1
|
Alhaithloul HAS, Alsudays IM, Zaki EG, Elsaeed SM, Mubark AE, Salib L, Safwat G, Niedbała G, Diab A, Abdein MA, Alharthi A, Zakai SA, Elkelish A. Retrieval of Cu 2+ and Cd 2+ ions from aqueous solutions using sustainable guar gum/PVA/montmorillonite nanocomposite films: effect of temperature and adsorption isotherms. Front Chem 2024; 12:1393791. [PMID: 39161956 PMCID: PMC11330845 DOI: 10.3389/fchem.2024.1393791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 08/21/2024] Open
Abstract
Uncontrolled or improperly managed wastewater is considered toxic and dangerous to plants, animals, and people, as well as negatively impacting the ecosystem. In this research, the use of we aimed to prepare polymer nanocomposites (guar gum/polyvinyl alcohol, and nano-montmorillonite clay) for eliminating heavy metals from water-based systems, especially Cu2+ and Cd2+ ions. The synthesis of nanocomposites was done by the green method with different ratios of guar gum to PVA (50/50), (60/40), and (80/20) wt%, in addition to glycerol that acts as a cross-linker. Fourier-transform infrared spectroscopy (FT-IR) analysis of the prepared (guar gum/PVA/MMT) polymeric nano-composites' structure and morphology revealed the presence of both guar gum and PVA's functional groups in the polymeric network matrix. Transmission electron microscopy (TEM) analysis was also performed, which verified the creation of a nanocomposite. Furthermore, theromgravimetric analysis (TGA) demonstrated the biocomposites' excellent thermal properties. For those metal ions, the extreme uptake was found at pH 6.0 in each instance. The Equilibrium uptake capacities of the three prepared nanocomposites were achieved within 240 min. The maximal capacities were found to be 95, 89 and 84 mg/g for Cu2+, and for Cd2+ were found to be 100, 91, 87 mg/g for guar gum (80/20, 60/40 and 50/50), respectively. The pseudo-2nd-order model with R2 > 0.98 was demonstrated to be followed by the adsorption reaction, according to the presented results. In less than 4 hours, the adsorption equilibrium was reached. Furthermore, a 1% EDTA solution could be used to revitalize the metal-ion-loaded nanocomposites for several cycles. The most promising nanocomposite with efficiency above 90% for the removal of Cu2+ and Cd2+ ions from wastewater was found to have a guar (80/20) weight percentage, according to the results obtained.
Collapse
Affiliation(s)
| | | | | | | | - Amal E. Mubark
- Semi-Pilot Plant Department, Nuclear Materials Authority, Cairo, Egypt
| | - Lurana Salib
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznan University of Life Sciences, Poznań, Poland
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences (MSA), 6th of October, Egypt
| | - Mohamed A. Abdein
- Seeds Development Department, El-Nada Misr Scientific Research and Development Projects, Mansoura, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Cuvillier L, Passaretti A, Guilminot E, Joseph E. Agar and Chitosan Hydrogels' Design for Metal-Uptaking Treatments. Gels 2024; 10:55. [PMID: 38247779 PMCID: PMC10815442 DOI: 10.3390/gels10010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
In the field of cultural heritage, the use of natural gels is rising for the application of active agents. Here, two natural polymers are assessed: agar, a pioneer hydrogel for conservation treatments, and chitosan, a rather novel and metal-binding gel. For chitosan, a state-of-the-art based formulation (CS-ItA-LCys) is evaluated as it was reported for silver-complexing properties. It is evaluated whether these polymers can withstand the addition of the chelating compound deferoxamine, which is a bacterial siderophore. This allows for the obtainment of completely bio-sourced gel systems. A Fourier-transformed (FT) infrared spectroscopy characterization is performed, completed with rheological measurements and Cryo-Scanning Electron Microscopy (cryo-SEM) to investigate the physico-chemical properties of the gels, as well as their interaction with deferoxamine. Both polymers are also tested for their inherent complexing ability on silver ions using FT-Raman spectroscopy. A multi-analytical comparison shows different microstructures, in particular, the presence of a thick membrane for chitosan and different mechanical behaviors, with agar being more brittle. Neither hydrogel seems affected by the addition of deferoxamine; this is shown by similar rheological behavior and molecular structures in the presence or absence of the chelator. The intrinsic abilities of the chitosan formulation to make silver complex are demonstrated with the observation of two peaks characteristic of Ag-S and Ag-O bonds. Agar and chitosan are both proven to be reliable gels to act as carriers for bio-based active agents. This paper confirms the potential asset of the chitosan formulation CS-ItA-LCys as a promising gel for the complexation of soluble silver.
