1
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
2
|
Shanmugavel A, Rene ER, Balakrishnan SP, Krishnakumar N, Jose SP. Heavy metal ion sensing strategies using fluorophores for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 260:119544. [PMID: 38969312 DOI: 10.1016/j.envres.2024.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Abinaya Shanmugavel
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | | | - Sujin P Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
3
|
Duo Y, Han L, Yang Y, Wang Z, Wang L, Chen J, Xiang Z, Yoon J, Luo G, Tang BZ. Aggregation-Induced Emission Luminogen: Role in Biopsy for Precision Medicine. Chem Rev 2024; 124:11242-11347. [PMID: 39380213 PMCID: PMC11503637 DOI: 10.1021/acs.chemrev.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Biopsy, including tissue and liquid biopsy, offers comprehensive and real-time physiological and pathological information for disease detection, diagnosis, and monitoring. Fluorescent probes are frequently selected to obtain adequate information on pathological processes in a rapid and minimally invasive manner based on their advantages for biopsy. However, conventional fluorescent probes have been found to show aggregation-caused quenching (ACQ) properties, impeding greater progresses in this area. Since the discovery of aggregation-induced emission luminogen (AIEgen) have promoted rapid advancements in molecular bionanomaterials owing to their unique properties, including high quantum yield (QY) and signal-to-noise ratio (SNR), etc. This review seeks to present the latest advances in AIEgen-based biofluorescent probes for biopsy in real or artificial samples, and also the key properties of these AIE probes. This review is divided into: (i) tissue biopsy based on smart AIEgens, (ii) blood sample biopsy based on smart AIEgens, (iii) urine sample biopsy based on smart AIEgens, (iv) saliva sample biopsy based on smart AIEgens, (v) biopsy of other liquid samples based on smart AIEgens, and (vi) perspectives and conclusion. This review could provide additional guidance to motivate interest and bolster more innovative ideas for further exploring the applications of various smart AIEgens in precision medicine.
Collapse
Affiliation(s)
- Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Lei Han
- College of
Chemistry and Pharmaceutical Sciences, Qingdao
Agricultural University, 700 Changcheng Road, Qingdao 266109, Shandong China
| | - Yaoqiang Yang
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Zhifeng Wang
- Department
of Urology, Henan Provincial People’s Hospital, Zhengzhou University
People’s Hospital, Henan University
People’s Hospital, Zhengzhou, 450003, China
| | - Lirong Wang
- State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jingyi Chen
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02138, United States
| | - Zhongyuan Xiang
- Department
of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Guanghong Luo
- Department
of Radiation Oncology, Shenzhen People’s Hospital, The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong China
| |
Collapse
|
4
|
Jia B, Li X, Liu W, Yang Z, Wang Y, Wang Z, Yang L, Liu Y, Fu Y. Multi-stimuli-responsive cyanostilbene derivatives: Their fluorescent and mechanochromic properties, and potential application in water sensing and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124474. [PMID: 38763018 DOI: 10.1016/j.saa.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.
Collapse
Affiliation(s)
- Binbin Jia
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Xiangying Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Wenjun Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zhou Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yuanzhen Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Zishi Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Liu Yang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China
| | - Yulong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resource Utilization Technology, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
5
|
Biesen L, Müller TJJ. The complexometric behavior of selected aroyl-S,N-ketene acetals shows that they are more than AIEgens. Sci Rep 2024; 14:12565. [PMID: 38822000 PMCID: PMC11143253 DOI: 10.1038/s41598-024-62100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Using the established synthetic methods, aroyl-S,N-ketene acetals and subsequent bi- and multichromophores can be readily synthesized. Aside from pronounced AIE (aggregation induced emission) properties, these selected examples possess distinct complexometric behavior for various metals purely based on the underlying structural motifs. This affects the fluorescence properties of the materials which can be readily exploited for metal ion detection and for the formation of different metal-aroyl-S,N-ketene acetal complexes that were confirmed by Job plot analysis. In particular, gold(I), iron(III), and ruthenium (III) ions reveal complexation enhanced or quenched emission. For most dyes, weakly coodinating complexes were observed, only in case of a phenanthroline aroyl-S,N-ketene acetal multichromophore, measurements indicate the formation of a strongly coordinating complex. For this multichromophore, the complexation results in a loss of fluorescence intensity whereas for dimethylamino-aroyl-S,N-ketene acetals and bipyridine bichromophores, the observed quantum yield is nearly tripled upon complexation. Even if no stable complexes are formed, changes in absorption and emission properties allow for a simple ion detection.
