1
|
Soo XYD, Muiruri JK, Wu WY, Yeo JCC, Wang S, Tomczak N, Thitsartarn W, Tan BH, Wang P, Wei F, Suwardi A, Xu J, Loh XJ, Yan Q, Zhu Q. Bio-Polyethylene and Polyethylene Biocomposites: An Alternative toward a Sustainable Future. Macromol Rapid Commun 2024; 45:e2400064. [PMID: 38594967 DOI: 10.1002/marc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wen-Ya Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Pei Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qingyu Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Chang MY, Chen PH. Synthesis of 4-sulfonyl-1,7-diesters via K 2CO 3-mediated alkylative debenzoylation of α-sulfonyl o-hydroxyacetophenones with acrylates. Org Biomol Chem 2024; 22:1194-1204. [PMID: 38224195 DOI: 10.1039/d3ob01703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The synthesis of 4-sulfonyl-1,7-diesters was well developed, under open-vessel conditions, by K2CO3-mediated double alkylation of α-sulfonyl o-hydroxyacetophenones with acrylates and tandem debenzoylation of the resulting α,α-disubstituted o-hydroxyacetophenones. A plausible mechanism is proposed and discussed here. This high-yielding protocol provides a highly effective intermolecular alkylation and intramolecular debenzoylation via the formation of two carbon-carbon (C-C) single bonds and the cleavage of a carbon-carbon (C-C) single bond.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Pin-Hsien Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Gondim FF, Rodrigues JGP, Aguiar VO, de Fátima Vieira Marques M, Monteiro SN. Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers (Basel) 2024; 16:314. [PMID: 38337203 DOI: 10.3390/polym16030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
With its extensive production and consumption, the coffee industry generates significant amounts of lignocellulosic waste. This waste, primarily comprising coffee biomasses, is a potential source of cellulose. This cellulose can be extracted and utilized as a reinforcing agent in various biocomposites with polymer matrices, thereby creating high-value products. One such biodegradable polymer, Poly(butylene adipate-co-terephthalate) (PBAT), is notable for its properties that are comparable with low-density polyethylene, making it an excellent candidate for packaging applications. However, the wider adoption of PBAT is hindered by its relatively high cost and lower thermomechanical properties compared with conventional, non-biodegradable polymers. By reinforcing PBAT-based biocomposites with cellulose, it is possible to enhance their thermomechanical strength, as well as improve their water vapor and oxygen barrier capabilities, surpassing those of pure PBAT. Consequently, this study aims to provide a comprehensive review of the latest processing techniques for deriving cellulose from the coffee industry's lignocellulosic by-products and other coffee-related agro-industrial wastes. It also focuses on the preparation and characterization of cellulose-reinforced PBAT biocomposites.
Collapse
Affiliation(s)
- Fernanda Fabbri Gondim
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - João Gabriel Passos Rodrigues
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Vinicius Oliveira Aguiar
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ), Technology Center, Bloco J, Lab. J-122, Ilha do Fundão, Avenida Horácio Macedo 2030, Rio de Janeiro 21941-598, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
4
|
Candra A, Darge HF, Ahmed YW, Saragi IR, Kitaw SL, Tsai HC. Eco-benign synthesis of nano‑gold chitosan-bacterial cellulose in spent ground coffee kombucha consortium: Characterization, microbiome community, and biological performance. Int J Biol Macromol 2023; 253:126869. [PMID: 37703976 DOI: 10.1016/j.ijbiomac.2023.126869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Biomaterials that are mediocre for cell adhesion have been a concern for medical purposes. In this study, we fabricated nano‑gold chitosan-bacterial cellulose (CBC-Au) via a facile in-situ method using spent ground coffee (SGC) in a kombucha consortium. The eco-benign synthesis of monodispersed gold nanoparticles (Au NPs) in modified bacterial cellulose (BC) was successfully achieved in the presence of chitosan (CHI) and a symbiotic culture of bacteria and yeast (SCOBY). The dominant microbiome community in SGC kombucha were Lactobacillaceae and Saccharomycetes. Chitosan-bacterial cellulose (CBC) and CBC-Au affected the microfibril networks in the nano cellulose structures and decreased the porosity. The modified BC maintained its crystallinity up to 80 % after incorporating CHI and Au NPs. Depth profiling using X-ray photoelectron spectroscopy (XPS) indicated that the Au NPs were distributed in the deeper layers of the scaffolds and a limited amount on the surface of the scaffold. Aspergillus niger fungal strains validated the biodegradability of each scaffold as a decomposer. Bacteriostatically CBC-Au showed better antimicrobial activity than BC, in line with the adhesion of NIH-3T3 fibroblast cells and red blood cells (RBCs), which displayed good biocompatibility performance, indicating its potential use as a medical scaffold.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada; College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Yohannis Wondwosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| |