Collapse
Affiliation(s)
- Luana Cuvillier
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Arianna Passaretti
- Laboratory of Technologies for Heritage Materials, University of Neuchâtel, Bellevaux 51, 2000 Neuchâtel, Switzerland; (L.C.); (A.P.)
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| | - Elodie Guilminot
- Arc’Antique Conservation and Research Laboratory, 26 Rue de la Haute Forêt, 44300 Nantes, France;
| | - Edith Joseph
- Haute Ecole Arc Conservation Restauration, University of Applied Sciences and Arts Western Switzerland HES-SO, Espace de l’Europe 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
El Kaim Billah R, Lgaz H, Jiménez DG, Pal P, Trujillo-Navarrete B, Ahrouch M, Algethami JS, Abdellaoui Y, Majdoubi H, Alrashdi AA, Agunaou M, Soufiane A, López-Maldonado EA. Experimental and theoretical studies on nitrate removal using epichlorohydrin-modified cross-linked chitosan derived from shrimp waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107772-107789. [PMID: 37740156 DOI: 10.1007/s11356-023-29896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Nitrates level in water is a worldwide problem that represents a risk to the environment and people's health; efforts are currently devoted to the development and implementation of new biomaterials for their removal. In this study, chitosan (Ch) from shrimp waste and the related epichlorohydrin-modified crossover chitosan (Ch-EPI) were used to remove nitrates from aqueous solutions. The mechanism of selective nitrate removal was elucidated and validated by theoretical calculations. The physicochemical performance of Ch and Ch-EPI was investigated through the main parameters pH, adsorption capacity, contact time, initial nitrate concentration, coexisting anions, and temperature. The experimental data were fitted to widely used adsorption kinetic models and adsorption isotherms. The maximum percentage of nitrate adsorption was reached at an equilibrium pH of 4.0 at an adsorbent dose of 2.0 g/L after a contact time of 50 min. Competing anion experiments show that chloride and sulfate ions have minimal and maximal effects on nitrate adsorption by Ch-EPI. Experimental adsorption data are best fitted to pseudo-second-order kinetic and isothermal Langmuir models. The maximum adsorption capacities of Ch and Ch-EPI for nitrate removal were 12.0 mg/g and 38 mg/g, respectively.
Collapse
Affiliation(s)
- Rachid El Kaim Billah
- Science Engineer Laboratory for Energy, ENSAJ, Chouaïb Doukkali University, El Jadida, Morocco
| | - Hassane Lgaz
- Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of South Korea
| | - Daniel Goma Jiménez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real, Spain
| | - Preeti Pal
- Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, 30013
| | - Balter Trujillo-Navarrete
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana, B. C, Mexico
| | - Mohammadi Ahrouch
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real, Spain
- Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, 30013
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana, Tijuana, B. C, Mexico
- Laboratoire Matériaux et Systemes Interfaciaux LMSI, FS, Université Abdelmalek Essaadi, Tetouan, Morocco
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran, 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Youness Abdellaoui
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97355, Sisal, Yucatán, Mexico
| | - Hicham Majdoubi
- Materials Science Energy and Nanoengineering Department, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Awad A Alrashdi
- Chemistry Department, Umm Al-Qura University, Al-Qunfudhah University College, Al-Qunfudhah, Saudi Arabia
| | - Mahfoud Agunaou
- Department of Chemistry, Faculty of Sciences, Laboratory of Coordination and Analytical Chemistry, University of Chouaib Doukkali, El Jadida, Morocco
| | - Abdessadik Soufiane
- Department of Chemistry, Faculty of Sciences, Laboratory of Coordination and Analytical Chemistry, University of Chouaib Doukkali, El Jadida, Morocco
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22390, Tijuana, Baja California, Mexico.
