1
|
An J, Zhang Z, Jin A, Tan M, Jiang S, Li Y. Organic Functional Groups and Their Substitution Sites in Natural Flavonoids: A Review on Their Contributions to Antioxidant, Anti-Inflammatory, and Analgesic Capabilities. Food Sci Nutr 2025; 13:e70191. [PMID: 40313799 PMCID: PMC12041660 DOI: 10.1002/fsn3.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Natural flavonoids are regularly consumed orally and are known to possess antioxidant, anti-inflammatory, and analgesic properties. Yet, there is limited understanding of the role of organic functional groups in imparting these properties. This review paper suggests that several organic functional groups, including the hydroxyl, methoxy, glycosyl, prenylated, and flavonoid groups, play crucial roles in determining the antioxidant, anti-inflammatory, and analgesic abilities of flavonoids. Of particular significance is the contribution of the prenylated group, which notably enhances the anti-inflammatory and analgesic abilities of flavonoids. Among isoflavones, the prenylated groups are primarily situated at C6. Despite their importance, prenylated flavonoids have not received sufficient attention from researchers. Another crucial class of organic functional groups is glycosyl groups, with C3 being a key substitution site among anthocyanins because monosaccharides are commonly found at this position. Conversely, the presence of trisaccharides or a combination of disaccharides and monosaccharides within flavonoids appears to impede their anti-inflammatory and analgesic properties. Additionally, the majority of biflavonoids, excluding polymerized flavanols, demonstrate either anti-inflammatory or analgesic abilities. C8 holds paramount importance among flavanols as the main substitution site for flavonoid substitution. Examination of the significance of substitution sites in flavanones, flavonols, flavones, and chalcones, which possess antioxidant, anti-inflammatory, and analgesic abilities, revealed the importance of total substitution with diverse organic functional groups. Insights from this review can provide the guiding light to the discovery of flavonoids with antioxidant, anti-inflammatory, and analgesic abilities in the future.
Collapse
Affiliation(s)
- Jingxian An
- Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
| | - Zhipeng Zhang
- Jiangxi Copper Technology Institute Co., Ltd.NanchangChina
| | - Anwen Jin
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | - Muqiu Tan
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| | | | - Yilin Li
- Heilongjiang Feihe Dairy Co., LtdBeijingChina
| |
Collapse
|
2
|
Taldaev A, Svotin AA, Obukhov SI, Terekhov RP, Selivanova IA. Modification of biopharmaceutical parameters of flavonoids: a review. Front Chem 2025; 13:1602967. [PMID: 40365179 PMCID: PMC12069051 DOI: 10.3389/fchem.2025.1602967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Flavonoids are natural organic compounds that are derivatives of diphenylpropane. This group of polyphenols can be found in multiple natural sources and they exhibit a variety of biological effects. Despite the wide array of beneficial properties, the development of drugs based on these compounds is hindered by their low bioavailability. Although the substantial body of information available on strategies to enhance the solubility and bioavailability of flavonoids, this knowledge remains fragmented. Therefore, the aim of this study was to consolidate and systematize scientific data on methods for increasing the solubility and bioavailability of flavonoid compounds without changing their initial molecular structures. Throughout the investigation, it was determined that the most prevalent methods for increasing solubility and bioavailability include co-crystallization, formation of phospholipid and inclusion complexes, and the creation of nanostructures. Although there were no pronounced differences observed in enhancing solubility, the impact of these methods on pharmacokinetic parameters was established. It was found that the production of inclusion complexes and nanostructures leads to the greatest increase in the area under the pharmacokinetic curve by an average of 4.2 and 3.7 times, respectively. The least effect was noted for phytosomes, where this parameter for the modified forms exceeded the initial value by only 1.7 times. Phospholipid complexes exhibited a longer average half-elimination time than all other modifications, achieving a 2.1-fold increase. For nanostructures and micelles, a substantial increase in maximum concentration of the active substance in blood plasma was observed, reaching an average of 5.4 times for both types of modifications. During the systematization and generalization of the data, a high level of heterogeneity in solubility assessment methods across various studies was revealed, complicating comparisons of original data obtained by different researchers. The findings of this review are crucial for researchers investigating the bioavailability of flavonoid compounds and will facilitate the selection of the most effective methods based on the desired outcomes for solubility and bioavailability.
Collapse
Affiliation(s)
- Amir Taldaev
- Laboratory for the Study of Single Biomacromolecules, Institute of Biomedical Chemistry, Moscow, Russia
- Laboratory of Biomolecular NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem A. Svotin
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Semyon I. Obukhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Wang T, Cui YY, Yang CX. Fabrication of microporous organic network incorporated monolithic column for improved high performance liquid chromatographic separation of small molecules. Anal Chim Acta 2025; 1345:343736. [PMID: 40015778 DOI: 10.1016/j.aca.2025.343736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND As a class of boomingly developed porous material, microporous organic networks (MONs) demonstrated great prospects in HPLC because of their unique structures and excellent stabilities. However, the agglomerated, irregular, and sub-micron sized MONs obtained via the traditional synthesis methods inevitably cause high column pressure and low column efficiency, rendering the main obstacles for their applications in HPLC. Monolithic column has the characteristics of continuous porous structure, fast mass transfer rate, excellent permeability, and low column pressure. Therefore, the integration of MONs with monolithic column should be a potential way to extend the widespread applications of MONs in HPLC. RESULTS In this work, we reported the first example of fabricating MON incorporated monolithic columns by employing methacrylic acid as the monomer, ethylene dimethacrylate as the cross-linking agent, and polyethylene glycol-6000 as the porogen for the improved HPLC separation of small organic molecules. Effects of preparation conditions for MON incorporated monolithic column, sample loading mass, column temperature, and mobile phase composition were studied in detail. MON monolithic column after MON incorporation exhibits improved permeability, column efficiency, hydrophobicity, and specific surface area. Diverse small organic molecules such as polycyclic aromatic hydrocarbons, alkylbenzenes, acidic phenols, basic amines, phenylurea herbicides, parabens, phthalates, and flavonoids were successfully separated on MON incorporated monolithic column (50.0 mm length × 4.6 mm i.d.). MON incorporated monolithic column also provided better resolution and selectivity than C18 packed column. SIGNIFICANCE This work reported the first combination of MON and monolithic column for efficient HPLC separation of variety small organic compounds with good resolution, selectivity, and precisions based on typical reversed phase mechanism. The experimental results demonstrated the great potential of MON incorporated monolithic column for enhanced HPLC separation of small organic compounds and could extend the new applications of MONs in separation science.
Collapse
Affiliation(s)
- Ting Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
4
|
Hassan STS. Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers. Molecules 2025; 30:1058. [PMID: 40076282 PMCID: PMC11902172 DOI: 10.3390/molecules30051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The Epstein-Barr virus (EBV), a member of the human gamma-herpesviruses, is intricately linked to various human malignancies. Current treatment options for EBV infection involve the use of acyclovir and its derivatives, which exhibit limited efficacy and are associated with drug resistance issues. Therefore, there is a critical need for new medications with more effective therapeutic actions and less susceptibility to resistance. This review explores the therapeutic promise of flavones and flavonols, naturally occurring molecules, against EBV and its correlated cancers. It thoroughly delves into the molecular mechanisms underlying the therapeutic efficacy of these compounds and scrutinizes their complex interplay in EBV-linked processes and cancer transformation by targeting key genes and proteins pivotal to both the viral life cycle and tumor development. Additionally, the review covers current research, highlights key findings, and discusses promising avenues for future investigations in the pursuit of targeted therapies against EBV and its related tumors.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
5
|
Narimisa N, Khoshbayan A, Gharaghani S, Razavi S, Jazi FM. Inhibitory effects of nafcillin and diosmin on biofilm formation by Salmonella Typhimurium. BMC Microbiol 2024; 24:522. [PMID: 39695365 DOI: 10.1186/s12866-024-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE The foodborne pathogen Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and is difficult to eliminate due to its ability to adhere to surfaces and form biofilms that exhibit high resistance to antimicrobial agents. To explore alternative strategies for biofilm treatment, it is essential to investigate novel agents that inhibit Salmonella biofilms. METHOD In this study, we investigated the minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) of nafcillin and diosmin, both previously identified as Lon protease inhibitors, against biofilms formed by S. Typhimurium. Furthermore, we examined the expression of genes associated with the type II toxin-antitoxin system to enhance our understanding of the impact of these inhibitors. RESULTS The findings indicated a strong antibiofilm effect of nafcillin, with MBIC and MBEC values of 8 µg/mL and 32 µg/mL, respectively. These results were confirmed by field emission scanning electron microscopy (FE-SEM), which showed that biofilm formation was reduced in the presence of nafcillin. Additionally, it revealed morphological changes in the bacteria within the nafcillin-treated biofilms. Furthermore, gene expression analyses demonstrated a significant reduction in the expression of type II TA system genes following treatment with nafcillin and diosmin. CONCLUSION This study highlights the effectiveness of nafcillin in disrupting the biofilms of S. Typhimurium. These results suggest promising avenues for the development of novel therapeutic strategies targeting biofilms associated with S. Typhimurium.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang J, Liao N, Liu G, Li Y, Xu F, Shi J. Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. Crit Rev Biotechnol 2024; 44:1203-1225. [PMID: 38035668 DOI: 10.1080/07388551.2023.2280755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Liaudanskas M, Šedbarė R, Janulis V. Determination of Biologically Active Compounds and Antioxidant Capacity In Vitro in Fruit of Small Cranberries ( Vaccinium oxycoccos L.) Growing in Natural Habitats in Lithuania. Antioxidants (Basel) 2024; 13:1045. [PMID: 39334704 PMCID: PMC11428458 DOI: 10.3390/antiox13091045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of flavonols, proanthocyanidins, anthocyanins, triterpene compounds, and chlorogenic acid in small cranberry fruit samples collected in natural habitats in Lithuania and variation in the antioxidant capacity of cranberry fruit extracts was determined. This study showed that in the flavonol group, hyperoside and myricetin-3-O-galactoside predominated in cranberry fruit samples; in the anthocyanin group, the predominant compounds were cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, peonidin-3-O-galactoside, and peonidin-3-O-arabinoside, and in the group of triterpene compounds, ursolic acid was predominant. The highest total amounts of flavonols and anthocyanins were found in the samples collected in Čepkeliai State Strict Nature Reserve (2079.44 ± 102.99 μg/g and 6993.79 ± 350.22 μg/g, respectively). Cluster analysis of the chemical composition of small cranberry fruit samples revealed trends in the accumulation of bioactive compounds in cranberry fruit. Cranberry fruit samples collected in central Lithuania had higher levels of triterpene compounds. Statistical correlation analysis showed the strongest correlation between the quantitative composition of cyanidin-3-O-arabinoside and peonidin-3-O-arabinoside and the reducing capacity of the ethanolic extracts of the cranberry fruit samples assessed in vitro by the FRAP assay (r = 0.882, p < 0.01 and r = 0.805, p < 0.01, respectively). Summarizing the results, the geographical factor affects the variation of the quantitative composition of biologically active compounds in cranberry fruit samples.
