1
|
Fonseca L, Ribeiro M, Schultz J, Borges NA, Cardozo L, Leal VO, Ribeiro-Alves M, Paiva BR, Leite PEC, Sanz CL, Kussi F, Nakao LS, Rosado A, Stenvinkel P, Mafra D. Effects of Propolis Supplementation on Gut Microbiota and Uremic Toxin Profiles of Patients Undergoing Hemodialysis. Toxins (Basel) 2024; 16:416. [PMID: 39453192 PMCID: PMC11511383 DOI: 10.3390/toxins16100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Propolis possesses many bioactive compounds that could modulate the gut microbiota and reduce the production of uremic toxins in patients with chronic kidney disease (CKD) undergoing hemodialysis (HD). This clinical trial aimed to evaluate the effects of propolis on the gut microbiota profile and uremic toxin plasma levels in HD patients. These are secondary analyses from a previous double-blind, randomized clinical study, with 42 patients divided into two groups: the placebo and propolis group received 400 mg of green propolis extract/day for eight weeks. Indole-3 acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) plasma levels were evaluated by reversed-phase liquid chromatography, and cytokines were investigated using the multiplex assay (Bio-Plex Magpix®). The fecal microbiota composition was analyzed in a subgroup of patients (n = 6) using a commercial kit for fecal DNA extraction. The V4 region of the 16S rRNA gene was then amplified by the polymerase chain reaction (PCR) using short-read sequencing on the Illumina NovaSeq PE250 platform in a subgroup. Forty-one patients completed the study, 20 in the placebo group and 21 in the propolis group. There was a positive correlation between IAA and TNF-α (r = 0.53, p = 0.01), IL-2 (r = 0.66, p = 0.002), and between pCS and IL-7 (r = 0.46, p = 0.04) at the baseline. No significant changes were observed in the values of uremic toxins after the intervention. Despite not being significant, microbial evenness and observed richness increased following the propolis intervention. Counts of the Fusobacteria species showed a positive correlation with IS, while counts of Firmicutes, Lentisphaerae, and Proteobacteria phyla were negatively correlated with IS. Two months of propolis supplementation did not reduce the plasma levels of uremic toxins (IAA, IS, and p-CS) or change the fecal microbiota.
Collapse
Affiliation(s)
- Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Natália A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Ludmila Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Viviane O. Leal
- Nutrition Division, Pedro Ernesto University Hospital (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro 20550-170, Brazil;
| | - Bruna R. Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Paulo E. C. Leite
- Graduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil;
| | - Carmen L. Sanz
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Fernanda Kussi
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Lia S. Nakao
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Alexandre Rosado
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| |
Collapse
|
2
|
Tek NA, Şentüre ŞA, Ersoy N. Is Propolis a Potential Anti-Obesogenic Agent for Obesity? Curr Nutr Rep 2024; 13:186-193. [PMID: 38436884 PMCID: PMC11133030 DOI: 10.1007/s13668-024-00524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE OF REVIEW Propolis is a bee product that has been used for thousands of years. The chemical composition and biological activity of propolis, which has been investigated in the twentieth century, may vary according to location. Propolis polyphenols can induce thermogenesis in brown and beige fat tissue via the uncoupled protein-1 and creatinine kinase metabolic pathways. This review provides a comprehensive investigation of the structural and biological properties of propolis and provides insights into their promising potential strategies in body weight management. RECENT FINDINGS By raising overall energy expenditure, it might lead to body weight management. Furthermore, the phenolic components artepillin C, quercetin, catechin, and chlorogenic acid found in its composition may have anti-obesogenic effect by stimulating the sympathetic nervous system, enhancing browning in white adipose tissue, and triggering AMP-activated protein kinase activation and mitochondrial biogenesis. Propolis, a natural product, is effective in preventing obesity which is a contemporary pandemic.
Collapse
Affiliation(s)
- Nilüfer Acar Tek
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey
| | - Şerife Akpınar Şentüre
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey.
| | - Nursena Ersoy
- Faculty of Health Science, Department of Nutrition and Dietetic, Ankara University, Fatih Caddesi No:197/7 PK:06290, Keçiören, Ankara, Turkey
| |
Collapse
|
3
|
Bava R, Castagna F, Lupia C, Poerio G, Liguori G, Lombardi R, Naturale MD, Bulotta RM, Biondi V, Passantino A, Britti D, Statti G, Palma E. Hive Products: Composition, Pharmacological Properties, and Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:646. [PMID: 38794216 PMCID: PMC11124102 DOI: 10.3390/ph17050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Giusi Poerio
- ATS Val Padana, Via dei Toscani, 46100 Mantova, Italy;
| | | | - Renato Lombardi
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013 Foggia, Italy;
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy;
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Annamaria Passantino
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (V.B.); (A.P.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy;
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (R.M.B.); (D.B.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Agrawal S, Agrawal A, Ghoneum M. Biobran/MGN-3, an Arabinoxylan Rice Bran, Exerts Anti-COVID-19 Effects and Boosts Immunity in Human Subjects. Nutrients 2024; 16:881. [PMID: 38542792 PMCID: PMC10974915 DOI: 10.3390/nu16060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Corona Virus Disease 19 (COVID-19) has been a major pandemic impacting a huge population worldwide, and it continues to present serious health threats, necessitating the development of novel protective nutraceuticals. Biobran/MGN-3, an arabinoxylan rice bran, is a potent immunomodulator for both humans and animals that has recently been demonstrated to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We here investigate Biobran/MGN-3's potential to enhance an antiviral immune response in humans. Peripheral blood mononuclear cells (PBMCs) derived from eight subjects taking Biobran/MGN-3 (age 55-65 years) and eight age-matched control subjects were stimulated with irradiated SARS-CoV-2 virus and then subjected to immuno-phenotyping and multiplex cytokine/chemokine assays. Results showed that PBMCs from subjects supplemented with Biobran/MGN-3 had significantly increased activation of plasmacytoid dendritic cells (pDCs) coupled with increased IFN-α secretion. We also observed higher baseline expression of HLA-DR (human leukocyte antigen-DR isotype) on dendritic cells (DCs) and increased secretion of chemokines and cytokines, as well as a substantial increase in cytotoxic T cell generation for subjects taking Biobran/MGN-3. Our results suggest that Biobran/MGN-3 primes immunity and therefore may be used for boosting immune responses against SARS-CoV-2 infections and other diseases, particularly in high-risk populations such as the elderly.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA 92697, USA; (S.A.); (A.A.)
