1
|
Gruľová D, Baranová B, Francolino R, Elshafie HS, Kiššová Z, Glovaťáková A, De Martino L, Amato G, Martino M, Caputo L, Polito F, Manna F, Camele I, Tkáčiková Ľ, De Feo V. Exploring the Diverse Biological Properties of Cannabidiol: A Focus on Plant Growth Stimulation. Chem Biodivers 2024; 21:e202400274. [PMID: 38466647 DOI: 10.1002/cbdv.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.
Collapse
Affiliation(s)
- Daniela Gruľová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 17. novembra 1, 08001, Presov, Slovakia
| | - Beáta Baranová
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 17. novembra 1, 08001, Presov, Slovakia
| | - Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Hazem S Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Zuzana Kiššová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81, Kosice, Slovakia
| | - Alžbeta Glovaťáková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 17. novembra 1, 08001, Presov, Slovakia
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Mara Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Francesco Manna
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81, Kosice, Slovakia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100, Avellino, Italy
| |
Collapse
|
2
|
Judžentienė A, Garjonytė R, Būdienė J. Phytochemical Composition and Antioxidant Activity of Various Extracts of Fibre Hemp ( Cannabis sativa L.) Cultivated in Lithuania. Molecules 2023; 28:4928. [PMID: 37446590 DOI: 10.3390/molecules28134928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The phytochemistry of fibre hemp (Cannabis sativa L., cv. Futura 75 and Felina 32) cultivated in Lithuania was investigated. The soil characteristics (conductivity, pH and major elements) of the cultivation field were determined. The chemical composition of hemp extracts and essential oils (EOs) from different plant parts was determined by the HPLC/DAD/TOF and GC/MS techniques. Among the major constituents, β-caryophyllene (≤46.64%) and its oxide (≤14.53%), α-pinene (≤20.25%) or α-humulene (≤11.48) were determined in EOs. Cannabidiol (CBD) was a predominant compound (≤64.56%) among the volatile constituents of the methanolic extracts of hemp leaves and inflorescences. Appreciable quantities of 2-monolinolein (11.31%), methyl eicosatetraenoate (9.70%) and γ-sitosterol (8.99%) were detected in hemp seed extracts. The octadecenyl ester of hexadecenoic acid (≤31.27%), friedelan-3-one (≤21.49%), dihydrobenzofuran (≤17.07%) and γ-sitosterol (14.03%) were major constituents of the methanolic extracts of hemp roots, collected during various growth stages. The CBD quantity was the highest in hemp flower extracts in pentane (32.73%). The amounts of cannabidiolic acid (CBDA) were up to 24.21% in hemp leaf extracts. The total content of tetrahydrocannabinol (THC) isomers was the highest in hemp flower pentane extracts (≤22.43%). The total phenolic content (TPC) varied from 187.9 to 924.7 (average means, mg/L of gallic acid equivalent (GAE)) in aqueous unshelled hemp seed and flower extracts, respectively. The TPC was determined to be up to 321.0 (mg/L GAE) in root extracts. The antioxidant activity (AA) of hemp extracts and Eos was tested by the spectrophotometric DPPH● scavenging activity method. The highest AA was recorded for hemp leaf EOs (from 15.034 to 35.036 mmol/L, TROLOX equivalent). In the case of roots, the highest AA (1.556 mmol/L, TROLOX) was found in the extracts of roots collected at the seed maturation stage. The electrochemical (cyclic and square wave voltammetry) assays correlated with the TPC. The hydrogen-peroxide-scavenging activity of extracts was independent of the TPC.