Collapse
Affiliation(s)
- Mindaugas Liaudanskas
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania
| |
Collapse
|
8
|
Tang T, Xu Z, Wang Y, Li X, Li L, Cheng H, Tian Y, Huang W, Feng J. Effective enrichment and separation of three flavonoids from Ohwia caudata (Thunberg) H. Ohashi using magnetic layered double hydroxide/ZIF-8 composites and pCEC. J Pharm Biomed Anal 2024; 245:116161. [PMID: 38714135 DOI: 10.1016/j.jpba.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
In this study, Fe3O4@ZnCr-layered double hydroxide/zeolitic imidazolate frameworks-8 (MLDH/ZIF-8) magnetically functionalized composites were synthesized by co-precipitation and in situ growth based on the advantages of LDHs and ZIF-8 using Fe3O4 nanoparticles as a magnetic substrate to obtain adsorbents with excellent performance. Moreover, the composite was used for the efficient enrichment of flavonoids in Chinese herbal medicines. The internal structures and surface properties were characterized by SEM, Fourier transform infrared spectroscopy, X-ray diffraction and so on. MLDH/ZIF-8 exhibited a large specific surface area and good paramagnetic properties. The MLDH/ZIF-8 magnetic composite was used as a magnetic solid-phase extraction (MSPE) adsorbent, and a MLDH/ZIF-8 MSPE-pressurized capillary electrochromatography coupling method was developed for the separation and detection of flavonoids (luteolin, kaempferol and apigenin) in a sample of the Chinese herb Ohwia caudata (Thunberg) H. Ohashi. The relevant parameters affecting the extraction efficiency were optimized to determine the ideal conditions for MSPE. 5 mg of adsorbent in sample solution at pH 6, vortex extraction for 5 min, elution with 1.5 mL of ethyl acetate for 15 min. The method showed good linearity in the concentration range of 3-50 μg mL-1 with correlation coefficients of 0.9934-0.9981, and displayed a relatively LODs of 0.07-0.09 μg mL-1. The spiked recoveries of all analytes ranged from 84.5% to 122.0% with RSDs (n=3) between 4.5% and 7.7%. This method is straightforward and efficient, with promising potential in the separation and analysis of active ingredients in various Chinese herbal medicines.
Collapse
Affiliation(s)
- Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Ziwei Xu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Xuesong Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Yuhong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China.
| |
Collapse
|
9
|
Khanal P, Dwivedi PSR, Patil VS, Shetty A, S A, Aga A, R A, Javaid A, Bhandare VV. Barosmin against postprandial hyperglycemia: outputs from computational prediction to functional responses in vitro. J Biomol Struct Dyn 2024; 42:4489-4505. [PMID: 37458811 DOI: 10.1080/07391102.2023.2233631] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/28/2023] [Indexed: 05/16/2024]
Abstract
Previously, barosmin has been demonstrated to possess anti-diabetic action. However, its effect to inhibit α-amylase and α-glucosidase, including glucose utilization efficacy, has yet to be revealed. Hence, the current study attempted to assess the efficiency of barosmin in inhibiting the α-amylase, α -glucosidase, and dipeptidyl peptidase 4 enzymes, including glucose uptake efficacy. Molecular docking and simulation were performed using AutoDock Vina and Gromacs respectively followed by gene ontology analysis using the database for annotation, visualization, and integrated discovery. Further, in vitro enzyme inhibitory activities and glucose uptake assay were performed in L6 cell lines. Density functional theory analysis detailed mechanistic insights into the crucial interaction sites of barosmin of which the electron-dense region was prone to nucleophilic attack (O-atoms) whereas hydroxyl groups (-OH) showed affinity for electrophilic attacks. Barosmin showed good binding affinity with α-amylase (-9.2 kcal/mol), α-glucosidase (-10.7 kcal/mol), and dipeptidyl peptidase 4 (-10.0 kcal/mol). Barosmin formed stable nonbonded contacts with active site residues of aforementioned enzymes throughout 200 ns molecular dynamics simulation. Further, it regulated pathway concerned with glucose homeostasis i.e. tumor necrosis factor signaling pathway. In addition, barosmin showed α-amylase (IC50= 95.77 ± 23.33 µg/mL), α-glucosidase (IC50= 68.13 ± 2.95 µg/mL), and dipeptidyl peptidase 4 (IC50= 13.27 ± 1.99 µg/mL) inhibitory activities including glucose uptake efficacy in L6 cell lines (EC50= 12.46 ± 0.90 µg/mL) in the presence of insulin. This study presents the efficacy of the barosmin to inhibit α-amylase and α-glucosidase and glucose uptake efficacy in L6 cell lines via the use of multiple system biology tools and in vitro techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Prarambh S R Dwivedi
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Vishal S Patil
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, India
| | - Ankith Shetty
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Adithya S
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Afra Aga
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Akshith R
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | - Aarif Javaid
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, Nitte Deemed to be University, Mangalore, India
| | | |
Collapse
|
10
|
Elgabry RM, Hassan M, Fawzy GA, Meselhy KM, Mohamed OG, Al-Taweel AM, Sedeek MS. A Comparative Analysis of Polysaccharides and Ethanolic Extracts from Two Egyptian Sweet Potato Cultivars, Abees and A 195: Chemical Characterization and Immunostimulant Activities. Metabolites 2024; 14:222. [PMID: 38668350 PMCID: PMC11051996 DOI: 10.3390/metabo14040222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. The roots of sweet potatoes are rich in valuable phytochemical constituents that vary according to the flesh color. Our investigation focused on the chemical profiling of two Egyptian sweet potato cultivars, Abees and A 195, using UPLC-QTOF and the analysis of their polysaccharide fractions by GC-MS. Furthermore, we assessed the immunostimulant properties of these extracts in immunosuppressed mice. The study revealed that sweet potato roots contain significant concentrations of phenolic acids, including caffeoylquinic, caffeic, caffeoyl-feruloyl quinic, and p-coumaric acids, as well as certain flavonoids, such as diosmin, diosmetin, and jaceosidin, and coumarins, such as scopoletin and umbelliferone. Moreover, polysaccharides prepared from both studied cultivars were analyzed using GC-MS. Further biological analysis demonstrated that all the tested extracts possessed immunostimulant properties by elevating the level of WBCs, IL-2, TNF, and IFN-γ in the immunosuppressed mice relative to the control group with the highest values in polysaccharide fractions of A195 (the ethanolic extract showed a higher effect on TNF and IFN-γ, while its polysaccharide fraction exhibited a promising effect on IL-2 and WBCs). In conclusion, the roots of the Egyptian sweet potato cultivars Abees and A 195 demonstrated significant immunostimulant activities, which warrants further investigation through clinical studies.