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Ozdemir M, Karagoz S. Effects of microwave drying on physicochemical characteristics, microstructure, and antioxidant properties of propolis extract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2189-2197. [PMID: 37934121 DOI: 10.1002/jsfa.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The heat sensitivity of phenolics and flavonoids leads to considerable losses of these compounds during conventional drying. Microwave drying has the advantage of shorter drying time and rigorous process control, minimizing damage to heat-sensitive compounds. Microwave drying kinetics and the impacts of microwave drying on physicochemical characteristics, morphological structure, antioxidant properties, total phenolics, and flavonoid content of propolis extract were investigated. RESULTS Increasing the microwave power output from 180 to 900 W resulted in a 67% reduction in drying time. Morphological changes were more noticeable at higher microwave power levels as shown in scanning electron microscopy images. Water activity values of microwave dried propolis extracts were below 0.4, which satisfied the requirement for shelf-stable dry products. The solubility of microwave dried propolis extract increased with increasing microwave power level, and the highest solubility was achieved for the propolis extract microwave dried at 900 W. Microwave dried propolis extracts exhibited lower total phenolic content levels than fresh propolis extract. The microwave power level did not affect the total flavonoid content but it affected 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity of microwave dried propolis extracts. The DPPH free-radical scavenging activity closest to the fresh propolis extract was obtained for the microwave dried propolis extract at 900 W. This also showed the highest 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox) equivalent antioxidant capacity. CONCLUSION Microwave drying of propolis extract at 900 W was found to be the most efficient drying condition because it yielded the shortest drying time, the highest effective moisture diffusivity, and phenolic and flavonoid content levels that were very similar to those in fresh propolis extract. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Murat Ozdemir
- Department of Chemical Engineering, Gebze Technical University, Gebze, Türkiye
| | - Sakine Karagoz
- Department of Chemical Engineering, Gebze Technical University, Gebze, Türkiye
- The Scientific and Technological Research Council of Türkiye, Informatics and Information Security Research Center, Gebze, Türkiye
| |
Collapse
|
6
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
7
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
8
|
Kosari M, Khorvash F, Sayyah MK, Ansari Chaharsoughi M, Najafi A, Momen-Heravi M, Karimian M, Akbari H, Noureddini M, Salami M, Ghaderi A, Amini Mahabadi J, Khamechi SP, Yeganeh S, Banafshe HR. The influence of propolis plus Hyoscyamus niger L. against COVID-19: A phase II, multicenter, placebo-controlled, randomized trial. Phytother Res 2024; 38:400-410. [PMID: 37992760 DOI: 10.1002/ptr.8047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/24/2023]
Abstract
The incubation period of COVID-19 symptoms, along with the proliferation and high transmission rate of the SARS-CoV-2 virus, is the cause of an uncontrolled epidemic worldwide. Vaccination is the front line of prevention, and antiinflammatory and antiviral drugs are the treatment of this disease. In addition, some herbal therapy approaches can be a good way to deal with this disease. The aim of this study was to evaluate the effect of propolis syrup with Hyoscyamus niger L. extract in hospitalized patients with COVID-19 with acute disease conditions in a double-blinded approach. The study was performed on 140 patients with COVID-19 in a double-blind, randomized, and multicentral approach. The main inclusion criterion was the presence of a severe type of COVID-19 disease. The duration of treatment with syrup was 6 days and 30 CC per day in the form of three meals. On Days 0, 2, 4, and 6, arterial blood oxygen levels, C-reactive protein (CRP), erythrocyte sedimentation rate, and white blood cell, as well as the patient's clinical symptoms such as fever and chills, cough and shortness of breath, chest pain, and other symptoms, were recorded and analyzed. Propolis syrup with H. niger L. significantly reduces cough from the second day, relieving shortness of breath on the fourth day, and significantly reduces CRP, weakness, and lethargy, as well as significantly increased arterial blood oxygen pressure on the sixth day compared to the placebo group (p < 0.05). The results in patients are such that in the most severe conditions of the disease 80% < SpO2 (oxygen saturation), the healing process of the syrup on reducing CRP and increasing arterial blood oxygen pressure from the fourth day is significantly different compared with the placebo group (p < 0.05). The use of syrup is associated with a reduction of 3.6 days in the hospitalization period compared with the placebo group. Propolis syrup with H. niger L. has effectiveness in the viral and inflammatory phases on clinical symptoms and blood parameters and arterial blood oxygen levels of patients with COVID-19. Also, it reduces referrals to the intensive care unit and mortality in hospitalized patients with COVID-19. So, this syrup promises to be an effective treatment in the great challenge of COVID-19.
Collapse
Affiliation(s)
- Morteza Kosari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzin Khorvash
- Department of Infectious Disease, Medical School, Isfahan University of Medical Science, Isfahan, Iran
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazem Sayyah
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Ansari Chaharsoughi
- Department of Infectious Diseases, Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Najafi
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Hossein Akbari
- Social Determinants of Health Research Center, Department of Biostatistics and Epidemiology, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Noureddini
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medical, Clinical Research Development Unit-Matini/Kargarnejad Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Amini Mahabadi
- Anatomical Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Sarem Fertility and Infertility Research Center, Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Sarem Cell Research Center, Sarem Women's Hospital, Tehran, Iran
| | - Seyed Peyman Khamechi
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yeganeh
- Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Pham TX, Huynh TTX, Kim B, Lim YS, Hwang SB. A natural product YSK-A blocks SARS-CoV-2 propagation by targeting multiple host genes. Sci Rep 2023; 13:21489. [PMID: 38057373 PMCID: PMC10700534 DOI: 10.1038/s41598-023-48854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Natural products and herbal medicine have been widely used in drug discovery for treating infectious diseases. Recent outbreak of COVID-19 requires various therapeutic strategies. Here, we used YSK-A, a mixture of three herbal components Boswellia serrata, Commiphora myrrha, and propolis, to evaluate potential antiviral activity against SARS-CoV-2. We showed that YSK-A inhibited SARS-CoV-2 propagation with an IC50 values of 12.5 µg/ml and 15.42 µg/ml in Vero E6 and Calu-3 cells, respectively. Using transcriptome analysis, we further demonstrated that YSK-A modulated various host gene expressions in Calu-3 cells. Among these, we selected 9 antiviral- or immune-related host genes for further study. By siRNA-mediated knockdown experiment, we verified that MUC5AC, LIF, CEACAM1, and GDF15 host genes were involved in antiviral activity of YSK-A. Therefore, silencing of these genes nullified YSK-A-mediated inhibition of SARS-CoV-2 propagation. These data indicate that YSK-A displays an anti-SARS-CoV-2 activity by targeting multiple antiviral genes. Although the exact antiviral mechanism of each constituent has not been verified yet, our data indicate that YSK-A has an immunomodulatory effect on SARS-CoV-2 and thus it may represent a novel natural product-derived therapeutic agent for treating COVID-19.
Collapse
Affiliation(s)
- Thuy X Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Trang T X Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
| | - Soon B Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-Ro, Iksan, 54531, South Korea.
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea.
| |
Collapse
|
10
|
Silva-Beltrán NP, Galvéz-Ruíz JC, Ikner LA, Umsza-Guez MA, de Paula Castro TL, Gerba CP. In vitro antiviral effect of Mexican and Brazilian propolis and phenolic compounds against human coronavirus 229E. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1591-1603. [PMID: 35951754 DOI: 10.1080/09603123.2022.2110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.
Collapse
Affiliation(s)
| | | | - Luisa A Ikner
- Department of Environmental Science, University of Arizona, Water Energy Sustainable Technology (WEST) Center, Tucson, AZ, USA
| | | | | | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Water Energy Sustainable Technology (WEST) Center, Tucson, AZ, USA
| |
Collapse
|
11
|
Cárdenas-Escudero J, Galán-Madruga D, Cáceres JO. FTIR-ATR detection method for emerging C3-plants-derivated adulterants in honey: Beet, dates, and carob syrups. Talanta 2023; 265:124768. [PMID: 37331041 DOI: 10.1016/j.talanta.2023.124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
The European Union Publications Office has recently presented a report on the European Union's coordinated action with the Joint Research Centre to determine certain fraudulent practices in the honey sector, in which it has been indicated that 74% of the samples analyzed, imported from China, and 93% of the samples analyzed, imported from Turkey, the two largest honey producers worldwide, presented at least one indicator of exogenous sugar or suspicion of being adulterated. This situation has revealed the critical state of the problem of honey adulteration worldwide and the need to develop analytical techniques for its detection. Even though the adulteration of honey is carried out in a general way with sweetened syrups derived from C4 plants, recent studies have indicated the emerging use of syrups derived from C3 plants for the adulteration of honey. This kind of adulteration makes it impossible to analyze its detection using official analysis techniques. In this work, we have developed a fast, simple, and economical method based on the Fourier transform infrared spectroscopy technique, with attenuated total reflectance, for the qualitative, quantitative, and simultaneous determination of beetroot, date, and carob syrups, derived from of C3 plants; whose available bibliography is very scarce and analytically not very conclusive for its use by the authorities. The proposed method has been based on the establishment of the spectral differences between honey and the mentioned syrups at eight different points in the spectral region between 1200 and 900 cm-1 of the mid-infrared, characteristic of the vibrational modes of carbohydrates in honey, which allows the pre-discrimination of the presence or absence of the syrups studied, and their subsequent quantification, with precision levels lower than 2.0% of the relative standard deviation and relative errors lower than 2.0% (m/m).
