1
|
Yang R, Fu X, Li L, Wei Z, Zhou A, Wu H. Identification and Characterization of Chemical Compounds in Compound Shougong Powder by UHPLC-Q-TOF/MS E Combined With Multiple Data Processing Techniques. J Sep Sci 2025; 48:e70069. [PMID: 39740116 DOI: 10.1002/jssc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited. In this study, we employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MSE) combined with multiple data processing techniques to comprehensively characterize the chemical compounds in CSP. This included a multiple-point screening mass defect filtering (MDF), an enhanced method based on conventional MDF and boundary theory that creates a polygonal filtering zone by connecting numerous endpoints (n ≥ 5) to filter target components. Additional techniques utilized were extracted ion chromatogram (EIC), neutral loss filtering (NLF), diagnostic fragment ion filtering (DFIF), and direct identification methods considering retention time, fragmentation behavior, and reference standards. First, UHPLC-Q-TOF/MSE was applied for comprehensive profiling of CSP's chemical compounds. Then, R language combined with MZmine was used for data preprocessing, enabling the construction of an ion information list to extract valid data. Eventually, through these multiple data processing techniques, a total of 116 chemical compounds in CSP were identified, including 34 flavonoids, 38 saponins, seven stilbenes, six anthraquinones, 12 organic acids, 13 terpenoids, and six others. In summary, this study elucidates the chemical composition of CSP, contributing to the discovery of potential active ingredients for CSP. Additionally, the established strategy provided a powerful guide for the chemical characterization of TCM.
Collapse
Affiliation(s)
- Rui Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojie Fu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanying Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ziqi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
黄 燕, 覃 璐, 管 少, 管 宴, 韦 玉, 操 艾, 李 冬, 韦 桂, 苏 启. [Therapeutic mechanism of aqueous extract of Semiliquidambar cathayensis Chang root for pancreatic cancer: the active components, therapeutic targets and pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1336-1344. [PMID: 39051079 PMCID: PMC11270660 DOI: 10.12122/j.issn.1673-4254.2024.07.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To explore the key targets and signaling pathways in the therapeutic mechanism of Semiliquidambar cathayensis Chang (SC) root against pancreatic cancer network pharmacology and molecular docking studies and cell experiments. METHODS The targets of SC and pancreatic cancer were predicted using the network pharmacological database, the protein-protein interaction network was constructed, and pathways, functional enrichment and molecular docking analyses were performed. CCK-8 assay was used to test the inhibitory effect of the aqueous extract of SC root on 8 cancer cell lines, and its effects on invasion, migration, proliferation, and apoptosis of pancreatic cancer cells were evaluated. Western blotting was performed to verify the results of network pharmacology analysis. RESULTS We identified a total of 18 active components in SC, which regulated 21 potential key targets in pancreatic cancer. GO and KEGG pathway enrichment analyses showed that these targets were involved mainly in the biological processes including protein phosphorylation, signal transduction, and apoptosis and participated in cancer signaling and PI3K-Akt signaling pathways. Among the 8 cancer cell lines, The aqueous extract of SC root produced the most obvious inhibitory effect in pancreatic cancer cells, and significantly inhibited the invasion, migration, and proliferation and promoted apoptosis of pancreatic cancer Panc-1 cells (P < 0.05). Western blotting confirmed that SC significantly inhibited the phosphorylation levels of PI3K and AKT in Panc-1 cells (P < 0.001). CONCLUSION The therapeutic effect of SC root against pancreatic cancer effects is mediated by its multiple components that act on different targets and pathways including the PI3K-Akt pathway.
Collapse
|
3
|
Yang L, Zhang F, He W, Zhao B, Zhang T, Wang S, Zhou L, He J. Extraction optimization and constituent analysis of total flavonoid from Hosta plantaginea (Lam.) Aschers flowers and its ameliorative effect on chronic prostatitis via inhibition of multiple inflammatory pathways in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116922. [PMID: 37516390 DOI: 10.1016/j.jep.2023.116922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hosta plantaginea (Lam.) Aschers flowers (HPF) are well-known for their high flavonoid content, which contribute to their widely as traditional Chinese medicine for alleviating inflammation. Despite their recognized potential, information regarding the total flavonoid (TF) of HPF and its therapeutic application in treating chronic prostatitis (CP) remains unknown. AIM OF THE STUDY We aimed to investigate the extraction optimization, constituent analysis, and alleviating effect of TF on CP as well as its potential mechanism. MATERIALS AND METHODS The optimized extraction of TF from HPF was explored using response surface methodology with a Box-Behnken design model. The major flavonoids in TF were identified based on UHPLC-MS approach. Efficacy of TF (25 and 100 mg/kg, p.o.) on CP was evaluated in prostate antigen emulsion-induced autoimmune CP rat model by measuring prostatic index, the levels of leukocytes and lecithin bodies, as well as histopathological examination. The protein expression contents were detected by western blotting. Additionally, the antioxidant (DPPH and ABTS) and anti-inflammatory (cyclooxygenase 2, COX-2 inhibitory) effects of TF were also evaluated in vitro. RESULTS The optimized conditions for TF extraction were determined as 60% ethanol concentration, 30 mL/g liquid-to-solid ratio, 30 min extraction time, and 90 °C extraction temperature, and the extraction ratio is 65.98 ± 2.14%. A total of 15 major flavonoids in TF were characterized by comparison with reference standards. TF ameliorated the efficacy of CP in rats in a dose-independent manner, including reduced prostatic index and leukocytes levels, elevated lecithin body levels, ameliorated histopathological damage to prostate, and suppressed phosphorylated protein expressions of nuclear factor kappa-B (NF-κB) p65, inhibitor of NF-κB alpha (IκBα), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (Erk), just another kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt). Simultaneously, the IC50 of TF to DPPH, ABTS radicals, and COX-2 were 2.02, 1.79, and 0.0838 mg/mL, respectively. CONCLUSIONS We first demonstrated that TF from HPF represents a promising candidate to alleviate CP through suppression of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Fengxiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, PR China.