Collapse
Affiliation(s)
- Rehab M. Elgabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City 43511, Egypt
| | - Ghada A. Fawzy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Khaled M. Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Osama G. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areej M. Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed S. Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| |
Collapse
|
11
|
Pisoschi AM, Iordache F, Stanca L, Cimpeanu C, Furnaris F, Geicu OI, Bilteanu L, Serban AI. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur J Med Chem 2024; 265:116075. [PMID: 38150963 DOI: 10.1016/j.ejmech.2023.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
The immune response encompasses innate and adaptive immunity, each with distinct and specific activities. The innate immune system is constituted by phagocytic cells, macrophages, monocytes and neutrophils, the cascade system, and different classes of receptors such as toll-like receptors that are exploited by the innate immune cells. The adaptive immune system is antigen-specific, encompassing memory lymphocytes and the corresponding specific receptors. Inflammation is understood as an activation of different signaling pathways such as toll-like receptors or nuclear factor kappa-light-chain-enhancer of activated B cells, with an increase in nitric oxide, inflammatory cytokines and chemokines. Increased oxidative stress has been identified as main source of chronic inflammation. Phenolic antioxidants modulate the activities of lymphocytes and macrophages by impacting cytokines and nitric oxide release, exerting anti-inflammatory effect. The nuclear-factor kappa-light-chain-enhancer of activated B cells signaling pathway and the mitogen-activated protein kinase pathway are targeted, alongside an increase in nuclear factor erythroid 2-related factor mediated antioxidant response, triggering the activity of antioxidant enzymes. The inhibitive potential on phospholipase A2, cyclooxygenase and lipoxygenase in the arachidonic acid pathway, and the subsequent reduction in prostaglandin and leukotriene generation, reveals the potential of phenolics as inflammation antagonists. The immunomodulative potential encompasses the capacity to interfere with proinflammatory cytokine synthesis and with the expression of the corresponding genes. A diet rich in antioxidants can result in prevention of inflammation-related pathologies. More investigations are necessary to establish the role of these antioxidants in therapy. The appropriate delivery system and the prooxidant effects exhibited at large doses, or in the presence of heavy metal cations should be regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Carmen Cimpeanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, Bucharest, Romania
| | - Florin Furnaris
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Liviu Bilteanu
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
12
|
Wang M, Wang S, Tang HP, Li JY, Zhang ZJ, Yang BY, Kuang HX. Buddleja officinalis Maxim.: A review of its botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116993. [PMID: 37541402 DOI: 10.1016/j.jep.2023.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buddleja officinalis Maxim. (B. officinalis), commonly known as "Menghua" "Yangerduo" is a widely recognized traditional herbal medicine in China, Korea, and Vietnam. For thousands of years, it has been used to treat dry eye disease, conjunctivitis, keratitis, eye ulcers, eye pain, cough, asthma, hemoptysis, and other medical conditions. AIM OF THE REVIEW This review article aims to provide a concise summary of the botany, ethnopharmacology, phytochemistry, pharmacology, medicinal potential, and application of B. officinalis in treating ophthalmic diseases and critically evaluates the existing literature to establish a scientific basis for its reasonable utilization and further investigation. MATERIALS AND METHODS The information reviewed in this study was collected from various electronic resources, including the Web of Science, PubMed, and Google Scholar. RESULTS To date, 80 structurally diverse compounds have been isolated and characterized from B. officinalis, primarily flavonoids, phenylethanoids, triterpenoids, and monoterpenes. Extracts and compounds derived from B. officinalis have been reported to possess broad pharmacological effects including anti-dry eye disease, anti-inflammation, anti-oxidation, anti-diabetes, anti-obesity, improving osteoporosis and treatment of skin diseases. This review provides a reference for the future studies on of B. officinalis. CONCLUSIONS As a natural medicinal plant, B. officinalis is worthy of further development in botany, ethnopharmacology, phytochemistry, pharmacology, and therapeutic potential for ophthalmic diseases. Although some components have demonstrated multiple pharmacological activities, their mechanisms of action remain unclear. Further studies on the underlying molecular basis and mechanism of action are warranted.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jia-Yan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhao-Jiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
13
|
Prananda AT, Dalimunthe A, Harahap U, Simanjuntak Y, Peronika E, Karosekali NE, Hasibuan PAZ, Syahputra RA, Situmorang PC, Nurkolis F. Phyllanthus emblica: a comprehensive review of its phytochemical composition and pharmacological properties. Front Pharmacol 2023; 14:1288618. [PMID: 37954853 PMCID: PMC10637531 DOI: 10.3389/fphar.2023.1288618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phyllanthus emblica Linn, a prominent member of the euphorbiaceae family, exhibits extensive distribution across a multitude of tropical and subtropical nations. Referred to as "Balakka" in Indonesia, this plant assumes various names across regions, such as "kimalaka," "balakka," "metengo," "malaka," and "kemloko" in North Sumatra, Ternate, Sundanese, and Java respectively. Phyllanthus emblica thrives in tropical locales like Indonesia, Malaysia, and Thailand, while also making its presence felt in subtropical regions like India, China, Uzbekistan, and Sri Lanka. The fruits of Balakka are enriched with bioactive constituents recognized for their wide-ranging benefits, including antioxidant, anti-aging, anti-cholesterol, anti-diabetic, immunomodulatory, antipyretic, analgesic, anti-inflammatory, chemoprotective, hepatoprotective, cardioprotective, antimutagenic, and antimicrobial properties. Comprising a spectrum of phenolic compounds (such as tannins, phenolic acids, and flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, and vitamins, the bioactive components of Malacca fruit offer a diverse array of health-promoting attributes. In light of these insights, this review aims to comprehensively examine the pharmacological activities associated with P. emblica and delve into the intricate composition of its phytochemical constituents.
Collapse
Affiliation(s)
- Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Epina Peronika
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Natasya Elsa Karosekali
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Putri Cahaya Situmorang
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
14
|
Zhao L, Jin L, Yang B. Diosmetin alleviates S. aureus-induced mastitis by inhibiting SIRT1/GPX4 mediated ferroptosis. Life Sci 2023; 331:122060. [PMID: 37652155 DOI: 10.1016/j.lfs.2023.122060] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
AIMS Microbial infection is the main factor that induces mastitis. Staphylococcus aureus (S. aureus) is a major pathogen associated with mastitis. The purpose of this study was to investigate the effects of diosmetin on S. aureus-induced mastitis. MATERIALS AND METHODS The mice were divided into six groups: control group, S. aureus group, diosmetin (12.5, 25, 50 mg/kg) + S. aureus groups, and diosmetin (50 mg/kg) + S. aureus + EX-527 (10 mg/kg) group. S. aureus was injected into the mammary gland to establish a mouse mastitis model. Diosmetin was administered 1 h before S. aureus treatment. KEY FINDINGS Our results showed that diosmetin significantly alleviated the pathological changes of mammary gland induced by S. aureus. Diosmetin alleviated myeloperoxidase (MPO) activity, and the release of TNF-α and IL-1β, and nuclear factor kappa-B (NF-κB) activation. Moreover, diosmetin inhibited malondialdehyde (MDA) and Fe2+ levels induced by S. aureus. Diosmetin upregulated ATP, glutathione (GSH) production and glutathione peroxidase 4 (GPX4) expression, which were decreased by S. aureus. Furthermore, the expression of Sirtuin 1 (SIRT1), nuclear factor erythroid2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) was upregulated by diosmetin. In addition, the inhibitory effects of diosmetin on S. aureus-induced inflammation and ferroptosis were prevented by the SIRT1 inhibitor EX-527. SIGNIFICANCE In conclusion, the data indicated that diosmetin suppressed S. aureus-induced mastitis by attenuating inflammation and ferroptosis.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Lei Jin
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
15
|
Boisnic S, Branchet MC, Quioc-Salomon B, Doan J, Delva C, Gendron C. Anti-Inflammatory and Antioxidant Effects of Diosmetin-3- O-β-d-Glucuronide, the Main Metabolite of Diosmin: Evidence from Ex Vivo Human Skin Models. Molecules 2023; 28:5591. [PMID: 37513462 PMCID: PMC10383842 DOI: 10.3390/molecules28145591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Diosmin is used to relieve chronic venous disease (CVD) symptoms. This study aimed to investigate the anti-inflammatory and antioxidant effects of diosmetin-3-O-β-d-glucuronide, the major metabolite of diosmin, using human skin explants. The explants were exposed to substance P (inflammation model) or UVB irradiation (oxidative model) and to five diosmetin-3-O-β-d-glucuronide concentrations. Inflammation was evaluated through interleukin-8 (IL-8) secretion measurements and capillary dilation observation, and oxidation was evaluated by measuring the hydrogen peroxide levels and observing cyclobutane pyrimidine dimers (CPDs). In substance-P-exposed explants, diosmetin-3-O-β-d-glucuronide induced a significant decrease in IL-8 secretions, with a maximal effect at 2700 pg/mL (-49.6%), and it reduced the proportion of dilated capillaries and the mean luminal cross-sectional area (p < 0.0001 at all tested concentrations), indicating a vasoconstrictive effect. In UVB-irradiated fragments, diosmetin-3-O-β-d-glucuronide induced a significant decrease in hydrogen peroxide production and in the number of CPD-positive cells, reaching a maximal effect at the concentration of 2700 pg/mL (-48.6% and -52.0%, respectively). Diosmetin-3-O-β-d-glucuronide induced anti-inflammatory and antioxidant responses, with the maximal effect being reached at 2700 pg/mL and corresponding to the peak plasma concentration estimated after the oral intake of 600 mg of diosmin, the daily dose usually recommended for the treatment of CVD. These ex vivo findings suggest a protective role of diosmetin-3-O-β-d-glucuronide against inflammatory and oxidative stress affecting the vascular system in CVD pathophysiology.
Collapse
Affiliation(s)
- Sylvie Boisnic
- GREDECO (Group of Research and Evaluation in Dermatology and Cosmetology), 69 Rue de la Tour, 75016 Paris, France
| | - Marie-Christine Branchet
- GREDECO (Group of Research and Evaluation in Dermatology and Cosmetology), 69 Rue de la Tour, 75016 Paris, France
| | - Barbara Quioc-Salomon
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| | - Julie Doan
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| | | | - Célia Gendron
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| |
Collapse
|
16
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
17
|
Amer AA, Elgohary R, Ibrahim FM, Taha HS. Anticoagulant effect of Feijoa sellowiana extracts generated by different biotechnological techniques. Heliyon 2023; 9:e15444. [PMID: 37151701 PMCID: PMC10161586 DOI: 10.1016/j.heliyon.2023.e15444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Blood clotting has become one of the most dangerous side effects associated with Corona virus, as well as the high level of cholesterol and triglycerides in the blood. Therefore, it has become necessary to use medicinal plants that are biologically safe and containing anti-clotting compound. Feijoa sellowiana represents a prolific source diverse compounds that may have thrombolytic activity. Therefore, the main research point is the production and scaling up of a target contents that have anticoagulants by using biotechnological techniques; calli production, and bioreactors and assessed their activity through in-vivo study. Murashige and Skoog (MS) medium enriched with varying concentrations of benzyl adenine (BA) and naphthalene acetic acid (NAA) was used to cultivate calli and cell suspension cultures from F. sellowiana seeds. Bioreactors were employed to boost active constituent's production. Moreover, the bioreactor physical factors such as effect of controlled or uncontrolled pH medium were investigated. The leaves of the main plant were extracted by ethanol 70% and polar and non-polar extracts were also prepared. The ethanol extract of calli and cells resulting from bioreactors were also prepared. All prepared extracts were subjected to chemical analysis by HPLC, in-vitro antioxidant assays, in-vivo anticoagulant activity and histopathological examination. Calli and cell suspension cultures were produced by using MS medium fortified with 1 mg/L BA+ 0.1 mg/L NAA. It was found that culturing of cell cultures in a bioreactor with uncontrolled pH and aeration at the value of 0.5 L/min gave the maximum and economical fresh and dry weights of the plants. After evaluation of all extracts; it was found that the calli ethanol extract for each plant was the highest value of total phenolic and total flavonoid contents either quantitatively or qualitatively. All extracts of Feijoa had antioxidant activity. The IC50 of the DPPH of Feijoa calli extract was 13.45 μg/mL, it was also confirmed by FRAP and ABTs values. Feijoa calli extract decreased platelet aggregation by suppression of thrombin, extended aPTT, PT, bleeding and clotting times. It was safer than warfarin medication. From these findings the authors can conclude that Feijoa had highly anticoagulant activity and the calli production achieved the goal of the enhancement of the phenolic constituent and thus their activity.