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain; Analytical Chemistry Department, FCNET, University of Panama, Ciudad Universitaria, Estafeta Universitaria, 3366, Panama 4, Panama City, Panama
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220, Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
13
|
Koparal M, Ege M. Dietary supplements used by otolaryngology patients in Turkey during the COVID-19 pandemic: A cross-sectional survey. Eur J Integr Med 2023; 60:102249. [PMID: 37163158 PMCID: PMC10077764 DOI: 10.1016/j.eujim.2023.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Introduction This study investigated the characteristics of dietary supplement (DS) use of patients who attended the otolaryngology clinic at a university training and research hospital in Turkey during the pandemic, including patients who had experienced Coronavirus disease 2019 (COVID-19). Methods This cross-sectional study was conducted between March and September 2021. 277 literate patients aged ≥ 18 years who attended the otolaryngology clinic were enrolled. A questionnaire was used to collect sociodemographic data, as well as data on DS use during the pandemic. The questionnaire was administered in a face-to-face setting by a single researcher. Results Approximately half of the participants (50.18%) took DSs during the pandemic and 67.18% of those who experienced COVID-19 infection used DSs during their illness. The most commonly used supplements were vitamin C (43.16%) and D (33.09%), along with herbal supplements such as lemon (54.68%), garlic (46.76%), ginger (46.04%), and thyme (43.88%). In total, 85.23% of the patients primarily used DSs to enhance their immunity, while 32.95% used them to prevent cough, and 26.14% to improve breathing. The majority of the patients (85.23%) felt benefit from DSs. Typically, the patients obtained information about DSs from doctors (32.37%) or friends and relatives (29.49%), and most of them used the supplements without first consulting a doctor (63.64%). Conclusion DSs were commonly used by otolaryngology patients during the COVID-19 pandemic, particularly to enhance immunity. Although the majority of patients reportedly benefited from these products, most of them did not inform their physicians that they were using them and often obtained information from unofficial sources.
Collapse
Affiliation(s)
- Mehtap Koparal
- Department of Otolaryngology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Miray Ege
- Department of Pharmacognosy, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
14
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
15
|
Aga MB, Sharma V, Dar AH, Dash KK, Singh A, Shams R, Khan SA. Comprehensive review on functional and nutraceutical properties of honey. EFOOD 2023. [DOI: 10.1002/efd2.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Mohsin B. Aga
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Vaibhav Sharma
- Department of Food Science and Technology National Institute of Food Technology Entrepreneurship and Management Sonipat Haryana India
| | - Aamir H. Dar
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| | - Kshirod K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| | - Anurag Singh
- Department of Food Technology Harcourt Butler Technical University Nawabganj, Kanpur Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Shafat A. Khan
- Department of Food Technology Islamic University of Science and Technology Kashmir India
| |
Collapse
|
16
|
Massari MC, Bimonte VM, Falcioni L, Moretti A, Baldari C, Iolascon G, Migliaccio S. Nutritional and physical activity issues in frailty syndrome during the COVID-19 pandemic. Ther Adv Musculoskelet Dis 2023; 15:1759720X231152648. [PMID: 36820002 PMCID: PMC9929193 DOI: 10.1177/1759720x231152648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023] Open
Abstract
'Frailty' has been described as 'a state of increased vulnerability of the individual caused by an impairment of homeostasis as a result of endogenous or exogenous stress'. Frail individuals are depicted by a dramatic change in health status following an apparently minor insult and a higher risk of adverse health-related outcomes such as osteoporosis and sarcopenia, falls and disability, and fragility fractures. Frailty is a condition of increasing importance due to the global ageing of the population during the last decades. Central to the pathophysiology of frailty is a mechanism that is partially independent of ageing, but most likely evolves with ageing: the cumulative level of molecular and cellular damage in every subject. Furthermore, an uncorrected nutrition and a sedentary behaviour play a pivotal role in worsening the syndrome. In January 2020, a cluster of a genus of the family Coronaviridae was isolated as the pathogen of the new coronavirus disease (COVID-19). Since then, this infection has spread worldwide causing one of the most dramatic pandemics of the modern era, with more than 500 million confirmed cases all over the world. The clinical spectrum of SARS-CoV-2 severity ranges from asymptomatic conditions to mild symptoms, such as fever, cough, ageusia, anosmia and asthenia, up to most severe conditions, such as acute respiratory distress syndrome (ARDS) and multi-organ failure leading to death. Primary evidence revealed that the elderly frail subjects were more susceptible to the disease in its most intense form and were at greater risk of developing severe COVID-19. Factors contributing to the severity of COVID-19, and the higher mortality rate, are a poor immune system activity and long-standing inflammatory status of the frail subjects compared with the general population. Further recent research also suggested a potential role of sedentary behaviour, metabolic chronic disorders linked to it and uncorrected nutritional status. Thus, the aim of this review was to evaluate the different studies and evidence related to COVID-19 pandemic, both nutritional status and physical activity, and, also, to provide further information on the correct nutritional approach in this peculiar pathological condition.
Collapse
Affiliation(s)
- Maria Chiara Massari
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, University Sapienza of Rome, Rome, Italy
| | - Viviana Maria Bimonte
- Department of Movement, Human and Health Sciences, University Foro Italico of Rome, Rome, Italy
| | - Lavinia Falcioni
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Napoli, Italy
| | - Carlo Baldari
- Department of Theoretical and Applied Sciences, eCampus University, Rome, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Napoli, Italy
| | | |
Collapse
|
17
|
Covaci B, Brejea R, Covaci M. Sweeteners World Trade and Behaviour in the Pandemic. Evidence from Honey Remedies Nexus Mountain Apis Mellifera Product. SUGAR TECH : AN INTERNATIONAL JOURNAL OF SUGAR CROPS & RELATED INDUSTRIES 2023; 25:1-12. [PMID: 36789108 PMCID: PMC9910233 DOI: 10.1007/s12355-023-01243-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The paper proposes a construct for sweeteners (SMH-sugar, molasses, and honey class) consumer behavior, focusing on the mountain Apis Mellifera healing effects and its market. The paper develops three research dimensions, respectively, the importance of the healing properties of SMH products, the consumer behavior of SMH clients, and the world trade of SMH. Apis Mellifera product is considered one of the primary natural prevention and treatment for COVID-19. Presented empirical and experimental studies, respectively, qualitative analysis for Apis Mellifera product, reveal that honey, especially dark honey, presents healing effects. People understand the healing effects of honey in the COVID-19 context, and consequently, honey consumption increased. The forecasting model of the export value, for the 2021-2040 period, takes into consideration the descriptive statistics analysis based on 2001-2020 data. The paper contains relevant data about the SMH class related to statistics of the World Bank, United Nations, Eurostat, International Trade Center, and other sources presented in the paper. Data have been processed into SPSS and Excel, according to ANOVA (descriptive statistics with a focus on frequency analysis) and forecasting analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s12355-023-01243-6.