Collapse
Affiliation(s)
- Lukas Biesen
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Takemasa Y, Nozaki K. Tetrakispyrazolylethene: Protonation-Induced Emission. J Org Chem 2024; 89:7156-7162. [PMID: 38695511 DOI: 10.1021/acs.joc.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Tetrakispyrazolylethene (1) was synthesized from pyrazole and hexachloroethane through a one-step substitution reaction. The increase of emission was detected both in solid and aqueous THF solution, compared with that in anhydrous THF. While the former originates from the crystal packing, the latter is attributed to the protonation-induced emission, independent of aggregation, based on the optical measurement under varying concentrations and particle-size distribution analysis.
Collapse
Affiliation(s)
- Yuta Takemasa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Chiacchio MA, Campisi A, Iannazzo D, Giofrè SV, Legnani L. Design of New Schiff Bases and Their Heavy Metal Ion Complexes for Environmental Applications: A Molecular Dynamics and Density Function Theory Study. Int J Mol Sci 2024; 25:4159. [PMID: 38673744 PMCID: PMC11050623 DOI: 10.3390/ijms25084159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1-3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Agata Campisi
- Dipartimento di Scienze del Farmaco e Della Salute, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Annunziata, 98168 Messina, Italy;
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
8
|
He Z, Xu K, Li Y, Gao H, Miao T, Zhao R, Huang Y. Molecularly Targeted Fluorescent Sensors for Visualizing and Tracking Cellular Senescence. BIOSENSORS 2023; 13:838. [PMID: 37754071 PMCID: PMC10526510 DOI: 10.3390/bios13090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Specific identification and monitoring of senescent cells are essential for the in-depth understanding and regulation of senescence-related life processes and diseases. Fluorescent sensors providing real-time and in situ information with spatiotemporal resolution are unparalleled tools and have contributed greatly to this field. This review focuses on the recent progress in fluorescent sensors for molecularly targeted imaging and real-time tracking of cellular senescence. The molecular design, sensing mechanisms, and biological activities of the sensors are discussed. The sensors are categorized by the types of markers and targeting ligands. Accordingly, their molecular recognition and fluorescent performance towards senescence biomarkers are summarized. Finally, the perspective and challenges in this field are discussed, which are expected to assist future design of next-generation sensors for monitoring cellular senescence.
Collapse
Affiliation(s)
- Zhirong He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
| | - Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Miao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (K.X.); (Y.L.); (H.G.); (R.Z.)
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
10
|
An BH, Lee TG, Khan TT, Seo HW, Hwang HJ, Jun YS. Optical and quantitative detection of cobalt ion using graphitic carbon nitride-based chemosensor for hydrometallurgy of waste lithium-ion batteries. CHEMOSPHERE 2023; 315:137789. [PMID: 36626953 DOI: 10.1016/j.chemosphere.2023.137789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
A hydrometallurgy is one of the most important techniques for recycling waste LIBs, where identifying the exact composition of the metal-leached solution is critical in controlling the metal extraction efficiency and the stoichiometry of the regenerated product. In this study, we report a simple and selective optical detection of high-concentrated Co2+ using a graphitic carbon nitride (g-CN)-based fluorescent chemosensor. g-CN is prepared by molten salt synthesis using dicyandiamide (DCDA) and LiI/KI. The mass ratio of LiI/KI to DCDA modifies the resulting g-CN (CNI) in terms of in-plane molecular distances of base sites including cyano functional groups (─CN) and fluorescent emission wavelength via nucleophilic substitution. The fluorescent sensing performance of CNIs is evaluated through photoluminescence (PL) emission spectroscopy in a broad Co2+ concentration range (10-4-100 M). The correlation between the surface exposure of hidden nitrogen pots (base sites) and PL intensity change is achieved where the linear relationship between the PL quenching and the logarithm of Co2+ concentration in the analyte solution is well established with the regression of 0.9959. This study will provide the design principle of the chemosensor suitable for the fast and accurate optical detection of Co2+ present in a broad concentration range for hydrometallurgy for the recycling of waste LIBs.
