1
|
Luca L, Pauliuc D, Oroian M. Honey microbiota, methods for determining the microbiological composition and the antimicrobial effect of honey - A review. Food Chem X 2024; 23:101524. [PMID: 38947342 PMCID: PMC11214184 DOI: 10.1016/j.fochx.2024.101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Honey is a natural product used since ancient times due to its taste, aroma, and therapeutic properties (antibacterial, antiviral, anti-inflammatory, and antioxidant activity). The purpose of this review is to present the species of microorganisms that can survive in honey and the effect they can have on bees and consumers. The techniques for identifying the microorganisms present in honey are also described in this study. Honey contains bacteria, yeasts, molds, and viruses, and some of them may present beneficial properties for humans. The antimicrobial effect of honey is due to its acidity and high viscosity, high sugar concentration, low water content, the presence of hydrogen peroxide and non-peroxidase components, particularly methylglyoxal (MGO), phenolic acids, flavonoids, proteins, peptides, and non-peroxidase glycopeptides. Honey has antibacterial action (it has effectiveness against bacteria, e.g. Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter, etc.), antifungal (effectiveness against Candida spp., Aspergillus spp., Fusarium spp., Rhizopus spp., and Penicillium spp.), antiviral (effectiveness against SARS-CoV-2, Herpes simplex virus type 1, Influenza virus A and B, Varicella zoster virus), and antiparasitic action (effectiveness against Plasmodium berghei, Giardia and Trichomonas, Toxoplasma gondii) demonstrated by numerous studies that are comprised and discussed in this review.
Collapse
Affiliation(s)
- Liliana Luca
- Suceava-Botoșani Regional Innovative Bioeconomy Cluster Association, 720229 Suceava, Romania
| | - Daniela Pauliuc
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
2
|
Wilczyńska A, Żak N. Polyphenols as the Main Compounds Influencing the Antioxidant Effect of Honey-A Review. Int J Mol Sci 2024; 25:10606. [PMID: 39408935 PMCID: PMC11477350 DOI: 10.3390/ijms251910606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Honey is one of the most valuable components of the human diet. It is considered to be a functional food with health-promoting properties. Honey has bactericidal and bacteriostatic effects; is used to treat wounds and ulcers; relieves stress; supports the treatment of diseases of the digestive and respiratory systems; improves kidney function; and aids in convalescence. The healing and prophylactic effects of honey are closely related to its chemical composition. According to the literature, honey contains over 300 substances belonging to various groups of chemical compounds, some with antioxidant activity, including vitamins and phenolic compounds, mainly flavonoids and phenolic acids. This article provides insight into honey's chemical composition and its pro-health activities. The antioxidant properties of honey were prioritized.
Collapse
Affiliation(s)
- Aleksandra Wilczyńska
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland;
| | | |
Collapse
|
3
|
Tlak Gajger I, Pavliček D, Oreščanin V, Varenina I, Sedak M, Bilandžić N. Mineral Concentrations in Different Types of Honey Originating from Three Regions of Continental Croatia. Foods 2024; 13:2754. [PMID: 39272517 PMCID: PMC11394878 DOI: 10.3390/foods13172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Honey has been recognized as a reliable indicator of environmental quality because of honeybees' intense foraging activity, which brings them into contact with many persistent organic pollutants around the hive. In this study, four types of honey (meadow, acacia, chestnut, and honey in comb) collected at three different locations were analyzed for Co, Cr, Cu, Fe, Mn, Pb, and Zn levels. The highest levels of Fe and Cu in chestnut honey, Co and Zn in meadow honey, and Pb in honey in comb were observed in Varaždin County. The lowest levels of Pb in meadow honey and Co in comb honey were found from apiaries in Sisak-Moslavina County. Significant differences in the mean concentrations of Cr, Cu, Mn, and Fe were observed among the four honey types. Conversely, no significant differences in Co, Pb, and Zn levels were found. Most of the significant differences between the elements are related to chestnut honey. While sampling location (Fe) and type of honey (Pb), or both (Cr and Zn), significantly influenced the concentrations of some elements, these factors were found to be irrelevant for Mn, Co, and Cu. The results showed varying degrees of similarities and differences in mineral levels in honey samples, depending on floral and geographical origin.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Damir Pavliček
- Laboratory for Analytical Chemistry and Residues, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260 Križevci, Croatia
| | | | - Ivana Varenina
- Laboratory for Residue Control, Department for Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Marija Sedak
- Laboratory for Residue Control, Department for Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Nina Bilandžić
- Laboratory for Residue Control, Department for Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Cucu AA, Urcan AC, Bobiș O, Bonta V, Cornea-Cipcigan M, Moise AR, Dezsi Ș, Pașca C, Baci GM, Dezmirean DS. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1883. [PMID: 38999722 PMCID: PMC11244575 DOI: 10.3390/plants13131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties of FJ plants and honey. Notably, this study is the first to identify individual phenolic compounds in both FJ plant tissues and FJ honey, highlighting resveratrol as a marker of FJ honey. The study tested inhibitory activity against seven bacterial strains: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella enteritidis, and the yeast Candida albicans. Disk diffusion and microdilution methods were used to assess antimicrobial activity, while the crystal violet staining test evaluated antibiofilm activity. Results showed that FJ plant tissues and honey exhibited strong inhibition, particularly against Gram-negative bacterial strains. The most significant inhibition of biofilm formation, by both FJ plant tissues and honey, was observed against Staphylococcus aureus and Escherichia coli. A significant positive correlation was found between antimicrobial activity and individual polyphenols, especially resveratrol. The antibacterial and antibiofilm potential of FJ plant tissues and honey suggests promising applications in sustainable beekeeping. Further research is necessary to evaluate the bioactive compounds found in FJ honey and their health effects.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Victorița Bonta
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Ștefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
6
|
Pudelka L, Sleha R, Janovska S, Radochova V, Bostik P. Czech Honeydew Honeys-A Potential Source of Local Medical Honey with Strong Antimicrobial Activity. Pharmaceuticals (Basel) 2024; 17:840. [PMID: 39065691 PMCID: PMC11279865 DOI: 10.3390/ph17070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
An increasing resistance of microbes to antibiotics, the emergence of multidrug-resistant and extremely resistant strains, and the long time needed to develop new antibiotics are driving the search for additional sources of antibacterial agents. The aim of the study was to compare the efficacy of Czech honeys with already available pharmaceutical agents containing medicinal honey, and to perform basic biochemical analysis of Czech samples, including detection of undesirable chemical substances. The results showed strong antibacterial activity of Czech honeydew honeys compared to the control group, especially against G+ pathogens, with an average MIC of 9.44% compared to 17.54%, and comparable activity against G- of 16.48% versus 16.66%. In addition to the strong antibacterial activity, this study confirmed the safety and quality of Czech honeys and helped to select the character of a possible source for in vivo testing and subsequent clinical trials.
Collapse
Affiliation(s)
- Ludovit Pudelka
- Department of Emergency Medicine and Military General Medicine, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czech Republic;
| | - Radek Sleha
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czech Republic; (S.J.); (P.B.)
| | - Sylva Janovska
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czech Republic; (S.J.); (P.B.)
| | - Vera Radochova
- Animal Laboratory, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czech Republic;
| | - Pavel Bostik
- Department of Epidemiology, Military Faculty of Medicine, University of Defence, 500 01 Hradec Kralove, Czech Republic; (S.J.); (P.B.)
- Department of Medical Microbiology, University Hospital in Hradec Kralove, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Nagy-Radványi L, Balázs VL, Kocsis B, Csikós E, Ángyán VD, Szabó P, Biró V, Kocsis M, Farkas Á. Antibacterial activity of Hungarian varietal honeys against respiratory pathogens as a function of storage time. Sci Rep 2024; 14:10200. [PMID: 38702397 PMCID: PMC11068765 DOI: 10.1038/s41598-024-60961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Today, antibiotic therapies that previously worked well against certain bacteria due to their natural sensitivity, are becoming less effective. Honey has been proven to inhibit the biofilm formation of some respiratory bacteria, however few data are available on how the storage time affects the antibacterial effect. The activity of black locust, goldenrod, linden and sunflower honeys from three consecutive years (2020, 2021, 2022) was analyzed in 2022 against Gram-negative (Haemophilus influenzae, H. parainfluenzae, Pseudomonas aeruginosa) and Gram-positive (Streptococcus pneumoniae) bacteria using in vitro microbiological methods. After determining the physicochemical parameters of honey, broth microdilution was applied to determine the minimum inhibitory concentration of each honey type against each bacterium, and crystal violet assay was used to test their antibiofilm effect. The possible mechanism of action was explored with membrane degradation test, while structural changes were illustrated with scanning electron microscopy. Honeys stored for one or two years were darker than fresh honeys, while older honeys had significantly lower antibacterial activity. The most remarkable inhibitory effect was exerted by linden and sunflower honeys, and P. aeruginosa proved to be the most resistant bacterium. Based on our results, honey intended for medicinal purposes should be used as fresh as possible during a treatment.
Collapse
Affiliation(s)
- Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Viktória L Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, 7624, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Virág D Ángyán
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Péter Szabó
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, 7624, Pécs, Hungary
| | - Viktória Biró
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624, Pécs, Hungary.