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Nanchang, 330047, PR China.
| | - Boyuan Zhao
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Ting Zhang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Shang Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Lifen Zhou
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
4
|
He J, Zhang Q, Xia X, Yang L. Lagopsis supina ameliorates myocardial ischemia injury by regulating angiogenesis, thrombosis, inflammation, and energy metabolism through VEGF, ROS and HMGB1 signaling pathways in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155050. [PMID: 37708818 DOI: 10.1016/j.phymed.2023.155050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Lagopsis supina (Steph. ex. Willd.) Ikonn.-Gal. is an important traditional Chinese medicine used to treat various ailments. However, its impact on myocardial ischemia (MI) injury remains unknown. PURPOSE This research aimed to reveal the therapeutic effect, potential mechanism, and metabolomics of L. supina against MI injury in rats. METHODS The therapeutic effects of the ethanolic extract of L. supina (LS) and its four fractions (LSA∼D) on a left anterior descending (LAD) artery occlusion-induced MI model rat were explored. The pharmacodynamics including myocardial infraction area, myocardial tissue pathology and apoptosis, and serum biochemical parameters (CK, CK-MB, CTn-T, SOD, ET-1, NO, eNOS, VEGF, TXB2, 6-keto-PGF1α, TNF-α, IL-6, and CRP) were evaluated. The 24 related protein expressions were detected using western blotting assay. Simultaneously, the qualitative and quantitative analyses of microporous adsorption resin with 30% (LSC) and 60% (LSD) aqueous ethanol fractions were performed using UHPLC-MS and HPLC. Moreover, the serum metabolomics analysis of rats was profiled using UHPLC-MS. RESULTS LS exerted remarkable alleviating effect on MI in rats. Importantly, LSC and LSD, two effective fractions of LS, significantly reduced myocardial infraction area, alleviated myocardial tissue pathology and apoptosis, regulated serum biochemical parameters. Furthermore, LSC and LSD markedly up-regulated the levels of VEGF-A, VEGFR-2, PKC, Bcl-2, Nrf2, HO-1, and thrombin, as well as prominently down-regulated the protein expression of Notch 1, p-PI3K, p-PI3K/PI3K, p-Akt, p-Akt/Akt, Bax, cleaved-caspase-3, cleaved-caspase-3/caspase-3, vWF, p-Erk, p-Erk/Erk, HMGB1, p-p38, p-p38/p38, p-p65, and p-p65/p65. A total of 26 candidate biomarkers were significantly regulated by LSC and LSD and they are mainly involved in amino acid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism. Finally, phenylethanols and flavonoids may be major bio-constituents of LSC and LSD against MI. CONCLUSIONS This work, for the first time, demonstrated that L. supina had a significant therapeutic effect on MI in rats. Additionally, LSC and LSD, two bio-fractions from L. supina, exerted their potential to ameliorate MI injury by promoting angiogenesis, inhibiting thrombosis, blocking inflammation, and facilitating energy metabolism through promotion of VEGF pathway, as well as suppression of ROS and HMGB1 pathways in rats. These findings suggest that LSC and LSD hold promise as potential therapeutic agents for MI injury in clinical application.