| |
Collapse
|
4
|
Ortega DE, Cortés-Arriagada D, Araya-Hermosilla R. Computational Insights on the Chemical Reactivity of Functionalized and Crosslinked Polyketones to Cu 2+ Ion for Wastewater Treatment. Polymers (Basel) 2023; 15:3157. [PMID: 37571051 PMCID: PMC10420987 DOI: 10.3390/polym15153157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Today, the high concentrations of copper found in water resources result in an urgent problem to solve since human health and aquatic ecosystems have been affected. Functionalized crosslinked polyketone resins (XLPK) have demonstrated high performance for the uptake of heavy metals in water solutions. In addition, its green chemical synthesis makes these resins very attractive as sorbents for metal ions contained in wastewater. XLPK are not soluble in aqueous media and do not require any catalyst, solvent, or harsh conditions to carry out the uptake process. In this paper, a series of functionalized XLPK with pending amino-derivatives namely; butylamine (BA), amino 2-propanol (A2P), 4-(aminomethyl) benzoic acid (HAMC), 6-aminohexanoic acid (PAMBA), and 1,2 diamino propane (DAP) directly attached to the pyrrole backbone of the polymers and crosslinked by di-amine derivatives was investigated using Density Functional Theory (DFT) calculations. Our computational analysis revealed that dipole-dipole interactions played a crucial role in enhancing the adsorption of Cu2+ ions onto XLPKs. The negatively charged ketone moieties and functional groups within XLPKs were identified as key adsorption sites for the selective binding of Cu2+ ions. Additionally, we found that XLPKs exhibited strong electrostatic interactions primarily through the -NH2 and -C=O groups. Evaluation of the adsorption energies in XLPK-Cu(II) complexes showed that the DAP-Cu(II) complex exhibited the highest stability, attributed to strong Cu(II)-N binding facilitated by the amino moiety (-NH2). The remaining XLPKs displayed binding modes involving oxygen atoms (Cu(II)-O) within the ketone moieties in the polymer backbone. Furthermore, the complexation and thermochemical analysis emphasized the role of the coordinator atom (N or O) and the coordinating environment, in which higher entropic effects involved in the adsorption of Cu2+ ions onto XLPKs describes a lower spontaneity of the adsorption process. The adsorption reactions were favored at lower temperatures and higher pressures. These findings provide valuable insights into the reactivity and adsorption mechanisms of functionalized and crosslinked polyketones for Cu2+ uptake, facilitating the design of high-performance polymeric resins for water treatment applications.
Collapse
Affiliation(s)
- Daniela E. Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Facultad de Salud, Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (D.C.-A.); (R.A.-H.)
| | - Rodrigo Araya-Hermosilla
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile; (D.C.-A.); (R.A.-H.)
| |
Collapse
|
5
|
Li J, Wang S, Chen Y, Cheng Y, Wen C, Zhou Y. Dietary chitooligosaccharide supplementation improves mineral deposition, meat quality and intramuscular oxidant status in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:764-769. [PMID: 36054497 DOI: 10.1002/jsfa.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The present study aimed at evaluating the in vitro adsorption capability of chitooligosaccharide (COS) with some metal elements (Fe, Zn, Cd, Pb) at different pH values along with potential effects of dietary COS supplementation on growth performance, mineral content, meat quality and oxidant status in broilers. Day-old male chicks were randomly distributed into two groups and offered a basal diet supplemented with or without 30 mg kg-1 COS for 42 days. RESULTS In vitro trials demonstrated that Fe levels were higher (P < 0.001) in the COS-treated group compared with the non-treated group at pH of 2.5. However, these levels became lowered when pH values were raised to 5 (P < 0.01) or 6 (P < 0.001). Similarly, COS adsorbed more (P < 0.05) Zn at pH values of 2.5 and 6, and Cd contents at pH of 2.5 for 70 min when compared with the control. For in vivo trial, the feed-to-gain ratio, serum Cu (P < 0.01), hepatic Mn, Cr (P < 0.05) and intramuscular Cd (P < 0.01) were lower in response to COS treatment. Supplementation of COS improved (P < 0.05) meat quality of broilers in terms of lower drip loss, cooking loss and malondialdehyde content with a concomitant increase (P < 0.01) in the pH of breast meat at 24 h post mortem. CONCLUSION COS adsorbed heavy metal ions not only in vitro but also in broilers, and dietary supplementation with 30 mg kg-1 COS improved growth performance, breast meat quality and oxidant status in broilers. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shiqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Maity S, Bajirao Patil P, SenSharma S, Sarkar A. Bioremediation of heavy metals from the aqueous environment using Artocarpus heterophyllus (jackfruit) seed as a novel biosorbent. CHEMOSPHERE 2022; 307:136115. [PMID: 35995185 DOI: 10.1016/j.chemosphere.2022.136115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Biosorption is an environment-friendly and economic technique to remediate heavy metals from aqueous systems. In the present study, Artocarpus heterophyllus seed powder was used as a biosorbent material to remove different heavy metals. The batch adsorption studies confirmed the higher removal percentage of the Artocarpus heterophyllus (jackfruit) seed powder for arsenic (As5+), cadmium (Cd2+), and chromium (Cr6+) while lower efficiency was observed for other heavy metals like copper (Cu2+), zinc (Zn2+) and nickel (Ni2+). Optimization of different process parameters was carried out and the optimum conditions were: adsorbent weight of 0.5 g for the initial concentration of heavy metals as 40 μg/L, 30 mg/L, and 30 mg/L; contact time of 10 h, 8 h, and 6 h; process temperature from 25 to 30 °C; pH of 7, 7.5, and 7.5 for As5+, Cd2+, and Cr6+ respectively. The SEM-EDX, FTIR, and XRD studies before and after adsorption of heavy metals resulted in affirmative observations. The equilibrium data of the study was well fitted for Langmuir isotherm for As5+, Cd2+, and Cr6+, Freundlich for As5+and Cr6+, Dubinin-Radushkevich for Cd2+and Cr6+. The kinetic and thermodynamic study confirmed that the adsorption of all three heavy metals was following the pseudo-second-order kinetics with the endothermic and spontaneous process respectively. The cost analysis of the process confirmed that the whole process was cost-effective compared to other processes. Hence the Artocarpus heterophyllus seed powder was verified for its high heavy metal remediation efficiency from aqueous environments along with the added advantages of being eco-friendly and economic compared to other alternatives.
Collapse
Affiliation(s)
- Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| | - Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| | - Sreemoyee SenSharma
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
7
|
High-Performance Hydrogel Based on Modified Chitosan for Removal of Heavy Metal Ions in Borehole: A Case Study from the Bahariya Oasis, Egypt. Catalysts 2022. [DOI: 10.3390/catal12070721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Globally, there is a rising demand for water purification. This demand is driven by numerous factors, including economic growth, increasing population, water shortage, and deterioration of water quality. The current work highlights the manufacturing of environmentally friendly and highly efficient sorbent based on chitosan nanoparticles after successive crosslinking (using glutaraldehyde) and modification through grafting of 4-aminoazobenzene-3,4′-disulfonic acid (AZDS) as a source of sulfonic groups. First, the produced sorbent was thoroughly specified using FTIR, TGA, SEM, SEM-EDX, pHpzc, BET (nitrogen sorption desorption isotherms), and elemental analyses (EA). The sorbent was tested for the sorption of Fe(III) before application to highly contaminated iron water well samples. Next, the sorption was improved as the sulfonation process was conducted under the selected experimental conditions within 25 and 20 min with a maximum capacity of 2.7 and 3.0 mmol Fe g−1 in visible light and under UV, respectively. Then, the uptake kinetics for both techniques were fitted by the pseudo-first-order rate equation (PFORE), in which the effect of the resistance to intraparticle diffusion has remained an unneglected factor, while the Langmuir equation has fitted the sorption isotherms. After that, the efficient desorption was achieved by using 0.2 M hydrochloric acid solution, and the desorption process was as fast as the sorption process; 15 min was sufficient for complete desorption. The sorbent shows high selectivity for heavy metal ions compared to the representative elements. Finally, the sorbent was used for the removal of heavy metal ions from a highly contaminated water well in the Bahariya Oasis and appeared to be highly efficient for heavy metal removal even in a diluted solution. Accordingly, it can be implemented in the task of water treatment.