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624, Pécs, Hungary
| |
Collapse
|
9
|
Osés SM, Rodríguez C, Valencia O, Fernández-Muiño MA, Sancho MT. Relationships among Hydrogen Peroxide Concentration, Catalase, Glucose Oxidase, and Antimicrobial Activities of Honeys. Foods 2024; 13:1344. [PMID: 38731715 PMCID: PMC11083411 DOI: 10.3390/foods13091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Honey is a natural sweetener made by bees that exhibits antimicrobial activity, mainly related to its H2O2 content. The aim of this work was to research the H2O2 concentration of 24 Spanish honeys from different botanical origins, studying their possible correlation with glucose oxidase (GOx), catalase (CAT), and anti-Staphylococcus aureus activities (minimal inhibition concentration (MIC), minimal bactericidal concentration (MBC), and percentage of inhibition at 5% (w/v) honey against Staphylococcus aureus), as well as possible correlations among all the analyzed parameters. The results showed that the H2O2 concentration did not depend on the botanical origin of the honeys. There were neither correlations between the H2O2 concentration and the activities of GOx and CAT, nor between GOx and antimicrobial activity. However, CAT and antimicrobial activities were positively correlated. Therefore, CAT could be successfully used as a possible marker of the antimicrobial activity of honeys against Staphylococcus aureus. Furthermore, a linear regression model has been fitted to explain the antimicrobial activity from CAT and GOx activity and H2O2 concentration. Although H2O2 is one of the compounds involved in honey's antibacterial activity, this capacity also strongly depends on other honey components (such as low water activity, acidity, osmolarity, and phenolic compounds). The very high anti-Staphylococcus aureus activity exhibited by all samples could be interesting for commercial honey-based formulations also helping to promote local beekeeping.
Collapse
Affiliation(s)
- Sandra M. Osés
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Pza. Misael Bañuelos s/n, 09001 Burgos, Spain; (C.R.); (M.A.F.-M.); (M.T.S.)
| | - Carlos Rodríguez
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Pza. Misael Bañuelos s/n, 09001 Burgos, Spain; (C.R.); (M.A.F.-M.); (M.T.S.)
| | - Olga Valencia
- Department of Mathematics and Computation, Universidad de Burgos (University of Burgos), Pza. Misael Bañuelos s/n, 09001 Burgos, Spain;
| | - Miguel A. Fernández-Muiño
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Pza. Misael Bañuelos s/n, 09001 Burgos, Spain; (C.R.); (M.A.F.-M.); (M.T.S.)
| | - M. Teresa Sancho
- Department of Biotechnology and Food Science, Universidad de Burgos (University of Burgos), Pza. Misael Bañuelos s/n, 09001 Burgos, Spain; (C.R.); (M.A.F.-M.); (M.T.S.)
| |
Collapse
|
10
|
Boekema BKHL, Chrysostomou D, Ciprandi G, Elgersma A, Vlig M, Pokorná A, Peters LJF, Cremers NAJ. Comparing the antibacterial and healing properties of medical-grade honey and silver-based wound care products in burns. Burns 2024; 50:597-610. [PMID: 37940425 DOI: 10.1016/j.burns.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Burns are a major global healthcare concern, often complicated by the presence of bacteria such as Pseudomonas aeruginosa in the wounds. Silver-based dressings are commonly used in the treatment of burns but can cause skin irritation and delay healing time. Medical-grade honey (MGH) provides an interesting alternative. This study investigated the antimicrobial effects and possible cytotoxicity of L-Mesitran Soft (MGH-gel) and its individual components, Medihoney (Manuka), Flammazine (silver sulphadiazine), and silver nitrate (AgNO3) in an ex vivo human burn wound model. Bacterial survival and wound healing parameters, including re-epithelialization and keratinocyte proliferation were assessed. L-Mesitran, Flammazine, and AgNO3 reduced P. aeruginosa numbers below detection levels. L-Mesitran Soft exhibited a significantly stronger antimicrobial effect compared to Medihoney. The individual components of L-Mesitran contributed significantly to its antibacterial efficacy, thus suggesting synergistic activities. Moreover, L-Mesitran, Flammazine, and AgNO3 slightly inhibited re-epithelialization while Medihoney treatment resulted in a complete lack of re-epithelialization and keratinocyte proliferation. Furthermore, clinical cases illustrated the effectiveness of MGH therapy in infected burns. Overall, L-Mesitran Soft had similar effects as silver-based products on bacterial load and epidermal regeneration, but outperformed Medihoney. Therefore, supplemented MGH could be used as an effective alternative to silver-based dressings for P. aeruginosa-infected burns.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands; Plastic, Reconstructive and Hand Surgery, AUMC, Amsterdam, the Netherlands
| | - Daniela Chrysostomou
- Wound Clinic Health@45, Linksfield Road 45, Dowerglen, Johannesburg 1612, South Africa; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Guido Ciprandi
- Bambino Gesu' Children's Hospital, Research Institute Division of Plastic and Maxillofacial Surgery, Department of Surgery, Sant' Onofrio Square 4, 00165 Rome, Italy
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands
| | - Andrea Pokorná
- Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic; College of Polytechnics Jihlava, Jihlava, Czech Republic
| | - Linsey J F Peters
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, the Netherlands
| | - Niels A J Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, the Netherlands; Department of Gynecology and Obstetrics, Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
11
|
Scepankova H, Majtan J, Estevinho LM, Saraiva JA. The High Pressure Preservation of Honey: A Comparative Study on Quality Changes during Storage. Foods 2024; 13:989. [PMID: 38611294 PMCID: PMC11011302 DOI: 10.3390/foods13070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
In commercially available honey, the application of a heat treatment to prevent spoilage can potentially compromise its beneficial properties and quality, and these effects worsen with extended storage. The high-pressure processing (HPP) of honey is being explored, but its long-term impact on honey quality has not been characterised yet. This study evaluated the effects of HPP and thermal processing on the microbial load, physicochemical quality (i.e., hydroxymethylfurfural content and diastase activity), and antioxidant capacity of honey after treatment and following extended storage (6, 12, and 24 months) at 20 °C. Pasteurization (78 °C/6 min) effectively eliminated the microorganisms in honey but compromised its physicochemical quality and antioxidant activity. HPP initially showed sublethal inactivation, but storage accelerated the decrease in yeasts/moulds and aerobic mesophiles in honey (being <1 log CFU/g after 24 months of storage) compared to unprocessed honey and honey thermally treated under mild conditions (55 °C/15 min). The physicochemical characteristics of the quality of HPP-treated honey and raw unprocessed honey did change after long-term storage (24 months) but remained within regulatory standards. In conclusion, HPP emerged as a more suitable and safe preservation method for Apis mellifera honey, with a minimal risk of a loss of antioxidant activity compared to traditional industrial honey pasteurization.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (J.A.S.)
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-252 Bragança, Portugal
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia;
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Leticia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-252 Bragança, Portugal
- SusTEC, Associate Laboratory for Sustainability and Technology in Mountains Regions, Polytechnic Institute of Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (J.A.S.)
| |
Collapse
|
12
|
Koloh R, Balázs VL, Nagy-Radványi L, Kocsis B, Kerekes EB, Kocsis M, Farkas Á. Chestnut Honey Is Effective against Mixed Biofilms at Different Stages of Maturity. Antibiotics (Basel) 2024; 13:255. [PMID: 38534690 DOI: 10.3390/antibiotics13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The irresponsible overuse of antibiotics has increased the occurrence of resistant bacterial strains, which represents one of the biggest patient safety risks today. Due to antibiotic resistance and biofilm formation in bacteria, it is becoming increasingly difficult to suppress the bacterial strains responsible for various chronic infections. Honey was proven to inhibit bacterial growth and biofilm development, offering an alternative solution in the treatment of resistant infections and chronic wounds. Our studies included chestnut honey, valued for its high antibacterial activity, and the bacteria Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and S. epidermidis, known to form multi-species biofilm communities. Minimum inhibitory concentrations (MIC) of chestnut honey were determined for each bacterial strain. Afterwards, the mixed bacterial biofilms were treated with chestnut honey at different stages of maturity (incubation times: 2, 4, 6, 12, 24 h). The extent of biofilm inhibition was measured with a crystal violet assay and demonstrated by scanning electron microscopy (SEM). As the incubation time increased and the biofilm became more mature, inhibition rates decreased gradually. The most sensitive biofilm was the combination MRSA-S. epidermidis, with a 93.5% inhibition rate after 2 h of incubation. Our results revealed that chestnut honey is suitable for suppressing the initial and moderately mature stages of mixed biofilms.
Collapse
Affiliation(s)
- Regina Koloh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Viktória L Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Marianna Kocsis
- Department of Agricultural Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
13
|
Grabek-Lejko D, Hyrchel T. The Antibacterial Properties of Polish Honey against Streptococcus mutans-A Causative Agent of Dental Caries. Antibiotics (Basel) 2023; 12:1640. [PMID: 37998842 PMCID: PMC10669562 DOI: 10.3390/antibiotics12111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Streptococcus mutans is considered the main pathogen responsible for dental caries, one of the major infectious diseases, affecting more than 4 billion people worldwide. Honey is a natural product with well-known antibacterial potential against several human pathogens. The aim of the study was to evaluate the antibacterial efficacy of Polish honey against S. mutans and analyze the role of some bioactive substances on its antibacterial action. The antibacterial potential of different honey varieties (goldenrod, buckwheat, honeydew, and lime) was analyzed using a microdilution assay. Manuka and artificial honey were used as controls. The content of GOX, hydrogen peroxide, total polyphenols, and antioxidant potential was assayed in honey. The influence of catalase and proteinase K on antibacterial activity as well as antibiofilm action was also determined. The strongest antibacterial activity was observed for buckwheat, honeydew, and manuka honey, which were also characterized by the highest antioxidant activity and polyphenols content. Catalase treatment decreases the antibacterial activity of honey, while proteinase K treatment influences the antibacterial potential of honey slightly less. Obtained results suggest that honey can be a good natural product against S. mutans, and hydrogen peroxide was identified as a crucial contributor to its antimicrobial action.