Collapse
Affiliation(s)
- Asmaa A. Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
- Corresponding author.
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC), Dokki, 12622, Cairo, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, PO Box 12622, Cairo, Egypt
| | - Hussein S. Taha
- Department of Plant Biotechnology, Biotechnology Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
18
|
Key metabolites and mechanistic insights in forchlorfenuron controlling kiwifruit development. Food Res Int 2023; 164:112412. [PMID: 36737992 DOI: 10.1016/j.foodres.2022.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Forchlorfenuron (CPPU) is a plant growth regulator widely applied on kiwifruit to improve yield, however, there are rarely reports on its effects on the nutrients of kiwifruits. Based on UHPLC-Q-TOF-MS, the effects of CPPU on metabolism profile and nutrient substances of two kiwifruit varieties during development were investigated by non-targeted metabolomics. A total of 115 metabolites were identified, and 29 differential metabolites were confirmed and quantified using certified reference standards. Metabolic profile indicated that CPPU promoted kiwifruit development during the main expansion stages at the molecular level, and the effects varied slightly for different varieties. In the early and middle stages of kiwifruit development, the anthocyanin, flavone and flavonol biosynthesis were down-regulated in both varieties, and flavanols biosynthesis was down-regulated only in Hayward variety. Arginine biosynthesis was down-regulated at all stages till the harvest. Although the synthesis of these nutrient substances in kiwifruits was mostly down-regulated by CPPU, the negative effects became mild at harvest time, and positively, the significant increase of sucrose and decrease of organic acids at harvest time could help to improve the taste of kiwifruits.
Collapse
|
19
|
Roberts JD, Lillis J, Pinto JM, Willmott AGB, Gautam L, Davies C, López-Samanes Á, Del Coso J, Chichger H. The Impact of a Natural Olive-Derived Phytocomplex (OliPhenolia ®) on Exercise-Induced Oxidative Stress in Healthy Adults. Nutrients 2022; 14:5156. [PMID: 36501186 PMCID: PMC9737690 DOI: 10.3390/nu14235156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
The role of natural polyphenols in reducing oxidative stress and/or supporting antioxidant mechanisms, particularly relating to exercise, is of high interest. The aim of this study was to investigate OliPhenolia® (OliP), a biodynamic and organic olive fruit water phytocomplex, rich in hydroxytyrosol (HT), for the first time within an exercise domain. HT bioavailability from OliP was assessed in fifteen healthy volunteers in a randomized, double-blind, placebo controlled cross-over design (age: 30 ± 2 yrs; body mass: 76.7 ± 3.9 kg; height: 1.77 ± 0.02 m), followed by a separate randomized, double-blinded, cohort trial investigating the short-term impact of OliP consumption (2 × 28 mL∙d−1 of OliP or placebo (PL) for 16-days) on markers of oxidative stress in twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg; 1.76 ± 0.02 m). In response to a single 28 mL OliP bolus, plasma HT peaked at 1 h (38.31 ± 4.76 ng∙mL−1), remaining significantly elevated (p < 0.001) until 4 h. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and HT were assessed at rest and immediately following exercise (50 min at ~75% V˙O2max then 10 min intermittent efforts) and at 1 and 24 h post-exercise, before and after the 16-day supplementation protocol. Plasma HT under resting conditions was not detected pre-intervention, but increased to 6.3 ± 1.6 ng·mL−1 following OliP only (p < 0.001). OliP demonstrated modest antioxidant effects based on reduced SOD activity post-exercise (p = 0.016) and at 24 h (p ≤ 0.046), and increased GSH immediately post-exercise (p = 0.009) compared with PL. No differences were reported for MDA and CAT activity in response to the exercise protocol between conditions. The phenolic compounds within OliP, including HT, may have specific antioxidant benefits supporting acute exercise recovery. Further research is warranted to explore the impact of OliP following longer-term exercise training, and clinical domains pertinent to reduced oxidative stress.
Collapse
Affiliation(s)
- Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Joseph Lillis
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Jorge Marques Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Ashley G. B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Lata Gautam
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Christopher Davies
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| | - Havovi Chichger
- School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| |
Collapse
|
20
|
Dos Santos Nascimento IJ, da Silva-Júnior EF. TNF-α Inhibitors from Natural Compounds: An Overview, CADD Approaches, and their Exploration for Anti-inflammatory Agents. Comb Chem High Throughput Screen 2022; 25:2317-2340. [PMID: 34269666 DOI: 10.2174/1386207324666210715165943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is a natural process that occurs in the organism in response to harmful external agents. Despite being considered beneficial, exaggerated cases can cause severe problems for the body. The main inflammatory manifestations are pain, increased temperature, edema, decreased mobility, and quality of life for affected individuals. Diseases such as arthritis, cancer, allergies, infections, arteriosclerosis, neurodegenerative diseases, and metabolic problems are mainly characterized by an exaggerated inflammatory response. Inflammation is related to two categories of substances: pro- and anti-inflammatory mediators. Among the pro-inflammatory mediators is Tumor Necrosis Factor-α (TNF-α). It is associated with immune diseases, cancer, and psychiatric disorders which increase its excretion. Thus, it becomes a target widely used in discovering new antiinflammatory drugs. In this context, secondary metabolites biosynthesized by plants have been used for thousands of years and continue to be one of the primary sources of new drug scaffolds against inflammatory diseases. To decrease costs related to the drug discovery process, Computer-Aided Drug Design (CADD) techniques are broadly explored to increase the chances of success. In this review, the main natural compounds derived from alkaloids, flavonoids, terpene, and polyphenols as promising TNF-α inhibitors will be discussed. Finally, we applied a molecular modeling protocol involving all compounds described here, suggesting that their interactions with Tyr59, Tyr119, Tyr151, Leu57, and Gly121 residues are essential for the activity. Such findings can be useful for research groups worldwide to design new anti-inflammatory TNF-α inhibitors.
Collapse
Affiliation(s)
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
21
|
Chaves OA, Lima CR, Fintelman-Rodrigues N, Sacramento CQ, de Freitas CS, Vazquez L, Temerozo JR, Rocha ME, Dias SS, Carels N, Bozza PT, Castro-Faria-Neto HC, Souza TML. Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. Int J Biol Macromol 2022; 222:1015-1026. [PMID: 36183752 PMCID: PMC9525951 DOI: 10.1016/j.ijbiomac.2022.09.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 μM and CC50 of 61.3 ± 0.1 μM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.
Collapse
|
22
|
Elkaeed EB, Mughal EU, Kausar S, Al-ghulikah HA, Naeem N, Altaf AA, Sadiq A. Theoretical vibrational spectroscopy (FT-IR), PED and DFT calculations of chromones and thiochromones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Wójciak M, Feldo M, Borowski G, Kubrak T, Płachno BJ, Sowa I. Antioxidant Potential of Diosmin and Diosmetin against Oxidative Stress in Endothelial Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238232. [PMID: 36500323 PMCID: PMC9739697 DOI: 10.3390/molecules27238232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Phlebotropic flavonoids, including diosmin and its aglycone diosmetin, are natural polyphenols widely used in the prevention and treatment of chronic venous insufficiency (CVI). As oxidative stress plays an important role in the development of pathophysiology of the cardiovascular system, the study aimed to investigate the protective effects of diosmin and diosmetin on hydrogen peroxide (H2O2)-induced oxidative stress in endothelial cells. The cells were pretreated with different concentrations of the flavonoid prior to the H2O2 exposure. The cell viability, the level of intracellular reactive oxygen species (ROS), the activity of cellular antioxidant enzymes-including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase GPx-and the malondialdehyde (MDA) level were assessed. It was found that the H2O2-induced oxidative stress was ameliorated by diosmin/diosmetin in a concentration-dependent manner. The flavonoids restored the activity of cellular antioxidant enzymes and lowered the MDA level upregulated by the H2O2 exposure. These results indicate that diosmin and diosmetin may prevent oxidative stress in endothelial cells; therefore, they may protect against the development and progression of oxidative-stress-related disorders.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Grzegorz Borowski
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, 2A Kopisto St., 35-959 Rzeszów, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-817185551
| |
Collapse
|
24
|
Quercetin Derivatives in Combating Spinal Cord Injury: A Mechanistic and Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121960. [PMID: 36556325 PMCID: PMC9783198 DOI: 10.3390/life12121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved treatment for SCI, and the majority of current interventions focus on reducing symptoms. During SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI and cause serious consequences. It urges the need for providing multi-targeting agents, that possess lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective mechanisms of quercetin derivatives are also highlighted in combating SCI.