Collapse
Affiliation(s)
- Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qingcui Zhang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoyi Xia
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
5
|
Zhou Y, Xue Q, Wang M, Mu L, Chen D, Liu Q, Liu X, Yin W, Yin F. Analysis of quality differences between Scutellaria baicalensis Georgi and Scutellaria rehderiana Diels based on phytochemistry and bioactivity evaluation. J Pharm Biomed Anal 2023; 234:115481. [PMID: 37413917 DOI: 10.1016/j.jpba.2023.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Scutellaria baicalensis Georgi (SG) and Scutellaria rehderiana Diels (SD) belong to the same genus of Scutellaria in the Labiatae (Lamiaceae) family. SG is confirmed as the medicinal source according to the Chinese Pharmacopeia, but SD is often used as a substitute for SG due to its abundant plant resources. However, the current quality standards are far from sufficient to judge the quality differences between SG and SD. In this study, an integrated strategy of "biosynthetic pathway (specificity) - plant metabolomics (difference) - bioactivity evaluation (effectiveness)" was established to evaluate this quality differences. First, an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS) method was developed for the identification of chemical components. The abundant components information was obtained and the characteristic constituents were screened according to the location in the biosynthetic pathway as well as species specificity. Then, plant metabolomics combined with multivariate statistical analysis to find differential components between SG and SD. The chemical markers for quality analysis were determined based on the differential and characteristic components, and the content of each marker was tentatively evaluated through the semi-quantitative analysis of UHPLC-Q/TOF-MS/MS. Finally, the anti-inflammatory activity of SG and SD was compared by measuring the inhibitory effect on the release of NO from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Under this analytical strategy, a total of 113 compounds were tentatively identified in both SG and SD, among which baicalein, wogonin, chrysin, oroxylin A 7-O-β-D-glucuronoside, pinocembrin and baicalin were selected as chemical markers due to their species characteristics and differentiation. The contents of oroxylin A 7-O-β-D-glucuronoside and baicalin was higher in SG, and the others were higher in SD. In addition, both SG and SD exhibited prominent anti-inflammatory activity, but SD was less effective. The analysis strategy combining phytochemistry and bioactivity evaluation realized the scientific evaluation of the intrinsic quality differences between SG and SD, which provides a reference for fully utilizing and expanding the medicinal resources, and also provides a reference for the comprehensive quality control of herbal medicines.
Collapse
Affiliation(s)
- Yaqian Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Miaomiao Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Liyan Mu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Danni Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Qiao Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China
| | - Xun Liu
- School of Pharmacy, Suzhou Vocational Health College, Suzhou, 215009, P.R.China.
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, P.R. China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R.China.
| |
Collapse
|
6
|
Tian X, Lv H, Xiang G, Peng J, Li G, He Y, Zhang F, Mou C. Influence of geographic origin and tissue type on the medicinal chemical compounds of Semiliquidambar cathayensis. PeerJ 2023; 11:e15484. [PMID: 37304883 PMCID: PMC10252815 DOI: 10.7717/peerj.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Semiliquidambar cathayensis is widely used in traditional Chinese medicine owing its high concentrations of polyphenol, triterpenoidic acid, and flavonoids. This study aimed to explore the impact of geographical origin and tissue type on the contents of chemical compounds of S. cathayensis, as determined by colorimetric and chromatographic methods. Therefore, we quantitively evaluated chemical compounds found in the tissues of various organs of plants collected in six different regions. Overall, we found that geographical origin affected the content of medicinal compounds in S. cathayensis leaves, with plants from Jingzhou county showing the best therapeutic potential. However, no specific correlation was observed with latitude. It is noteworthy that the amount of paeoniflorin and other compounds can be used as biomarkers of geographical origin and tissue type. Most medicinal compounds accumulated mainly in the leaves, whereas ursolic and oleanolic acids accumulated in the roots. These results show that the comprehensive medicinal value of the leaves of S. cathayensis in Jingzhou county is the highest, but the root should be selected first to collect oleanolic acid and ursolic acid.
Collapse
Affiliation(s)
- Xiaoming Tian
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Hao Lv
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Guangfeng Xiang
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Jing Peng
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Gaofei Li
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Yan He
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Fan Zhang
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
| | - Cun Mou
- Institute of Plant Conservation, Hunan Botanical Garden, Changsha, China
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Zhang S, Nie H, Yang Y, Yang L, He J. Activating Blood Circulation, Anti-Inflammatory and Diuretic Effects of Leonurus japonicus Extract on a Rat Model of Trauma Blood Stasis and Its Phytochemical Profiling. Chem Biodivers 2023; 20:e202201176. [PMID: 36746759 DOI: 10.1002/cbdv.202201176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Leonurus japonicus Houtt. has been traditionally used to treat many ailments. This study evaluated the activating blood circulation, anti-inflammatory, and diuretic effects of L. japonicus extract (LJ) and identified its phytochemicals. In this work, the phytochemicals in LJ were identified using liquid chromatography mass spectrometry. Rats were randomly assigned to three groups (n=8): Control group was treated with saline, while the Model group (saline) and LJ group (426 mg/kg) had induced traumatic injury. All rats were treated with once by daily oral gavage for one week. The biochemical indices and protein expression were measured. Herein, 79 constituents were identified in LJ, which were effective in elevating body weight, food consumption, water intake, and urinary excretion volume, as well as in ameliorating traumatic muscle tissues in model rats. In addition, LJ prominently decreased the contents of plasma viscosity, platelet aggregation rate, thrombin time, prothrombin time, activated partial thromboplastin time, fibrinogen, thromboxane B2 (TXB2), TXB2/6-keto-prostaglandin F1α (6-keto-PGF1α), urokinase-type plasminogen activator (u-PA), plasminogen activator inhibitor 1 (PAI-1), PAI-1/tissue-type PA (t-PA), and PAI-1/u-PA, while significantly increasing antithrombin III, 6-keto-PGF1α, and t-PA contents. Furthermore, LJ notably inhibited tumor necrosis factor alpha, interleukin 6 (IL-6), IL-8, angiotensin II, antidiuretic hormone, aldosterone, aquaporin 1 (AQP1), AQP2, and AQP3 levels, and markedly elevating IL-10 and natriuretic peptide levels. Finally, LJ markedly reduced the protein expression of AQP1, AQP2, and AQP3 compared to the model group. Collectively, LJ possessed prominent activating blood circulation, anti-inflammatory, and diuretic effects, thus supporting the clinical application of L. japonicus.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Hua Nie