Collapse
Affiliation(s)
- Byeong-Hyeon An
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Gyu Lee
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tamal Tahsin Khan
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hye-Won Seo
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyun Jin Hwang
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Si Jun
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
11
|
Schiff Bases and Their Metal Complexes: A review on the history, synthesis, and applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
13
|
Shellaiah M, Sun KW. Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. BIOSENSORS 2022; 12:bios12070550. [PMID: 35884351 PMCID: PMC9313392 DOI: 10.3390/bios12070550] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/06/2023]
Abstract
Aggregation-induced emission (AIE) is a unique research topic and property that can lead to a wide range of applications, including cellular imaging, theranostics, analyte quantitation and the specific detection of biologically important species. Towards the development of the AIE-active materials, many aromatic moieties composed of tetraphenylethylene, anthracene, pyrene, etc., have been developed. Among these aromatic moieties, pyrene is an aromatic hydrocarbon with a polycyclic flat structure containing four fused benzene rings to provide an unusual electron delocalization feature that is important in the AIE property. Numerous pyrene-based AIE-active materials have been reported with the AIE property towards sensing, imaging and theranostics applications. Most importantly, these AIE-active pyrene moieties exist as small molecules, Schiff bases, polymers, supramolecules, metal-organic frameworks, etc. This comprehensive review outlines utilizations of AIE-active pyrene-based materials on the imaging and theranostics studies. Moreover, the design and synthesis of these pyrene-based molecules are delivered with discussions on their future scopes.
Collapse
|
14
|
Wilcke T, Postole A, Krüsmann M, Karg M, Müller TJJ. Amphipolar, Amphiphilic 2,4-diarylpyrano[2,3- b]indoles as Turn-ON Luminophores in Acidic and Basic Media. Molecules 2022; 27:2354. [PMID: 35408766 PMCID: PMC9000430 DOI: 10.3390/molecules27072354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
A versatile amphiphilic pyrano[2,3-b]indole for halochromic turn-ON luminescence in acidic or basic media is accessed by an insertion-coupling-cycloisomerization and adjusting solubilizing and phenolic functionalities. While almost non-emissive in neutral solutions, treatment with acids or bases like trifluoroacetic acid (TFA) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) reveals distinct luminescence at wavelengths of 540 nm or 630 nm in propan-2-ol, respectively. Turn-ON emission can be detected at pH values as mild as pH = 5.31 or 8.70. Quantum yields in propan-2-ol are substantial for protonated (Φf = 0.058) and deprotonated (Φf = 0.059) species. Photometrically, pKa1 of 3.5 and pKa2 of 10.5 were determined in propan-2-ol. With lipophilic polyether sidechains and hydrophilic protonation and deprotonation sites the molecule can be regarded as amphipolar, which results in good solubility properties for different organic solvents. In aqueous media, an organic co-solvent like propan-2-ol (35%) or tetrahydrofuran (25%) is needed, and the solution can be diluted with pure water without precipitation of the compound. At higher concentrations of water, a turbid solution is formed, which indicates the formation of micellar structures or clusters. With dynamic light scattering we could show that these clusters increase in size with increasing water content.
Collapse
Affiliation(s)
- Tobias Wilcke
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Alexandru Postole
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| | - Marcel Krüsmann
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Matthias Karg
- Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (M.K.); (M.K.)