Collapse
|
25
|
Liu JF, Chang TM, Chen PH, Lin JSW, Tsai YJ, Wu HM, Lee CJ. Naringenin induces endoplasmic reticulum stress-mediated cell apoptosis and autophagy in human oral squamous cell carcinoma cells. J Food Biochem 2022; 46:e14221. [PMID: 35596593 DOI: 10.1111/jfbc.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Human oral squamous cell carcinoma (OSCC) has been one of the most common oral cancers owing to high percentage of betel nuts chewers, smokers, and alcohol consumption. With current treatment strategies in OSCC, more than half patients relapse and develop distant metastases with poor prognosis. To overcome the incident, OSCC poses a challenge in current therapies and treatments. Naringenin, a natural flavonoid, has been noted for antitumor effects on various types of cancers; however, the effects of naringenin on OSCC remain bias. In this study, naringenin demonstrated the potential multifunction in human OSCC cells not only leading to cell apoptosis, but also alternating the general function of autophagy, serving as pro-survival mechanism by inducing the endoplasmic reticulum (ER) stress signaling through intracellular reactive oxygen species (ROS) production. In the process of programmed cell death, naringenin induced apoptotic signaling through caspase-cascade, mitochondrial dysfunction, and ER stress by aberrance of Ca2+ release. In contrast, under the presence of naringenin, the pro-survival has been altered into pro-death to activate the caspases-mediated apoptosis achieving cell death. The cross-function of apoptosis and autophagy has demonstrated the effect of naringenin-induced intracellular ROS activity in OSCC cells. Therefore, this study found that the effect of naringenin induces intracellular ROS to trigger programmed cell death and ER stress through the mechanisms of apoptosis and autophagy in human oral squamous carcinoma. PRACTICAL APPLICATIONS: This study revealed that naringenin debilitated the OSCC cell viability via the intracellular ROS production, ER stress, and autophagy, leading to cell apoptosis. Based on these studies and findings, naringenin provided an antitumor effect as a novel natural compound to improve the current therapies in OSCC.
Collapse
Affiliation(s)
- Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Tsung-Ming Chang
- Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Han Chen
- Department of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jaster Szu-Wei Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Hsing-Mei Wu
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Chia-Jung Lee
- Department of Otolaryngology Head and Neck Surgery, Shin-Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
26
|
Sheridan R, Spelman K. Polyphenolic promiscuity, inflammation-coupled selectivity: Whether PAINs filters mask an antiviral asset. Front Pharmacol 2022; 13:909945. [PMID: 36339544 PMCID: PMC9634583 DOI: 10.3389/fphar.2022.909945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
The Covid-19 pandemic has elicited much laboratory and clinical research attention on vaccines, mAbs, and certain small-molecule antivirals against SARS-CoV-2 infection. By contrast, there has been comparatively little attention on plant-derived compounds, especially those that are understood to be safely ingested at common doses and are frequently consumed in the diet in herbs, spices, fruits and vegetables. Examining plant secondary metabolites, we review recent elucidations into the pharmacological activity of flavonoids and other polyphenolic compounds and also survey their putative frequent-hitter behavior. Polyphenols, like many drugs, are glucuronidated post-ingestion. In an inflammatory milieu such as infection, a reversion back to the active aglycone by the release of β-glucuronidase from neutrophils and macrophages allows cellular entry of the aglycone. In the context of viral infection, virions and intracellular virus particles may be exposed to promiscuous binding by the polyphenol aglycones resulting in viral inhibition. As the mechanism's scope would apply to the diverse range of virus species that elicit inflammation in infected hosts, we highlight pre-clinical studies of polyphenol aglycones, such as luteolin, isoginkgetin, quercetin, quercetagetin, baicalein, curcumin, fisetin and hesperetin that reduce virion replication spanning multiple distinct virus genera. It is hoped that greater awareness of the potential spatial selectivity of polyphenolic activation to sites of pathogenic infection will spur renewed research and clinical attention for natural products antiviral assaying and trialing over a wide array of infectious viral diseases.
Collapse
Affiliation(s)
| | - Kevin Spelman
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States
- Health Education and Research, Driggs, ID, United States
| |
Collapse
|
27
|
Bai Y, Gu Y, Liu S, Jiang L, Han M, Geng D. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg. FRONTIERS IN PLANT SCIENCE 2022; 13:926197. [PMID: 36186004 PMCID: PMC9520580 DOI: 10.3389/fpls.2022.926197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a folk herb in Zhejiang Province with anti-inflammatory, antineoplastic, and anti-oxidation effects. Given its pharmacological activity, T. hemsleyanum is known as New "Zhebawei" and included in the medical insurance system of Zhejiang and other provinces. Flavonoids are the most important components of T. hemsleyanum, and their contents are mainly regulated by ultraviolet (UV) radiation. In this study, the total flavonoid contents, flavonoid monomer contents, and flavonoid synthesis related enzyme activities (phenylalanine ammonia-lyase, chalcone synthase, and chalcone isomerase), anti-oxidant enzyme activities (catalase, peroxidase, and superoxide dismutase), and biochemical indicators (malondialdehyde, free amino acid, soluble protein, and soluble sugar) in the leaves (L) and root tubers (R) of T. hemsleyanum with UV treatments were determined. Three kinds of UV radiation (UV-A, UV-B, and UV-C) and six kinds of radiation durations (15 and 30 min, 1, 2, 3, and 5 h) were used. Appropriate doses of UV-B and UV-C radiation (30 min to 3 h) induced eustress, which contributed to the accumulation of flavonoids and improve protective enzyme system activities and bioactive compound contents. Especially, certain results were observed in several special structures of the flavonoid monomer: quercetin contents in L increased by nearly 20 times, isoquercitrin contents in R increased by nearly 34 times; most of flavonoids with glycoside content, such as quercitrin (19 times), baicalin (16 times), and apigenin-7G (13 times), increased multiple times. Compared with the CK group, the flavonoid synthase activities, anti-oxidant enzyme activities, and biochemical substance contents in L and R all increased with UV treatments. This study provides a theoretical foundation for regulating flavonoids by light factors and improving the quality of T. hemsleyanum in production and medical industries.
Collapse
Affiliation(s)
- Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Yiwen Gu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Shouzan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- Botanical Garden, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Lingtai Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Minqi Han
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS-CoV-2 main protease (M pro): Structure, function, and emerging therapies for COVID-19. MedComm (Beijing) 2022; 3:e151. [PMID: 35845352 PMCID: PMC9283855 DOI: 10.1002/mco2.151] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The main proteases (Mpro), also termed 3-chymotrypsin-like proteases (3CLpro), are a class of highly conserved cysteine hydrolases in β-coronaviruses. Increasing evidence has demonstrated that 3CLpros play an indispensable role in viral replication and have been recognized as key targets for preventing and treating coronavirus-caused infectious diseases, including COVID-19. This review is focused on the structural features and biological function of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease Mpro (also known as 3CLpro), as well as recent advances in discovering and developing SARS-CoV-2 3CLpro inhibitors. To better understand the characteristics of SARS-CoV-2 3CLpro inhibitors, the inhibition activities, inhibitory mechanisms, and key structural features of various 3CLpro inhibitors (including marketed drugs, peptidomimetic, and non-peptidomimetic synthetic compounds, as well as natural compounds and their derivatives) are summarized comprehensively. Meanwhile, the challenges in this field are highlighted, while future directions for designing and developing efficacious 3CLpro inhibitors as novel anti-coronavirus therapies are also proposed. Collectively, all information and knowledge presented here are very helpful for understanding the structural features and inhibitory mechanisms of SARS-CoV-2 3CLpro inhibitors, which offers new insights or inspiration to medicinal chemists for designing and developing more efficacious 3CLpro inhibitors as novel anti-coronavirus agents.
Collapse
Affiliation(s)
- Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Yuan Xiong
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang‐Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ya‐Ni Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐Wen Zhang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Ping Huang
- Clinical Pharmacy CenterCancer CenterDepartment of PharmacyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical College, HangzhouZhejiangChina
| | - Guang‐Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
29
|
Therapeutic Versus Preventative Use of Ginkgo biloba Extract (EGb 761) against Indomethacin-Induced Gastric Ulcer in Mice. Molecules 2022; 27:molecules27175598. [PMID: 36080365 PMCID: PMC9458100 DOI: 10.3390/molecules27175598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022] Open
Abstract
The main bioactive constituents in the standardized Ginkgo biloba leaf extract (EGb 761) are the terpene lactones and flavonoid glycosides. EGb 761’s antioxidant and anti-inflammatory properties have previously been demonstrated. Indomethacin-induced gastric ulcers have a multifactorial etiology and represent a major restriction to its therapeutic utility. The underlying ulcerogenic process involves oxidative and inflammatory biomolecular insults. This study was performed to explore the curative and preventative benefits of EGb 761 in experimentally-induced ulcers. To develop gastric ulcers in mice, indomethacin (40 mg/kg) was administered orally. EGb 761 (200 mg/kg) was given by gavage for 7 days before (preventative) and after (therapeutic) indomethacin administration. The histological alterations and macroscopic mucosal lesions were assessed. In gastric tissue homogenates, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), and inflammatory cytokines were measured. The expressions of cyclooxygenase-2 (COX-2), cytokines, and proliferating cell nuclear antigen (PCNA) in the stomach mucosa were also investigated. The ulcer index, histological alterations, gastric oxidants, and inflammatory biomarkers were all significantly increased by indomethacin. In stomach specimens, it increased COX-2 and PCNA expression. EGb 761 treatments, both prophylactic and therapeutic, resulted in significant reductions in ulcer lesions, nitrosative and oxidative damage, and inflammatory markers, along with the lowering of COX-2 and PCNA expressions. Furthermore, in the fight against stomach ulcers, EGb 761 treatment was found to be more efficient than prevention.
Collapse
|
30
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
31
|
Summa A, Scafato P, Belviso S, Monaco G, Zanasi R, Longhi G, Abbate S, Superchi S. Synthesis and Stereochemical Characterization of a Novel Chiral α-Tetrazole Binaphthylazepine Organocatalyst. Molecules 2022; 27:molecules27165113. [PMID: 36014353 PMCID: PMC9413694 DOI: 10.3390/molecules27165113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
A novel α-tetrazole-substituted 1,1′-binaphthylazepine chiral catalyst has been synthesized and its absolute configuration has been determined by DFT computational analysis of the vibrational circular dichroism (VCD) spectrum of its precursor. The VCD analysis, carried out through the model averaging method, allowed to assign the absolute configuration of a benzylic stereocenter in the presence of a chiral binaphthyl moiety. The 1,1′-binaphthylazepine tetrazole and the nitrile its immediate synthetic precursor, have been preliminarily tested as chiral organocatalysts in the asymmetric intramolecular oxa-Michael cyclization of 2-hydroxy chalcones for the synthesis of chiral flavanones obtaining low enantioselectivity.