Collapse
Affiliation(s)
- Brîndușa Covaci
- CBM International University and Centre for Mountain Economy, Honolulu, USA
| | | | - Mihai Covaci
- Hyperion University and CBM International University, 1110 Nuuanu Avenue, PMB 1136, Honolulu, HI 96817 USA
| |
Collapse
|
18
|
Honey's Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants (Basel) 2023; 12:antiox12020414. [PMID: 36829972 PMCID: PMC9952334 DOI: 10.3390/antiox12020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Research attention has been drawn to honey's nutritional status and beneficial properties for human health. This study aimed to provide a bibliometric analysis of honey's antioxidant and antimicrobial properties. The research advancements within this field from 2001 to 2022 were addressed using the Scopus database, R, and VOSviewer. Of the 383 results, articles (273) and reviews (81) were the most common document types, while the annual growth rate of published manuscripts reached 17.5%. The most relevant topics about honey's antimicrobial and antioxidant properties were related to the agricultural and biological sciences, biochemistry, and pharmacology. According to a keyword analysis, the most frequent terms in titles, abstracts, and keywords were honey, antimicrobial, antioxidant, bee, propolis, phenolic compounds, wound, antibacterial, anti-inflammatory, and polyphenols. A trend topic analysis showed that the research agenda mainly encompassed antioxidants, pathogens, and anti-infection and chemical agents. In a co-occurrence analysis, antioxidants, anti-infection agents, and chemistry were connected to honey research. The initial research focus of this domain was primarily on honey's anti-inflammatory and antineoplastic activity, wound healing, and antibacterial agents. The research agenda was enriched in the subsequent years by pathogens, propolis, oxidative stress, and flavonoids. It was possible to pinpoint past trends and ongoing developments and provide a valuable insight into the field of honey research.
Collapse
|
19
|
Ashraf S, Ashraf S, Ashraf M, Imran MA, Kalsoom L, Siddiqui UN, Farooq I, Akmal R, Akram MK, Ashraf S, Ghufran M, Majeed N, Habib Z, Rafique S, -Abdin ZU, Arshad S, Shahab MS, Ahmad S, Zheng H, Mirza AR, Zulfiqar S, Anwar MI, Humayun A, Mahmud T, Saboor QA, Ahmad A, Ashraf M, Izhar M. Honey and Nigella sativa against COVID-19 in Pakistan (HNS-COVID-PK): A multicenter placebo-controlled randomized clinical trial. Phytother Res 2023; 37:627-644. [PMID: 36420866 DOI: 10.1002/ptr.7640] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Abstract
Until now, no specific and effective treatment exists for coronavirus disease 2019 (COVID-19). Since honey and Nigella sativa (HNS) have established antiviral, antibacterial, antiinflammatory, antioxidant, and immunomodulatory properties, we tested their efficacy for this disease in a multicenter, placebo-controlled, and randomized clinical trial at four medical care facilities in Pakistan. RT-PCR confirmed COVID-19 adults showing moderate or severe disease were enrolled in the trial. Patients were randomly assigned in a 1:1 ratio to receive either honey (1 g kg-1 day-1 ) and Nigella sativa seeds (80 mg kg-1 day-1 ) or a placebo for up to 13 days along with standard care. The outcomes included symptoms' alleviation, viral clearance, and 30-day mortality in the intention-to-treat population. Three hundred and thirteen patients, 210 with moderate and 103 with severe disease, underwent randomization from April 30 to July 29, 2020. Among the moderate cases, 107 were assigned to HNS, whereas 103 were assigned to the placebo group. Among the severe cases, 50 were given HNS, and 53 were given the placebo. HNS resulted in ~50% reduction in time taken to alleviate symptoms as compared to placebo (moderate cases: 4 vs. 7 days, Hazard Ratio [HR]: 6.11; 95% Confidence Interval [CI]: 4.23-8.84, p < 0.0001 and for severe cases: 6 vs. 13 days, HR: 4.04; 95% CI: 2.46-6.64; p < 0.0001). HNS also cleared the virus earlier than placebo in both moderate cases (6 vs. 10 days, HR: 5.53; 95% CI: 3.76-8.14, p < 0.0001) and severe cases (8.5 vs. 12 days, HR: 4.32; 95% CI: 2.62-7.13, p < 0.0001). HNS further led to a better clinical score on day 6 with normal activity resumption in 63.6% vs. 10.9% among moderate cases (OR: 0.07; 95% CI: 0.03-0.13, p < 0.0001) and hospital discharge in 50% versus 2.8% in severe cases (OR: 0.03; 95% CI: 0.01-0.09, p < 0.0001). In severe cases, the mortality rate was less than 1/4th in the HNS group than in placebo (4% vs. 18.87%, OR: 0.18; 95% CI: 0.02-0.92, p = 0.029). No HNS-related adverse effects were observed. HNS, compared with placebo, significantly improved symptoms, expedited viral load clearance, and reduced mortality in COVID-19 patients. This trial was registered on April 15, 2020 with ClinicalTrials.gov Identifier: NCT04347382.
Collapse
Affiliation(s)
- Sohaib Ashraf
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Shoaib Ashraf
- Department of Pathobiology, Riphah University, Lahore, Pakistan
| | - Moneeb Ashraf
- Department of Pharmacology, King Edward Medical University, Mayo Hospital, Lahore, Pakistan
| | - Muhammad Ahmad Imran
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Larab Kalsoom
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Uzma N Siddiqui
- Department of Medicine, Port Macquarie Base Hospital, Port Macquarie, New South Wales, Australia.,Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Iqra Farooq
- Department of Pediatrics Surgery, Children Hospital, Lahore, Pakistan
| | - Rutaba Akmal
- Department of Medicine, Sahara Medical College, Narowal, Pakistan
| | - Muhammad Kiwan Akram
- Department of Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ghufran
- Medico Cirujano, ESACHS (Empresa de Servico Externo de la Asociacion Chilena de Seguridad), Santiago, Chile
| | - Nighat Majeed
- Department of Internal Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Zaighum Habib
- Department of Orthopedics, Shaikh Zayed Post-Graduate Medical Complex, Lahore, Pakistan
| | - Sundas Rafique
- Department of Oncology, Mayo Hospital, King Edward Medical University, Lahore, Pakistan
| | - Zain-Ul -Abdin
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Shahroze Arshad
- Department of Internal Medicine, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Muhammad Sarmad Shahab
- Department of Internal Medicine, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hui Zheng
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Rafique Mirza
- Department of Plastic Surgery, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Sibgha Zulfiqar
- Department of Physiology, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Muhamad Imran Anwar
- Department of General Surgery, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Ayesha Humayun
- Department of Public Health and Community Medicine, Shaikh Zayed Postgraduate Medical Institute Lahore, Pakistan
| | - Talha Mahmud
- Department of Pulmonology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Qazi Abdul Saboor
- Department of Cardiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | - Ali Ahmad
- Department of Microbiology, Infectious Diseases & Immunology, Centre Hospitalier Universitaire (CHU) Sainte Justine/University of Montreal, Montreal, Quebec, Canada
| | - Muhammad Ashraf
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mateen Izhar
- Department of Microbiology, Shaikh Zayed Post-Graduate Medical Institute, Lahore, Pakistan
| | | |
Collapse
|
20
|
Contieri LS, de Souza Mesquita LM, Sanches VL, Viganó J, Kamikawachi RC, Vilegas W, Rostagno MA. Ultra-high-performance liquid chromatography using a fused-core particle column for fast analysis of propolis phenolic compounds. J Sep Sci 2023; 46:e2200440. [PMID: 36449264 DOI: 10.1002/jssc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Propolis is a bee product with a complex chemical composition formed by several species from different geographical origins. The complex propolis composition requires an accurate and reproducible characterization of samples to standardize the quality of the material sold to consumers. This work developed an ultra-high-performance liquid chromatography with a photodiode array detector method to analyze propolis phenolic compounds based on the two key propolis biomarkers, Artepillin C and p-Coumaric acid. This choice was made due to the complexity of the sample with the presence of several compounds. The optimized method was hyphenated with mass spectrometry detection allowing the detection of 23 different compounds. A step-by-step strategy was used to optimize temperature, flow rate, mobile phase composition, and re-equilibration time. Reverse-phase separation was achieved with a C18 fused-core column packed with the commercially available smallest particles (1.3 nm). Using a fused-core column with ultra-high-performance liquid chromatography allows highly efficient, sensitive, accurate, and reproducible determination of compounds extracted from propolis with an outstanding sample throughput and resolution. Optimized conditions permitted the separation of the compounds in 5.50 min with a total analysis time (sample-to-sample) of 6.50 min.
