: 10.3389/fnut.2022.765499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Koumiss is a traditional fermented dairy product with health and medicinal benefits. It is very popular in the Inner Mongolia Autonomous Region of China. The results of relevant studies have shown that koumiss can regulate the gastrointestinal environment, improve the absorption of nutrients, improve the body's intolerance to lactose, enhance the body's immunity, prevent scurvy and atherosclerosis, and aid in the treatment of tuberculosis. However, there are no systematic reports on the effects of koumiss on immunity. In this study, we aimed to decipher the effects of koumiss on intestinal immune modulation. We used liquid chromatography-tandem mass spectrometry (LC-MS) analysis to determine the composition of Koumiss. Using Compound Discoverer software, we compared the mass spectrometry data with the compound information in the online databases ChemSpider and mzCloud to intelligently identify the main chemical components of koumiss. Additionally, we used Mass Frontier small molecule fragmentation libraryTM to determine the structure of fragment ions. A total of 21 components were identified, which clarified the chemical basis of koumiss. These 21 compounds were then used to perform molecular docking with immune-related targets, such as TNF, IL2, IL10, etc. The results indicated good docking activity between most of the compounds and the targets. Then, an immunosuppressive rat model was used to determine the therapeutic effect of koumiss. The results of this study showed that koumiss could, to a certain extent, correct the atrophy of the thymus and spleen in immunosuppressed model rats. The number of leukocytes, lymphocytes, and the CD4+/CD8+ ratio of peripheral blood lymphocytes was also increased. In addition, it could effectively improve the structure of the small intestinal mucosa, which shows that koumiss has a positive effect on the intestinal immune function of immunosuppressed rats. These findings provide an experimental basis for the development and utilization of koumiss as a therapeutic product.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Chunjie Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China.,Center for Translational Medicine, Baotou Medical College, Baotou, China
| | - Tuya Xilin
- Laboratory of Mongolian Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Mingyue Ji
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiangxi Meng
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yulian Zhao
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Bateer Siqin
- Laboratory of Mongolian Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, China
| | - Na Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources and Utilization, Baotou Medical College, Baotou, China.,Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
25
|
WANG N, YU Q, WANG D, REN H, XU C, NING C, LI N, FAN H, AI Z. Synergistic antiaging effects of jujube polysaccharide and flavonoid in D-Galactose-Induced aging mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.46222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Na WANG
- Henan Agricultural University, China; Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China
| | - Qiuying YU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Dongliang WANG
- Zhengzhou Chunzhilan Commercial & Trading Co. Ltd, China
| | - Hongtao REN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Chao XU
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Ministry of Agriculture, China; Henan Agricultural University, China
| | - Cancan NING
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Na LI
- Ministry of Agriculture, China; Henan Agricultural University, China
| | - Huiping FAN
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| | - Zhilu AI
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, China; Henan Agricultural University, China
| |
Collapse
|
26
|
Li B, Liu PA, Chu LL, Wu J, Jiang L, Zhou XD, Sheng WB, Peng CY, Zafar S, Wang W. Research progress on Rodgersia and predictive analysis on its quality markers. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.343650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Chen NW, Jin J, Xu H, Wei XC, Wu LF, Xie WH, Cheng YX, He Y, Gao JL. Effect of thermophilic bacterium HB27 manganese superoxide dismutase in a rat model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Asian J Androl 2021; 24:323-331. [PMID: 34747725 PMCID: PMC9226703 DOI: 10.4103/aja202157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We investigated the therapeutic effects of superoxide dismutase (SOD) from thermophilic bacterium HB27 on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and its underlying mechanisms. A Sprague–Dawley rat model of CP/CPPS was prepared and then administered saline or Thermus thermophilic (Tt)-SOD intragastrically for 4 weeks. Prostate inflammation and fibrosis were analyzed by hematoxylin and eosin staining, and Masson staining. Alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine (CR), and blood urea nitrogen (BUN) levels were assayed for all animals. Enzyme-linked immunosorbent assays (ELISA) were performed to analyze serum cytokine concentrations and tissue levels of malondialdehyde, nitric oxide, SOD, catalase, and glutathione peroxidase. Reactive oxygen species levels were detected using dichlorofluorescein diacetate. The messenger ribonucleic acid (mRNA) expression of tissue cytokines was analyzed by reverse transcription polymerase chain reaction (RT-PCR), and infiltrating inflammatory cells were examined using immunohistochemistry. Nuclear factor-κB (NF-κB) P65, P38, and inhibitor of nuclear factor-κBα (I-κBα) protein levels were determined using western blot. Tt-SOD significantly improved histopathological changes in CP/CPPS, reduced inflammatory cell infiltration and fibrosis, increased pain threshold, and reduced the prostate index. Tt-SOD treatment showed no significant effect on ALT, AST, CR, or BUN levels. Furthermore, Tt-SOD reduced inflammatory cytokine expression in prostate tissue and increased antioxidant capacity. This anti-inflammatory activity correlated with decreases in the abundance of cluster of differentiation 3 (CD3), cluster of differentiation 45 (CD45), and macrophage inflammatory protein 1α (MIP1α) cells. Tt-SOD alleviated inflammation and oxidative stress by reducing NF-κB P65 and P38 protein levels and increasing I-κBα protein levels. These findings support Tt-SOD as a potential drug for CP/CPPS.