Collapse
Affiliation(s)
- Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
14
|
Huang J, Sun R, Cao X, Hu N, Xia B, Yi Y, Zhou S, Zhou H. Preservation effect of Lactobacillus plantarum O 2 fermentation supernatant on postharvest pepper and its induced resistance to Phytophthora capsici. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108098. [PMID: 37879128 DOI: 10.1016/j.plaphy.2023.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Research of lactic acid bacteria and its metabolites on biological preservatives becomes a hot topic. Lactobacillus plantarum O2, with good inhibition on Phytophthora capsici (P. capsici), was isolated from the pickle. In this study, the effects of L. plantarum O2 fermentation supernatant (FS) on pepper postharvest preservation and its induced resistance to P. capsici were studied. Results showed that weight loss rate, rot index, respiration rate, relative electrical conductivity, loss of chlorophyll content and VC of pepper in FS treatment group were decreased by 18 %, 64 %, 15 %, 26 %, 33 % and 20 % compared with blank control (BC) after 20 d storage. L* and b*-value of pepper in FS group were lower than those in the BC group. In addition, the damage-induced resistance test found that the infection rate in the FS group was reduced by 39 %, compared with CK2 after 12 d storage. Moreover, phenylalanine ammonia-lyase activity, peroxidase activity, polyphenol oxidase activity, proline content, total phenol content and flavonoid content increased by 14 %, 9 %, 30 %, 8 %, 8 % and 9 %, respectively, while malondialdehyde content decreased by 13 %. These results indicated that FS treatment showed good fresh-keeping effects on postharvest pepper. It could enhance the tolerance of pepper under stress by improving defensive enzyme activities, slowing down the damage caused by P. capsici, and inducing pepper resistance to P. capsici. Therefore, FS can be used as a microbial source bio-preservative for postharvest pepper.
Collapse
Affiliation(s)
- Jiaoli Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China; College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Ruolan Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Xi Cao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Nan Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China.
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Youjin Yi
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China.
| | - ShanWeihong Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Hongli Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| |
Collapse
|
15
|
Bucekova M, Godocikova J, Gueyte R, Chambrey C, Majtan J. Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys. PLoS One 2023; 18:e0293730. [PMID: 37906561 PMCID: PMC10617706 DOI: 10.1371/journal.pone.0293730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Honey is an attractive natural product with various health benefits. A few honey-based commercial products have successfully been adopted in clinics to improve wound healing. However, screening of other potential sources of medical-grade honey, in particular, honeys from territories with high floral species diversity and high endemicity, is highly needed. The goal of this study was to characterise the physicochemical and antibacterial properties of New Caledonian honey samples (n = 33) and to elucidate the major mechanism of their antibacterial action. Inhibitory antibacterial activity of honeys against Staphylococcus aureus and Pseudomonas aeruginosa was determined with a minimum inhibitory concentration (MIC) assay. Enzymatic activity of glucose oxidase and the content of hydrogen peroxide (H2O2) in honey samples were analysed. Furthermore, total protein content of honeys together with their electrophoretic protein profiles were also determined in the study. The antibacterial efficacy of 24% of the tested honey samples was slightly superior to that of manuka honey with unique manuka factor 15+. The antibacterial activity of catalase-treated honey sample solutions was significantly reduced, suggesting that H2O2 is a key antibacterial compound of diluted honeys. However, the kinetic profiles of H2O2 production in most potent honeys at a MIC value of 6% was not uniform. Under the experimental conditions, we found that a H2O2 concentration of 150 μM in diluted honeys is a critical concentration for inhibiting the growth of S. aureus. In contrast, 150 μM H2O2 in artificial honey solution was not able to inhibit bacterial growth, suggesting a role of phytochemicals in the antibacterial activity of natural honey. In addition, the continuous generation of H2O2 in diluted honey demonstrated an ability to counteract additional bacteria in re-inoculation experiments. In conclusion, the tested New Caledonian honey samples showed strong antibacterial activity, primarily based on H2O2 action, and therefore represent a suitable source for medical-grade honey.
Collapse
Affiliation(s)
- Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Romain Gueyte
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Céline Chambrey
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
16
|
Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the Potential of Bee-Derived Antioxidants for Maintaining Oral Hygiene and Dental Health: A Comprehensive Review. Antioxidants (Basel) 2023; 12:1452. [PMID: 37507990 PMCID: PMC10375990 DOI: 10.3390/antiox12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Honey bee products comprise various compounds, including honey, propolis, royal jelly, bee pollen, bee wax and bee venom, which have long been recognized for their pharmacological and health-promoting benefits. Scientists have discovered that periodontal disorders stem from dental biofilm, an inflammatory response to bacterial overgrowth produced by dysbiosis in the oral microbiome. The bee products have been investigated for their role in prevention of oral diseases, which are attributed to a myriad of biologically active compounds including flavonoids (pinocembrin, catechin, caffeic acid phenethyl ester (CAPE) and galangin), phenolic acids (hydroxybenzoic acid, hydroxycinnamic acid, p-coumaric, ellagic, caffeic and ferulic acids) and terpenoids. This review aims to update the current understanding of role of selected bee products, namely, honey, propolis and royal jelly, in preventing oral diseases as well as their potential biological activities and mechanism of action in relation to oral health have been discussed. Furthermore, the safety of incorporation of bee products is also critically discussed. To summarize, bee products could potentially serve as a therapy option for people suffering from a variety of oral disorders.
Collapse
Affiliation(s)
- Poonam Choudhary
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Surya Tushir
- Department of Agricultural Structures and Environment Control, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Manju Bala
- Department of Food Grain and Oilseed Processing, ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141004, India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana 141004, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | | | - Parminder Kumar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Diksha Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| |
Collapse
|
17
|
Faúndez X, Báez ME, Martínez J, Zúñiga-López MC, Espinoza J, Fuentes E. Evaluation of the generation of reactive oxygen species and antibacterial activity of honey as a function of its phenolic and mineral composition. Food Chem 2023; 426:136561. [PMID: 37321119 DOI: 10.1016/j.foodchem.2023.136561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
The antibacterial activity (ABA) of honey is associated with the generation of reactive oxygen species (ROS), where polyphenols (PFs) play a key role due to their pro-oxidant action modulated by metallic cations. In this work, the contents of PFs, H2O2, OH radicals, Cu, Fe, Mn, Zn, and ABA against Staphylococcus epidermidis and Pseudomonas aeruginosa were determined in honeys from central Chile. Then, their relationships were evaluated through partial least squares regression. The average contents of phenolic acids, flavonoids and metals in honey ranged from 0.4 to 4 μg/g, 0.3-1.5 μg/g and 3-6 μg/g, respectively. All honeys showed accumulation of H2O2 (1-35 μg/g) and OH radicals. The PLS showed that gallic acid, p-coumaric acid, chrysin, kaempferol, Fe, and Mn stimulate the generation of ROS. Quercetin, Cu, and Zn showed marginal antioxidant effects. PFs favor the ABA of honey against both bacteria and H2O2 against S. epidermidis.
Collapse
Affiliation(s)
- Ximena Faúndez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jessica Martínez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - María C Zúñiga-López
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jeannette Espinoza
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Łyskowski A, Miłek M, Dżugan M. Assessing the Antimicrobial Properties of Honey Protein Components through In Silico Comparative Peptide Composition and Distribution Analysis. Antibiotics (Basel) 2023; 12:antibiotics12050830. [PMID: 37237732 DOI: 10.3390/antibiotics12050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The availability of reference proteomes for two honeybee species (Apis mellifera and Apis cerana cerana) opens the possibility of in silico studies of diverse properties of the selected protein fractions. The antimicrobial activity of honey is well established and related to its composition, including protein components. We have performed a comparative study on a selected fraction of the honey-related proteins, as well as other bee-secreted proteins, utilizing a publicly available database of established and verified peptides with antimicrobial properties. Using a high-performance sequence aligner (diamond), protein components with antimicrobial peptide sequences were identified and analyzed. The identified peptides were mapped on the available bee proteome sequences, as well as on model structures provided by the AlphaFold project. The results indicate a highly conserved localization of the identified sequences within a limited number of the protein components. Putative antimicrobial fragments also show high sequence-based similarity to the multiple peptides contained in the reference databases. For the 2 databases used, the lowest calculated percentage of similarity ranged from 30.1% to 32.9%, with a respective average of 88.5% and 79.3% for the Apis mellifera proteome. It was revealed that the antimicrobial peptides (AMPs) site is a single, well-defined domain with potentially conserved structural features. In the case of the examples studied in detail, the structural domain takes the form of the two β-sheets, stabilized by α-helices in one case, and a six-β-sheet-only domain localized in the C-terminal part of the sequence, respectively. Moreover, no significant differences were found in the composition of the antibacterial fraction of peptides that were identified in the proteomes of both species.