Collapse
|
5
|
Hernández-Varela JD, Medina DI. Revalorization of Coffee Residues: Advances in the Development of Eco-Friendly Biobased Potential Food Packaging. Polymers (Basel) 2023; 15:2823. [PMID: 37447469 DOI: 10.3390/polym15132823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
One of the main limitations in the creation of bioplastics is their large-scale development, referred to as the industrial-scale processing of plastics. For this reason, bioplastic engineering emerges as one of the main objectives of researchers, who are attempting to create not only more environmentally friendly but also sustainable, low-cost, and less polluting materials. This review presents the advances in the development of biodegradable and compostable films/containers using eco-friendly components of by-products of the coffee industry, such as coffee flour (CF), coffee mucilage (CM), coffee husks (CH), coffee silverskin (CS), and spent coffee grounds (SCGs), and a brief review of the common industrial processing techniques for the production of food packaging, including extrusion, compression molding, injection molding, and laboratory-scale techniques such as solvent casting. Finally, this review presents various advances in the area that can be scalable or applicable to different products using by-products generated from the coffee industry, taking into account the limitations and drawbacks of using a biomaterial.
Collapse
Affiliation(s)
- Josué D Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| | - Dora I Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
6
|
Kruszelnicka I, Michałkiewicz M, Ginter-Kramarczyk D, Muszyński P, Materna K, Wojcieszak M, Mizera K, Ryszkowska J. Spent Coffee as a Composite Filler for Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1181. [PMID: 36770188 PMCID: PMC9920297 DOI: 10.3390/ma16031181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Currently composites play an important role in all aspects of engineering and technology, with constantly growing applications. Recently, more attention was focused on natural fillers due to their suitability as reinforcement materials in thermo-plastic matrices which improve the mechanical properties of these polymers. Biofillers are used due to their low cost, high strength rigidity, non-toxicity, biodegradability, and availability. Currently, spent coffee grounds (SCG) are attracting more attention as a natural filler since high amounts of SCG are generated every day (food waste of coffee processing). This study allowed us to determine the long-term effect of activated sludge microorganisms with known technical and technological parameters on the mechanical properties of composites with spent coffee grounds filler. The fittings consisted of high-density poly-ethylene (PE-HD), which was used as the matrix, and a filler based on spent coffee grounds (SCG), which was used as a modifier. It was established that the composition of the composite and its residence time in the bioreactor directly influenced the contact angle value. The shift of the contact angle value is associated with the formation of the biofilm on the tested materials. An increase in the contact angle was observed in the case of all samples tested in the bioreactor, with the lowest values equal to approx. 76.4° for sample A (PE-HD) and higher values of approx. 90° for the remaining composite samples with a coffee grounds filler. The research confirmed that the increased ratio of coffee grounds in the composite results in the increased diversity and abundance of microorganisms. The highest number and the greatest diversity of microorganisms were observed in the case of the composite with 40% coffee grounds after more than a year of exposure in the bioreactor, while the composite with 30% SCG was second. Ciliates (Ciliata), especially the sessile forms belonging to the Epistylis genus, were the most common and the most numerous group of microorganisms in the activated sludge and in the biofilm observed on the samples after immersion in the bioreactor. The conducted research confirms that the use of polymer composite mouldings with a filler in the form of spent coffee grounds as a carrier allows the efficient increase in the population of microorganisms in the bioreactor.