Collapse
Affiliation(s)
- Nai-Wen Chen
- Department of Surgery, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310000, China.,Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Hong Xu
- Department of Surgery, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310000, China.,Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xue-Cheng Wei
- Department of Surgery, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310000, China.,Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Ling-Feng Wu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Wen-Hua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Yu-Xiang Cheng
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China.,Department of Surgery, Bengbu Medical College, Bengbu 233000, China
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Jin-Lai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
28
|
Parveen A, Zahiruddin S, Agarwal N, Akhtar Siddiqui M, Husain Ansari S, Ahmad S. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi J Biol Sci 2021; 28:6178-6190. [PMID: 34764748 PMCID: PMC8568999 DOI: 10.1016/j.sjbs.2021.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Taking leads from the available research, we aimed to develop a synergy-based herbal combination of Tinospora cordifolia (TC), Phyllanthus emblica (PE), and Piper nigrum (PN). Also, evaluating their synergistic effect on CP-induced immunosuppression in mice model and exploring the possible mechanisms involved in reversing the damage. METHODOLOGY The immunomodulatory activity of combination, of TC stem, PE fruits, and PN dried fruits, was determined by in vitro assays (splenocyte proliferation and pinocytic activity of peritoneal macrophages of mice) and in vivo study using CP-induced immunosuppression model in Swiss Albino mice. The ratio was optimized for combining three by in vitro MTT assay. The combination was further evaluated for anti-oxidant activity by DPPH scavenging method and quantified for its bioactive metabolites by HPTLC. Serum collected on day 0, 4, 7 and 14 was employed for estimation of haematogram (haematocrit, TLC, DLC, and haemoglobin, etc) and immune parameters (IL-10, IL-6 and TNF-α) by ELISA. RESULTS The study demonstrated, that combination of herbal extracts at an intermediate dose could inhibit the proliferation of spleen cells and peritoneal macrophages (P ≤ 0.0001) and induce suppression of pro-inflammatory mediators, and also certified that combination exerts synergized effects. The results showed that the combination possess potential antioxidant activity by DPPH scavenging method (IC50-113.5 µg/ml). It was identified that combination significantly (P ≤ 0.0001) improved the immune markers, haematogram parameters, and histological parameters, with maximum protection offered by an intermediate dose. CONCLUSION The results suggested that present combination could be further explored clinically as potent synergy-based therapeutic approach for immune modulation.
Collapse
Affiliation(s)
- Abida Parveen
- Bioactive Natural Product Laboratory, Centre for Translational and Clinical Research, SIST, Jamia Hamdard, New Delhi 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Nidhi Agarwal
- Centre for Translational and Clinical Research, SCLS, Jamia Hamdard, New Delhi 110062, India
| | | | - Shahid Husain Ansari
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Dept. of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
29
|
Madaan R, Singla RK, Kumar S, Dubey AK, Kumar D, Sharma P, Bala R, Singla S, Shen B. Bergenin - a biologically active scaffold: Nanotechnological perspectives. Curr Top Med Chem 2021; 22:132-149. [PMID: 34649489 DOI: 10.2174/1568026621666211015092654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound present in various plants belonging to different families. The present work compiles scattered information on pharmacology, structure activity relationship and nanotechnological aspects of bergenin, collected from various electronic databases such as Sci Finder, PubMed, Google scholar, etc. Bergenin has been reported to exhibit hepatoprotective, anti-inflammatory, anticancer, neuroprotective, antiviral and antimicrobial activities. Molecular docking studies have shown that isocoumarin pharmacophore of bergenin is essential for its bioactivities. Bergenin holds a great potential to be used as lead molecule and also as a therapeutic agent for development of more efficacious and safer semisynthetic derivatives. Nanotechnological concepts can be employed to overcome poor bioavailability of bergenin. Finally, it is concluded that bergenin can be emerged as clinically potential medicine in modern therapeutics.