Collapse
Affiliation(s)
- Andrzej Łyskowski
- Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland
| |
Collapse
|
19
|
Balázs VL, Nagy-Radványi L, Bencsik-Kerekes E, Koloh R, Szabó D, Kocsis B, Kocsis M, Farkas Á. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023; 11:microorganisms11020509. [PMID: 36838474 PMCID: PMC9958606 DOI: 10.3390/microorganisms11020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Honey is known as an alternative remedy for the treatment of wounds. To evaluate the potential of five Hungarian honey types against wound-associated bacteria, in vitro microbiological assays were conducted on Pseudomonas aeruginosa, Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA). Minimum inhibitory concentration (MIC) was determined with the broth macrodilution method, and biofilm degradation capacity was tested with a crystal violet assay. To understand the underlying mechanisms, the effects of honey treatments were assessed on bacterial membrane integrity and quorum sensing (QS). The highest antibacterial activity, indicated by the lowest MIC values, as well as the highest biofilm inhibition rates and membrane disruption, was displayed by chestnut and linden honeys. The most sensitive bacterium was S. epidermidis. Bacterial membrane degradation took place 40 min after treatment with honey solutions of at least a 40% concentration. Each honey sample exhibited anti-QS activity, which was most pronounced in the case of chestnut honey. It was concluded that the antibacterial, biofilm-inhibiting and anti-QS activities of linden and chestnut honeys were superior to those of acacia, goldenrod and milkweed honeys. In addition to the floral source, the antibacterial effect of honey is influenced by the microbial species treated. The use of honey in wound treatment can be justified by its diverse antibacterial mechanisms.
Collapse
Affiliation(s)
- Viktória L. Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Lilla Nagy-Radványi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Erika Bencsik-Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Regina Koloh
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Dina Szabó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
20
|
Badr LK, El Asmar R, Hakim S, Saad R, Merhi R, Zahreddine A, Muwakkit S. The efficacy of honey or olive oil on the severity of oral mucositis and pain compared to placebo (standard care) in children with leukemia receiving intensive chemotherapy: A randomized controlled trial (RCT). J Pediatr Nurs 2023; 70:e48-e53. [PMID: 36792398 DOI: 10.1016/j.pedn.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Oral mucositis (OM) is a significant complication occurring in approximately 40 to 80% of patients receiving chemotherapy regimens. Although a wide variety of agents have been tested to prevent OM or reduce its severity, none have provided conclusive evidence. OBJECTIVES To determine the efficacy of honey or olive oil on the severity and OM pain in children with leukemia and suffering from OM compared to placebo (standard care) and, to assess which of the two interventions is more beneficial. METHODS A single blind randomized controlled study (RCT) was used to evaluate the effect of Manuka honey or olive oil, in the treatment of chemotherapy-related OM in 42 children with leukemia. The primary outcome was the severity of mucositis, using the World Health Organization (WHO) scale and the secondary outcome was the pain assessed using the Visual analogue scale (VAS). RESULTS Children who received the honey had less severe OM (assessed on the (WHO) scale), p = 0.00 and less pain (assessed on the VAS scale), p = 0.00, compared to the control group. Children who received the olive oil had less pain than the control group, p = 0.00), although not lower than the honey group. CONCLUSION Manuka honey or olive oil can be used as alternative therapies by nurses to children with leukemia and suffering from OM, especially in low and middle-income countries where more expensive therapies may not be available or economical. PRACTICE IMPLICATIONS Pediatric nurses may recommend Manuka honey to treat OM in children with leukemia as it is safe and inexpensive compared to other treatment modalities.
Collapse
Affiliation(s)
- Lina Kurdahi Badr
- Professor, American University of Beirut, Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon.
| | - Rebecca El Asmar
- Clinical Nurse Specialist, Oncology, American University of Beirut Medical center Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon.
| | - Sarah Hakim
- Clinical Educator-Clinical and Professional development Center, American University of Beirut Medical Center, Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon
| | - Rima Saad
- Clinical nurse specialist, American University of Beirut, Hariri School of Nursing, Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon
| | - Roni Merhi
- American University of Beirut Medical center, Riad El Solh, PO Box: 11 0236, Beirut, 1107 2020, Lebanon
| | - Ammar Zahreddine
- Case Manager, Hematology, American University of Beirut Medical center Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon.
| | - Samar Muwakkit
- Professor of Clinical Specialty, American University Of Beirut Medical center, Riad El Solh, PO Box: 11 0236, Beirut 1107 2020, Lebanon.
| |
Collapse
|
21
|
Kunat-Budzyńska M, Rysiak A, Wiater A, Grąz M, Andrejko M, Budzyński M, Bryś MS, Sudziński M, Tomczyk M, Gancarz M, Rusinek R, Ptaszyńska AA. Chemical Composition and Antimicrobial Activity of New Honey Varietals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032458. [PMID: 36767825 PMCID: PMC9915547 DOI: 10.3390/ijerph20032458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Michał Budzyński
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Maciej S. Bryś
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Sudziński
- Urban Artistic Apiary, Centre for the Meeting of Cultures, Plac Teatralny 1 Str., 20-029 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2a Str., 15-230 Białystok, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| |
Collapse
|
22
|
CHETTOUM A, FEKNOUS N, BOUMENDJEL M, MEKHANCHA DE, BOUDIDA Y, SEDARI A, BERREDJEM A, ATI H, ZAIDI K, BOUMENDJEL A, MESSARAH M. Biological, physicochemical and antibacterial properties of pure honey harvested at the municipality of Seraïdi (Annaba, north east of Algeria). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.41022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | | | - Djamel-Eddine MEKHANCHA
- Brothers Mentouri Constantine 1 University, Algeria; Salah Boubnider Constantine 3 University, Algeria
| | | | | | | | - Hanène ATI
- Chadli Bendjedid El-Tarf University, Algeria
| | | | | | | |
Collapse
|
23
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
24
|
Hossain ML, Hammer K, Lim LY, Hettiarachchi D, Locher C. Optimisation of an agar overlay assay for the assessment of the antimicrobial activity of topically applied semi-solid antiseptic products including honey-based formulations. METHODS IN MICROBIOLOGY 2022; 202:106596. [DOI: 10.1016/j.mimet.2022.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
25
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Zhang L, Yin Y, Simons A, Francisco NM, Wen F, Patil S. Use of Honey in the Management of Chemotherapy-Associated Oral Mucositis in Paediatric Patients. Cancer Manag Res 2022; 14:2773-2783. [PMID: 36160037 PMCID: PMC9507278 DOI: 10.2147/cmar.s367472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Oral mucositis (OM) is a critical condition during chemotherapy in both adult and child cancer patients. Paediatric cancer patients have a higher prevalence of OM than adult cancer patients. Honey is a natural product that has been reported to have the best tissue healing properties. The present mini-review focused on the evaluation of the effectiveness of oral care with honey products in the treatment and prophylaxis of chemotherapy-induced OM in child patients. Methods A network of electronic English databases including CINAHL, CENTRAL, EMBASE, MEDLINE and PubMed, were used for primary search from April 2010 to April 2020. We have also considered data collected from ClinicalTrials.gov, Web of Science and Google Scholar. PRISMA software was used to build collective data. Controlled trials were included in this review and were critically appraised by Down and Black. The narrative synthesis was performed. Results A total number of 346 data of children and adolescents with cancer were considered in this short review. All patients were from three randomized controlled trial articles and two were non-randomised controlled trial articles. Based on the evidence so far revealed, honey may show an effect in the treatment and prophylaxis of OM. The analysis of collected data revealed that the probability value P<0.05. The honey enhanced recovery time and severity of OM were significantly compared with those without honey treatment receiving group of pediatric patients. Conclusion Honey not only has been shown to have the capability for healing injured tissues but it is also a more economical treatment, and it has fewer side effects compared to synthetic drugs. Honey or honey products can prevent chemotherapy-induced OM (CIOM) and be the best treatment to grade I, II and III CIOM. However, it is disappointing that studies involving children as patients were few, and limited data available so far. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/wTsFRk9xwGo
Collapse
Affiliation(s)
- Luyang Zhang
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yan Yin
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Alison Simons
- Post Qualifying Practice Department, Birmingham City University, Birmingham, UK
| | - Ngiambudulu M Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda, 3635, Angola
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Sandip Patil
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China.,Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
27
|
Antibacterial and Antibiofilm Effect of Honey in the Prevention of Dental Caries: A Recent Perspective. Foods 2022; 11:foods11172670. [PMID: 36076855 PMCID: PMC9455747 DOI: 10.3390/foods11172670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
The successful application of honey in wound care management has been achieved due to honey’s potent antibacterial effects, characterised by its multifactorial action. Impressive clinical efficacy has ignited its further use in diverse clinical disciplines, including stomatology. Indeed, there is increasing usage of honey in dental medicine as a preventive or therapeutic remedy for some periodontal diseases mainly associated with bacteria, such as dental caries, gingivitis and mucositides. Dental caries is undoubtedly a major oral health problem worldwide, with an increasing tendency of incidence. The purpose of this perspective review is to describe the recent progress in the laboratory and clinical use of honey in the prevention of dental caries, with emphasis on the antibacterial and antibiofilm effects of honey. The role of honey in the cariogenic process is also discussed. In addition, the quality of honey and the urgent in vitro evaluation of its antibacterial/antibiofilm properties before clinical use are highlighted. Findings based on data extracted from laboratory studies demonstrate the pronounced antibacterial effect of different honeys against a number of periodontal pathogens, including Streptococcus mutans. Although the promising antibiofilm effects of honey have been reported mainly against S. mutans, these results are limited to very few studies. From a clinical point of view, honey significantly reduces dental plaque; however, it is not superior to the conventional agent. Despite the positive in vitro results, the clinical effectiveness of honey in the prevention of dental caries remains inconclusive since further robust clinical studies are needed.