Collapse
Affiliation(s)
- Asta Judžentienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Rasa Garjonytė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| | - Jurga Būdienė
- Center for Physical Sciences and Technology, Department of Organic Chemistry, Sauletekio Avenue 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Castro-Muñoz R, Boczkaj G, Cabezas R. A Perspective on Missing Aspects in Ongoing Purification Research towards Melissa officinalis. Foods 2023; 12:foods12091916. [PMID: 37174453 PMCID: PMC10178074 DOI: 10.3390/foods12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| |
Collapse
|
4
|
Bolouri P, Salami R, Kouhi S, Kordi M, Asgari Lajayer B, Hadian J, Astatkie T. Applications of Essential Oils and Plant Extracts in Different Industries. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248999. [PMID: 36558132 PMCID: PMC9781695 DOI: 10.3390/molecules27248999] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Essential oils (EOs) and plant extracts are sources of beneficial chemical compounds that have potential applications in medicine, food, cosmetics, and the agriculture industry. Plant medicines were the only option for preventing and treating mankind's diseases for centuries. Therefore, plant products are fundamental sources for producing natural drugs. The extraction of the EOs is the first important step in preparing these compounds. Modern extraction methods are effective in the efficient development of these compounds. Moreover, the compounds extracted from plants have natural antimicrobial activity against many spoilage and disease-causing bacteria. Also, the use of plant compounds in cosmetics and hygiene products, in addition to their high marketability, has been helpful for many beauty problems. On the other hand, the agricultural industry has recently shifted more from conventional production systems to authenticated organic production systems, as consumers prefer products without any pesticide and herbicide residues, and certified organic products command higher prices. EOs and plant extracts can be utilized as ingredients in plant antipathogens, biopesticides, and bioherbicides for the agricultural sector. Considering the need and the importance of using EOs and plant extracts in pharmaceutical and other industries, this review paper outlines the different aspects of the applications of these compounds in various sectors.
Collapse
Affiliation(s)
- Parisa Bolouri
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- Department of Genetic and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Robab Salami
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shaghayegh Kouhi
- Department of Horticultural Sciences, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Masoumeh Kordi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz 5166616422, Iran
- Correspondence: (B.A.L.); (T.A.)
| | - Javad Hadian
- Department of Agriculture, University of The Fraser Valley, Abbotsford, BC V2S 7M7, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Correspondence: (B.A.L.); (T.A.)
| |
Collapse
|
5
|
Zheljazkov VD, Noller JS, Maggi F, Dale R. Terpenes and Cannabinoids Yields and Profile from Direct-Seeded and Transplanted CBD- Cannabis sativa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10417-10428. [PMID: 35436102 DOI: 10.1021/acs.jafc.1c06912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Following recent legalization, the production of hemp (Cannabis sativa L.) for high-value plant compounds became a major crop in many countries across the world. In this study, we profiled popular plant compounds being extracted for emerging markets, terpenes and cannabinoids, developed in two different planting systems of a single, high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol (Δ9-THC), dioecious hemp cultivar 'Culver' in central Oregon, U.S.A. One system is the current conventional system of an open, all-female, clonal transplant (OFCT) production system. This is compared to a dioecious, densely seeded (DDS) production system. Overall, the essential oil (EO, chiefly terpenes) and cannabinoid profiles of plants harvested from the two systems were comparable. In comparison to the DDS plots, the EO obtained from colas of the OFCT plots had higher concentrations of α-pinene, myrcene, limonene, β-bisabolene, γ-cadinene, caryophyllene oxide, guaiol, 10-epi-γ-eudesmol, β-eudesmol, bulnesol, epi-α-bisabolol, α-humulene, and CBD, although lower concentrations of 1,8-cineole, (E)-caryophyllene, γ-elemene, α-selinene, selina-4(15),7(11)-diene, selina-3,7(11)-diene, and germacrene B. Of the various plant parts (female leaves and chaff, male flowers) tested in the DDS plots, the highest EO yield was obtained from the chaff. The main EO constituents of female leaves were (E)-caryophyllene (14-21%), caryophyllene oxide (13-16%), α-humulene (5-6%), humulene epoxide II (3.5-3.8%), epi-α-bisabolol (2.7-5.5%), CBD, and α-eudesmol (1.1-2.6%). The principal EO constituents of female chaff from the DDS system were (E)-caryophyllene (∼21%), α-humulene (6.6%), β-selinene (4.5%), α-selinene (3.6%), selina-3,7(11)-diene (9.8%), selina-4(15),7(11)-diene (6.3%), caryophyllene oxide (5.2%), and cannabichromene (3.1%). The major EO constituents of the male flowers were CBD (19.3%), caryophyllene oxide (11%), α-humulene (4.1%), epi-α-bisabolol (3.9%), selina-3,7(11)-diene (3.4%), and β-selinene (3.4%). Cannabinoids were not detected in the EO distilled for 30 min, but they were present in the EO from 240 min of distillation. The EO content of female leaves and male flowers was relatively low, whereas the EO content of the female chaff from the DDS system was significantly greater. Breaking with conventional knowledge, the EO of male flowers may accumulate up to 19% CBD. Distillation of plants from both production systems converted CBD-A to CBD, CBDV-A to CBDV, CBG-A to CBG, and THC-A to THC as a result of the thermal decarboxylation of acidic cannabinoids but otherwise did not affect the total cannabinoid content. Most of the cannabinoids remained in the distilled biomass after the extraction of terpenes (EO). Therefore, the distilled, terpene-free biomass represents a high-value product that could be further extracted for cannabinoids or used as a component in various products.