Collapse
Affiliation(s)
- Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Dinesh Kumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi. India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| |
Collapse
|
30
|
Xu S, Tan H, Yang Q, Wang R, Tian C, Ji Y, Zhao P, Xia Q, Wang F. Fabrication of a Silk Sericin Hydrogel System Delivering Human Lactoferrin Using Genetically Engineered Silk with Improved Bioavailability to Alleviate Chemotherapy-Induced Immunosuppression. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45175-45190. [PMID: 34525798 DOI: 10.1021/acsami.1c08409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy is one of the main treatments for cancer; however, it usually causes severe atrophy of immune organs and self-immunity damage to patients. Human lactoferrin (hLF) is a multiple biofunctional protein in regulating the immune response and thus holds great promise to alleviate chemotherapy-caused immunosuppression. However, a sufficient hLF resource and efficient delivery of hLF remain a challenge. Here, we provide a useful strategy to simultaneously solve these two problems. A silk sericin hydrogel system delivering recombinant hLF (SSH-rhLF) was fabricated to alleviate the chemotherapeutic drug-caused side effects by rhLF-carrying silk cocoons, which were cost-effectively produced by a transgenic silkworm strain as the resource. SSH-rhLF with a uniform porous microstructural morphology, a dominant β-sheet internal structure, adjustable concentration and sustainable release of the rhLF, and non-cytotoxicity properties was demonstrated. Interestingly, the sericin hydrogel showed effective protection of the rhLF from degradation in the stomach and small intestine, thus prolonging the bioactivity and bioavailability of rhLF. As a result, the oral administration of SSH-rhLF with a low rhLF dose showed significant therapeutic effects on enhancing the immune organs of cyclophosphamide (CTX)-treated mice by protecting the splenic follicles, promoting the expression of immunoregulatory factors, and recovering the intestinal flora family from CTX-induced imbalance, which were similar to those achieved by oral administration of a high dose of free hLF in the solution form. The results suggest that the strategy of producing rhLF silk cocoons via feeding transgenic silkworms overcomes well the shortage of rhLF resources, improves the bioavailability of oral rhLF, and alleviates the side effects of chemotherapeutic drugs on immune organs. The oral SSH-rhLF will be promising for applications in cancer chemotherapy and immunity enhancement of patients.
Collapse
Affiliation(s)
- Sheng Xu
- Research Centre for Regenerative Medicine, Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Huanhuan Tan
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Qianqian Yang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Riyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Chi Tian
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Yanting Ji
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering and Technology, Research Center for Novel Silk Materials, Biological Science Research Center, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
31
|
Zhang J, Zhou HC, He SB, Zhang XF, Ling YH, Li XY, Zhang H, Hou DD. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food Funct 2021; 12:7954-7963. [PMID: 34251375 DOI: 10.1039/d1fo01257f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the immunomodulatory effect of sea buckthorn (SBT) pulp oil was elucidated in immunosuppressed Balb/c mice induced by cyclophosphamide (CTX). The results showed that SBT pulp oil could reverse the decreasing trend of body weight, thymus/spleen index and hematological parameters induced by CTX. Compared with immunosuppressive mice induced by CTX, SBT pulp oil could enhance NK cytotoxicity, macrophage phagocytosis, and T lymphocyte proliferation, and regulate the proportion of T cell subsets in mesenteric lymph nodes (MLN), and promote the production of secretory immunoglobulin A (sIgA), IFN-γ, IL-2, IL-4, IL-12 and TNF-α in the intestines. In addition, SBT pulp oil can promote the production of short fatty acids (SCFAs), increase the diversity of gut microbiota, improve the composition of intestinal flora, increase the abundance of Alistipes, Bacteroides, Anaerotruncus, Lactobacillus, ASF356, and Roseburia, while decreasing the abundance of Mucispirillum, Anaeroplasma, Pelagibacterium, Brevundimonas, Ochrobactrum, Acinetobacter, Ruminiclostridium, Blautia, Ruminiclostridium, Oscillibacter, and Faecalibaculum. This study shows that SBT pulp oil can regulate the diversity and composition of intestinal microflora in CTX-induced immunosuppressive Balb/c mice, thus enhancing the intestinal mucosa and systemic immune response. The results can provide a basis for understanding the function of SBT pulp oil and its application as a new probiotic and immunomodulator.