Collapse
Affiliation(s)
- Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Juliane Viganó
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, Buri, Brazil
| | | | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Mauricio A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of applied sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
21
|
Zalpoor H, Liaghat M, Bakhtiyari M, Shapourian H, Akbari A, Shahveh S, Nabi-Afjadi M, Minaei Beirami S, Tarhriz V. Kaempferol's potential effects against SARS-CoV-2 and COVID-19-associated cancer progression and chemo-resistance. Phytother Res 2023; 37:1731-1739. [PMID: 36706035 DOI: 10.1002/ptr.7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Affiliation(s)
- Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological science, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Minaei Beirami
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Infectious Diseases and Tropical Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Infectious Diseases and Tropical Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Tarapoulouzi M, Mironescu M, Drouza C, Mironescu ID, Agriopoulou S. Insight into the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023; 12:473. [PMID: 36766000 PMCID: PMC9914568 DOI: 10.3390/foods12030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Chryssoula Drouza
- Department of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol 3036, Cyprus
| | - Ion Dan Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
23
|
Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Nutrients 2023; 15:nu15020453. [PMID: 36678324 PMCID: PMC9866808 DOI: 10.3390/nu15020453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 μg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 μg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 μg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 μg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.
Collapse
|
24
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
25
|
Ożarowski M, Karpiński TM. The Effects of Propolis on Viral Respiratory Diseases. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010359. [PMID: 36615554 PMCID: PMC9824023 DOI: 10.3390/molecules28010359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Propolis remains an interesting source of natural chemical compounds that show, among others, antibacterial, antifungal, antiviral, antioxidative and anti-inflammatory activities. Due to the growing incidence of respiratory tract infections caused by various pathogenic viruses, complementary methods of prevention and therapy supporting pharmacotherapy are constantly being sought out. The properties of propolis may be important in the prevention and treatment of respiratory tract diseases caused by viruses such as severe acute respiratory syndrome coronavirus 2, influenza viruses, the parainfluenza virus and rhinoviruses. One of the main challenges in recent years has been severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing COVID-19. Recently, an increasing number of studies are focusing on the activity of various propolis preparations against SARS-CoV-2 as an adjuvant treatment for this infection. Propolis has shown a few key mechanisms of anti-SARS-CoV-2 action such as: the inhibition of the interaction of the S1 spike protein and ACE-2 protein; decreasing the replication of viruses by diminishing the synthesis of RNA transcripts in cells; decreasing the particles of coronaviruses. The anti-viral effect is observed not only with extracts but also with the single biologically active compounds found in propolis (e.g., apigenin, caffeic acid, chrysin, kaempferol, quercetin). Moreover, propolis is effective in the treatment of hyperglycemia, which increases the risk of SARS-CoV-2 infections. The aim of the literature review was to summarize recent studies from the PubMed database evaluating the antiviral activity of propolis extracts in terms of prevention and the therapy of respiratory tract diseases (in vitro, in vivo, clinical trials). Based upon this review, it was found that in recent years studies have focused mainly on the assessment of the effectiveness of propolis and its chemical components against COVID-19. Propolis exerts wide-spectrum antimicrobial activities; thus, propolis extracts can be an effective option in the prevention and treatment of co-infections associated with diseases of the respiratory tract.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
- Correspondence:
| |
Collapse
|
26
|
Govender N, Zulkifli NS, Badrul Hisham NF, Ab Ghani NS, Mohamed-Hussein ZA. Pea eggplant ( Solanum torvum Swartz) is a source of plant food polyphenols with SARS-CoV inhibiting potential. PeerJ 2022; 10:e14168. [PMID: 36518265 PMCID: PMC9744172 DOI: 10.7717/peerj.14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pea eggplant (Solanum torvum Swartz) commonly known as turkey berry or 'terung pipit' in Malay is a vegetable plant widely consumed by the local community in Malaysia. The shrub bears pea-like turkey berry fruits (TBFs), rich in phytochemicals of medicinal interest. The TBF phytochemicals hold a wide spectrum of pharmacological properties. In this study, the TBF phytochemicals' potential inhibitory properties were evaluated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the Coronavirus disease 2019 (COVID-19). The TBF polyphenols were screened against SARS-CoV receptors via molecular docking and the best receptor-ligand complex was validated further by molecular dynamics (MD) simulation. Method The SARS-CoV receptor structure files (viral structural components) were retrieved from the Protein Data Bank (PDB) database: membrane protein (PDB ID: 3I6G), main protease (PDB ID: 5RE4), and spike glycoproteins (PDB ID: 6VXX and 6VYB). The receptor binding pocket regions were identified by Discovery Studio (BIOVIA) for targeted docking with TBF polyphenols (genistin, kaempferol, mellein, rhoifolin and scutellarein). The ligand and SARS-CoV family receptor structure files were pre-processed using the AutoDock tools. Molecular docking was performed with the Lamarckian genetic algorithm using AutoDock Vina 4.2 software. The best pose (ligand-receptor complex) from the molecular docking analysis was selected based on the minimum binding energy (MBE) and extent of structural interactions, as indicated by BIOVIA visualization tool. The selected complex was validated by a 100 ns MD simulation run using the GROMACS software. The dynamic behaviour and stability of the receptor-ligand complex were evaluated by the root mean square displacement (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), solvent accessible surface volume (SASV) and number of hydrogen bonds. Results At RMSD = 0, the TBF polyphenols showed fairly strong physical interactions with SARS-CoV receptors under all possible combinations. The MBE of TBF polyphenol-bound SARS CoV complexes ranged from -4.6 to -8.3 kcal/mol. Analysis of the structural interactions showed the presence of hydrogen bonds, electrostatic and hydrophobic interactions between the receptor residues (RR) and ligands atoms. Based on the MBE values, the 3I6G-rhoifolin (MBE = -8.3 kcal/mol) and 5RE4-genistin (MBE = -7.6 kcal/mol) complexes were ranked with the least value. However, the latter showed a greater extent of interactions between the RRs and the ligand atoms and thus was further validated by MD simulation. The MD simulation parameters of the 5RE4-genistin complex over a 100 ns run indicated good structural stability with minimal flexibility within genistin binding pocket region. The findings suggest that S. torvum polyphenols hold good therapeutics potential in COVID-19 management.