Collapse
Affiliation(s)
- Valtcho D Zheljazkov
- Department of Crop and Soil Science, Oregon State University, 3050 Southwest Campus Way, Corvallis, Oregon 97331, United States
| | - Jay S Noller
- Department of Crop and Soil Science, Oregon State University, 3050 Southwest Campus Way, Corvallis, Oregon 97331, United States
- Global Hemp Innovation Center, Oregon State University, 170 Southwest Waldo Place, Corvallis, Oregon 97331, United States
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Robert Dale
- Dale Farms, Culver, Oregon 97734, United States
| |
Collapse
|
6
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci 2022; 304:120728. [PMID: 35753438 DOI: 10.1016/j.lfs.2022.120728] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/30/2022]
Abstract
Alpha-bisabolol (α-bisabolol), an unsaturated monocyclic sesquiterpene alcohol, is known as one of the "most-used herbal constituents" in the world. Various therapeutic and biological properties of α-bisabolol in preventing oxidative stress, inflammatory disorders, infections, neurodegenerative diseases, cancers, and metabolic disorders have been reported. In this review, we evaluated new findings regarding the molecular mechanisms of α-bisabolol published from 2010 until 2021 in PubMed, Science Direct, and Scopus. The antioxidant mechanism of α-bisabolol is mainly associated with the reduction of ROS/RNS, MDA, and GSH depletion, MPO activity, and augmentation of SOD and CAT. Additionally, upregulating the expression of bcl-2 and suppression of bax, P53, APAF-1, caspase-3, and caspase-9 activity indicates the anti-apoptotic effects of α- bisabolol. It possesses anti-inflammatory effects via reduction of TNF-α, IL-1β, IL-6, iNOS, and COX-2 and suppresses the activation of ERK1/2, JNK, NF-κB, and p38. The antimicrobial effect is mediated by inhibiting the viability of infected cells and improves cognitive function via downregulation of bax, cleaved caspases-3 and 9 levels, β-secretase, cholinesterase activities, and upregulation of bcl-2 levels. Finally, due to multiple biological activities, α-bisabolol is worthy to be subjected to clinical trials to achieve new insights into its beneficial effects on human health.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Petrisor G, Motelica L, Craciun LN, Oprea OC, Ficai D, Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci 2022; 23:3591. [PMID: 35408950 PMCID: PMC8998931 DOI: 10.3390/ijms23073591] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Luminita Narcisa Craciun
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.P.); (L.M.)
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania; (O.C.O.); (D.F.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
9
|
AL Ubeed HMS, Bhuyan DJ, Alsherbiny MA, Basu A, Vuong QV. A Comprehensive Review on the Techniques for Extraction of Bioactive Compounds from Medicinal Cannabis. Molecules 2022; 27:604. [PMID: 35163863 PMCID: PMC8840415 DOI: 10.3390/molecules27030604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. The evaluation of the current extraction methods implemented in the Cannabis industry and scientific literature to produce consistent, reliable, and potent medicinal Cannabis extracts is prudent. Furthermore, these processes must be subjected to higher levels of scientific stringency, as Cannabis has been increasingly used for various ailments, and the Cannabis industry is receiving acceptance in different countries. We comprehensively analysed the current literature and drew a critical summary of the extraction methods implemented thus far to recover bioactive compounds from medicinal Cannabis. Moreover, this review outlines the major bioactive compounds in Cannabis, discusses critical factors affecting extraction yields, and proposes future considerations for the effective extraction of bioactive compounds from Cannabis. Overall, research on medicinal marijuana is limited, with most reports on the industrial hemp variety of Cannabis or pure isolates. We also propose the development of sustainable Cannabis extraction methods through the implementation of mathematical prediction models in future studies.