Collapse
|
8
|
Li Y, Dai Y, Tao Q, Gao Z, Xu L. Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. Int J Biol Macromol 2022; 214:54-66. [PMID: 35714866 DOI: 10.1016/j.ijbiomac.2022.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Exploiting eco-friendly, highly controlled preparation and convenient solid-liquid separation adsorbent to separate uranium from aquatic medium is of importance and in demand. In this study, magnetic ferroferric oxide nanoparticles synthesized through a facile hydrothermal reaction was cross-linked with chitosan. The intermediate product was subsequently chemically grafting with four amino acids such as alanine, serine, glycine or L-cysteine to produce Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS. The resultants were verified by SEM, EDS, XRD, VSM, FT-IR and XPS. Adsorption of uranium with amino acids-modified magnetic chitosans were carried out. The parameters that affected the adsorption ability, selectivity toward uranium, and reusability have been illustrated. pH 6.5 was the most beneficial for the adsorption. The saturation adsorption capacity of Ala-MCS, Ser-MCS, Gly-MCS, Cys-MCS were found as 658.88 mg/g ± 1.0 %, 616.10 ± 0.3 % mg/g, 646.38 ± 1.8 % mg/g, 653.96 ± 3.4 % mg/g and 409.15 ± 4.6 % mg/g, respectively. The adsorption process was analyzed using kinetics (pseudo-first-order, pseudo-second-order and intraparticle diffusion models) and isotherms models (Langmuir and Freundlich models). The adsorption of uranium on Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS happened on monolayer and were controlled by chemisorption. The certified high adsorption amount and efficient solid-liquid separation proved amino acids-modified magnetic chitosan are promising adsorbents for removal of uranium from wastewater.
Collapse
Affiliation(s)
- Yan Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China
| | - Ying Dai
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China.
| | - Qinqin Tao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China.
| | - Zhi Gao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Hamza MF, Abdel-Rahman AAH, Negm AS, Hamad DM, Khalafalla MS, Fouda A, Wei Y, Amer HH, Alotaibi SH, Goda AES. Grafting of Thiazole Derivative on Chitosan Magnetite Nanoparticles for Cadmium Removal—Application for Groundwater Treatment. Polymers (Basel) 2022; 14:polym14061240. [PMID: 35335569 PMCID: PMC8954473 DOI: 10.3390/polym14061240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis and developments of magnetic chitosan nanoparticles for high efficiency removal of the cadmium ions from aquatic medium are one of the most challenging techniques. Highly adsorptive composite (MCH-ATA) was produced by the reaction of chitosan with formaldehyde and amino thiazole derivative. The sorbent was characterized by FTIR, elemental analyses (EA), SEM-EDX, TEM analysis, TGA and titration (volumetric). The modified material includes high nitrogen and sulfur contents (i.e., 4.64 and 1.35 mmol g−1, respectively), compared to the pristine material (3.5 and 0 mmol g−1, respectively). The sorption was investigated for the removal of Cd(II) ions from synthetic (prepared) solution before being tested towards naturally contaminated groundwater in an industrial area. The functionalized sorbent shows a high loading capacity (1.78 mmol Cd g−1; 200 mg Cd g−1) compared to the pristine material (0.61 mmol Cd g−1; 68.57 mg Cd g−1), while removal of about 98% of Cd with capacity (6.4 mg Cd g−1) from polymetallic contaminated groundwater. The sorbent displays fast sorption kinetics compared to the non-modified composite (MCH); 30 min is sufficient for complete sorption for MCH-ATA, while 60–90 min for the MCH. PFORE fits sorption kinetics for both sorbents, whereas the Langmuir equation fits for MCH and Langmuir and Sips for MCH-ATA for sorption isotherms. The TEM analysis confirms the nano scale size, which limits the diffusion to intraparticle sorption properties. The 0.2 M HCl solution is a successful desorbing agent for the metal ions. The sorbent was applied for the removal of cadmium ions from the contaminated underground water and appears to be a promising process for metal decontamination and water treatment.
Collapse
Affiliation(s)
- Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Semi Pilot Plant Department, Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt;
- Correspondence: (M.F.H.); (Y.W.); Tel.: +20-1116681228 (M.F.H.); +86-771-322-4990 (Y.W.)
| | - Adel A.-H. Abdel-Rahman
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Alyaa S. Negm
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Doaa M. Hamad
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.A.-H.A.-R.); (A.S.N.); (D.M.H.)
| | - Mahmoud S. Khalafalla
- Semi Pilot Plant Department, Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (M.F.H.); (Y.W.); Tel.: +20-1116681228 (M.F.H.); +86-771-322-4990 (Y.W.)
| | - Hamada H. Amer
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.H.A.)
| | - Saad H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (H.H.A.); (S.H.A.)