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Yali Yang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
8
|
Xia X, Zeng H, Wang H, Li X, Zhang S, Yang L, He J. Revealing the Active Constituents and Mechanisms of Semiliquidambar cathayensis Chang Roots against Rheumatoid Arthritis through Network Pharmacology, Molecular Docking, and in Vivo Experiment. Chem Biodivers 2023; 20:e202200916. [PMID: 36424369 DOI: 10.1002/cbdv.202200916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Semiliquidambar cathayensis Chang roots (SC) are traditional Chinese medicine for treating rheumatoid arthritis (RA). However, the effect and potential mechanism of SC remain unclear. This study aims to reveal the anti-RA constituents and mechanisms of SC based on network pharmacology, molecular docking, and adjuvant-induced arthritis (AIA) model rat experiment. In this work, 9 potential active constituents, including kaempferol, quercetin, naringenin, paeoniflorin, catechin, fraxin, gentianin, hesperetin, and ellagic acid 3,3',4-trimethyl ether, in SC crossed 65 target genes of RA. In addition, 28 core targets were enriched in inflammation and others, among which interleukin-17 (IL-17) and tumor necrosis factor (TNF) were the major targets. The binding of bio-constituents with IL-17 and TNF were performed using molecular docking. Rat experiment demonstrated that the extract of SC restored body weight loss, reduced arthritis score and the indices of thymus and spleen, alleviated ankle joint histopathology, decreased the levels of rheumatoid factor (RF), C-reactive protein (CRP), IL-17, TNF-α, IL-1β, IL-6, cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and matrix metalloproteinase-2 (MMP-2), whereas elevated the levels of IL-4 and IL-10. Collectively, it was the first time to comprehensively reveal the anti-RA efficacy and mechanism of SC via suppressing the inflammatory pathway based on network pharmacology, molecular docking, and experimental verification, which provide chemical and pharmacological evidences for the clinical application of SC.
Collapse
Affiliation(s)
- Xiaoyi Xia
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou, 514031, P. R. China
| | - Huilei Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Xin Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou, 514031, P. R. China
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
9
|
Huang W, Wen F, Ruan S, Gu P, Gu S, Song S, Zhou J, Li Y, Liu J, Shu P. Integrating HPLC-Q-TOF-MS/MS, network pharmacology and experimental validation to decipher the chemical substances and mechanism of modified Gui-shao-liu-jun-zi decoction against gastric cancer. J Tradit Complement Med 2023; 13:245-262. [PMID: 37128200 PMCID: PMC10148141 DOI: 10.1016/j.jtcme.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/17/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Background and aim Gastric cancer (GC) is a common malignant tumor worldwide. Modified Gui-shao-liu-jun-zi decoction (mGSLJZ) is a clinically effective traditional Chinese medicine (TCM) compound in GC treatment. This study aimed to analyze main chemical substances of mGSLJZ and investigate active ingredients and molecular mechanism of mGSLJZ against GC. Experimental procedure HPLC-Q-TOF-MS/MS was used to analyze chemical substances of mGSLJZ, and potential active ingredients were screened from TCMSP. The target set of mGSLJZ for GC was obtained based on SwissTargetPrediction. The PPI network was constructed to screen out core targets. GO and KEGG enrichment analyses were conducted to identify BPs, CCs, MFs and pathways. The "active ingredient-core target-pathway" regulatory network was constructed to obtain core substances. Subsequently, Oncomine, Proteinatlas and molecular docking were performed to validate these findings. The cell experiments were conducted to confirm the anti-GC effects of mGLSJZ. Results and conclusion Forty-one potential active ingredients were filtered out from 120 chemical substances in mGSLJZ, including various organic acids and flavonoids. The top 10 key targets, 20 related pathways and 6 core medicinal substances were obtained based on network pharmacology analysis. Molecular docking results indicated that the core substances and key targets had good binding activities. The cell experiments validated that mGSLJZ and the core substances inhibited the proliferation in multiple GC cells and that mGLSJZ restrained the migration of GC. Meanwhile, the top 5 targets and top 2 pathways were verified. The rescue experiments demonstrated that mGSLJZ suppressed the proliferation and migration of GC through the PI3K/AKT/HIF-1 pathway.
Collapse
Affiliation(s)
- Wenjie Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peixing Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. 155 Hanzhong Road, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
10
|
Bing Q, Yongrui B, Shuai W, Tianjiao L, Xiansheng M. Rapid analysis of components in Qizhiweitong tablets and plasma after oral administration in rats by UPLC-Q-TOF-MS/MS based on self-developed database. Biomed Chromatogr 2022; 36:e5460. [PMID: 35903874 DOI: 10.1002/bmc.5460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022]
Abstract
Qizhiweitong is a famous traditional Chinese prescription medicine. It has been used to treat various stomach disorders, such as functional dyspepsia, chronic gastritis, and intestinal stress syndrome for a long time and gives favorable therapeutic effects in clinical settings. However, its chemical composition and possible bioactive components are not completely known. In the present study, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) and qualitatively analyzed the chemical composition of Qizhiweitong tablet extract and the absorbed prototype constituents along with corresponding metabolites in rat plasma following oral administration of Qizhiweitong tablet on the basis of our self-developed component database that was established accurately and rapidly. We detected a total of 119 compounds and 61 xenobiotics in the Qizhiweitong tablet, which included 32 prototypes and 28 metabolites. The results of the present study laid a solid foundation for quality marker screening and integrative pharmacology-based study on the Qizhiweitong tablet.