Collapse
Affiliation(s)
- Hebah Muhsien Sabiah AL Ubeed
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amrita Basu
- Complex Carbohydrate Research Centre, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA;
| | - Quan V. Vuong
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia;
| |
Collapse
|
10
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
11
|
Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review. SEPARATIONS 2021. [DOI: 10.3390/separations8100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The bioactive Hemp Seed Oil (HSO) is becoming very popular in the medical and research fields due to its antimicrobial properties against several diseases caused by bacteria and fungi. However, the effect of hemp-growing factors and extraction methods on the bioactivity of HSO does not receive adequate research attention. Therefore, this review aims to investigate the effect of growth factors and extraction methods on the antimicrobial activity of HSO. Articles were retrieved from Google Scholar and the Scopus database and screened against inclusion and exclusion criteria. The study revealed that HSO prefers warm climates and favorable humidity ranging from 20 to 39 °C and 79–100% per year, respectively, and rainfall of 324 mm daily. The multivariate linear regression shown excellent prediction (R2 = 0.94) with climates upon Zone of Growth Inhibition (ZGI) of Gram-positive bacteria. Temperature is the strongest predictor (p < 0.01) followed by humidity and rainfall (p < 0.05). Furthermore, well-drained loam soil rich in organic matter seems to stimulate the antimicrobial activity of HSO. The major constituents that influence HSO’s antimicrobial ability to Staphylococcus aureus were cannabidiol (CBD), β-caryophyllene, and limonene. The extraction methods showed less influence on the HSO bioactivity. HSO did not show significant antioxidant activity, but Hemp Seed Hull (HSH), Hemp Seed Flour (HSF), and Hydrolyzed Hemp Seed Protein (HPH), expressed promising DPPH scavenging ability.
Collapse
|
12
|
Zheljazkov VD, Maggi F. Valorization of CBD-hemp through distillation to provide essential oil and improved cannabinoids profile. Sci Rep 2021; 11:19890. [PMID: 34615971 PMCID: PMC8494916 DOI: 10.1038/s41598-021-99335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hemp (Cannabis sativa L.) synthesizes and accumulates a number of secondary metabolites such as terpenes and cannabinoids. They are mostly deposited as resin into the glandular trichomes occurring on the leaves and, to a major extent, on the flower bracts. In the last few years, hemp for production of high-value chemicals became a major commodity in the U.S. and across the world. The hypothesis was that hemp biomass valorization can be achieved through distillation and procurement of two high-value products: the essential oil (EO) and cannabinoids. Furthermore, the secondary hypothesis was that the distillation process will decarboxylate cannabinoids hence improving cannabinoid composition of extracted hemp biomass. Therefore, this study elucidated the effect of steam distillation on changes in the content and compositional profile of cannabinoids in the extracted biomass. Certified organic CBD-hemp strains (chemovars, varieties) Red Bordeaux, Cherry Wine and Umpqua (flowers and some upper leaves) and a T&H strain that included chopped whole-plant biomass, were subjected to steam distillation, and the EO and cannabinoids profile were analyzed by gas chromatography-mass spectrometry (GC-MS) and HPLC, respectively. The distillation of hemp resulted in apparent decarboxylation and conversion of cannabinoids in the distilled biomass. The study demonstrated a simple method for valorization of CBD-hemp through the production of two high-value chemicals, i.e. EO and cannabinoids with improved profile through the conversion of cannabidiolic acid (CBD-A) into cannabidiol (CBD), cannabichromenic acid (CBC-A) into cannabichromene (CBC), cannabidivarinic acid (CBDV-A) into cannabidivarin (CBDV), cannabigerolic acid (CBG-A) into cannabigerol (CBG), and δ-9-tetrahydrocannabinolic acid (THC-A) into δ-9-tetrahydrocannabinol (THC). In addition, the distilled biomass contained CBN while the non-distilled did not. Distillation improved the cannabinoids profile; e.g. the distilled hemp biomass had 3.4 times higher CBD in variety Red Bordeaux, 5.6 times in Cherry Wine, 9 times in variety Umpqua, and 6 times in T&H compared to the original non-distilled samples, respectively. Most of the cannabinoids remained in the distilled biomass and small amounts of CBD were transferred to the EO. The CBD concentration in the EO was as follows: 5.3% in the EO of Umpqua, 0.15% in the EO of Cherry Wine and Red Bordeaux and 0.06% in the EO of T&H. The main 3 EO constituents were similar but in different ratio; myrcene (23.2%), (E)-caryophyllene (16.7%) and selina-3,7(11)-diene (9.6%) in Cherry Wine; (E)-caryophyllene (~ 20%), myrcene (16.6%), selina-3,7(11)-diene (9.6%), α-humulene (8.0%) in Red Bordeaux; (E)-caryophyllene (18.2%) guaiol (7.0%), 10-epi-γ-eudesmol (6.9%) in Umpqua; and (E)-caryophyllene (30.5%), α-humulene (9.1%), and (E)-α-bisabolene (6.5%) in T&H. In addition, distillation reduced total THC in the distilled biomass. Scanning electron microscopy (SEM) analyses revealed that most of the glandular trichomes in the distilled biomass were not disturbed (remained intact); that suggest a possibility for terpenes evaporation through the epidermal membrane covering the glandular trichomes leaving the cannabinoids in the trichomes. This explained the fact that distillation resulted in terpene extraction while the cannabinoids remained in the distilled material.