| | - Adel E.-S. Goda
- Tanta Higher Institute of Engineering and Technology, Tanta 31739, Egypt;
| |
Collapse
|
10
|
A sustainable generated hydrochar from pomegranate residues for remediation of process water contaminated with Cu(II) ions. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Alwan Almijbilee MM, Wang Y, Peng M, Kong A, Zhang J, Li W. Ion-binding ameliorates the organic solvents nanofiltration performance of poly (butyl acrylamide-co-divinylbenzene) composites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Hoa NV, Minh NC, Cuong HN, Dat PA, Nam PV, Viet PHT, Phuong PTD, Trung TS. Highly Porous Hydroxyapatite/Graphene Oxide/Chitosan Beads as an Efficient Adsorbent for Dyes and Heavy Metal Ions Removal. Molecules 2021; 26:molecules26206127. [PMID: 34684704 PMCID: PMC8538019 DOI: 10.3390/molecules26206127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively.
Collapse
Affiliation(s)
- Nguyen Van Hoa
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
- Correspondence:
| | - Nguyen Cong Minh
- Institute for Biotechnology and Environment, Nha Trang University, Nha Trang 650000, Vietnam;
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot 55000, Vietnam;
| | - Pham Anh Dat
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| | - Pham Viet Nam
- Faculty of Fishery, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 70000, Vietnam;
| | | | - Pham Thi Dan Phuong
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| | - Trang Si Trung
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| |
Collapse
|
13
|
Chung Hui K, Lun Ang W, Soraya Sambudi N. Nitrogen and bismuth-doped rice husk-derived carbon quantum dots for dye degradation and heavy metal removal. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Giraldo S, Robles I, Godínez LA, Acelas N, Flórez E. Experimental and Theoretical Insights on Methylene Blue Removal from Wastewater Using an Adsorbent Obtained from the Residues of the Orange Industry. Molecules 2021; 26:molecules26154555. [PMID: 34361706 PMCID: PMC8348386 DOI: 10.3390/molecules26154555] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022] Open
Abstract
Chemical and thermochemical transformations were performed on orange peel to obtain materials that were characterized and further tested to explore their potential as adsorbents for the removal of methylene blue (MB) from aqueous solutions. The results show the high potential of some of these materials for MB adsorption not only due to the surface area of the resulting substrate but also to the chemistry of the corresponding surface functional groups. Fitting of the kinetic as well as the equilibrium experimental data to different models suggests that a variety of interactions are involved in MB adsorption. The overall capacities for these substrates (larger than 192.31 mg g−1) were found to compare well with those reported for activated carbon and other adsorbents of agro-industrial origin. According to these results and complementary with theoretical study using Density Functional Theory (DFT) approximations, it was found that the most important adsorption mechanisms of MB correspond to: (i) electrostatic interactions, (ii) H-bonding, and (iii) π (MB)–π (biochar) interactions. In view of these findings, it can be concluded that adsorbent materials obtained from orange peel, constitute a good alternative for the removal of MB dye from aqueous solutions.
Collapse
Affiliation(s)
- Stephanie Giraldo
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia;
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo 76703, Querétaro, Mexico; (I.R.); (L.A.G.)
| | - Luis A. Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, Sanfandila, Pedro Escobedo 76703, Querétaro, Mexico; (I.R.); (L.A.G.)
| | - Nancy Acelas
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia;
- Correspondence: (N.A.); (E.F.)
| | - Elizabeth Flórez
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia;
- Correspondence: (N.A.); (E.F.)
| |
Collapse
|
15
|
Pavithra S, Thandapani G, S S, P N S, Alkhamis HH, Alrefaei AF, Almutairi MH. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater. CHEMOSPHERE 2021; 271:129415. [PMID: 33460901 DOI: 10.1016/j.chemosphere.2020.129415] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Elimination of heavy metals from wastewater has been a significant process to improve the aquatic source's quality. Various materials act as very effective adsorbents to remove heavy metals, which cause toxicity to plants and all other living organisms. Thus, the present work focuses on removing heavy metals chromium (Cr) and copper (Cu) ions containing wastewater using biodegradable and cost-effective chitosan-based hydrogel composite. The composite was prepared via chemical cross-linking of radical chitosan with polyacrylamide and N,N'-Methylene bisacrylamide and blended with orange peel. The synthesis of the adsorbent has been confirmed by using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy - Energy dispersive X-ray analysis (SEM-EDAX) and X-ray diffraction (XRD) studies. The adsorption power of the composite of metal ions at different time, pH, adsorbent dosages, different metal ion concentrations were analyzed by using Atomic Absorption Spectroscopy (AAS). The results concluded that the optimum pH for Cr(VI) and Cu (II) were 4 and 5, contact time: 360 min, adsorbent dosage: 4 g, and initial metal ion concentration: 100 mg/L for each metal ions. The adsorption isotherm models follow the Freundlich model and pseudo-second-order kinetics. From the results, the adsorption capacity was observed to be 80.43% for Cr(VI) and 82.47% for Cu(II) ions, respectively.