Collapse
Affiliation(s)
- Qi Bing
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Bao Yongrui
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wang Shuai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| | - Li Tianjiao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| | - Meng Xiansheng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Liaoning Multi-dimensional Analysis of Traditional Chinese Medicine Technical Innovation Center, Dalian, China.,Liaoning Province Modern Traditional Chinese Medicine Research and Engineering Laboratory, Dalian, China
| |
Collapse
|
11
|
Systematic characterization of the components and molecular mechanisms of Jinshui Huanxian granules using UPLC-Orbitrap Fusion MS integrated with network pharmacology. Sci Rep 2022; 12:12476. [PMID: 35864295 PMCID: PMC9304367 DOI: 10.1038/s41598-022-16711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Jinshui Huanxian granules (JSHX) is a clinical Chinese medicine formula used for treating pulmonary fibrosis (PF). However, the effective components and molecular mechanisms of JSHX are still unclear. In this study, a combination approach using ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) integrated with network pharmacology was followed to identify the components of JSHX and the underlying molecular mechanisms against PF. UPLC-Orbitrap Fusion MS was used to identify the components present in JSHX. On the basis of the identified components, we performed target prediction using the SwissTargetPrediction database, protein–protein interaction (PPI) analysis using STRING database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using Metascape and constructed a component-target-pathway network using Cytoscape 3.7.2. Molecular docking technology was used to verify the affinity between the core components and targets. Finally, the pharmacological activities of three potentially bioactive components were validated in transforming growth factor β1 (TGF-β1)-induced A549 cell fibrosis model. As a result, we identified 266 components, including 56 flavonoids, 52 saponins, 31 alkaloids, 10 coumarins, 12 terpenoids and 105 other components. Of these, 90 validated components were predicted to act on 172 PF-related targets and they exhibited therapeutic effects against PF via regulation of cell migration, regulation of the mitogen-activated protein kinase (MAPK) cascade, reduction of oxidative stress, and anti-inflammatory activity. Molecular docking showed that the core components could spontaneously bind to receptor proteins with a strong binding force. In vitro, compared to model group, hesperetin, ruscogenin and liquiritin significantly inhibited the increase of α-smooth muscle actin (α-SMA) and fibronectin (FN) and the decrease of e-cadherin (E-cad) in TGF-β1-induced A549 cells. This study is the first to show, using UPLC-Orbitrap Fusion MS combined with network pharmacology and experimental validation, that JSHX might exert therapeutic actions against PF by suppressing the expression of key factors in PF. The findings provide a deeper understanding of the chemical profiling and pharmacological activities of JSHX and a reference for further scientific research and clinical use of JSHX in PF treatment.
Collapse
|
12
|
Tian X, Yan L, Jiang L, Xiang G, Li G, Zhu L, Wu J. Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis. Mol Biol Rep 2022; 49:5585-5593. [PMID: 35543829 DOI: 10.1007/s11033-022-07492-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Semiliquidambar cathayensis is a traditional medicinal plant and endemic species in China. Its roots, branches, leaves, bark, and nectar are known to have therapeutic effects against rheumatoid arthritis, lumbar muscle strain, and several other diseases. However, limited knowledge regarding the molecular properties of S. cathayensis highlights the need for further research in order to elucidate the underlying pathways governing the synthesis of its active ingredients and regulation of its accumulation processes. METHODS We conducted transcriptome sequencing of the leaf, stem and root epidermises, and stem and root xylems of S. cathayensis with three biological replicates. Moreover, candidate genes involved in terpenoid biosynthesis, such as IDI, FPPS, DXR, SQS, GPPS, and HMGR were selected for quantitative real-time PCR analysis. RESULTS We identified 88,582 unigenes. Among which, 36,144 unigenes were annotated to the nr protein database, 21,981 to the Gene Ontology database, 11,565 to the Clusters of Orthologous Groups database, 24,209 to the Pfam database, 21,685 to the SWISS-PROT database, and 12,753 to the Kyoto Encyclopedia of Genes and Genomes (KEGG), with 5072 unigenes common to all six databases. Of those annotated using the KEGG database, 187 unigenes were related to the terpenoid metabolism pathway, and expression analysis of the related genes indicated that the mevalonate and methylerythritol 4-phosphate pathways play different roles in terpenoid biosynthesis in different tissues of S. cathayensis. CONCLUSIONS These findings greatly expand gene resources of S. cathayensis and provide basic data for the study of the biosynthetic pathways and molecular mechanisms of terpenoids.