Collapse
Affiliation(s)
- Assunta Summa
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sandra Belviso
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Guglielmo Monaco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy
| | - Riccardo Zanasi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 84084 Salerno, Italy
| | - Giovanna Longhi
- Department Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
- Unit of Brescia, Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT, 25123 Brescia, Italy
| | - Sergio Abbate
- Department Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
- Unit of Brescia, Consiglio Nazionale delle Ricerche-I.N.O. c/o CSMT, 25123 Brescia, Italy
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence:
| |
Collapse
|
32
|
Gutiérrez-Reinoso MA, Uquilla JB, Barona FA, Guano ME, Chicaiza GN, García-Herreros M. Effects of Intrauterine Infusion of Micronised Purified Flavonoid Fraction (MPFF) in Metritis-Diagnosed Dairy Cows Naturally Infected by E. coli during the Early Postpartum. Vet Sci 2022; 9:vetsci9070362. [PMID: 35878379 PMCID: PMC9316919 DOI: 10.3390/vetsci9070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of metritis during the postpartum period causes serious economic losses in dairy cattle. The Micronised Purified Flavonoid Fraction (MPFF) is a polyphenolic flavonoid compound which is considered to have many health-related properties such as antibiotic, anti-inflammatory, phlebotonic, and several vascular-protecting activities. The aim was to evaluate the effects of a new strategic therapy for metritis based on MPFF intrauterine infusions during the early postpartum in dairy cows naturally infected by Escherichia coli. The clinical effects on reproductive anatomical structures and chronological involution dynamics were monitored until day 24 postpartum by ultrasonography. Moreover, uterine bacteriological and cytological (polymorphonuclear neutrophils; PMNs) profiles were analysed before and after MPFF infusion. The results showed that the success rate (% cure) at day 24 postpartum was improved significantly when using higher MPFF doses (p < 0.05). Moreover, MPFF treatment acutely diminished the size of the cervix and uterus and improved the involution process during the first 24 days (p < 0.05). The prevalence of pathogenic bacteria found in in vitro cultures was significantly variable (p < 0.01), as were the antibiotic sensitivity patterns. Pathogenic bacteria isolates decreased after MPFF applications in a dose−response fashion (p < 0.01), while isolates obtained from controls and low-dose-MPFF-treated animals were stable and similar (p > 0.05). The sensitivity patterns of pathogenic bacteria isolated in in vitro cultures from MPFF-treated animals were variable, although resistance to E. coli, Staphylococcus aureus, Bacillus spp., and coliforms was shown irrespective of the MPFF doses used. However, MPFF-treated cows showed a dose−response effect regarding PMN rates (p < 0.05). The calving-first service, calving−conception interval, and conception rate improved significantly from using higher MPFF doses (p < 0.05). In conclusion, this study shows that MPFF treatment differentially affects uterine involution, bacteriological profiles, cytological traits, and reproductive performance in metritis-positive dairy cows naturally infected by E. coli.
Collapse
Affiliation(s)
- Miguel A. Gutiérrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
- Correspondence: (M.A.G.-R.); (M.G.-H.); Tel.: +593-03-22-66-164 (M.A.G.-R.); +351-24-37-67 (ext. 330) (M.G.-H.)
| | - José B. Uquilla
- Departamento de Asesoría Ganadera, La Holandesa SAS, Quito 170179, Ecuador;
| | - Francisco A. Barona
- Facultad de Ciencias de la Salud, Universidad de las Américas (UDLA), Quito 170125, Ecuador;
| | - Manuel E. Guano
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
| | - Gloria N. Chicaiza
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador; (M.E.G.); (G.N.C.)
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
- Correspondence: (M.A.G.-R.); (M.G.-H.); Tel.: +593-03-22-66-164 (M.A.G.-R.); +351-24-37-67 (ext. 330) (M.G.-H.)
| |
Collapse
|
33
|
Feldo M, Wójciak M, Ziemlewska A, Dresler S, Sowa I. Modulatory Effect of Diosmin and Diosmetin on Metalloproteinase Activity and Inflammatory Mediators in Human Skin Fibroblasts Treated with Lipopolysaccharide. Molecules 2022; 27:4264. [PMID: 35807509 PMCID: PMC9268213 DOI: 10.3390/molecules27134264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing an anti-edematous effect. In this paper, we investigated the effectiveness of diosmin and diosmetin in modulating the level of proinflammatory factors in human skin fibroblasts treated with lipopolysaccharide (LPS). Two variants of the experiments were performed: the flavonoid was added 2 h prior to or 24 h after LPS stimulation. Our study revealed that both flavonoids reduced the levels of IL-6 and Il-1β as well as COX-2 and PGE2 but had no impact on IL-10. However, the addition of the compounds prior to the LPS addition was more effective. Moreover, diosmetin modulated the proinflammatory factors more strongly than diosmin. Our investigations also showed that both flavonoids were potent inhibitors of elastase and collagenase activity, and no differences between the glycoside and aglycone forms were observed.
Collapse
Affiliation(s)
- Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (S.D.); (I.S.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management, 35-225 Rzeszow, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (S.D.); (I.S.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (S.D.); (I.S.)
| |
Collapse
|
34
|
Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors Than Isoflavone and Flavones. Viruses 2022; 14:v14071458. [PMID: 35891437 PMCID: PMC9324382 DOI: 10.3390/v14071458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3′–5′ exonuclease (ExoN).
Collapse
|
35
|
Exploring the Action Mechanism of the Active Ingredient of Quercetin in Ligustrum lucidum on the Mouse Mastitis Model Based on Network Pharmacology and Molecular Biology Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4236222. [PMID: 35722145 PMCID: PMC9205729 DOI: 10.1155/2022/4236222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Aim The aim of this study is to explore the mechanism of action of quercetin, the main active anti-inflammatory component of Ligustrum lucidum, in the prevention and treatment of mastitis. Methods Prediction of the main active ingredients and key anti-inflammatory targets of Ligustrum lucidum using a network pharmacology platform and molecular biology validation of the results. Observation of histopathological changes in the mouse mammary gland by hematoxylin-eosin staining(H&E) method, quantitative real-time PCR(qPCR), and Western blot (WB) to detect the expression levels of relevant inflammatory factors mRNA and protein. Results A total of 7 active ingredients and 42 key targets were obtained from the network pharmacological analysis of Ligustrum lucidum, with quercetin as the main core ingredient and tumor necrosis factor(TNF), serine threonine protein kinase1(AKT1), and interleukin6(IL6) as the core targets; H&E results showed that pathological changes were reduced to different degrees in the dose group compared to the model group. The qPCR results showed that the relative expression of TNF and IL6 mRNA in the high dose group on day 3 and the high and medium dose groups on day 7 were not significantly different compared with the blank group (P > 0.05), and the difference between the dose groups on day 5 was significant (P < 0.05). WB results showed that the difference in nuclear factor kappa-B(NF-κB) protein expression in the medium and low dose groups on day 7 was significant compared with the blank group (P < 0.05), the difference in 5 and 7 days, significant differences in AKT1 protein expression between the middle and low dose groups (P < 0.05), nonsignificant differences in the TNF protein expression between the high dose groups on day 7 (P > 0.05), and significant differences in the IL6 protein expression between the middle and low dose groups on days 3 and 7 (P < 0.05). Conclusion Quercetin, the main active ingredient of Ligustrum lucidum, may act in the prevention and treatment of mastitis by inhibiting the expression of inflammatory factors in phosphoinositol 3-kinase(PI3K)-AKT and NF-κB signaling pathways and showa a significant dose-dependent effect. This study provides theoretical basis and clues for the control of mastitis in dairy cows.
Collapse
|
36
|
Wang Z, Zhong Y, He S, Liang R, Liao C, Zheng L, Zhao J. Application of the pH-Responsive PCL/PEG-Nar Nanofiber Membrane in the Treatment of Osteoarthritis. Front Bioeng Biotechnol 2022; 10:859442. [PMID: 35573245 PMCID: PMC9092049 DOI: 10.3389/fbioe.2022.859442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Electrospinning technology is widely used in the field of drug delivery due to its advantages of convenience, high efficiency, and low cost. To investigate the therapeutic effect of naringenin (Nar) on osteoarthritis (OA), the pH-responsive system of the polycaprolactone/polyethylene glycol-naringenin (PCL/PEG-Nar) nanofiber membrane was designed and used as drug delivery systems (DDS) in the treatment of OA. The PEG-Nar conjugate was constructed via ester linkage between mPEG-COOH and the carboxyl group of naringenin, and the PCL/PEG-Nar nanofiber membrane was prepared by electrospinning technology. When placed in the weak acid OA microenvironment, the PCL/PEG-Nar nanofiber membrane can be cleverly “turned on” to continuously release Nar with anti-inflammatory effect to alleviate the severity of OA. In this study, the construction and the application of the pH-responsive PCL/PEG-Nar nanofiber membrane drug delivery platform would throw new light on OA treatment.