Collapse
|
28
|
Glucose oxidase as an important yet overlooked factor determining the antibacterial activity of bee pollen and bee bread. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
30
|
Wu J, Han B, Zhao S, Zhong Y, Han W, Gao J, Wang S. Bioactive characterization of multifloral honeys from Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Res Int 2022; 161:111808. [DOI: 10.1016/j.foodres.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
|
31
|
Glucose Oxidase and Catalase Activities in Honey Samples from the Southwestern Region of Saudi Arabia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The activity of honey enzymes are affected by floral and geographical origins, climate conditions, honeybee species, health and nutrition. This article investigated the effect of floral and geographical origins on the activity of glucose oxidase (GOx) and catalase (CAT) enzymes in honey samples from the southwestern region of Saudi Arabia. Moreover, the moisture, total sugars, pH and conductivity were measured as quality parameters. The floral origin of the honey samples was determined microscopically while the quality parameters were measured according to the methods of international honey commission. The activity of the honey enzyme was determined following the instructions of the Megazyme International kits. The obtained results were statistically analyzed by the statistical Package for Social Sciences (SPSS, v.20). The GOx activity of the Acacia, Ziziphus and polyfloral honey samples of the Asir region were (5.19 ± 2.33 U/g), (4.01 ± 1.17 U/g) and (5.69 ± 1.67 U/g), respectively. The Acacia, Ziziphus and polyfloral honey samples from the Jazan region had GOx activities of (6.85 ± 0.47 U/g), (10.48 ± 9.22 U/g) and (5.31 ± 2.7 U/g), respectively. The geographical origin significantly affected the GOx activity of Ziziphus honey (p-value = 0.005) and the GOx activity of the Ziziphus honey was significantly more than that of the polyfloral honey of the Jazan region (p-value = 0.009). With regard to the CAT activity in Asir region honey samples, the mean values of the Acacia, Ziziphus and polyfloral honeys were (2.89 ± 1.08 U/g), (3.58 ± 1.59 U/g) and (2.84 ± 1.24 U/g), respectively. The mean values of the CAT activity in the Jazan honey samples were Acacia (4.35 ± 1.01 U/g), Ziziphus (3.94 ± 0.04 U/g) and polyfloral (3.43 ± 0.67 U/g). The geographical origin significantly affected the CAT activity in Acacia honey (p-value = 0.014). The geographical and floral origins had significant effects on the activity of the honey GOx and CAT enzymes.
Collapse
|
32
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics (Basel) 2022; 11:antibiotics11070975. [PMID: 35884229 PMCID: PMC9312033 DOI: 10.3390/antibiotics11070975] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Honey, a naturally sweet and viscous substance is mainly produced by honeybees (Apis mellifera) from flower nectar. Honey exerts a plethora of biological and pharmacological activities, namely, antioxidant, antimicrobial and anti-inflammatory activity, because of the presence of an extensive variety of bioactive compounds. The antibacterial activity is one of the most reported biological properties, with many studies demonstrating that honey is active against clinically important pathogens. As a result, beside honey’s widespread utilization as a common food and flavouring agent, honey is an attractive natural antimicrobial agent. However, the use of neat honey for therapeutic purposes poses some problems, for instance, its stickiness may hamper its appeal to consumers and health care professionals, and the maintenance of an adequate therapeutic concentration over a sufficient timeframe may be challenging due to honey liquidity and leakage. It has motivated researchers to integrate honey into diverse formulations, for example, hydrogels, dressings, ointments, pastes and lozenges. The antibacterial activity of these formulations should be scientifically determined to underscore claims of effectiveness. Some researchers have made efforts to adapt the disc carrier and suspension test to assess the antimicrobial activity of topical products (e.g., silver-based wound dressings). However, there is currently no established and validated method for determining the in vitro antimicrobial potential of natural product-based formulations, including those containing honey as the active principle. Against the backdrop of a brief discussion of the parameters that contribute to its antibacterial activity, this review provides an outline of the methods currently used for investigating the antibacterial activity of neat honey and discusses their limitations for application to honey-based formulations.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
- Correspondence:
| |
Collapse
|
33
|
Chemical Composition, Antioxidant and Antimicrobial Activity of Some Types of Honey from Banat Region, Romania. Molecules 2022; 27:molecules27134179. [PMID: 35807424 PMCID: PMC9268046 DOI: 10.3390/molecules27134179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/27/2023] Open
Abstract
Honey is a natural product with multiple health benefits. The paper presents the chemical characterization and the antioxidant and antimicrobial potential of ten types of honey (knotweed, linden, wild cherry, acacia, honeydew, oilseed rape, sunflower, phacelia, plain polyflora and hill polyflora) from the Banat region, Romania. We studied the water content, dry matter, impurities, acidity and pH of honey. We also determined the content of reducing sugar, minerals and flavonoids and the total phenolic content. All honey samples analysed showed good nutritional characteristics according to the standard codex for honey. From the analysis of the mineral content of the honey samples, we observed a variability in the macro and microminerals, influenced by the botanical origin, ranging between 0.25% (wild cherry honey) and 0.54% (honeydew). The toxic metals’ (Cd and Pb) levels met the standard for almost all samples analysed except for knotweed. The flavonoid content of the samples ranged from 9.29 mg QE/100 g for wild cherry honey to 263.86 mg QE/100 g for linden honey, and for polyphenols between 177.6 mgGAE/100 g for acacia honey and 1159.3 mgGAE/100 g for honeydew. The best antioxidant capacity was registered in the case of linden honey (79.89%) and honeydew (79.20%) and the weakest in acacia (41.88%) and wild cherries (50.4%). All studied honey samples showed antimicrobial activity, depending on the type of honey, concentration and strain analysed. The novelty of this study is given by the complex approach of the study of honey quality, both from the perspective of chemical attributes and the evaluation of the antimicrobial potential on specific strains in correlation with the botanical and geographical origin of the analyzed area.
Collapse
|
34
|
Ben Amor S, Mekious S, Allal Benfekih L, Abdellattif MH, Boussebaa W, Almalki FA, Ben Hadda T, Kawsar SMA. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070927. [PMID: 35888017 PMCID: PMC9321394 DOI: 10.3390/life12070927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 01/22/2023]
Abstract
Despite the challenging conditions in the pre-Saharan areas of Algeria, such as weak plant cover and a harsh climate, beekeeping is being developed and spread. In the present work, honey samples collected from ten locations in the El Oued region were examined during the spring of 2021. A melissopalynological analysis was carried out, followed by a floristic investigation. The 10 honey samples were also investigated for their physicochemical properties and antioxidant and antibacterial activity against five strains: Escherichia coli, Staphylococcus aureus, Bacillus subtilus, Listeria innocua, and Micrococcus luteus. The floristic analysis found 65 species belonging to 33 botanical families, with a dominance of the Asteraceae family accounting for 18.461% of the total. The melissopalynological study revealed only one monofloral honey (Ziziphus lotus), whereas the nine others were multi-floral. The honey’s color changed from light to dark amber, and most tested honey was of high quality, fulfilling international criteria. The total phenol and flavonoid contents varied considerably amongst the various honey samples. Furthermore, LC-MS-MS phenolic profile analysis identified the presence of 20 chemicals, of which only three phenols were found in all honey types. Antioxidant capacity analyzed with FRAP test and antiradical activities against DPPH differed from one honey sample to another. Moreover, a significant correlation was recorded between the antioxidant activity, honey’s color, polyphenol, and flavonoid contents. The S. aureus strain was the most sensitive regarding honey antibacterial activity, while M. luteus and B. subtilis strains were only moderately sensitive.
Collapse
Affiliation(s)
- Safia Ben Amor
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
- Correspondence: (S.B.A.); (S.M.A.K.)
| | - Scherazad Mekious
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
- Faculty of Nature Sciences and Life, Ziane Achour University, Djelfa 17000, Algeria
| | - Leila Allal Benfekih
- Laboratory for Research on Medicinal and Aromatic Plants, Faculty of Nature Sciences and Life, Saad Dahlab University, Blida 1, Route de Soumâa, Blida 09000, Algeria; (S.M.); (L.A.B.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Walid Boussebaa
- Scientific and Technical Research Center in Physico-Chemical Analysis, Headquarters Ex-Pasna Industrial Zone, Bou-Ismail CP, Tipaza 42004, Algeria;
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (F.A.A.); (T.B.H.)