Collapse
Affiliation(s)
| | - Lihong Yan
- Hunan Botanical Garden, Changsha, 410116, China
| | | | | | - Gaofei Li
- Hunan Botanical Garden, Changsha, 410116, China
| | - Lu Zhu
- Hunan Botanical Garden, Changsha, 410116, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
13
|
Sun J, Li Q, Li J, Liu J, Xu F. Nutritional composition and antioxidant properties of the fruit of Berberis heteropoda Schrenk. PLoS One 2022; 17:e0262622. [PMID: 35390002 PMCID: PMC8989241 DOI: 10.1371/journal.pone.0262622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
Objective This study assessed the major nutrients and antioxidant properties of Berberis heteropoda Schrenk fruits collected from the Nanshan Mountain area of Urumqi City, Xinjiang Uygur Autonomous Region, China. Methods and materials We assessed the basic nutrients, including amino acids, minerals, and fatty acids, and determined the total phenol, flavonoid, and anthocyanin contents of the extracts. Results The analytical results revealed the average water (75.22 g/100 g), total fat (0.506 g/100 g), total protein (2.55 g/100 g), ash (1.31 g/100 g), and carbohydrate (17.72 g/100 g) contents in fresh B. heteropoda fruit, with total phenol, flavonoid, and anthocyanin contents of B. heteropoda fruits at 68.55 mg gallic acid equivalents/g, 108.42 mg quercetin equivalents/g, and 19.83 mg cyanidin-3-glucoside equivalent/g, respectively. Additionally, UPLC-Q-TOF-MSE analysis of polyphenols in B. heteropoda fruit revealed 32 compounds. Conclusion B. heteropoda fruits may have potential nutraceutical value and represent a potential source of nutrition and antioxidant phytochemicals in the human diet.
Collapse
Affiliation(s)
- Jixiang Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Qian Li
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianguang Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- * E-mail:
| | - Jing Liu
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Fang Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
14
|
Hong LL, Zhao Y, Yang CY, Li GZ, Wang HS, Chen WD, Cheng XY, Liu L. Identification of chemical constituents in vitro and in vivo of Er Shen Zhenwu Decoction by utilizing ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 2021; 44:4327-4342. [PMID: 34665523 DOI: 10.1002/jssc.202100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Er Shen Zhenwu Decoction is a prescription for treating chronic heart failure of heart and kidney yang deficiency, while its active ingredients remain unclear and difficult to identify. This paper aims to apply a rapid assay strategy of ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to collect the mass spectrometry data of Er Shen Zhenwu Decoction and its decomposed recipes (monarch, minister, and assist). By comparing with retention time and MSE fragmentation patterns, 67 and 34 components in vitro and in vivo were identified, respectively, the main ingredients include saponins, terpenes, alkaloids, phenolic acids, tanshinone, urea, steroids, aromatics, organic acids, carbohydrates, and so forth, of which the monarch medicine > minister medicine > assist medicine. By comparison with reference standards, paeoniflorin, rosmarinic acid, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 and atractylenolide III were identified in vitro and paeoniflorin, ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1 were identified in vivo. In this study, the chemical ingredients of Er Shen Zhenwu Decoction were analyzed by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry technology and each compound was grouped into the decomposed recipes. The identified substances can be used as references for Er Shen Zhenwu Decoction quality control and potential medicinal substances in chronic heart failure of heart and kidney yang deficiency treatment.
Collapse
Affiliation(s)
- Li-Li Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Yan Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Chen-Yu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Guo-Zhuang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Hong-Song Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Wei-Dong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, P. R. China.,Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, P. R. China
| | - Xiao-Yu Cheng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Li Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, P. R. China.,School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
15
|
He J, Yang L. Diuretic effect of Lagopsis supina fraction in saline-loaded rats is mediated through inhibition of aquaporin and renin-angiotensin-aldosterone systems and up-regulation of atriopeptin. Biomed Pharmacother 2021; 139:111554. [PMID: 33845373 DOI: 10.1016/j.biopha.2021.111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Lagopsis supina (Steph. ex Willd.) lk. -Gal. ex Knorr. has been used as a diuretic agent in China for centuries with limited scientific evidence. This study investigated the diuretic efficacy and underlying mechanism of a macroporous adsorption resin with 30% ethanol elution fraction from L. supina (LSC) in saline-loaded rats and to identify its phytochemicals by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). As a result, 18 phenylpropanoids, 14 flavonoids and 15 others were identified in LSC, among which stachysoside A and acteoside could be the main bio-active constituents responsible for the diuretic effect. In parallel, the daily administration of LSC (16, 32 and 64 mg/kg) markedly promoted urinary excretion after 2 h of treatment. Moreover, LSC had no effect on urinary Na+ and K+ concentrations, as well as on serum Na+-K+-ATPase activity. Meanwhile, LSC significantly decreased the serum levels of angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), aquaporin (AQP) 1, AQP2 and AQP3, suppressed renal AQP1, AQP2, and AQP3 mRNA expressions, down-regulated AQP1, AQP2 and AQP3 protein levels, and up-regulated serum atriopeptin (ANP) level in a dose-dependent manner. These findings suggest that LSC has acute and prolonged diuretic effects by inhibiting the AQPs, RAAS, and upregulation of atriopeptin in saline-loaded rats, and this finding support LSC as a novel diuretic agent.