Collapse
Affiliation(s)
- S Pavithra
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India
| | - Gomathi Thandapani
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India.
| | - Sugashini S
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India
| | - Sudha P N
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India.
| | - Hussein H Alkhamis
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed F Alrefaei
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Fenice M, Gorrasi S. Advances in Chitin and Chitosan Science. Molecules 2021; 26:molecules26061805. [PMID: 33806913 PMCID: PMC8005133 DOI: 10.3390/molecules26061805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
|
17
|
One-Step Preparation of Chitosan-Based Magnetic Adsorbent and Its Application to the Adsorption of Inorganic Arsenic in Water. Molecules 2021; 26:molecules26061785. [PMID: 33810077 PMCID: PMC8004736 DOI: 10.3390/molecules26061785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a kind of biodegradable natural polysaccharide, and it is a very promising adsorber material for removing metal ions from aqueous solutions. In this study, chitosan-based magnetic adsorbent CMC@Fe3O4 was synthesized by a one-step method using carboxymethyl chitosan (CMC) and ferric salts under relatively mild conditions. The Fe3O4 microspheres were formed and the core-shell structure of CMC@Fe3O4 was synthesized in the meantime, which was well characterized via SEM/TEM, XRD, VSM, FT-IR, thermo gravimetric analysis (TGA), XPS, size distribution, and zeta potential. The effects of initial arsenic concentration, pH, temperature, contact time, and ionic strength on adsorption quantity of inorganic arsenic was studied through batch adsorption experiments. The magnetic adsorbent CMC@Fe3O4 displayed satisfactory adsorption performance for arsenic in water samples, up to 20.1 mg/g. The optimal conditions of the adsorption process were pH 3.0, 30-50 °C, and a reaction time of 15 min. The adsorption process can be well described by pseudo-second-order kinetic model, suggesting that chemisorption was main rate-controlling step. The Langmuir adsorption model provided much higher correlation coefficient than that of Freundlich adsorption model, indicating that the adsorption behavior is monolayer adsorption on the surface of the magnetic adsorbents. The above results have demonstrated that chitosan-based magnetic adsorbent CMC@Fe3O4 is suitable for the removal of inorganic arsenic in water.
Collapse
|
18
|
Dinari M, Mokhtari N, Hatami M. Covalent triazine based polymer with high nitrogen levels for removal of copper (II) ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02463-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
20
|
Humelnicu D, Dragan ES, Ignat M, Dinu MV. A Comparative Study on Cu 2+, Zn 2+, Ni 2+, Fe 3+, and Cr 3+ Metal Ions Removal from Industrial Wastewaters by Chitosan-Based Composite Cryogels. Molecules 2020; 25:E2664. [PMID: 32521721 PMCID: PMC7321311 DOI: 10.3390/molecules25112664] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Materials coming from renewable resources have drawn recently an increased attention in various applications as an eco-friendly alternative in the synthesis of novel functional materials. Polysaccharides, with their prominent representative - chitosan (CS), are well-known for their sorption properties, being able to remove metal ions from dilute solutions either by electrostatic interactions or chelation. In this context, we proposed here a comparative study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ metal ions removal from industrial wastewaters by CS-based composite cryogels using batch technique. The composite cryogels consisting of CS embedding a natural zeolite, namely clinoptilolite, were synthesized by cryogelation, and their sorption performance were compared to those of CS cryogels and of acid-activated zeolite. A deeper analysis of thermodynamics and kinetics sorption data was performed to get insights into the sorption mechanism of all metal ions onto sorbents. Based on the optimized sorption conditions, the removal of the above-mentioned ions from aqueous solutions by the composite sorbent using dynamic technique was also evaluated.
Collapse
Affiliation(s)
- Doina Humelnicu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (D.H.); (M.I.)
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| | - Maria Ignat
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania; (D.H.); (M.I.)
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania;
| |
Collapse
|