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI, BP 717, Oujda 60000, Morocco
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
- Correspondence: (S.B.A.); (S.M.A.K.)
| |
Collapse
|
35
|
Sakač M, Jovanov P, Marić A, Četojević-Simin D, Novaković A, Plavšić D, Škrobot D, Kovač R. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants (Basel) 2022; 11:antiox11061120. [PMID: 35740017 PMCID: PMC9219755 DOI: 10.3390/antiox11061120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
This paper presents the physicochemical characteristics and antioxidative, antibacterial and antiproliferative effects of nineteen samples of different honey types (acacia, linden, heather, sunflower, phacelia, basil, anise, sage, chestnut, hawthorn, lavender and meadow) collected from different locations in the Western Balkans (Republic of Serbia, Kosovo, Bosnia and Herzegovina, and Northern Macedonia). Physicochemical parameters (moisture, pH, electrical conductivity, free acidity, and hydroxymethylfurfural [HMF]) were analysed. Based on the obtained results, all tested honey samples were in agreement with EU regulation. The antioxidant potential of honey samples was assessed by determination of total phenolic content (TPC) and evaluation of scavenging activity towards diphenilpicrylhydrazyl radicals (DPPH·). The highest phenolic content was found in basil honey (101 ± 2.72 mg GAE/100 g), while the lowest was registered in rapeseed honey (11.5 ± 0.70 mg GAE/100 g). Heather, anise, phacelia, sage, chestnut and lavender honey samples were also rich in TP, containing 80−100 mg GAE/100 g. DPPH scavenging activity varied among the samples being the highest for lavender honey (IC50 = 88.2 ± 2.11 mg/mL) and the lowest for rapeseed honey (IC50 = 646 ± 8.72 mg/mL). Antibacterial activity was estimated in vitro using agar diffusion tests and measuring minimal inhibitory concentration (MIC). Among investigated bacterial strains following resistant potencies were determined: Escherichia coli > Escherichia coli ATCC 8739 > Enterococcus faecalis > Proteus mirabilis > Staphylococcus aureus > Staphylococcus epidermidis. The linden honey from Fruška Gora (MIC values of 3.12% and 6.25% against Staphylococcus aureus and Staphylococcus epidermidis, respectively) and phacelia honey (MIC values of 6.25% and 3.12% against S.Staphylococcus aureus and Staphylococcus epidermidis, respectively) showed the strongest antibacterial activity. Antiproliferative activity was evaluated using the colorimetric sulforhodamine B (SRB) assay. The highest antiproliferative activity was obtained from linden honey sample 1 (IC50MCF7 = 7.46 ± 1.18 mg/mL and IC50HeLa =12.4 ± 2.00 mg/mL) and meadow sample 2 (IC50MCF7 = 12.0 ± 0.57 mg/mL, IC50HeLa = 16.9 ± 1.54 mg/mL and IC50HT−29 = 23.7 ± 1.33 mg/mL) towards breast (MCF7), cervix (HeLa) and colon (HT-29) cancer cells. Active components other than sugars contributed to cell growth activity.
Collapse
Affiliation(s)
- Marijana Sakač
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Pavle Jovanov
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Aleksandar Marić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
- Correspondence: ; Tel.: +381-21-485-3754
| | - Dragana Četojević-Simin
- Oncology Institute of Vojvodina, Put doktora Goldmana 4, 21204 Sremska Kamenica, Serbia;
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia
| | - Aleksandra Novaković
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Dragana Plavšić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Dubravka Škrobot
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| | - Renata Kovač
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (M.S.); (P.J.); (A.N.); (D.P.); (D.Š.); (R.K.)
| |
Collapse
|
36
|
Hulea A, Obiștioiu D, Cocan I, Alexa E, Negrea M, Neacșu AG, Hulea C, Pascu C, Costinar L, Iancu I, Tîrziu E, Herman V. Diversity of Monofloral Honey Based on the Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2022; 11:antibiotics11050595. [PMID: 35625239 PMCID: PMC9137981 DOI: 10.3390/antibiotics11050595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the antioxidant profile and the antimicrobial activity of four different types of monofloral honey (manuka (MH), brassica rapeseed (BH), acacia (AH), and linden honey (LH)) against some bacterial/fungal ATCC strains and some multidrug-resistant strains isolated from chronic otitis in dogs. For the characterisation of the antioxidant profile of each honey, we extracted the honey samples by hydroalcoholic extraction and analysed them in terms of total polyphenols (TPC), total flavonoids (TFC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) using the spectrophotometric method. The antimicrobial activity was determined using the microdilution method at concentrations of 10%, 15%, and 20%, with the results expressed in OD (optical density) calculated as BIR% (bacterial inhibition rate)/MIR% (mycelial inhibition rate). The antioxidant characterisation of the analysed honey samples showed the highest antioxidant activity and concentrations of TPC and TFC in MH, followed by LH. MH was proven to be the most effective on most clinical isolates concerning the antimicrobial activity in comparison with BH, AH, and LH. Except for B. cepacia and P. vulgaris, all the clinical isolates were sensitive to the antibacterial activity of honey. Regarding the ATCC strains, MH 10% was the most effective in inhibiting all the strains tested except for P. aeruginosa. In conclusion, the efficacy classification in our study was MH > BH > AH > LH.
Collapse
Affiliation(s)
- Anca Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Diana Obiștioiu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
- Correspondence: (D.O.); (I.C.)
| | - Ileana Cocan
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
- Correspondence: (D.O.); (I.C.)
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Monica Negrea
- Faculty of Food Engineering, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (E.A.); (M.N.)
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Călin Hulea
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Corina Pascu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Luminita Costinar
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Ionica Iancu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, Banat University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (A.H.); (C.H.); (C.P.); (L.C.); (I.I.); (E.T.); (V.H.)
| |
Collapse
|
37
|
Tsavea E, Vardaka FP, Savvidaki E, Kellil A, Kanelis D, Bucekova M, Grigorakis S, Godocikova J, Gotsiou P, Dimou M, Loupassaki S, Remoundou I, Tsadila C, Dimitriou TG, Majtan J, Tananaki C, Alissandrakis E, Mossialos D. Physicochemical Characterization and Biological Properties of Pine Honey Produced across Greece. Foods 2022; 11:943. [PMID: 35407030 PMCID: PMC8997407 DOI: 10.3390/foods11070943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Pine honey is a honeydew honey produced in the East Mediterranean region (Greece and Turkey) from the secretions of the plant sucking insect Marchalina hellenica (Gennadius) (Coccoidea: Marchalini-dae) feeding on living parts of Pinus species. Nowadays, honeydew honey has attracted great attention due to its biological activities. The aim of this study was to study unifloral pine honey samples produced in Greece regarding their physicochemical parameters and antioxidant and antibacterial activity against five nosocomial and foodborne pathogens. These honeys showed physicochemical and microscopic characteristics within the legal limits, except for diastase activity, a parameter known to be highly variable, depending on various factors. Substantially higher levels of H2O2 were estimated compared to other types of honeydew honey, whereas protein content was similar. The total phenolic content was 451.38 ± 120.38 mg GAE/kg and antiradical activity ranged from 42.43 to 79.33%, while FRAP values (1.87 to 9.43 mmol Fe+2/kg) were in general higher than those reported in the literature. Various correlations could be identified among these parameters. This is the first attempt to investigate in depth the antibacterial activity of pine honey from Greece and correlate it with honey quality parameters. All tested honeys exerted variable but significant antibacterial activity, expressed as MIC and MBC values, comparable or even superior to manuka honey for some tested samples. Although honey antibacterial activity is mainly attributed to hydrogen peroxide and proteins in some cases (demonstrated by elevated MICs after catalase and Proteinase K treatment, respectively), no strong correlation between the antibacterial activity and hydrogen peroxide concentration or total protein content was demonstrated in this study. However, there was a statistically significant correlation of moisture, antioxidant and antibacterial activity against Klebsiella pneuomoniae, as well as antioxidant and antibacterial activity against Salmonella ser. Typhimurium. Interestingly, a statistically significant negative correlation has been observed between diastase activity and Staphylococcus aureus antibacterial activity. Overall, our data indicate multiple mechanisms of antibacterial activity exerted by pine honey.
Collapse
Affiliation(s)
- Eleni Tsavea
- Laboratory of Microbial Biotechnology–Molecular Bacteriology–Virology, Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (E.T.); (C.T.); (T.G.D.)
| | - Fotini-Paraskevi Vardaka
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, 71410 Heraklion, Greece; (F.-P.V.); (E.S.)
| | - Elisavet Savvidaki
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, 71410 Heraklion, Greece; (F.-P.V.); (E.S.)
| | - Abdessamie Kellil
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania, International Centre for Advanced Mediterranean Agronomic Studies, 73100 Chania, Greece; (A.K.); (S.G.); (P.G.); (S.L.); (I.R.)
| | - Dimitrios Kanelis
- Laboratory of Apiculture-Sericulture, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (M.D.); (C.T.)
| | - Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Molecular Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (M.B.); (J.G.); (J.M.)
| | - Spyros Grigorakis
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania, International Centre for Advanced Mediterranean Agronomic Studies, 73100 Chania, Greece; (A.K.); (S.G.); (P.G.); (S.L.); (I.R.)