Collapse
Affiliation(s)
- Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
16
|
Ore A, Akinloye OA, Adeogun AI, Ugbaja RN, Morifi E, Makatini M, Moepya R, Mbhele T. Buchholzia coriacea seed (wonderful kolanut) alleviates insulin resistance, steatosis, inflammation and oxidative stress in high fat diet model of fatty liver disease. J Food Biochem 2021; 46:e13836. [PMID: 34184286 DOI: 10.1111/jfbc.13836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic condition with multiple pathological features and it currently has no specific treatment or approved drug. Wonderful kolanut widely consumed fresh or cooked has been applied in the treatment of numerous diseases in folk medicine. In this study, we evaluate the therapeutic potentials of hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS) in NAFLD model. HEBCS was subjected to liquid chromatography - mass spectrometry, and 30 male BALB/c mice (28 ± 2 g) were allocated to three (3) experimental groups (n = 10/group). Mice in group I were fed chow diet (CD); those in group II, high fat diet (HFD) and group III, HFD and 250 mg/kg HEBCS p.o. daily for six weeks. HEBCS alleviates HFD-induced insulin resistance and high plasma insulin and glucose levels. It further alleviates hepatic steatosis, and alters plasma lipid profile. HEBCS also protected against HFD-induced inflammation, oxidative stress and hepatocellular damage. In conclusion, HEBCS alleviated NAFLD in mice via suppression of insulin resistance, hyperlipidemia, inflammation and oxidative stress. PRACTICAL APPLICATIONS: Bioactive polyphenols and alkaloids were identified in hydroethanolic extract of defatted Buccholzia coriacea seeds (HEBCS). This study projects HEBCS as a potential therapeutic agent in the treatment of NAFLD. NAFLD is a multi-factorial condition and therefore, HEBCS is promising considering its multiple-target actions in the current model of NAFLD. HEBCS alleviates insulin resistance, metabolic dysfunction, steatosis, and inflammation in this model. There is a need to further investigate HEBCS in other models of NAFLD as a lead to future use in clinical studies.
Collapse
Affiliation(s)
- Ayokanmi Ore
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.,Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Abideen Idowu Adeogun
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Maya Makatini
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Refilwe Moepya
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| | - Thapelo Mbhele
- School of Chemistry, Mass Spectrometry Division, Wits University, Johannesburg, South Africa
| |
Collapse
|
17
|
Xu H, Zhang Y, Wang P, Zhang J, Chen H, Zhang L, Du X, Zhao C, Wu D, Liu F, Yang H, Liu C. A comprehensive review of integrative pharmacology-based investigation: A paradigm shift in traditional Chinese medicine. Acta Pharm Sin B 2021; 11:1379-1399. [PMID: 34221858 PMCID: PMC8245857 DOI: 10.1016/j.apsb.2021.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, traditional Chinese medicine (TCM) has widely embraced systems biology and its various data integration approaches to promote its modernization. Thus, integrative pharmacology-based traditional Chinese medicine (TCMIP) was proposed as a paradigm shift in TCM. This review focuses on the presentation of this novel concept and the main research contents, methodologies and applications of TCMIP. First, TCMIP is an interdisciplinary science that can establish qualitative and quantitative pharmacokinetics-pharmacodynamics (PK-PD) correlations through the integration of knowledge from multiple disciplines and techniques and from different PK-PD processes in vivo. Then, the main research contents of TCMIP are introduced as follows: chemical and ADME/PK profiles of TCM formulas; confirming the three forms of active substances and the three action modes; establishing the qualitative PK-PD correlation; and building the quantitative PK-PD correlations, etc. After that, we summarize the existing data resources, computational models and experimental methods of TCMIP and highlight the urgent establishment of mathematical modeling and experimental methods. Finally, we further discuss the applications of TCMIP for the improvement of TCM quality control, clarification of the molecular mechanisms underlying the actions of TCMs and discovery of potential new drugs, especially TCM-related combination drug discovery.