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany; (T.W.); (A.P.)
| |
Collapse
|
15
|
Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chem Soc Rev 2022; 51:1795-1835. [PMID: 35142301 DOI: 10.1039/d1cs00307k] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of a near-infrared (NIR, 650-900 nm) fluorescent chromophore hemicyanine dye with high structural tailorability is of great significance in the field of detection, bioimaging, and medical therapeutic applications. It exhibits many outstanding advantages including absorption and emission in the NIR region, tunable spectral properties, high photostability as well as a large Stokes shift. These properties are superior to those of conventional fluorogens, such as coumarin, fluorescein, naphthalimides, rhodamine, and cyanine. Researchers have made remarkable progress in developing activity-based multifunctional fluorescent probes based on hemicyanine skeletons for monitoring vital biomolecules in living systems through the output of fluorescence/photoacoustic signals, and integration of diagnosis and treatment of diseases using chemotherapy or photothermal/photodynamic therapy or combination therapy. These achievements prompted researchers to develop more smart fluorescent probes using a hemicyanine fluorogen as a template. In this review, we begin by describing the brief history of the discovery of hemicyanine dyes, synthetic approaches, and design strategies for activity-based functional fluorescent probes. Then, many selected hemicyanine-based probes that can detect ions, small biomolecules, overexpressed enzymes and diagnostic reagents for diseases are systematically highlighted. Finally, potential drawbacks and the outlook for future investigation and clinical medicine transformation of hemicyanine-based activatable functional probes are also discussed.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,Research Institute of Dalian University of Technology in Shenzhen, Nanshan District, Shenzhen 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
16
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
17
|
Aggregation induced emission molecules for detection of nucleic acids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34749975 DOI: 10.1016/bs.pmbts.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Aggregation-induced emission (AIE) is an ingenious concept in the field of luminescent molecules. AIE is the energy released in an excited state that in turn is converted into light irrespective of being in either liquid phase or solid phase. Aggregation or crystallization of AIE molecules impedes the free movement of molecules and it resultantly becomes highly fluorescent. It is currently being used for several applications including sensing, diagnostic, protein, DNA or RNA detection, cells and cell organelles imaging. AIEs are highly sensitive and specific for binding with target molecules. In this chapter, we underline different AIE molecules for detection of nucleic acids.
Collapse
|
18
|
Liu Z, Liang G, Zhan W. In situ Activatable Peptide-based Nanoprobes for Tumor Imaging. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Diana R, Panunzi B. Zinc (II) and AIEgens: The "Clip Approach" for a Novel Fluorophore Family. A Review. Molecules 2021; 26:4176. [PMID: 34299451 PMCID: PMC8304007 DOI: 10.3390/molecules26144176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016-2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.
Collapse
Affiliation(s)
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
20
|
Kougioumtzi A, Chatziathanasiadou MV, Vrettos EI, Sayyad N, Sakka M, Stathopoulos P, Mantzaris MD, Ganai AM, Karpoormath R, Vartholomatos G, Tsikaris V, Lazarides T, Murphy C, Tzakos AG. Development of novel GnRH and Tat 48-60 based luminescent probes with enhanced cellular uptake and bioimaging profile. Dalton Trans 2021; 50:9215-9224. [PMID: 34125130 DOI: 10.1039/d1dt00060h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a clear need to develop photostable chromophores for bioimaging with respect to the classically utilized green fluorescent dye fluorescein. Along these lines, we utilized a phosphorescent carboxy-substituted ruthenium(ii) polypyridyl [Ru(bipy)2(mcb)]2+ (bipy = 2,2'-bipyridyl and mcb = 4-carboxy-4'-methyl-2,2'-bipyridyl) complex. We developed two luminescent peptide conjugates of the cell-penetrating peptide Tat48-60 consisting of either [Ru(bipy)2(mcb)]2+ or 5(6)-carboxyfluorescein (5(6)-FAM) tethered on the Lys50 of the peptide through amide bond. We confirmed the efficient cellular uptake of both bioconjugates in HeLa cells by confocal microscopy and flow cytometry and proved that the ruthenium-based chromophore possesses enhanced photostability compared to a 5(6)-FAM-based peptide, after continuous laser scanning. Furthermore, we designed and developed a luminescent agent with high photostability, based on the ruthenium core, that could be selectively localized in cancer cells overexpressing the GnRH receptor (GnRH-R). To achieve this, we took advantage of the tumor-homing character of d-Lys6-GnRH which selectively recognizes the GnRH-R. The [Ru(bipy)2(mcb)]2+-d-Lys6-GnRH peptide conjugate was synthesized, and its cellular uptake was evaluated through flow cytometric analysis and live-cell imaging in HeLa and T24 bladder cancer cells as negative and positive controls of GnRH-R, respectively. Besides the selective targeting that the specific conjugate could offer, we also recorded high internalization levels in T24 bladder cancer cells. The ruthenium(ii) polypyridyl peptide-based conjugates we developed is an intriguing approach that offers targeted cell imaging in the Near Infrared region, and simultaneously paves the way for further advancements in the dynamic studies on cellular imaging.