Collapse
Affiliation(s)
- Jin Zhang
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim KJ, Paik HD, Kim JY. Immune-Enhancing Effects of Lactobacillus plantarum 200655 Isolated from Korean Kimchi in a Cyclophosphamide-Induced Immunocompromised Mouse Model. J Microbiol Biotechnol 2021; 31:726-732. [PMID: 33820888 PMCID: PMC9705930 DOI: 10.4014/jmb.2103.03028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the immune-enhancing activity of kimchi-derived Lactobacillus plantarum 200655 on immune suppression by cyclophosphamide (CP) in ICR mice. Animals were fed distilled water or 1×109 colony-forming unit/kg B.W. 200655 or Lactobacillus rhamnosus GG as a positive control for 14 days. An in vivo model of immunosuppression was induced using CP 150 and 100 mg/kg B.W. at 7 and 10 days, respectively. Body weight, spleen index, spleen weight, and gene expression were measured to estimate the immune-enhancing effects. The dead 200655 (D-200655) group showed an increased spleen weight compared to the sham control (SC) group. Similarly, the spleen index was significantly higher than that in the CP-treated group. The live 200655 (L-200655) group showed an increased mRNA expression of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 in splenocytes. Also, the iNOS and COX-2 mRNA expression was upregulated in the L-200655 group compared to the CP-only (SC) group. The phosphorylation of ERK and MAPK was also upmodulated in the L-200655 group. These results indicate that L. plantarum 200655 ameliorated CP-induced immune suppression, suggesting that L. plantarum 200655 may have the potential to enhance the immune system.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Yeon Kim
- Department of Nano Bio engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea,Corresponding author Phone: +82-2-970-6740 E-mail:
| |
Collapse
|
33
|
Tang Q, Wang Q, Sun Z, Kang S, Fan Y, Hao Z. Bergenin Monohydrate Attenuates Inflammatory Response via MAPK and NF-κB Pathways Against Klebsiella pneumonia Infection. Front Pharmacol 2021; 12:651664. [PMID: 34017253 PMCID: PMC8129520 DOI: 10.3389/fphar.2021.651664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background:Klebsiella pneumonia has emerged as a critical pathogen causing severe clinical problems, such as pneumonia and sepsis. Meanwhile, intensified drug resistance induced by antibiotic therapy necessitates discovering novel and active molecules from Traditional Chinese Medicine (TCM) for treatment. Methods and results: In this study, the isolated Bergenin monohydrate showed an anti-inflammatory effect in Klebsiella-infected mice. We initially investigated the anti-inflammatory effects and cytoprotection against oxidative stress in vitro and in vivo. Interestingly, a specific dose of Bm can effectively ameliorate lung injury and suppress the expression of inflammatory cytokines such as TNF-α, IL-6, IL-1β and PEG2. Moreover, Bm was also shown to reduced the levels of MPO, MDA and increased SOD and GSH activities. Moreover, we assessed the intracellular signaling molecules including p38, ERK, JNK, IκB, NF-κB-p65 by western blotting and verified through MAPK and NF-κB pathways inhibition experiments. These results reveal that Bm executed its effects via the classical MAPK signaling pathway and NF-κB pathway. Conclusion: Given its underlying anti-inflammatory effect, Bm may be used as a promising therapeutic against Klebsiella-induced infection, thus providing a benefit for the future clinical therapy of pneumonia and medicine design.