Collapse
Affiliation(s)
- Zetao Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Yanping Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Si He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Chuanan Liao
- Postdoctoral Mobile Station of Clinical Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
- *Correspondence: Ruiming Liang, ; Chuanan Liao, ; Li Zheng,
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Gu Z, Xue Y, Li S, Adu-Frimpong M, Xu Y, Yu J, Xu X, Zhu Y. Design, Characterization, and Evaluation of Diosmetin-Loaded Solid Self-microemulsifying Drug Delivery System Prepared by Electrospray for Improved Bioavailability. AAPS PharmSciTech 2022; 23:106. [PMID: 35381887 DOI: 10.1208/s12249-022-02263-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Diosmetin (DIOS) is a functional compound with poor water solubility, bad permeability, and crystal form. Self-microemulsifying drug delivery system (SMEDDS) was an effective formulation to overcome these shortcomings. In this study, liquid SMEDDS was prepared using Capmul® MCM C8 EP/NF, Cremophor EL, and PEG 400 (2:5.6:2.4, w/w/w) as excipients. Then, the novel technology of electrospray solidified liquid SMEDDS and prepared solid SMEDDS for inhibiting crystallization. Polyvinyl pyrrolidone (PVP) was used as carrier to construct DIOS-loaded solid SMEDDS, with polyethylene oxide (PEO) contributing to the formation of regular sphere in the process of spinning. The particle size of solid SMEDDS (194 ± 5 nm) was much bigger than of liquid SMEDDS (25 ± 1 nm), while DIOS-loaded solid SMEDDS showed greater dissolution rates in pH 1.2 and pH 6.8 media through in vitro drug release study. The solid nanoparticles were smooth and uniform from the graph of a scanning electron microscope (SEM). The graph of a transmission electron microscope (TEM) showed that small droplets were loaded in the matrix. Furthermore, DIOS was encapsulated by matrix in amorphous state via differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared (ATR-FTIR). The crystalline of DIOS was not formed in solid SMEDDS due to the characteristic peaks of DIOS disappeared in X-ray diffraction (XRD) pattern. Therefore, the oral bioavailability of DIOS improved significantly compared with liquid SMEDDS (4.27-fold). Hence, solid SMEDDS could improve the solubility and bioavailability of DIOS, through transfer of the state of crystalline to amorphous by electrospray technology.
Collapse
|
38
|
Li HL, Wei YY, Li XH, Zhang SS, Zhang RT, Li JH, Ma BW, Shao SB, Lv ZW, Ruan H, Zhou HG, Yang C. Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis. Acta Pharmacol Sin 2022; 43:919-932. [PMID: 34262136 PMCID: PMC8976001 DOI: 10.1038/s41401-021-00726-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Diosmetin (3',5,7 -trihydroxy-4'-methoxy flavone) is a natural flavonoid compound in the citrus species, it exhibits a variety of pharmacological activities, but little is known of its effects on colitis. In this study we evaluated the therapeutic effects of diosmetin on mouse models of chronic and acute colitis. Chronic colitis was induced in mice by drinking water containing 3% dextran sulfate sodium (DSS) from D0 to D8, followed by administration of diosmetin (25, 50 mg · kg-1 · d-1) for another 8 days. Acute colitis was induced by drinking water containing 5% DSS from D0 to D7, the mice concomitantly received diosmetin (25, 50 mg · kg-1 · d-1) from D1 to D7. During the experiments, body weight and disease activity index (DAI) were assessed daily. After the mice were sacrificed, colon tissue and feces samples were collected, and colon length was measured. We showed that in both models, diosmetin administration significantly decreased DAI score and ameliorated microscopic colon tissue damage; increased the expression of tight junction proteins (occludin, claudin-1, and zonula occludens-1), and reduced the secretion of proinflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2 in colon tissue. We found that diosmetin administration remarkably inhibited colon oxidative damage by adjusting the levels of intracellular and mitochondrial reactive oxygen species, GSH-Px, SOD, MDA and GSH in colon tissue. The protection of diosmetin against intestinal epithelial barrier damage and oxidative stress were also observed in LPS-treated Caco-2 and IEC-6 cells in vitro. Furthermore, we demonstrated that diosmetin markedly increased the expression of Nrf2 and HO-1 and reduced the ratio of acetylated NF-κB and NF-κB by activating the circ-Sirt1/Sirt1 axis, which inhibited oxidative stress and inflammation in vivo and in vitro. Diosmetin reversed the effects of si-circSirt1 and si-Sirt1 in LPS-treated Caco-2 and IEC-6 cells. When the gut microbiota was analyzed in the mouse model of colitis, we found that diosmetin administration modulated the abundance of Bacteroidetes, Actinobacteria, Cyanobacteria and Firmicutes, which were crucial for inflammatory bowel disease. Our results have linked colitis to the circ-Sirt1/Sirt1 signaling pathway, which is activated by diosmetin. The results imply that diosmetin may be a novel candidate to alleviate DSS-induced colitis and can be a lead compound for future optimization and modification.
Collapse
Affiliation(s)
- Hai-long Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Yi-ying Wei
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Xiao-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shan-shan Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Ruo-tong Zhang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Jin-he Li
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Bo-wei Ma
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Shuai-bo Shao
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Zi-wei Lv
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hao Ruan
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Hong-gang Zhou
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| | - Cheng Yang
- grid.216938.70000 0000 9878 7032The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350 China ,grid.488175.7High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350 China
| |
Collapse
|
39
|
El-Said KS, Atta A, Mobasher MA, Germoush MO, Mohamed TM, Salem MM. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats. Mol Med 2022; 28:24. [PMID: 35193490 PMCID: PMC8862293 DOI: 10.1186/s10020-022-00432-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial proliferation and bone destruction. Adenosine deaminase (ADA) is a key inflammatory enzyme that increases joint stiffness and pain in RA. In this study, we evaluated the in-silico, and in vivo inhibitory effect of quercetin isolated from Egyptian Fenugreek on ADA enzyme activity. We also determined the combinatorial effect of quercetin on methotrexate mediated anti-inflammatory efficacy and toxicity. In-silico molecular docking was conducted and confirmed in an in vivo RA rat model. The results showed that the inhibition constant of quercetin on joint ADA by docking and in-vitro was 61.9 and 55.5 mM, respectively. Therefore, quercetin exhibits anti-inflammatory effect in a rat RA model as evidenced by reducing the specific activity of ADA in joint tissues, lower jaw volume, enhance body weight, downregulate ADA gene expression, reduce levels of RA cytokines interleukin-1β, interleukin-6, tumor necrosis factor-α, also, rheumatoid factor, C-reactive protein, and anti-cyclic citrullinated peptide RA biomarker levels. These findings demonstrate that the purified quercetin has a promising anti-inflammatory effect against RA disease through its inhibitory effects on the ADA enzyme. Furthermore, isolated quercetin improved the anti-inflammatory efficacy of methotrexate, reduced its toxic effects by increasing antioxidant enzymes and reducing oxidative stress.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maysa A Mobasher
- Pathology Department, Biochemistry Division, College of Medicine, Jouf University, Sakaka, 41412, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka, 41412, Saudi Arabia
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
40
|
Zaragozá C, Álvarez-Mon MÁ, Zaragozá F, Villaescusa L. Flavonoids: Antiplatelet Effect as Inhibitors of COX-1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031146. [PMID: 35164411 PMCID: PMC8839657 DOI: 10.3390/molecules27031146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Flavonoids are compounds with a benzopyranic structure that exhibits multiple pharmacological activities. They are known for their venotonic activity, but their mechanism of action remains unclear. It is thought that, as this mechanism is mediated by prostaglandins, these compounds may interfere with the arachidonic acid (AA) cascade. These assays are designed to measure the antiplatelet aggregation capacity of quercetin, rutin, diosmetin, diosmin, and hidrosmin, as well as to evaluate a potential structure−activity ratio. In this paper, several studies on platelet aggregation at different concentrations (from 0.33 mM to 1.5 mM) of different flavone compounds are conducted, measuring platelet aggregation by impedance aggregometry, and the cyclooxygenase (COX) activity by metabolites generated, including the activity of the pure recombinant enzyme in the presence of these polyphenols. The results obtained showed that quercetin and diosmetin aglycones have a greater antiplatelet effect and inhibit the COX enzyme activity to a greater extent than their heterosides; however, the fact that greater inhibition of the pure recombinant enzyme was achieved by heterosides suggests that these compounds may have difficulty in crossing biological membranes. In any case, in view of the results obtained, it can be concluded that flavonoids could be useful as coadjuvants in the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Cristina Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (F.Z.); (L.V.)
- Correspondence:
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain;
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, University Hospital Infanta Leonor, 28031 Madrid, Spain
| | - Francisco Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (F.Z.); (L.V.)
| | - Lucinda Villaescusa
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain; (F.Z.); (L.V.)
| |
Collapse
|
41
|
Zhang J, Yan X, Xu S, Wang D, Liu H. High-performance thin-layer chromatographic quantification of four active compounds in total flavonoids of Ziziphora clinopodioides Lam. and TLC‒DPPH test for screening antioxidant components. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-021-00147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Antioxidant and Anticancer Activities and Protein Interaction of the Oxidovanadium(IV) Naringin Complex. INORGANICS 2022. [DOI: 10.3390/inorganics10010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The complex of oxidovanadium(IV) with naringin (Narg) [VO(Narg)2] 8H2O (VONarg) was prepared according to the literature improving the synthetic procedure and physicochemical characterization. In addition, biological activities (cytotoxic, antioxidant, and BSA interaction) were determined. The metal coordinated through the 5-hydroxy and 4-carbonyl groups of rings A and C of naringin, respectively. The antioxidant activity of VONarg, determined in vitro, was higher than those of the flavonoid against superoxide and peroxyl reactive oxygen species (ROS) and DPPH radical. The cytotoxic properties were determined by a MTT assay on adenocarcinoma human alveolar basal epithelial cells (A549). VONarg exerted a 20% decrease in cancer cells viability at 24 h incubation, while naringin and oxidovanadium(IV) cation did not show cytotoxicity. Measurements with the normal HEK293 cell line showed that the inhibitory action of the complex is selective. VONarg generated intracellular reactive oxygen species (ROS), depletion of reduced glutathione and depolarization of mitochondrial membrane potential, typical for apoptotic pathway, producing cell death by oxidative stress mechanism. Moreover, naringin interacted with bovine serum albumin (BSA) through hydrophobic interactions in a spontaneous process, and VONarg showed greater affinity for the protein but can still be transported and delivered by it (Ka 104 L·mol−1 order).