Collapse
Affiliation(s)
- Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Norazura Syazlin Zulkifli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Infrastructure University Kuala Kumpur (IUKL), Kajang, Selangor, Malaysia
| | - Nurul Farhana Badrul Hisham
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Syatila Ab Ghani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
27
|
Mixing Propolis from Different Apiaries and Harvesting Years: Towards Propolis Standardization? Antibiotics (Basel) 2022; 11:antibiotics11091181. [PMID: 36139960 PMCID: PMC9495078 DOI: 10.3390/antibiotics11091181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Global demand for safe, effective and natural products has been increasing in parallel with consumers’ concerns about personal and environmental health. Propolis, a traditional and potentially medicinal product with several health benefits, is a beehive product with a worldwide reputation. However, despite the bioactivities reported, the low productivity and high chemical heterogeneity have been extensively hampering broader industrial uses. To assist in overcoming some of these problems, we prepared and characterized mixtures of ethanol extracts of a heterogeneous propolis sample (Pereiro) collected over a five-year period (2011–2015) and, additionally, we mixed two different propolis samples from distinct regions of Portugal (Pereiro and Gerês), also harvested at different times. An investigation of the antimicrobial and antioxidant properties, as well as characterization of the chemical composition of the eleven propolis blends were performed in this work. The antioxidant and antimicrobial activities of such blends of propolis samples, either from different localities and/or different years, were maintained, or even enhanced, when a comparison of the individual extracts was conducted. The differences in the chemical composition of the original propolis samples were also diluted in the mixtures. The results reemphasize the great potential of propolis and suggest that mixing different samples, regardless of provenance or harvesting date, can contribute to propolis standardization while simultaneously increasing its availability and adding value to this beehive byproduct.
Collapse
|
28
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
29
|
Honey as an Adjuvant in the Treatment of COVID-19 Infection: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since ancestor times, honey has been used to promote human health due to its medicinal, and nutritious properties, mainly due to bioactive compounds present, such as phenolic compounds. The emergence of COVID-19, caused by the SARS-CoV-2 virus, led to the pursuit of solutions for the treatment of symptoms and/or disease. Honey has proven to be effective against viral infections, principally due to its potential antioxidant and anti-inflammatory activities that attenuate oxidative damage induced by pathogens, and by improving the immune system. Therefore, the aim of this review is to overview the abilities of honey to attenuate different COVID-19 symptoms, highlighting the mechanisms associated with these actions and relating the with the different bioactive compounds present. A brief, detailed approach to SARS-CoV-2 mechanism of action is first overviewed to allow readers a deep understanding. Additionally, the compounds and beneficial properties of honey, and its previously application in other similar diseases, are detailed in depth. Despite the already reported efficacy of honey against different viruses and their complications, further studies are urgently needed to explain the molecular mechanisms of activity against COVID-19 and, most importantly, clinical trials enrolling COVID-19 patients.
Collapse
|
30
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Wu J, Han B, Zhao S, Zhong Y, Han W, Gao J, Wang S. Bioactive characterization of multifloral honeys from Apis cerana cerana, Apis dorsata, and Lepidotrigona flavibasis. Food Res Int 2022; 161:111808. [DOI: 10.1016/j.foodres.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
|
32
|
ALaerjani WMA, Khan KA, Al-Shehri BM, Ghramh HA, Hussain A, Mohammed MEA, Imran M, Ahmad I, Ahmad S, Al-Awadi AS. Chemical Profiling, Antioxidant, and Antimicrobial Activity of Saudi Propolis Collected by Arabian Honey Bee ( Apis mellifera jemenitica) Colonies. Antioxidants (Basel) 2022; 11:1413. [PMID: 35883906 PMCID: PMC9311549 DOI: 10.3390/antiox11071413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Propolis (bee glue) is a complex, phyto-based resinous material obtained from beehives. Its chemical and biological properties vary with respect to bee species, type of plants, geographical location, and climate of a particular area. This study was planned with the aim of determining the chemical composition and to investigate various properties (against oxidants and microbes) of different extracts of Saudi propolis collected from Arabian honey bee (Apis mellifera jemenitica) colonies headed by young queens. Chemical analysis of propolis extracts with different solvents, i.e., ethyl acetate (Eac), methanol (Met), butanol (BuT), and hexane (Hex) was done through colorimetry for the total phenolic content (TPC) and total flavonoid content (TFC) evaluation. For separation and extensive characterization of the Met extract, chromatography and 1H NMR were deployed. Six different microorganisms were selected to analyze the Saudi-propolis-based extract's antimicrobial nature by measuring zones of inhibition (ZOI) and minimum inhibitory concentration (MIC). Molecular docking was done by utilizing AutodDock, and sketching of ligands was performed through Marvin Chem Sketch (MCS), and the resultant data after 2D and 3D clean were stored in .mol format. The highest TFC (96.65 mg quercetin equivalents (QE)/g of propolis) and TPC (325 mg gallic acid equivalents (GAE)/g of propolis) were noted for Met. Six familiar compounds were isolated, and recognition was done with NMR. Met extract showed the greatest 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) free radical scavenging activity and Ferric Reducing Antioxidant Power (FRAP). Met showed max microbial activity against Staphylococcus aureus (ZOI = 18.67 mm, MIC = 0.625 mg/mL), whereas the minimum was observed in Hex against E. coli (ZOI = 6.33 mm, MIC = 2.50 mg/mL). Furthermore, the molecular docking process established the biological activity of separated compounds against HCK (Hematopoietic cell kinase) and Gyrase B of S. aureus. Moreover, the stability of protein-ligand complexes was further established through molecular dynamic simulation studies, which showed that the receptor-ligand complexes were quite stable. Results of this research will pave the way for further consolidated analysis of propolis obtained from Arabian honey bees (A. m. jemenitica).
Collapse
Affiliation(s)
- Wed Mohammed Ali ALaerjani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Badria M. Al-Shehri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Mohammed Elimam Ahamed Mohammed
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (W.M.A.A.); (B.M.A.-S.); (M.E.A.M.); (M.I.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61421, Abha 62529, Saudi Arabia;
| | - Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Abdulrhman S. Al-Awadi
- K.A. CARE Energy Research and Innovation Canter in Riyadh, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
33
|
Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022; 27:molecules27144594. [PMID: 35889466 PMCID: PMC9320184 DOI: 10.3390/molecules27144594] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.