Collapse
Affiliation(s)
- Qihe Tang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyu Wang
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuojian Sun
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Songyao Kang
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Yimeng Fan
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153402. [PMID: 33203590 DOI: 10.1016/j.phymed.2020.153402] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although great achievements have been made in the field of cancer therapy, chemotherapy and radiotherapy remain the mainstay cancer therapeutic modalities. However, they are associated with various side effects, including cardiocytotoxicity, nephrotoxicity, myelosuppression, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, mucositis, and alopecia, which severely affect the quality of life of cancer patients. Plants harbor a great chemical diversity and flexible biological properties that are well-compatible with their use as adjuvant therapy in reducing the side effects of cancer therapy. PURPOSE This review aimed to comprehensively summarize the molecular mechanisms by which phytochemicals ameliorate the side effects of cancer therapies and their potential clinical applications. METHODS We obtained information from PubMed, Science Direct, Web of Science, and Google scholar, and introduced the molecular mechanisms by which chemotherapeutic drugs and irradiation induce toxic side effects. Accordingly, we summarized the underlying mechanisms of representative phytochemicals in reducing these side effects. RESULTS Representative phytochemicals exhibit a great potential in reducing the side effects of chemotherapy and radiotherapy due to their broad range of biological activities, including antioxidation, antimutagenesis, anti-inflammation, myeloprotection, and immunomodulation. However, since a majority of the phytochemicals have only been subjected to preclinical studies, clinical trials are imperative to comprehensively evaluate their therapeutic values. CONCLUSION This review highlights that phytochemicals have interesting properties in relieving the side effects of chemotherapy and radiotherapy. Future studies are required to explore the clinical benefits of these phytochemicals for exploitation in chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiao-Lu Wang
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, China
| | - Dan-Hua He
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Research Center of Chinese Herbal Resources Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
35
|
Endopleura uchi - A review about its nutritional compounds, biological activities and production market. Food Res Int 2020; 139:109884. [PMID: 33509472 DOI: 10.1016/j.foodres.2020.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/23/2022]
Abstract
Endopleura uchi (Huber) Cuatrec, known as uxi, is a native plant from the Amazon region, which has been used by locals for some pathology treatments. This review aimed to find the main uxi studies carried out in scientific literature. This compilation includes the biological activities that have been proven, parts of the plant that were exploited, as well as its nutritional properties. Uxi fruit has compounds, such as vitamins A and E, minerals, bioactive phenolic and organic acids, along with anti-inflammatory, antioxidant, antibacterial, antidiabetic, and anti-cholesterol actions. Some E. uchi extract activities have been reported, such as: α-glucosidase and cyclooxygenases (COX1/COX2) inhibitions, in addition to anti-bactericidal properties. The isocoumarin compound, bergenin is responsible for many of the reported biological activities of this species. E. uchi can be used for manufacturing products in food, pharmaceutical, and cosmetic industries, demonstrating its worth, regional economic growth, along the potential to dominate the worldwide market.
Collapse
|
36
|
Villarreal CF, Santos DS, Lauria PSS, Gama KB, Espírito-Santo RF, Juiz PJL, Alves CQ, David JM, Soares MBP. Bergenin Reduces Experimental Painful Diabetic Neuropathy by Restoring Redox and Immune Homeostasis in the Nervous System. Int J Mol Sci 2020; 21:ijms21144850. [PMID: 32659952 PMCID: PMC7420298 DOI: 10.3390/ijms21144850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations—no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125–25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Cristiane F. Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
- Correspondence: ; Tel.: +55-(71)3283-6933
| | - Dourivaldo S. Santos
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Pedro S. S. Lauria