Collapse
Affiliation(s)
- Anastasia Kougioumtzi
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Eirinaios I Vrettos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Nisar Sayyad
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Mariana Sakka
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Panagiotis Stathopoulos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Michalis D Mantzaris
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa
| | - Georgios Vartholomatos
- Hematology Laboratory, Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, 45110 Greece
| | - Vassilios Tsikaris
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece.
| | - Theodore Lazarides
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Carol Murphy
- Institute of Molecular Biology & Biotechnology, Foundation of Research and Technology-Hellas, Department of Biomedical Research, University Campus, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece. and University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
21
|
A multicolor and ratiometric fluorescent sensing platform for metal ions based on arene-metal-ion contact. Commun Chem 2021; 4:104. [PMID: 36697807 PMCID: PMC9814090 DOI: 10.1038/s42004-021-00541-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Despite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene-metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2'-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye's electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.
Collapse
|
22
|
Wang L, Zheng XY, Zhang X, Zhu ZJ. A quinoline-based fluorescent chemosensor for palladium ion (Pd 2+)-selective detection in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119283. [PMID: 33348096 DOI: 10.1016/j.saa.2020.119283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Quinoline-based fluorescent chemosensors have been extensively developed for various metal cations, but it was still rare for Pd2+-selective detection. In this work, a novel quinoline-benzimidazole conjugate containing one carboxylic acid group (QBM) was designed, and the QBM displayed highly selective fluorescence quenching response towards Pd2+ over other metal cations in aqueous solution. The fluorescence titration revealed a good linear relationship between the fluorescence intensity and the Pd2+ concentration in the range of 0.5-10 μmol L-1, with the detection limit of 0.26 μmol L-1 (S/N = 3). Fluorescence detection of Pd2+ in practical water sample was also successfully achieved.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xuan-Yu Zheng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xuan Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhi-Jia Zhu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Alam P, Leung NL, Zhang J, Kwok RT, Lam JW, Tang BZ. AIE-based luminescence probes for metal ion detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213693] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Liu L, Ma J, Pan J, Li D, Wang H, Yang H. The preparation of novel triphenylamine-based AIE-effect fluorescent probe for selectively detecting mercury( ii) ion in aqueous solution. NEW J CHEM 2021. [DOI: 10.1039/d1nj00270h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel triphenylamine-based TPA-ME exhibits good AIE fluorescence in a DMF/Water system and excellent probe property for detecting Hg2+ in solution.
Collapse
Affiliation(s)
- Lian Liu
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Jie Ma
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
- Department of Chemistry
| | - Jiamin Pan
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Denghui Li
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Huiling Wang
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Honggao Yang
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
25
|
Nadimetla DN, Bhosale SV. Tetraphenylethylene AIEgen bearing thiophenylbipyridine receptor for selective detection of copper(ii) ion. NEW J CHEM 2021. [DOI: 10.1039/d1nj01001h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new tetraphenylethylene (TPE) AIEgen appended with a thiophenylbipyridine moiety exhibits sensitivity and selectivity towards copper ions via a PET “turn on–turn off” mechanism.