Collapse
|
34
|
Zhang D, Wang Z, Li J, Zhu J. Exploring the possible molecular targeting mechanism of Saussurea involucrata in the treatment of COVID-19 based on bioinformatics and network pharmacology. Comput Biol Med 2022; 146:105549. [PMID: 35751193 PMCID: PMC9035664 DOI: 10.1016/j.compbiomed.2022.105549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Based on bioinformatics and network pharmacology, the treatment of Saussurea involucrata (SAIN) on novel coronavirus (COVID-19) was evaluated by the GEO clinical sample gene difference analysis, compound-target molecular docking, and molecular dynamics simulation. role in the discovery of new targets for the prevention or treatment of COVID-19, to better serve the discovery and clinical application of new drugs. MATERIALS AND METHODS Taking the Traditional Chinese Medicine System Pharmacology Database (TCMSP) as the starting point for the preliminary selection of compounds and targets, we used tools such as Cytoscape 3.8.0, TBtools 1.098, AutoDock vina, R 4.0.2, PyMol, and GROMACS to analyze the compounds of SAIN and targets were initially screened. To further screen the active ingredients and targets, we carried out genetic difference analysis (n = 72) through clinical samples of COVID-19 derived from GEO and carried out biological process (BP) analysis on these screened targets (P ≤ 0.05)., gene = 9), KEGG pathway analysis (FDR≤0.05, gene = 9), protein interaction network (PPI) analysis (gene = 9), and compounds-target-pathway network analysis (gene = 9), to obtain the target Point-regulated biological processes, disease pathways, and compounds-target-pathway relationships. Through the precise molecular docking between the compounds and the targets, we further screened SAIN's active ingredients (Affinity ≤ -7.2 kcal/mol) targets and visualized the data. After that, we performed molecular dynamics simulations and consulted a large number of related Validation of the results in the literature. RESULTS Through the screening, analysis, and verification of the data, it was finally confirmed that there are five main active ingredients in SAIN, which are Quercitrin, Rutin, Caffeic acid, Jaceosidin, and Beta-sitosterol, and mainly act on five targets. These targets mainly regulate Tuberculosis, TNF signaling pathway, Alzheimer's disease, Pertussis, Toll-like receptor signaling pathway, Influenza A, Non-alcoholic fatty liver disease (NAFLD), Neuroactive ligand-receptor interaction, Complement and coagulation cascades, Fructose and mannose metabolism, and Metabolic pathways, play a role in preventing or treating COVID-19. Molecular dynamics simulation results show that the four active ingredients of SAIN, Quercitrin, Rutin, Caffeic acid, and Jaceosidin, act on the four target proteins of COVID-19, AKR1B1, C5AR1, GSK3B, and IL1B to form complexes that can be very stable in the human environment. Tertiary structure exists. CONCLUSION Our study successfully explained the effective mechanism of SAIN in improving COVID-19, and at the same time predicted the potential targets of SAIN in the treatment of COVID-19, AKR1B1, IL1B, and GSK3B. It provides a new basis and provides great support for subsequent research on COVID-19.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| | - Zhaoye Wang
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China
| | - Jin Li
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| | - Jianbo Zhu
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| |
Collapse
|
35
|
Al-Amer R, Malak MZ, Burqan HMR, Stănculescu E, Nalubega S, Alkhamees AA, Hendawy AO, Ali AM. Emotional Reaction to the First Dose of COVID-19 Vaccine: Postvaccination Decline in Anxiety and Stress among Anxious Individuals and Increase among Individuals with Normal Prevaccination Anxiety Levels. J Pers Med 2022; 12:912. [PMID: 35743695 PMCID: PMC9224616 DOI: 10.3390/jpm12060912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Although vaccination has been adopted by the WHO to limit worldwide transmission of COVID-19, people's worries about COVID-19 vaccines may suppress their desire for vaccination despite vaccine availability. This study aimed to investigate anxiety and stress symptoms among 250 Jordanians (mean age = 43.18 ± 6.34 years, 72% females) who received their first vaccine dose. The respondents completed the anxiety and stress subscales of the Depression Anxiety and Stress scale 21 (DASS-21) before and after vaccination. The respondents expressed more moderate-severe levels of stress before than after vaccination (20.8% and 13.2%, respectively). Meanwhile, 37.2% and 45.2% of the respondents expressed moderate-severe anxiety before and after vaccination, respectively. Wilcoxon signed-rank test revealed that the drop in the level of stress from before- (median (IQR) = 5 (1-8)) to after vaccination (median (IQR) = 3 (1-7)) was statistically significant (z = -3.81, p = 0.001, r = 0.17) while the increase in anxiety was not. Anxiety significantly dropped postvaccination among individuals experiencing mild to severe anxiety before vaccination. Similarly, stress and anxiety significantly increased among individuals expressing normal anxiety before vaccination (z = -3.57 and -8.24, p values = 0.001, r = 0.16 and 0.37, respectively). Age positively correlated with postvaccination anxiety among respondents with mild prevaccination anxiety, and it negatively correlated with the prevaccination level of stress in the normal-anxiety group. Gender, marital status, respondents' level of education, and history of COVID-19 infection had no significant correlation with anxiety or stress at either point of measurement. Overcoming their hesitancy to receive COVID-19 vaccines, individuals with normal levels of anxiety experienced a rise in their distress symptoms following immunization. On the contrary, vaccination seemed to desensitize anxious individuals. Policymakers need to formulate a population-specific plan to increase vaccine preparedness and promote psychological well-being over all during the pandemic.
Collapse
Affiliation(s)
- Rasmieh Al-Amer
- Faculty of Nursing, Isra University, Amman 11953, Jordan;
- School of Nursing and Midwifery, Western Sydney University, Penrith, NSW 2751, Australia
| | - Malakeh Z. Malak
- Community Health Nursing, Faculty of Nursing, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Hala Mohammad Ramadan Burqan
- School of Nursing, Alghad International Colleges for Applied Medical Sciences, Riyadh Branch, Riyadh 13315, Saudi Arabia;
| | - Elena Stănculescu
- Faculty of Psychology and Educational Sciences, University of Bucharest, 050663 Bucharest, Romania;
| | - Sylivia Nalubega
- Department of Nursing, School of Health Sciences, Soroti University, Soroti City 211, Uganda;
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, Unayzah College of Medicine and Medical Sciences, Qassim University, Unayzah 52571, Saudi Arabia
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | - Amira Mohammed Ali
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria 21527, Egypt;
| |
Collapse
|
36
|
Apitherapy and Periodontal Disease: Insights into In Vitro, In Vivo, and Clinical Studies. Antioxidants (Basel) 2022; 11:antiox11050823. [PMID: 35624686 PMCID: PMC9137511 DOI: 10.3390/antiox11050823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Periodontal diseases are caused mainly by inflammation of the gums and bones surrounding the teeth or by dysbiosis of the oral microbiome, and the Global Burden of Disease study (2019) reported that periodontal disease affects 20-50% of the global population. In recent years, more preference has been given to natural therapies compared to synthetic drugs in the treatment of periodontal disease, and several oral care products, such as toothpaste, mouthwash, and dentifrices, have been developed comprising honeybee products, such as propolis, honey, royal jelly, and purified bee venom. In this study, we systematically reviewed the literature on the treatment of periodontitis using honeybee products. A literature search was performed using various databases, including PubMed, Web of Science, ScienceDirect, Scopus, clinicaltrials.gov, and Google Scholar. A total of 31 studies were reviewed using eligibility criteria published between January 2016 and December 2021. In vitro, in vivo, and clinical studies (randomized clinical trials) were included. Based on the results of these studies, honeybee products, such as propolis and purified bee venom, were concluded to be effective and safe for use in the treatment of periodontitis mainly due to their antimicrobial and anti-inflammatory activities. However, to obtain reliable results from randomized clinical trials assessing the effectiveness of honeybee products in periodontal treatment with long-term follow-up, a broader sample size and assessment of various clinical parameters are needed.