Collapse
|
18
|
Yang L, He ZW, He JW. The chemical profiling of aqueous soluble fraction from Lagopsis supina and its diuretic effects via suppression of AQP and RAAS pathways in saline-loaded rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113951. [PMID: 33610702 DOI: 10.1016/j.jep.2021.113951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lagopsis supina (Steph.) Ik. -Gal. ex Knorr. has been widely used as a remedy treatment for diuresis and edema in China over 2500 years. Our previous results showed that the aqueous soluble fraction from L. supina (LSB) possessed acute diuretic effect. AIM OF THE STUDY The aim of this study was to appraise the acute (6 h) and prolonged (7 d) diuretic effects, underlying mechanisms, and chemical profiling of LSB. MATERIALS AND METHODS The chemical profiling of LSB was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). Then, oral administration of LSB (40, 80, 160 and 320 mg/kg) and furosemide (10 mg/kg) once daily for 7 consecutive days to evaluate the diuretic effects in saline-loaded rats. The body weight, food consumption, and water intake were recorded once daily. The urinary volume, pH and electrolyte concentrations (Na+, K+, Cl-, and Ca2+) were measured after administration drugs for acute and prolonged diuretic effects. In addition, the serum levels of Na+-K+-ATPase, angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), atriopeptin (ANP), aquaporins (AQPs)-1, 2 and 3 were determined by ELISA kits. The mRNA expressions and protein levels of AQPs-1, 2 and 3 were analyzed by real-time quantitative PCR and Western blot assays, respectively. RESULTS 30 compounds were identified in LSB based on accurate mass and MS/MS fragmentation compared to literature, among which phenylpropanoids and flavonoids could be partly responsible for the major diuretic effect. Daily administration of LSB (160 or 320 mg/kg) prominently increased urinary excretion volume after the 2 h at the first day of treatment, remaining until the 7th day. LSB did not cause Na+ and K+ electrolyte abnormalities, and has minor effect on Cl- and Ca2+ concentrations at 320 mg/kg. Furthermore, LSB observably suppressed renin-angiotensin-aldosterone system (RAAS) activation, including decreased serum levels of Ang II, ADH, and ALD, and prominently increased serum level of ANP in rats. LSB treatment significantly down-regulated the serum levels, mRNA expressions and protein levels of AQP1, AQP2, and AQP3. CONCLUSION LSB has a prominent acute and prolonged diuretic effects via suppression of AQP and RAAS pathways in saline-loaded rats, and support the traditional folk use of this plant. Taken together, LSB might be a potential diuretic agent.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Zhong-Wei He
- School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, 330013, China.
| | - Jun-Wei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
19
|
Yang L, Liu R, Fan A, Zhao J, Zhang Y, He J. Chemical Composition of Pterospermum heterophyllum Root and its Anti-Arthritis Effect on Adjuvant-Induced Arthritis in Rats via Modulation of Inflammatory Responses. Front Pharmacol 2020; 11:584849. [PMID: 33362544 PMCID: PMC7759541 DOI: 10.3389/fphar.2020.584849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease without effective and beneficial drugs. Many traditional folk medicines have been proven to be effective in treating RA. Among these, the root of Pterospermum heterophyllum Hance has been widely used as a traditional remedy against RA in China, but there is no scientific basis yet. The aim of this study was to investigate for the first time the chemical compositions and therapeutic effect of P. heterophyllum on adjuvant-induced arthritis (AIA) model in rats. 73 compounds were identified from P. heterophyllum based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-qTOF-MS/MS), and flavonoids may be partly responsible for the major anti-arthritic effect. In parallel, the P. heterophyllum extract at 160, 320, and 640 mg/kg/day were orally administered to rats for 22 days after post-administration adjuvant. The results showed that P. heterophyllum remarkably ameliorated histological lesions of the knee joint, increased body weight growth, decreased arthritis score, reduced thymus and spleen indices in model rats. Moreover, P. heterophyllum treatment persuasively downregulated the levels of rheumatoid factor (RF), C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-17, cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and matrix metalloproteinase-2 (MMP-2), and observably upregulated IL-4 and IL-10 levels in model rats. These findings suggest that P. heterophyllum has a prominent anti-RA effect on AIA rats by modulating the inflammatory responses, and supports the traditional folk use of this plant.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ronghua Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Aiguo Fan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jingjing Zhao
- Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yong Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
20
|
Lagopsis supina extract and its fractions exert prophylactic effects against blood stasis in rats via anti-coagulation, anti-platelet activation and anti-fibrinolysis and chemical characterization by UHPLC-qTOF-MS/MS. Biomed Pharmacother 2020; 132:110899. [DOI: 10.1016/j.biopha.2020.110899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
|
21
|
Yang L, Fang Y, Liu R, He J. Phytochemical Analysis, Anti-inflammatory, and Antioxidant Activities of Dendropanax dentiger Roots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5084057. [PMID: 33294445 PMCID: PMC7700040 DOI: 10.1155/2020/5084057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Dendropanax dentiger root is a traditional medicinal plant in China and used to treat inflammatory diseases for centuries, but its phytochemical profiling and biological functions are still unknown. Thus, a rapid, efficient, and precise method based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied to rapidly analyse the phytochemical profiling of D. dentiger with anti-inflammatory and antioxidant activities in vitro. As a result, a total of 78 chemical compositions, including 15 phenylpropanoids, 15 alkaloids, 14 flavonoids, 14 fatty acids, 7 phenols, 4 steroids, 4 cyclic peptides, 3 terpenoids, and 2 others, were identified or tentatively characterized in the roots of D. dentiger. Moreover, alkaloid and cyclic peptide were reported from D. dentiger for the first time. In addition, the ethanol crude extract of D. dentiger roots exhibited remarkable anti-inflammatory activity against cyclooxygenase- (COX-) 2 inhibitory and antioxidant activities in vitro. This study is the first to explore the phytochemical analysis and COX-2 inhibitory activity of D. dentiger. This study can provide important phytochemical profiles and biological functions for the application of D. dentiger roots as a new source of natural COX-2 inhibitors and antioxidants in pharmaceutical industry.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yiwei Fang
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ronghua Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|