Collapse
Affiliation(s)
- Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Michał Michałkiewicz
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Przemysław Muszyński
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Katarzyna Materna
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Marta Wojcieszak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Kamila Mizera
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Joanna Ryszkowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| |
Collapse
|
7
|
Kuan HTN, Tan MY, Hassan MZ, Zuhri MYM. Evaluation of Physico-Mechanical Properties on Oil Extracted Ground Coffee Waste Reinforced Polyethylene Composite. Polymers (Basel) 2022; 14:polym14214678. [PMID: 36365671 PMCID: PMC9654187 DOI: 10.3390/polym14214678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The current work discusses ground coffee waste (GCW) reinforced high-density polyethylene (HDPE) composite. GCW underwent two types of treatment (oil extraction, and oil extraction followed by mercerization). The composites were prepared using stacking HDPE film and GCW, followed by hot compression molding with different GCW particle loadings (5%, 10%, 15% and 20%). Particle loadings of 5% and 10% of the treated GCW composites exhibited the optimum level for this particular type of composite, whereby their mechanical and thermal properties were improved compared to untreated GCW composite (UGC). SEM fracture analysis showed better adhesion between HDPE and treated GCW. The FTIR conducted proved the removal of unwanted impurities and reduction in water absorption after the treatment. Specific tensile modulus improved for OGC at 5 vol% particle loading. The highest impact energy absorbed was obtained by OGC with a 16% increment. This lightweight and environmentally friendly composite has potential in high-end packaging, internal automotive parts, lightweight furniture, and other composite engineering applications.
Collapse
Affiliation(s)
- Hoo Tien Nicholas Kuan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
- Correspondence:
| | - Ming Yee Tan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Mohamed Yusoff Mohd Zuhri
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
8
|
Abstract
In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.
Collapse
|
9
|
Burgada F, Fages E, Quiles-Carrillo L, Lascano D, Ivorra-Martinez J, Arrieta MP, Fenollar O. Upgrading Recycled Polypropylene from Textile Wastes in Wood Plastic Composites with Short Hemp Fiber. Polymers (Basel) 2021; 13:polym13081248. [PMID: 33921403 PMCID: PMC8070082 DOI: 10.3390/polym13081248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
This research reports the manufacturing and characterization of green composites made from recycled polypropylene obtained from the remnants of polypropylene non-woven fabrics used in the textile industry and further reinforced with short hemp fibers (SHFs). To improve the interaction of the reinforcing fibers with the recycled polymeric matrix, two types of compatibilizing agents (maleic anhydride grafted, PP-g-MA, and maleinized linseed oil, MLO) were added during melt-processing, the percentage of which had to remain constant concerning the amount of fiber loading to ensure complete reactivity. Standardized test specimens were obtained by injection molding. The composites were characterized by mechanical (tensile, impact, and hardness), thermal (DSC, TGA), thermomechanical, FTIR, and FESEM microscopy tests. In addition, color and water uptake properties were also analyzed. The results show that the addition of PP-g-MA to rPP was satisfactory, thus improving the fiber-matrix interaction, resulting in a marked reinforcing effect of the hemp fibers in the recycled PP matrix, which can be reflected in the increased stiffness of the samples. In parallel to the compatibilizing effect, a plasticizing effect was obtained by incorporating MLO, causing a decrease in the glass transition temperature of the composites by approximately 6 °C and an increase in ductility compared to the unfilled recycled polypropylene samples.
Collapse
Affiliation(s)
- Francisco Burgada
- Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (F.B.); (E.F.)
| | - Eduardo Fages
- Textile Research Institute (AITEX), Plaza Emilio Sala 1, 03801 Alcoy, Spain; (F.B.); (E.F.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
| | - Diego Lascano
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
- Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Octavio Fenollar
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (L.Q.-C.); (D.L.); (J.I.-M.)