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Kelly B. Gama
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Renan F. Espírito-Santo
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Paulo J. L. Juiz
- Universidade Federal do Recôncavo da Bahia, CEP 44.042-280 Feira de Santana, Brazil;
| | - Clayton Q. Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, CEP 44.036-336 Feira de Santana, Brazil;
| | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, CEP 40.170-280 Salvador, Brazil;
| | - Milena B. P. Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| |
Collapse
|
37
|
Song MF, Zhang LX, Zhang Y, Guan YH, Li HT, Zhang ZL. Effects of genetic variation and environmental factors on bergenin in Rodgersia sambucifolia Hemsl. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112201. [PMID: 31499140 DOI: 10.1016/j.jep.2019.112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bergenin is a well-known active compound that exhibits antioxidant, antiarrhythmic, hepatoprotective, and anti-inflammatory activities. However, the resource reserve of Rodgersia sambucifolia, one of the main raw materials for extracting bergenin, have sharply declined, and the bergenin content in different germplasms differs vastly, resulting in a serious shortage of the market supply of bergenin. AIM OF THE STUDY To investigate the influence of genetic diversity and environmental factors on bergenin content in Rodgersia sambucifolia. MATERIALS AND METHODS Fifty Rodgersia sambucifolia samples with a growth period of 2-3 years were collected from different areas across China and the bergenin content was determined via HPLC. Meanwhile the total genomic DNA was extracted and ISSR was performed. The bergenin content as measured using HPLC and the environmental data gathered from the meteorological stations and field work were combined and analyzed using correlation tests in XLSTAT 2018 to detect the key factors affecting bergenin content. The genetic UPGMA tree constructed based on genetic distances of the 50 samples and the chemical dendrogram constructed according to the distance between the bergenin content were compared to determine the correlation between genetic and chemical differentiation. RESULTS Among the 50 individuals, bergenin content varied from 2.83 to 12.54%, with the highest content being 4.43-fold that of the lowest content. The survey of the 50 individuals produced a total of 193 amplified bands, 187 of which were polymorphic (96.89%). In the study, bergenin content was positively correlated with annual mean temperature (AMT) (r = 0.583, P < 0.0001) and 1-12 month monthly mean temperature (MMT) (P < 0.0001). A comparison of the genetic dendrogram with the AHC dendrogram found no corresponding relationship between them. Mantel correlation analyses also showed that there was no significant correlation between them (r = 0.144). CONCLUSIONS There were large differences in bergenin content among different germplasms that were not correlated with the high genetic variation in Rodgersia sambucifolia but were significantly correlated with environmental factors, such as temperature. This study lays the foundation for subsequent superior germplasm selection and artificial breeding of Rodgersia sambucifolia to improve the bergenin content and meet market demands.
Collapse
Affiliation(s)
- Mei-Fang Song
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Li-Xia Zhang
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Yue Zhang
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Yan-Hong Guan
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Hai-Tai Li
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Zhong-Lian Zhang
- The Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.
| |
Collapse
|
38
|
de Sá Hyacienth BM, Tavares Picanço KR, Sánchez-Ortiz BL, Barros Silva L, Matias Pereira AC, Machado Góes LD, Sousa Borges R, Cardoso Ataíde R, dos Santos CBR, de Oliveira Carvalho H, Gonzalez Anduaga GM, Navarrete A, Tavares Carvalho JC. Hydroethanolic extract from Endopleura uchi (Huber) Cuatrecasas and its marker bergenin: Toxicological and pharmacokinetic studies in silico and in vivo on zebrafish. Toxicol Rep 2020; 7:217-232. [PMID: 32042599 PMCID: PMC6997909 DOI: 10.1016/j.toxrep.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/07/2023] Open
Abstract
E. uchi stem bark hydroethanolic extract in zebrafish. Evaluating the in silico pharmacokinetic and toxicological parameters. Behavioral, biochemical and histopathological changes was dose dependent. In silico bergenin and its metabolites showed high intestinal absorption. Bergenin inhibited CYP2C9, CYP3A4 and CYP2C19.