Collapse
Affiliation(s)
- Valtcho D Zheljazkov
- Crop and Soil Science Department, Oregon State University, 3050 SW Campus Way, Corvallis, OR, 97331, USA.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant' Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
13
|
Mezzetta A, Ascrizzi R, Martinelli M, Pelosi F, Chiappe C, Guazzelli L, Flamini G. Influence of the Use of an Ionic Liquid as Pre-Hydrodistillation Maceration Medium on the Composition and Yield of Cannabis sativa L. Essential Oil. Molecules 2021; 26:5654. [PMID: 34577125 PMCID: PMC8467452 DOI: 10.3390/molecules26185654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Cannabis sativa L. is a multi-purpose crop, whose resilience, adaptability and soil-enriching properties make it a low-impact production. In the last years, the cultivation of the "industrial" hemp varieties (THC < 0.2%) has been promoted by many Countries, opening a whole new market of hemp-derived products, such as its essential oil (EO). Its distillation might represent an effective method to exploit a residue of the hemp fiber production (flowers), complying with the guidelines of the circular economy. In the present work, different concentrations of an ionic liquid (IL; 1,3-dimethyl-1H-imidazol-3-ium dimethylphosphate) have been studied as a pre-hydrodistillation maceration medium. The EO yields have been evaluated, and their compositions have been analyzed by GC-EIMS. The use of 100% and 90% IL concentrations gave a hydrodistillation yield increment of 250% and 200%, respectively. The 200% yield increase was maintained when the 100% IL was recycled after the hydrodistillation. The lower IL concentrations incremented the cannabinoid and oxygenated sesquiterpene contents, while the opposite was true for sesquiterpene hydrocarbons. The proposed IL-enhanced hydrodistillation medium applied to hemp, studied for the first time in the present work, might be used to both (i) noteworthy increment the hydrodistillation yield and (ii) modulate the obtained EO composition based on the desired final product.
Collapse
Affiliation(s)
- Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Marco Martinelli
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Via Guidiccioni 8-10, 56010 San Giuliano Terme (PI), Italy;
| | - Filomena Pelosi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Cinzia Chiappe
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (A.M.); (F.P.); (C.C.); (L.G.)
| |
Collapse
|
14
|
Isidore E, Karim H, Ioannou I. Extraction of Phenolic Compounds and Terpenes from Cannabis sativa L. By-Products: From Conventional to Intensified Processes. Antioxidants (Basel) 2021; 10:942. [PMID: 34200871 PMCID: PMC8230455 DOI: 10.3390/antiox10060942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Cannabis sativa L. is a controversial crop due to its high tetrahydrocannabinol content varieties; however, the hemp varieties get an increased interest. This paper describes (i) the main categories of phenolic compounds (flavonoids, stilbenoids and lignans) and terpenes (monoterpenes and sesquiterpenes) from C. sativa by-products and their biological activities and (ii) the main extraction techniques for their recovery. It includes not only common techniques such as conventional solvent extraction, and hydrodistillation, but also intensification and emerging techniques such as ultrasound-assisted extraction or supercritical CO2 extraction. The effect of the operating conditions on the yield and composition of these categories of phenolic compounds and terpenes was discussed. A thorough investigation of innovative extraction techniques is indeed crucial for the extraction of phenolic compounds and terpenes from cannabis toward a sustainable industrial valorization of the whole plant.