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Molecular Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (M.B.); (J.G.); (J.M.)
| | - Panagiota Gotsiou
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania, International Centre for Advanced Mediterranean Agronomic Studies, 73100 Chania, Greece; (A.K.); (S.G.); (P.G.); (S.L.); (I.R.)
| | - Maria Dimou
- Laboratory of Apiculture-Sericulture, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (M.D.); (C.T.)
| | - Sophia Loupassaki
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania, International Centre for Advanced Mediterranean Agronomic Studies, 73100 Chania, Greece; (A.K.); (S.G.); (P.G.); (S.L.); (I.R.)
| | - Ilektra Remoundou
- Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania, International Centre for Advanced Mediterranean Agronomic Studies, 73100 Chania, Greece; (A.K.); (S.G.); (P.G.); (S.L.); (I.R.)
| | - Christina Tsadila
- Laboratory of Microbial Biotechnology–Molecular Bacteriology–Virology, Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (E.T.); (C.T.); (T.G.D.)
| | - Tilemachos G. Dimitriou
- Laboratory of Microbial Biotechnology–Molecular Bacteriology–Virology, Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (E.T.); (C.T.); (T.G.D.)
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Molecular Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (M.B.); (J.G.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Chrysoula Tananaki
- Laboratory of Apiculture-Sericulture, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.K.); (M.D.); (C.T.)
| | - Eleftherios Alissandrakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, Hellenic Mediterranean University, Stavromenos PC, 71410 Heraklion, Greece; (F.-P.V.); (E.S.)
- Institute of Agri-Food and Life Sciences Agro-Health, Hellenic Mediterranean University Research Center, Stavromenos PC, 71410 Heraklion, Greece
| | - Dimitris Mossialos
- Laboratory of Microbial Biotechnology–Molecular Bacteriology–Virology, Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (E.T.); (C.T.); (T.G.D.)
| |
Collapse
|
38
|
Stavropoulou E, Voidarou C(C, Rozos G, Vaou N, Bardanis M, Konstantinidis T, Vrioni G, Tsakris A. Antimicrobial Evaluation of Various Honey Types against Carbapenemase-Producing Gram-Negative Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11030422. [PMID: 35326885 PMCID: PMC8944737 DOI: 10.3390/antibiotics11030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The development of antibiotic resistance is a major public health issue, as infections are increasingly unresponsive to antibiotics. Emerging antimicrobial resistance has raised researchers’ interest in the development of alternative strategies using natural compounds with antibacterial activity, like honey, which has emerged as an agent to treat several infections and wound injuries. Nevertheless, the antibacterial effect of honey was mostly evaluated against Gram-positive bacteria. Hence, the objective of our study was to evaluate the antibacterial activity, as well as the physicochemical parameters, of genuine Greek honeys against multidrug-resistant Gram-negative pathogenic bacteria. In this vein, we aimed to study the in vitro antibacterial potential of rare Greek honeys against Verona integron-encoded metallo-β-lactamase (VIM)- or Klebsiella pneumoniae carbapenemase-producing multidrug-resistant Gram-negative pathogens. Physicochemical parameters such as pH, hydrogen peroxide, free acidity, lactonic acid, total phenols total flavonoids, free radical scavenging activities, tyrosinase enzyme inhibitory activity and kojic acid were examined. Moreover, the antimicrobial activity of 10 different honey types was evaluated in five consecutive dilutions (75%, 50%, 25%, 12.5% and 6.25%) against the clinical isolates by the well diffusion method, as well as by the determination of the minimum inhibition concentration after the addition of catalase and protease. Almost all the physicochemical parameters varied significantly among the different honeys. Fir and manuka honey showed the highest values in pH and H2O2, while the free acidity and lactonic acid levels were higher in chestnut honey. Total phenols, total flavonoids and free radical scavenging activities were found higher in cotton, arbutus and manuka honey, and finally, manuka and oregano honeys showed higher tyrosinase inhibition activity and kojic acid levels. The antimicrobial susceptibility depended on the type of honey, on its dilution, on the treatment methodology and on the microorganism. Arbutus honey was the most potent against VIM-producing Enterobacter cloacae subsp. dissolvens in 75% concentration, while fir honey was more lethal for the same microorganism in the 25% concentration. Many honeys outperformed manuka honey in their antibacterial potency. It is of interest that, for any given concentration in the well diffusion method and for any given type of honey, significant differences were not detected among the four multidrug-resistant pathogens, which explains that the damaging effect to the bacterial cells was the same regardless of the bacterial species or strain. Although the antimicrobial potency of different honey varieties dependents on their geographical origin and on their compositional differences, the exact underlying mechanism remains yet unclear.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
- Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
- Correspondence: or
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Georgios Rozos
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
| | - Michael Bardanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
- Gourmeli., 73100 Chania, Crete, Greece
| | - Theodoros Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
| |
Collapse
|
39
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
40
|
Goderska K. Properties of bee honeys and respective analytical methods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Zhou M, Huo J, Wang C, Wang W. UPLC/Q-TOF MS Screening and Identification of Antibacterial Compounds in Forsythia suspensa (Thunb.) Vahl Leaves. Front Pharmacol 2022; 12:704260. [PMID: 35153732 PMCID: PMC8831367 DOI: 10.3389/fphar.2021.704260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Forsythia suspensa (Thunb.) Vahl (F. suspensa) is a traditional Chinese medical herb and only its fruit is currently used in clinical therapies. However, the discarded parts like leaves also contain a large number of active components. In this study, we used macroporous adsorption resin to enrich the effective components from F. suspensa leaves. The separated active compounds were then identified and quantified by ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS) and high-performance liquid chromatography Active components with antibacterial properties extracted from F. suspensa leaves were confirmed in vitro and the corresponding mechanisms were explored. In sum, a stable and effective method for extracting antibacterial active components from F. suspensa leaves was established in this study, which proved the practicability of F. suspensa leaves as traditional Chinese medicine and is conducive to the more comprehensive utilization of the plant.
Collapse
Affiliation(s)
- Mingyue Zhou
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Cairen Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, China
| | - Weiming Wang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- *Correspondence: Weiming Wang,
| |
Collapse
|
42
|
Tesfaye O, Muleta D, Desalegn A. In vitro antimicrobial properties of apis mellifera L. and Meliponulla beccarii L. honeys from Kellem and West Wollega Zones, Western Ethiopia. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2021.2019761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ofijan Tesfaye
- Haro Sabu Agricultural Research Center, Oromia Agricultural Research Institute, Haro Sabu, Ethiopia
| | - Diriba Muleta
- Institute of Biotechnology, Addis Ababa University, College of Natural and Computational Sciences, Addis Ababa, Ethiopia
| | - Asnake Desalegn
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, College of Natural and Computational Sciences, Addis Ababa, Ethiopia
| |
Collapse
|
43
|
O'Farrell C, Hall TJ, Grover LM, Cox SC. Formulation of an antibacterial topical cream containing bioengineered honey that generates reactive oxygen species. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112664. [DOI: 10.1016/j.msec.2022.112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
|
44
|
Coutiño-Hernández D, Sánchez-Tapia M, Leal-Vega F, Bobadilla Del Valle M, Ledezma H, Cervantes R, Pedraza-Chaverri J, Granados-Portillo O, Díaz D, Antunes-Ricardo M, Gutiérrez-Uribe J, Maya O, Olin-Sandoval V, Tovar AR, Torres N. Modulation of gut microbiota by Mantequilla and Melipona honeys decrease low-grade inflammation caused by high fructose corn syrup or sucrose in rats. Food Res Int 2022; 151:110856. [PMID: 34980392 DOI: 10.1016/j.foodres.2021.110856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
Several studies have shown that consumption of honey is associated with various health benefits. However, there is scarce evidence on whether honeys modify the intestinal microbiota by preventing the inflammatory response in the host. Therefore, the aim of the present work was to study the effect of Melipona (Mel) and Mantequilla (Mtq) honeys, which contain different bioactive compounds and antioxidant capacity on gut microbiota and metabolic consequences in comparison with other sweeteners, in particular sucrose (S) and high fructose corn syrup (HFCS) in rats. The results of the present work showed that both honeys have polyphenols, flavonoids, antioxidant and bactericidal activities. Rats fed with both honeys gained less weight and body fat by increasing energy expenditure compared to S or HFCS and increased gene expression of antioxidant enzymes mediated by the transcription factor Nrf2. Analysis of the gut microbiota showed that consumption of both honeys modified the beta-diversity compared to those fed S or HFCS resulting in increased abundance of a specific cluster of bacteria of the Clostridium genus particularly Coprococcus eutactus, Defluviitalea saccharophila, Ruminicoccus gnavus and Ruminicoccus flavefaciens. As a result of the changes in the gut microbiota, there was a decrease in LPS- and TLR4-mediated low-grade inflammation and an increase in sIgA. Consumption of both honeys prevented glucose intolerance and increased adipocyte size compared to S or HFCS. In conclusion, consumption of MtqH or MelH can reduce metabolic endotoxemia by modifying the gut microbiota to prevent glucose intolerance.