- Correspondence: ; Tel.: +34-966-528-433
| |
Collapse
|
10
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
11
|
By-Products from Food Industry as a Promising Alternative for the Conventional Fillers for Wood-Polymer Composites. Polymers (Basel) 2021; 13:polym13060893. [PMID: 33799413 PMCID: PMC8000305 DOI: 10.3390/polym13060893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The present paper describes the application of two types of food-industry by-products, brewers' spent grain (BSG), and coffee silverskin (ŁK) as promising alternatives for the conventional beech wood flour (WF) for wood-polymer composites. The main goal was to investigate the impact of partial and complete WF substitution by BSG and ŁK on the processing, structure, physicochemical, mechanical, and thermal properties of resulting composites. Such modifications enabled significant enhancement of the melt flowability, which could noticeably increase the processing throughput. Replacement of WF with BSG and ŁK improved the ductility of composites, which affected their strength however. Such an effect was attributed to the differences in chemical composition of fillers, particularly the presence of proteins and lipids, which acted as plasticizers. Composites containing food-industry by-products were also characterized by the lower thermal stability compared to conventional WF. Nevertheless, the onset of decomposition exceeding 215 °C guarantees a safe processing window for polyethylene-based materials.
Collapse
|
12
|
Influence of Epoxy Resin Treatment on the Mechanical and Tribological Properties of Hemp-Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Molecules 2021; 26:molecules26051228. [PMID: 33668952 PMCID: PMC7956458 DOI: 10.3390/molecules26051228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the influence of epoxy resin treatment on the mechanical and tribological properties of hemp fiber (HF)-reinforced plant-derived polyamide 1010 (PA1010) biomass composites. HFs were surface-treated using four types of surface treatment methods: (a) alkaline treatment using sodium chlorite (NaClO2) solution, (b) surface treatment using epoxy resin (EP) solution after NaClO2 alkaline treatment, (c) surface treatment using an ureidosilane coupling agent after NaClO2 alkaline treatment (NaClO2 + A-1160), and (d) surface treatment using epoxy resin solution after the (c) surface treatment (NaClO2 + A-1160 + EP). The HF/PA1010 biomass composites were extruded using a twin-screw extruder and injection-molded. Their mechanical properties, such as tensile, bending, and dynamic mechanical properties, and tribological properties were evaluated by the ring-on-plate-type sliding wear test. The strength, modulus, specific wear rate, and limiting pv value of HF/PA1010 biomass composites improved with surface treatment using epoxy resin (NaClO2 + A-1160 + EP). In particular, the bending modulus of NaClO2 + A-1160 + EP improved by 48% more than that of NaClO2, and the specific wear rate of NaClO2 + A-1160 + EP was one-third that of NaClO2. This may be attributed to the change in the internal microstructure of the composites, such as the interfacial interaction between HF and PA1010 and fiber dispersion. As a result, the mode of friction and wear mechanism of these biomass composites also changed.
Collapse
|
13
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
14
|
Coffee Silverskin as a Multifunctional Waste Filler for High-Density Polyethylene Green Composites. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5020044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work aims to describe the coffee silverskin effect as a lignocellulosic waste filler for high-density polyethylene (HDPE) composites development. The main task was to determine various modification effects resulting from the complex chemical composition of coffee silverskin containing compounds with potential antioxidative properties, including caffeine, polyphenols, tannins, or melanoidins. The processing, thermal, physicochemical, and thermomechanical properties of the HDPE-based composites with different filler content (1–20 wt%) were evaluated. Comprehensively realized thermomechanical analysis revealed the filler’s reinforcing effects on the HDPE matrix while defining problems with obtaining adequate adhesion in the interfacial area. At the same time, studies have shown a very beneficial effect of the silverskin addition on the thermal properties of composites, that even the smallest addition allows for a significant increase in the thermooxidative resistance of HDPE composites assessed using the oxidation induction time from 20 min for HDPE up to 140 min for the composites with 20 wt% of the filler. The obtained research results allow classifying the coffee silverskin waste filler, not only as a filler intended for the production of composites with a high degree of filling but also as an additive that significantly changes the properties of polyethylene in the case of using low concentrations. This can have a very beneficial impact on the development of novel wood polymer (WPC) and natural fiber composites (NFC).