Collapse
Affiliation(s)
| | | | - Irina Ioannou
- URD Industrial Agro-Biotechnologies, CEBB, AgroParisTech, 51110 Pomacle, France; (E.I.); (H.K.)
| |
Collapse
|
15
|
Orlando G, Adorisio S, Delfino D, Chiavaroli A, Brunetti L, Recinella L, Leone S, D’Antonio M, Zengin G, Acquaviva A, Antico M, Angelini P, Angeles Flores G, Venanzoni R, Tacchini M, Di Simone SC, Menghini L, Ferrante C. Comparative Investigation of Composition, Antifungal, and Anti-Inflammatory Effects of the Essential Oil from Three Industrial Hemp Varieties from Italian Cultivation. Antibiotics (Basel) 2021; 10:antibiotics10030334. [PMID: 33809983 PMCID: PMC8005080 DOI: 10.3390/antibiotics10030334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Industrial hemp is characterized by a huge amount of by-products, such as inflorescences, that may represent high-quality sources of biomolecules with pharmaceutical interest. In the present study, we have evaluated the phytochemical profile, including terpene and terpenophenolic compounds, of the essential oils (EOs) of Futura 75, Carmagnola selezionata and Eletta campana hemp varieties. The EOs were also tested for antifungal properties toward Trichophyton mentagrophytes, Trichophyton rubrum, Arthroderma crocatum, Arthroderma quadrifidum, Arthroderma gypseum, Arthroderma curreyi, and Arthroderma insingulare. In parallel, we investigated the inhibitory effects of the EOs against tyrosinase, and the production of prostaglandin E2 in isolated mouse skin exposed to hydrogen peroxide. In human H1299 lung adenocarcinoma cells, we also evaluated the influence of the EOs on the gene expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are involved in SARS-CoV-2 entry in human host. E-caryophyllene and α-pinene were the prominent terpenes in the EOs, whereas the cannabidiolic acid was the terpenophenol present at higher concentration. The EOs inhibited the growth of all tested dermatophytes species. In isolated skin specimens, EOs prevented the hydrogen-peroxide-induced synthesis of prostaglandin E2, consistent with the intrinsic antityrosinase activity. Finally, in H1299 cells, all tested EOs reduced the gene expression of ACE-2 and TMPRSS2, as well. Therefore, the present findings highlight the rationale for the use of the present EOs against infectious diseases.
Collapse
Affiliation(s)
- Giustino Orlando
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Sabrina Adorisio
- Section of Pharmacology, Department of Internal Medicine, Università degli Studi di Perugia, 06100 Perugia, Italy; (S.A.); (D.D.)
| | - Domenico Delfino
- Section of Pharmacology, Department of Internal Medicine, Università degli Studi di Perugia, 06100 Perugia, Italy; (S.A.); (D.D.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Luigi Brunetti
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Lucia Recinella
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Sheila Leone
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey;
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
- Veridia Italia Srl, Via Raiale 285, 65100 Pescara, Italy
| | - Mirko Antico
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (P.A.); (G.A.F.); (R.V.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (P.A.); (G.A.F.); (R.V.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (P.A.); (G.A.F.); (R.V.)
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (M.T.); (L.M.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
- Correspondence: (M.T.); (L.M.)
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici”, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (G.O.); (A.C.); (L.B.); (L.R.); (S.L.); (A.A.); (M.A.); (S.C.D.S.); (C.F.)