Endopleura uchi, is used for the treatment of inflammatory disease and related to the female reproductive tract. The aim of this study was to evaluate the acute toxicity of the Endopleura uchi stem bark hydroethanolic extract (EEu) in zebrafish, emphasizing the histopathological and biochemical parameters, as well as evaluating the in silico pharmacokinetic and toxicological parameters of the phytochemical/pharmacological marker, bergenin, as their metabolites. The animals were orally treated with EEu at a single dose of 75 mg/kg, 500 mg/kg, 1000 mg/kg and 3000 mg/kg. the oral LD50 of the EEu higher to the dose of 3000 mg/kg. Behavioral, biochemical and histopathological changes were dose dependent. In silico pharmacokinetic predictions for bergenin and its metabolites showed moderate absorption in high human intestinal absorption (HIA) and Caco-2 models, reduced plasma protein binding, by low brain tissue binding and no P-glycoprotein (P-Gp) inhibition. Their metabolism is defined by the CYP450 enzyme, in addition to bergenin inhibition of CYP2C9, CYP3A4 and CYP2C19. In the bergenin and its metabolites in silico toxicity test it have been shown to cause carcinogenicity and a greater involvement of the bergenin with the CYP enzymes in the I and II hepatic and renal metabolism’s phases was observed. It is possible to suggest that the histopathological damages are involved with the interaction of this major compound and its metabolites at the level of the cellular-biochemical mechanisms which involve the absorption, metabolization and excretion of these possible prodrug and drug.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BBB, Brain-blood partition coefficient (C.brain/C.blood)
- Bergenin
- Biotrasformation
- EEu, Endopleura uchi stem bark hydroethanolic extract
- Endopleura uchi
- HAI, Index of Histopathological Changes
- HBA, Hydrogen bonding acceptors
- HBD, Hydrogen bonding donors
- HIA, Human intestinal absorption
- Hepatoxity
- IAN, Regional Herbarium of the Eastern Amazonian Embrapa
- MM, Molecular mass
- Nephrotoxity
- P-Gp, P-glycoprotein
- PPB, Plasma protein binding
- Toxicology
- hERG, ether-a-go-related human gene
Collapse
Affiliation(s)
- Beatriz Martins de Sá Hyacienth
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
| | - Karyny Roberta Tavares Picanço
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Brenda Lorena Sánchez-Ortiz
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Luciane Barros Silva
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Arlindo César Matias Pereira
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Larissa Daniele Machado Góes
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Raphaelle Sousa Borges
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Rodrigo Cardoso Ataíde
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Cleydson Breno Rodrigues dos Santos
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Federal University of Amapá, Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Helison de Oliveira Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
| | - Gloria Melisa Gonzalez Anduaga
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - Andrés Navarrete
- Laboratory of Natural Product Pharmacology, Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico, University City, Coyoacán, Zip Code 04510 Mexico City, Mexico
| | - José Carlos Tavares Carvalho
- Laboratory of Pharmaceutical Research, Department of Biological Sciences and Health, Federal University of Amapá, Juscelino Kubitschek Street, Marco Zero Campus, Zip Code 68903-419, Macapá, AP, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the Legal Amazon of the BIONORTE Network, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
- Corresponding author.
| |
Collapse
|
39
|
Enhancement of autophagy as a strategy for development of new DNA vaccine candidates against Japanese encephalitis. Vaccine 2019; 37:5588-5595. [DOI: 10.1016/j.vaccine.2019.07.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 01/12/2023]
|
40
|
Immunoenhancement effects of pentadecapeptide derived from Cyclina sinensis on immune-deficient mice induced by Cyclophosphamide. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
41
|
Ngoc HN, Löffler S, Nghiem DT, Pham TLG, Stuppner H, Ganzera M. Phytochemical study of Rourea minor stems and the analysis of therein contained Bergenin and Catechin derivatives by capillary electrophoresis. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Zhang Y, Li Y, Luo W, Tang Y, Wang J, Yang R, Gao WQ. Histological, cellular and behavioural analyses of effects of chemotherapeutic agent cyclophosphamide in the developing cerebellum. Cell Prolif 2019; 52:e12608. [PMID: 30932251 PMCID: PMC6536418 DOI: 10.1111/cpr.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023] Open
Abstract
Objectives We performed histological, cellular and behavioural analyses of the effects of cyclophosphamide (CTX), a chemotherapeutic drug, in the developing cerebellum and aimed to provide valuable insights into clinical application of CTX in children. Materials and methods C57BL/6 mice and Math1‐dependent GFP expression transgenic mice were used in the research. H&E staining was performed to analyse histological effects of CTX in the cerebellum. Staining for EdU and TUNEL was used to estimate the cell proliferation and apoptosis. Rotarod test and hanging wire test were used to evaluate the behavioural functions. Immunofluorescent staining was used to identify the cell types. The differentiation markers and genes related to Sonic Hedgehog (SHH) signalling were measured via quantitative real‐time PCR or immunoblotting. Results We found that while CTX induced a significant reduction in cell proliferation and increased apoptosis in the EGL in 48 hours, the behavioural functions and the multilayer laminar structure of cerebella were largely restored when the mice grew to adults. Mechanistically, granule neuron progenitors, driven by the SHH signalling, enhanced the capability of proliferation quickly after CTX administration was stopped, which allowed the developing cerebellum to catch up and to gradually replenish the injury. Conclusion The chemotherapeutic agent CTX induces an immediate damage to the developing cerebellum, but the cerebellar multilayer laminar structure and motor function can be largely restored if the agent is stopped shortly after use.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|