Collapse
|
15
|
Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coffee husk, a major lignocellulosic waste derived from the coffee industry, was first ground into flour of fine particles of approximately 90 µm and then torrefied at 250 °C to make it more thermally stable and compatible with biopolymers. The resultant torrefied coffee husk flour (TCHF) was thereafter melt-compounded with polylactide (PLA) in contents from 20 to 50 wt% and the extruded green composite pellets were shaped by injection molding into pieces and characterized. Although the incorporation of TCHF reduced the ductility and toughness of PLA, filler contents of 20 wt% successfully yielded pieces with balanced mechanical properties in both tensile and flexural conditions and improved hardness. Contents of up to 30 wt% of TCHF also induced a nucleating effect that favored the formation of crystals of PLA, whereas the thermal degradation of the biopolyester was delayed by more than 7 °C. Furthermore, the PLA/TCHF pieces showed higher thermomechanical resistance and their softening point increased up to nearly 60 °C. Therefore, highly sustainable pieces were developed through the valorization of large amounts of coffee waste subjected to torrefaction. In the Circular Bioeconomy framework, these novel green composites can be used in the design of compostable rigid packaging and food contact disposables.
Collapse
|
16
|
Abdel-Hamid S, Al-Qabandi O, N.A.S. E, Bassyouni M, Zoromba M, Abdel-Aziz M, Mira H, Y. E. Fabrication and Characterization of Microcellular Polyurethane Sisal Biocomposites. Molecules 2019; 24:molecules24244585. [PMID: 31847377 PMCID: PMC6943674 DOI: 10.3390/molecules24244585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, microcellular polyurethane (PU)-natural fiber (NF) biocomposites were fabricated. Polyurethanes based on castor oil and PMDI were synthesized with varying volume ratios of sisal fiber. The effect of natural fiber treatment using water and alkaline solution (1.5% NaOH) and load effect were investigated. Biocomposites were mechanically and physically investigated using tensile, viscoelasticity, and water absorption tests. The interfacial adhesion between PU and sisal fiber was studied using SEM. Short NF loads (3%) showed a significant improvement in the mechanical properties of the PU-sisal composite such as modulus of elasticity, yield and tensile strength up to 133%, 14.35 % and 36.7% respectively. Viscoelastic measurements showed that the composites exhibit an elastic trend as the real compliance (J’) values were higher than those of the imaginary compliance (J’’). Increasing NF loads resulted in a decrease of J’. Applying variable temperatures (120–80 °C) caused an increase in the stiffness at different frequencies.
Collapse
Affiliation(s)
- S.M.S. Abdel-Hamid
- Department of Chemical Engineering, the Egyptian Academy for Engineering and Advanced Technology, Affiliated to Ministry of Military Production, Al Salam city 3056, Egypt
- Correspondence: (S.M.S.A.-H.); or (M.B.); Tel.: +20-26-5792-10 (S.M.S.A.-H.); +20-11-5967-5357 (M.B.)
| | - O.A. Al-Qabandi
- EQUATE Petrochemicals Company, P.O. Box 91717, Ahmadi 61008, Kuwait;
| | - Elminshawy. N.A.S.
- Department of Mechanical Engineering, Faculty of Engineering, Port Said University, Port Fouad 42526, Egypt (E.Y.)
| | - M. Bassyouni
- Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
- Materials Science Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
- Correspondence: (S.M.S.A.-H.); or (M.B.); Tel.: +20-26-5792-10 (S.M.S.A.-H.); +20-11-5967-5357 (M.B.)
| | - M.S. Zoromba
- Chemical and Materials Engineering Department, King Abdulaziz University, Rabigh 21911, Saudi Arabia; or
- Chemistry Department, Faculty of Science, Port Said University, Port-Said 42521, Egypt
| | - M.H. Abdel-Aziz
- Chemical and Materials Engineering Department, King Abdulaziz University, Rabigh 21911, Saudi Arabia; or
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21526, Egypt
| | - H. Mira
- Nuclear Materials Authority, Cairo 11381, Egypt;
| | - Elhenawy Y.
- Department of Mechanical Engineering, Faculty of Engineering, Port Said University, Port Fouad 42526, Egypt (E.Y.)
| |
Collapse
|