Collapse
Affiliation(s)
- Diana Coutiño-Hernández
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Francisco Leal-Vega
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Miriam Bobadilla Del Valle
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Héctor Ledezma
- Departamento de Ciencia y Tecnología de los Alimentos, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Ricardo Cervantes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Daniel Díaz
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX, México
| | - Marilena Antunes-Ricardo
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, México
| | - Janet Gutiérrez-Uribe
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, México
| | - Otoniel Maya
- Novo Novodisk Foundation Center for Basic Metabolic Research. University of Copenhagen, Blegdamsvej 3B, DK-200, Copenhagen, Denmark
| | - Viridiana Olin-Sandoval
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México.
| |
Collapse
|
45
|
Halawani EM. Potential effects of Saudi Shaoka ( Fagonia bruguieri) honey against multi-drug-resistant bacteria and cancer cells in comparison to Manuka honey. Saudi J Biol Sci 2021; 28:7379-7389. [PMID: 34867041 PMCID: PMC8626341 DOI: 10.1016/j.sjbs.2021.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
The global spread of antimicrobial-resistant infectious diseases and cancer are the most widespread public health issue and has led to high mortality rates. This study aims to evaluate and verify the antibacterial and antitumor activities of Shaoka and Manuka honey against pathogenic bacteria, human hepatocarcinoma (HepG2) and breast cancer (MCF-7) cell lines. Shaoka hone was analyzed using HPLC, UV–vis, and GC/MC, while antibacterial activity was measured by agar diffusion, broth microdilution methods, and Transmission Electron Microscopy (TEM). Antitumor activity was investigated morphologically and by MTT assay. According to the presented data of HPLC analysis, Shaoka honey was generally richer in polyphenolic components, the antibacterial activity showed that Shaoka honey is equivalent or relatively more active than Manuka honey against a broad spectrum of multi-drug-resistant bacteria. It inhibited the growth of ESBL Escherichia coli in the absence or presence of catalase enzyme with a concentration approximately 8.5%–7.3% equivalent to phenol, which supported the highest level of non-peroxide-dependent activity. The minimum bactericidal concentrations (MBCs) ranged between 5.0% and 15.0% honey (w/v). TEM observation revealed distorted cell morphology, cytoplasmic shrinkage, and cell wall destruction of treated bacteria. The selected honey exerted cytotoxicity on both cancer cell lines, inhibiting cell proliferation rate and viability percent in HepG2 and MCF-7 cancer cells, by different degrees depending on the honey quality, Shaoka honey competed Manuka inhibitory effects against both cancer cells. The obtained data confirmed the potential for use of Saudi Shaoka honey as a remedy, this well introduces a new honey template as medical-grade honey for treating infectious disease and cancer.
Collapse
Affiliation(s)
- Eman Mohammed Halawani
- Medical Bacteriology, Department of Biology, Collage of Science, Taif University, P.O. Box11099, Taif 21944, Saudi Arabia
| |
Collapse
|
46
|
Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Tashkandi H. Honey in wound healing: An updated review. Open Life Sci 2021; 16:1091-1100. [PMID: 34708153 PMCID: PMC8496555 DOI: 10.1515/biol-2021-0084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a complex process with many interdependent pathophysiological and immunological mediators to restore the cellular integrity of damaged tissue. Cutaneous wound healing is the repair response to a multitude of pathologies induced by trauma, surgery, and burn leading to the restoration and functionality of the compromised cells. Many different methods have been employed to treat acute and chronic wounds, such as antimicrobial therapy, as most wounds are susceptible to infection from microbes and are difficult to treat. However, many antimicrobial agents have become ineffective in wound treatment due to the emergence of multiple drug-resistant bacteria, and failures in current wound treatment methods have been widely reported. For this reason, alternative therapies have been sought, one of which is the use of honey as a wound treatment agent. The use of honey has recently gained clinical popularity for possible use in wound treatment and regenerative medicine. With this high demand, a better delivery and application procedure is required, as well as research aiming at its bioactivity. Honey is a safe natural substance, effective in the inhibition of bacterial growth and the treatment of a broad range of wound types, including burns, scratches, diabetic boils (Skin abscesses associated with diabetic), malignancies, leprosy, fistulas, leg ulcers, traumatic boils, cervical and varicose ulcers, amputation, burst abdominal wounds, septic and surgical wounds, cracked nipples, and wounds in the abdominal wall. Honey comprises a wide variety of active compounds, including flavonoids, phenolic acid, organic acids, enzymes, and vitamins, that may act to improve the wound healing process. Tissue-engineered scaffolds have recently attracted a great deal of attention, and various scaffold fabrication techniques are being researched. Some incorporate honey to improve their delivery during wound treatment. Hence, the aim of this review is to summarize recent studies on the wound healing properties of honey.
Collapse
Affiliation(s)
- Hanaa Tashkandi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
48
|
Miłek M, Grabek-Lejko D, Stępień K, Sidor E, Mołoń M, Dżugan M. The enrichment of honey with Aronia melanocarpa fruits enhances its in vitro and in vivo antioxidant potential and intensifies its antibacterial and antiviral properties. Food Funct 2021; 12:8920-8931. [PMID: 34606549 DOI: 10.1039/d1fo02248b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of adding the chokeberry fruit additive to rape honey was studied with regard to the physicochemical properties and biological activity. Two samples of dried powdered fruits were used to enrich the honey (1 and 4% v/v) during creaming. The obtained products were characterized in terms of sugar content, acidity, conductivity, total phenolic, flavonoid and anthocyanin contents and HPTLC polyphenol profiles. The antioxidant properties of enriched honeys were studied in vitro (FRAP, DPPH, and ABTS) and in vivo using a S. cerevisiae model. The inhibitory effect against 5 bacterial strains and coronavirus surrogate bacteriophage phi6 was tested. The addition of chokeberry significantly modified the physicochemical properties of honey and enhanced its antioxidant potential (from 3 to 15 times). Using HPTLC analysis, the occurrence of flavonoids, phenolic acids, and anthocyanins in chokeberry enriched honey was determined. The modified honey protected yeast cells against H2O2-induced oxidative stress when used as a pretreatment agent. All tested bacteria were susceptible to enriched honey in a dose-dependent manner. The antiviral potential of enriched honey against the model bacteriophage was discovered for the first time. In terms of numerous health benefits determined, honey enriched with Aronia melanocarpa fruits can be considered as an interesting novel functional food, which may increase the consumption of chokeberry superfruits.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| | - Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St, 35-601 Rzeszow, Poland.
| | - Karolina Stępień
- Department of Biology, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland.
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| | - Mateusz Mołoń
- Department of Biology, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland.
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| |
Collapse
|
49
|
Jensen DR. Pharmacologic management of post-tonsillectomy pain in children. World J Otorhinolaryngol Head Neck Surg 2021; 7:186-193. [PMID: 34430826 PMCID: PMC8356107 DOI: 10.1016/j.wjorl.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
Tonsillectomy is a very common procedure in children, often performed on an outpatient basis. Severe postoperative pain is common, and can be prolonged. Despite a large number of available analgesic medications, often employed in combination, achieving adequate pain control remains a persistent challenge. Research suggests a tendency among caregivers to undertreat pain, and a need for detailed care instructions and education to ensure adequate pain management. Furthermore, ongoing questions regarding the safety and efficacy of the most commonly used medications have led to wide variance in practice patterns and continuous reassessment through research that yields sometimes conflicting results. This review summarizes the current state of the literature and presents a management approach which attempts to maximize pain control while minimizing potential harm with combinations of medications and modification based on patient-specific factors.
Collapse
Affiliation(s)
- Daniel R. Jensen
- Division of Otolaryngology, Children's Mercy Hospital, Kansas City, MO, USA
- Department of Surgery, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
50
|
Bugarova V, Godocikova J, Bucekova M, Brodschneider R, Majtan J. Effects of the Carbohydrate Sources Nectar, Sucrose and Invert Sugar on Antibacterial Activity of Honey and Bee-Processed Syrups. Antibiotics (Basel) 2021; 10:985. [PMID: 34439035 PMCID: PMC8388957 DOI: 10.3390/antibiotics10080985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Honey is a functional food with health-promoting properties. Some types of honey are used in wound care for the treatment of acute and chronic infected wounds. Increased interest in using honey as a functional food and as a base for wound care products causes limited availability of raw honey. Numerous studies suggest that the protein content of honey is mainly comprised of bee-derived proteins and peptides, with a pronounced antibacterial effect. Therefore, the aim of our study was to characterize for the first time the antibacterial activity of raw honeys and bee-processed syrups which were made by processing sucrose solution or invert sugar syrup in bee colonies under field conditions. Furthermore, we compared the contents of glucose oxidase (GOX) and the levels of hydrogen peroxide (H2O2) in honey samples and bee-processed syrups. These parameters were also compared between the processed sucrose solution and the processed invert sugar syrup. Our results clearly show that natural honey samples possess significantly higher antibacterial activity compared to bee-processed syrups. However, no differences in GOX contents and accumulated levels of H2O2 were found between honeys and bee-processed syrups. Comparison of the same parameters between bee-processed feeds based on the two artificial carbohydrate sources revealed no differences in all measured parameters, except for the content of GOX. The amount of GOX was significantly higher in bee-processed sucrose solutions, suggesting that processor bees can secrete a higher portion of carbohydrate metabolism enzymes. Determination of honey color intensity showed that in bee colonies, bee-processed syrups were partially mixed with natural honey. Further research is needed to identify the key botanical compounds in honey responsible for the increased antibacterial potential of honey.
Collapse
Affiliation(s)
- Veronika Bugarova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (V.B.); (J.G.); (M.B.)
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (V.B.); (J.G.); (M.B.)
| | - Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (V.B.); (J.G.); (M.B.)
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria;
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia; (V.B.); (J.G.); (M.B.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| |
Collapse
|