| |
Collapse
|
16
|
Kačániová M, Terentjeva M, Štefániková J, Žiarovská J, Savitskaya T, Grinshpan D, Kowalczewski PŁ, Vukovic N, Tvrdá E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics (Basel) 2020; 9:antibiotics9110765. [PMID: 33142792 PMCID: PMC7693587 DOI: 10.3390/antibiotics9110765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus spp. is not only a commensal bacteria but also a major human pathogen that causes a wide range of clinical infections. Recent evidence suggests that Staphylococcus has the ability to colonize the reproductive system and to affect its structure and functions. The objective of this study was to determine the chemical properties and antibacterial effects of select essential oils (EOs): Amyris balsamifera L., Boswellia carterii Birdw., Canarium luzonicum (Blume) A. Gray, Cinnamomum camphora (L.) J. Presl., Cinnamomum camphora var. linaloolifera Y. Fuita, Citrus x aurantium L., Gaultheria procumbens L., Litsea cubeba (Lour.) Pers., Melaleuca ericifolia Smith., Melaleuca leucadendra L., Pogostemon cablin (Blanco) Benth., Citrus limon (L.) Osbeck, Santalum album L., and Vetiveria zizanoides (L.) Roberty against 50 Staphylococcus spp. cultures isolated from human semen, specifically Staphylococcus aureus, S. capiti, S. epidermidis, S. haemoliticus, and S. hominis. The disc diffusion and broth microdilution methods were used to assess the antimicrobial potential and to determine the minimum inhibitory concentration (MIC) of the selected EOs. The best anti-Staphylococcus activities were found with both methods for the essential oils of C. luzonicum (Blume) A. Gray, A. balsamifera, C. camphora, and P. cabli.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
- Correspondence:
| | - Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmaņa iela 8, LV-3004 Jelgava, Latvia;
| | - Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Jana Žiarovská
- Department of Plant Genetics and Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Tatsiana Savitskaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus; (T.S.); (D.G.)
| | - Dmitrij Grinshpan
- Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus; (T.S.); (D.G.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, P.O. Box 12, 34000 Kragujevac, Serbia;
| | - Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| |
Collapse
|
17
|
Zheljazkov VD, Sikora V, Dincheva I, Kačániová M, Astatkie T, Semerdjieva IB, Latkovic D. Industrial, CBD, and Wild Hemp: How Different Are Their Essential Oil Profile and Antimicrobial Activity? Molecules 2020; 25:molecules25204631. [PMID: 33053634 PMCID: PMC7587197 DOI: 10.3390/molecules25204631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Hemp (Cannabis sativa L.) is currently one of the most controversial and promising crops. This study compared nine wild hemp (C. sativa spp. spontanea V.) accessions with 13 registered cultivars, eight breeding lines, and one cannabidiol (CBD) hemp strain belonging to C. sativa L. The first three groups had similar main essential oil (EO) constituents, but in different concentrations; the CBD hemp had a different EO profile. The concentration of the four major constituents in the industrial hemp lines and wild hemp accessions varied as follows: β-caryophyllene 11-22% and 15.4-29.6%; α-humulene 4.4-7.6% and 5.3-11.9%; caryophyllene oxide 8.6-13.7% and 0.2-31.2%; and humulene epoxide 2, 2.3-5.6% and 1.2-9.5%, respectively. The concentration of CBD in the EO of wild hemp varied from 6.9 to 52.4% of the total oil while CBD in the EO of the registered cultivars varied from 7.1 to 25%; CBD in the EO of the breeding lines and in the CBD strain varied from 6.4 to 25% and 7.4 to 8.8%, respectively. The concentrations of δ9-tetrahydrocannabinol (THC) in the EO of the three groups of hemp were significantly different, with the highest concentration being 3.5%. The EO of wild hemp had greater antimicrobial activity compared with the EO of registered cultivars. This is the first report to show that significant amounts of CBD could be accumulated in the EO of wild and registered cultivars of hemp following hydro-distillation. The amount of CBD in the EO can be greater than that in the EO of the USA strain used for commercial production of CBD. Furthermore, this is among the first reports that show greater antimicrobial activity of the EO of wild hemp vs. the EO of registered cultivars. The results suggest that wild hemp may offer an excellent opportunity for future breeding and the selection of cultivars with a desirable composition of the EO and possibly CBD-rich EO production.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, 3050 SW Campus Way, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-5877
| | - Vladimir Sikora
- Institute of Field and Vegetable Crops, Alternative Crops and Organic Production Department, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Ivayla Dincheva
- Plant Genetic Research Group, Agrobioinstitute, Agricultural Academy, 8 “Dragan Tsankov” Blvd., 1164 Sofia, Bulgaria;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Tr. A. Hlinku 2, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
- Department of Bioenergetics and Food Analysis, Institution of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Ivanka B. Semerdjieva
- Department of Botany and Agrometeorology, Faculty of Agronomy, Agricultural University, 4000 Plovdiv, Bulgaria;
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|