Collapse
|
26
|
Park J, Yu H, Park SH, Lee KH. Selective ratiometric red-emission detection of In 3+ in aqueous solutions and in live cells using a fluorescent peptidyl probe and metal chelating agent. Analyst 2020; 145:4031-4040. [PMID: 32364198 DOI: 10.1039/d0an00288g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indium has been regarded as one of the most rarely used metal ions; however, the consumption of indium has increased intensively due to its increasing use in electrodes of liquid crystal displays (LCDs). In recent years, warnings have been issued about the toxicity of indium to aquatic ecosystems and humans. Thus, the development of efficient and selective detection methods for In3+ in aquatic environments as well as in live cells is highly required. However, the selective and sensitive detection of In3+ in the presence of trivalent metal ions and other metal ions is highly challenging. In the present study, we synthesized a fluorescent probe (1) for In3+ and Al3+ based on an unnatural peptide receptor and an aggregation-induced emission fluorophore and developed a selective fluorescent detection method for In3+ in aqueous solutions and live cells using the probe and a metal chelating agent. 1 recognized In3+ and Al3+ selectively among 19 metal ions in aqueous solutions depending on pH by the enhancement of the red emission at 600 nm and decrease in the green emission at 530 nm. 1 sensitively detected In3+ and Al3+ by ratiometric response in a wide pH range (3.5-7.4), and the ratiometric response was complete within 20 seconds in an aqueous buffered solution at pH 5.0. Interestingly, the addition of EDTA to the complex of 1 with In3+ or Al3+ did not induce the Al3+-free spectrum but instead induced the In3+-free spectrum; thus, In3+ and Al3+ could be easily differentiated. The detection limit of 1 for In3+ ions was 211 nM (R2 = 0.981) in purely aqueous solutions. The fluorescence ratiometric detection method using 1 could quantify low concentrations of In3+ in ground water and tap water. Fluorescence cell image studies revealed that the probe was cell-permeable, and low concentrations of In3+ inside the cells could be recognized by the enhancement of the red emission at 600 nm. The binding mode study via NMR, IR, and CD spectroscopy revealed how the peptide receptor of 1 interacted with In3+ and resulted in the enhancement of the red emission in an aqueous solution.
Collapse
Affiliation(s)
- Joohee Park
- Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea.
| | | | | | | |
Collapse
|
27
|
Lee J, Kim S, Kim TH, Lee SH. A ratiometric fluorescence sensor based on enzymatically activatable micellization of TPE derivatives for quantitative detection of alkaline phosphatase activity in serum. RSC Adv 2020; 10:26888-26894. [PMID: 35515761 PMCID: PMC9055494 DOI: 10.1039/d0ra03584j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2020] [Indexed: 01/03/2023] Open
Abstract
A novel ratiometric fluorescence assay via enzymatically activatable micellization in aqueous solution was devised for quantitative detection of alkaline phosphatase (ALP) activity. We demonstrated that the dephosphorylation of the water-soluble, phosphate-functionalized, fluorophore monomer P-TPE-TG, induced by an enzymatic reaction of ALP, leads to micelle formation in aqueous solution because its water-soluble functionality is reduced. The dephosphorylation-induced micellization of P-TPE-TG exhibited a ratiometric sensing response for various ALP concentrations (10–200 mU mL−1) and provided a suitable sensing platform for naked eye detection with increased fluorescence quantum yield (Φ = 3.2%), even compared to a typical TPE-based sensor (Φ = 1.0%), where ALP can be sensed with a detection limit of 0.034 mU mL−1. In addition, P-TPE-TG displayed excellent sensing performance at concentrations from 0 to 50 mU mL−1 in diluted human serum (10%), which offers the capability to exploit ratiometric responses for bioactive substances under practical conditions. A novel ratiometric fluorescence assay via enzymatically activatable micellization in aqueous solution was devised for quantitative detection of alkaline phosphatase (ALP) activity.![]()
Collapse
Affiliation(s)
- Jeongmoo Lee
- Department of Chemistry
- Daegu University
- Gyeongsan 38453
- Republic of Korea
- Institute of Natural Sciences
| | - Seoyun Kim
- Department of Chemistry
- Daegu University
- Gyeongsan 38453
- Republic of Korea
- Institute of Natural Sciences
| | - Tae Hoon Kim
- Department of Food Science and Biotechnology
- Daegu University
- Gyeongsan 38453
- Republic of Korea
| | - Seoung Ho Lee
- Department of Chemistry
- Daegu University
- Gyeongsan 38453
- Republic of Korea
- Institute of Natural Sciences
| |
Collapse
|