Collapse
|
43
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review. Eur J Drug Metab Pharmacokinet 2022; 47:1-18. [PMID: 34687440 DOI: 10.1007/s13318-021-00731-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Flavonoids are phytochemicals that are well known for their beneficial pharmacological properties. Diosmin is a flavone glycoside derived from hesperidin, a flavanone abundantly found in citrus fruits. Daflon is an oral phlebotonic flavonoid combination containing diosmin and hesperidin (9:1) that is commonly used for the management of blood vessel disorders. After oral administration, diosmin is converted to diosmetin, which is subsequently absorbed and esterified into glucuronide conjugates that are excreted in the urine. Pharmacological effects of diosmin have been investigated in several in vitro and in vivo studies, and it was found to possess anti-inflammatory, antioxidant, antidiabetic, antihyperlipidemic, and antifibrotic effects in different disease models. Diosmin also demonstrated multiple desirable properties in several clinical studies. Moreover, toxicological studies showed that diosmin has a favorable safety profile. Accordingly, diosmin is a potential effective and safe treatment for many diseases. However, diosmin exhibits inhibitory effects on different metabolic enzymes. This encourages the investigation of its potential therapeutic effect and safety in different diseases in clinical trials, while taking potential interactions into consideration.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
44
|
Siennicka A, Kłysz M, Adamska M, Chełstowski K, Biskupski A, Jastrzębska M. Assessment of Platelet Reactivity and Inflammatory Markers in Coronary Artery Bypass Graft Patients Treated with Acetylsalicylic Acid with Flavonoid Supplementation. Molecules 2021; 26:molecules26247486. [PMID: 34946569 PMCID: PMC8708239 DOI: 10.3390/molecules26247486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
The recommended pharmacological therapy for patients with coronary artery disease (CAD) treated by coronary artery bypass grafting (CABG) is acetylsalicylic acid (ASA). To improve the antiplatelet effect, supplementation with flavonoids is also recommended. The aim of this study was to estimate anti-aggregation properties of diosmin, in combination with ASA, pre- and postoperatively and assess the relationship of this therapy with inflammatory processes in CAD patients undergoing CABG. The study patients (n = 26) took diosmin (1000 mg/day); the control patients (n = 27) took a placebo. The therapeutic period for taking diosmin was from at least 30 days before to 30 days after CABG. All patients also took 75 mg/day ASA. Platelet aggregation and IL-6, CRP, and fibrinogen concentrations were determined before and 30 days after surgery. Results showed that diosmin did not enhance the anti-aggregation effect of ASA at any assessment time. However, there was a stronger anti-aggregation effect 30 days after surgery that was diosmin independent and was associated with acute-phase markers in the postoperative period. Increased levels of inflammatory markers in the late phase of the postoperative period may provide an unfavorable prognostic factor in long-term follow-up, which should prompt the use of stronger antiplatelet therapy in patients after CABG.
Collapse
Affiliation(s)
- Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.K.); (M.A.); (K.C.); (M.J.)
- Correspondence: ; Tel.: +48-91-466-1512
| | - Magdalena Kłysz
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.K.); (M.A.); (K.C.); (M.J.)
| | - Monika Adamska
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.K.); (M.A.); (K.C.); (M.J.)
| | - Kornel Chełstowski
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.K.); (M.A.); (K.C.); (M.J.)
| | - Andrzej Biskupski
- Department of Cardiac Surgery, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Maria Jastrzębska
- Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.K.); (M.A.); (K.C.); (M.J.)
| |
Collapse
|
45
|
Jasicka-Misiak I, Shanaida M, Hudz N, Wieczorek PP. Phytochemical and Pharmacological Evaluation of the Residue By-Product Developed from the Ocimum americanum ( Lamiaceae) Postdistillation Waste. Foods 2021; 10:foods10123063. [PMID: 34945615 PMCID: PMC8701984 DOI: 10.3390/foods10123063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
The yield of essential oils in plants is not high and postdistillation wastes rich in phenolic compounds could be used to enhance the profitability of essential oil-bearing plants. The aim of the study was to evaluate polyphenols in a dry extract obtained from the postdistillation waste of the American basil (Ocimum americanum L.) herb, and to conduct the screening of its pharmacological activities. Rosmarinic acid, caffeic acid and rutin were identified in the extract using high-performance thin-layer chromatography. The high-performance liquid chromatography analysis found the presence of a plethora of polyphenols in the extract. Rosmarinic acid, luteolin-7-O-glucoside and rutin were as the main compounds. The total phenolic content in the extract was 106.31 mg GAE/g and free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl evaluated as IC50 was 0.298 mg/mL. The tested extract dose-dependently decreased the paw edema in rats, suggesting its potent anti-inflammatory property. The acute toxicity study indicates its safety. Thus, the O. americanum hydrodistilled residue by-product is the promising source of biologically active compounds with significant antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Izabela Jasicka-Misiak
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland; (I.J.-M.); (N.H.)
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46-001 Ternopil, Ukraine
- Correspondence:
| | - Nataliia Hudz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland; (I.J.-M.); (N.H.)
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79-010 Lviv, Ukraine
| | | |
Collapse
|
46
|
Bronikowska J, Kłósek M, Janeczko T, Kostrzewa-Susłow E, Czuba ZP. The modulating effect of methoxy-derivatives of 2'-hydroxychalcones on the release of IL-8, MIF, VCAM-1 and ICAM-1 by colon cancer cells. Biomed Pharmacother 2021; 145:112428. [PMID: 34800781 DOI: 10.1016/j.biopha.2021.112428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the leading causes of death in the world. The search for effective and minimally invasive methods of treating colon cancer is the aim of modern medicine. Chalcones and their derivatives have shown an anticancer activity. The aim of the study was to evaluate the effect of methoxy-derivatives of 2'-hydroxychalcones: 2'-hydroxy-3"-methoxychalcone (TJ3), 2'-hydroxy-2"-methoxychalcone (TJ6) and 2'-hydroxy-4"-metoxychalcone (TJ7) at the concentrations of 10 µM and 25 µM on the release of IL-8, MIF, VCAM-1, ICAM-1 by colon cancer SW480 and SW620 cell lines. The cytokines and adhesion molecules were detected using the Bio-Plex Magnetic Luminex Assay and the Bio-Plex Suspension Array System. Our results showed that all tested methoxy-derivatives of 2'-hydroxychalcone compounds significantly reduced ICAM-1 released by SW480 cancer cells. The tested compounds at both concentrations did not significantly affect VCAM-1 released by SW480 and SW620 cancer cell lines. All methoxy-derivatives significantly reduced the concentration of MIF in dose dependent manner on SW480 cells. The TJ3 at the concentration of 25 µM significantly decreased IL-8 secreted by SW480 and SW620 cancer cells. Our results demonstrated that tested methoxy-derivatives of 2'-hydroxychalcones showed modulating effect on colon cancer cells.
Collapse
Affiliation(s)
- Joanna Bronikowska
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland.
| |
Collapse
|
47
|
Cao R, Wu X, Guo H, Pan X, Huang R, Wang G, Liu J. Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules 2021; 26:6604. [PMID: 34771012 PMCID: PMC8588024 DOI: 10.3390/molecules26216604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Naringin is a kind of multi-source food additive which has been explored broadly for its various biological activities and therapeutic potential. In the present study, the protective effect and mechanism of naringin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated. The results showed that naringin significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), colon length shortening, and colon pathological damage. The tissue and serum secretion of inflammatory cytokines, as well as the oxidative stress, were decreased accordingly upon naringin intervention. Naringin also decreased the proteins involved in inflammation and increased the expression of tight junction (TJ) proteins. Moreover, naringin increased the relative abundance of Firmicutes/Bacteroides and reduced the content of Proteobacteria to improve the intestinal flora disorder caused by DSS, which promotes the intestinal health of mice. It was concluded that naringin can significantly ameliorate the pathogenic symptoms of UC through inhibiting inflammatory response and regulating intestinal microbiota, which might be a promising natural therapeutic agent for the dietary treatment of UC and the improvement of intestinal symbiosis.
Collapse
Affiliation(s)
- Ruige Cao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xing Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Hui Guo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Gangqiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| |
Collapse
|
48
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
49
|
Bland JS. Application of Phytochemicals in Immune Disorders: Their Roles Beyond Antioxidants. Integr Med (Encinitas) 2021; 20:16-21. [PMID: 34803535 PMCID: PMC8594972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We are witnessing increased global pressure on immune system function as a result of climate change, exposure to xenobiotics, poor quality diets, increased psycho-social stress, and exposure to new infectious agents. Understanding how various phytochemicals and their metabolic byproducts produced by the microbiome modulate immune-related signal transduction pathways has opened a new chapter in medical nutrition that moves far beyond that of generalized antioxidant effects. Not only is precision nutrition now possible, there is an urgent need for it.
Collapse
|
50
|
Wang H, Liu S, Cui Y, Wang Y, Guo Y, Wang X, Liu J, Piao C. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. Food Sci Nutr 2021; 9:4793-4802. [PMID: 34531992 PMCID: PMC8441485 DOI: 10.1002/fsn3.2390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022] Open
Abstract
Flavonoids from common buckwheat hulls (BHFs) show significant antioxidant and antidiabetic potential. However, their hepatoprotective property is yet to be defined. This study aims to examine the hepatoprotective effect of BHFs in type 2 diabetes mellitus (T2DM) rats and chronic high glucose-damaged HepG2 cells. Results showed that BHF treatment significantly relieves the state of insulin resistance, thereby reducing blood glucose and improving oxidative stress in T2DM rats. It is worth mentioning that BHF treatment improved diabetes-induced liver damage disorders, manifested as the clearance of liver fat and the decline of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In vitro, HepG2 cells pretreated with BHFs maintained higher superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and catalase (CAT) activities than the unprotected group. In parallel, compared with the unprotected group, BHFs significantly reduced the leakage of ALT and AST in pre-protected group dose-dependently. These results indicated that BHFs had considerable antioxidant and hepatoprotective potential and could be promising to be used as nutraceuticals and dietary supplements to prevent and/or protect against liver disorders.
Collapse
Affiliation(s)
- Hai Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Shuyan Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yang Cui
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yue Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yang Guo
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Xiujuan Wang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Junmei Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| | - Chunhong Piao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunChina
| |
Collapse
|