Collapse
|
37
|
Sberna G, Biagi M, Marafini G, Nardacci R, Biava M, Colavita F, Piselli P, Miraldi E, D'Offizi G, Capobianchi MR, Amendola A. In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Front Microbiol 2022; 13:799546. [PMID: 35350622 PMCID: PMC8958028 DOI: 10.3389/fmicb.2022.799546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022] Open
Abstract
Except for specific vaccines and monoclonal antibodies, effective prophylactic or post-exposure therapeutic treatments are currently limited for COVID-19. Propolis, a honeybee’s product, has been suggested as a potential candidate for treatment of COVID-19 for its immunomodulatory properties and for its powerful activity against various types of viruses, including common coronaviruses. However, direct evidence regarding the antiviral activities of this product still remains poorly documented. VERO E6 and CALU3 cell lines were infected with SARS-CoV-2 and cultured in the presence of 12.5 or 25 μg/ml of a standardized Hydroalcoholic Extract acronym (sHEP) of Eurasian poplar type propolis and analyzed for viral RNA transcription, for cell damage by optical and electron microscopy, and for virus infectivity by viral titration at 2, 24, 48, and 72 h post-infection. The three main components of sHEP, caffeic acid phenethyl ester, galangin, and pinocembrin, were tested for the antiviral power, either alone or in combination. On both cell lines, sHEP showed significant effects mainly on CALU3 up to 48 h, i.e., some protection from cytopathic effects and consistent reduction of infected cell number, fewer viral particles inside cellular vesicles, reduction of viral titration in supernatants, dramatic drop of N gene negative sense RNA synthesis, and lower concentration of E gene RNA in cell extracts. Interestingly, pre-treatment of cells with sHEP before virus inoculation induced these same effects described previously and was not able to block virus entry. When used in combination, the three main constituents of sHEP showed antiviral activity at the same levels of sHEP. sHEP has a remarkable ability to hinder the replication of SARS-CoV-2, to limit new cycles of infection, and to protect host cells against the cytopathic effect, albeit with rather variable results. However, sHEP do not block the virus entry into the cells. The antiviral activity observed with the three main components of sHEP used in combination highlights that the mechanism underlying the antiviral activity of sHEP is probably the result of a synergistic effect. These data add further emphasis on the possible therapeutic role of this special honeybee’s product as an adjuvant to official treatments of COVID-19 patients for its direct antiviral activity.
Collapse
Affiliation(s)
- Giuseppe Sberna
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Giovanni Marafini
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roberta Nardacci
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirella Biava
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Pierluca Piselli
- Epidemiology Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Gianpiero D'Offizi
- Clinical Department, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Saint Camillus International University of Health Sciences, Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases INMI, "Lazzaro Spallanzani" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
38
|
Vică ML, Glevitzky M, Heghedűş-Mîndru RC, Glevitzky I, Matei HV, Balici S, Popa M, Teodoru CA. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2640. [PMID: 35270324 PMCID: PMC8909772 DOI: 10.3390/ijerph19052640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
The impact of globalization on beekeeping brings new economic, scientific, ecological and social dimensions to this field The present study aimed to evaluate the chemical compositions of eight propolis extracts from Romania, and their antioxidant action and antimicrobial activity against seven species of bacteria, including pathogenic ones: Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes and Salmonella enterica serovar Typhimurium. The phenolic compounds, flavonoids and antioxidant activity of propolis extracts were quantified; the presence of flavones and aromatic acids was determined. Quercetin and rutin were identified by HPLC analysis and characterized using molecular descriptors. All propolis samples exhibited antibacterial effects, especially against P. aeruginosa and L. monocytogenes. A two-way analysis of variance was used to evaluate correlations among the diameters of the inhibition zones, the bacteria used and propolis extracts used. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type, but no association between the propolis origin and the microbial activity was found.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania; (M.G.); (M.P.)
| | - Ramona Cristina Heghedűş-Mîndru
- Faculty of Food Processing Technology Banat’s, University of Agricultural Sciences and Veterinary Medicine, 300645 Timișoara, Romania;
| | - Ioana Glevitzky
- Doctoral School, Faculty of Engineering, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Stefana Balici
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.); (H.V.M.); (S.B.)
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania; (M.G.); (M.P.)
| | - Cosmin Adrian Teodoru
- Clinical Surgical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550025 Sibiu, Romania;
| |
Collapse
|
39
|
Yao J, Zhang Y, Wang XZ, Zhao J, Yang ZJ, Lin YP, Sun L, Lu QY, Fan GJ. Flavonoids for Treating Viral Acute Respiratory Tract Infections: A Systematic Review and Meta-Analysis of 30 Randomized Controlled Trials. Front Public Health 2022; 10:814669. [PMID: 35252093 PMCID: PMC8888526 DOI: 10.3389/fpubh.2022.814669] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This meta-analysis aimed to investigate the efficacy and safety of flavonoids in treating viral acute respiratory tract infections (ARTIs). METHODS Randomized controlled trials (RCTs) were entered into meta-analyses performed separately for each indication. Efficacy analyses were based on changes in disease-specific symptom scores. Safety was analyzed based on the pooled data from all eligible trials, by comparing the incidence of adverse events between flavonoids and the control. RESULTS In this study, thirty RCTs (n = 5,166) were included. In common cold, results showed that the flavonoids group decreased total cold intensity score (CIS), the sum of sum of symptom intensity differences (SSID) of CIS, and duration of inability to work vs. the control group. In influenza, the flavonoids group improved the visual analog scores for symptoms. In COVID-19, the flavonoids group decreased the time taken for alleviation of symptoms, time taken for SARS-CoV-2 RT-PCR clearance, the RT-PCR positive subjects at day 7, time to achievement of the normal status of symptoms, patients needed oxygen, patients hospitalized and requiring mechanical ventilation, patients in ICU, days of hospitalization, and mortality vs. the control group. In acute non-streptococcal tonsillopharyngitis, the flavonoids group decreased the tonsillitis severity score (TSS) on day 7. In acute rhinosinusitis, the flavonoids group decreased the sinusitis severity score (SSS) on day 7, days off work, and duration of illness. In acute bronchitis, the flavonoids group decreased the bronchitis severity score (BSS) on day 7, days off work, and duration of illness. In bronchial pneumonia, the flavonoids group decreased the time to symptoms disappearance, the level of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). In upper respiratory tract infections, the flavonoids group decreased total CIS on day 7 and increased the improvement rate of symptoms. Furthermore, the results of the incidence of adverse reactions did not differ between the flavonoids and the control group. CONCLUSION Results from this systematic review and meta-analysis suggested that flavonoids were efficacious and safe in treating viral ARTIs including the common cold, influenza, COVID-19, acute non-streptococcal tonsillopharyngitis, acute rhinosinusitis, acute bronchitis, bronchial pneumonia, and upper respiratory tract infections. However, uncertainty remains because there were few RCTs per type of ARTI and many of the RCTs were small and of low quality with a substantial risk of bias. Given the limitations, we suggest that the conclusions need to be confirmed on a larger scale with more detailed instructions in future studies.Systematic Review Registration: inplasy.com/inplasy-2021-8-0107/, identifier: INPLASY20218010.
Collapse
Affiliation(s)
- Jia Yao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xian-Zhe Wang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Zhao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao-Jun Yang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Ping Lin
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qi-Yun Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guan-Jie Fan
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
40
|
The Study of Chemical Profile and Antioxidant Properties of Poplar-Type Polish Propolis Considering Local Flora Diversity in Relation to Antibacterial and Anticancer Activities in Human Breast Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030725. [PMID: 35163989 PMCID: PMC8840218 DOI: 10.3390/molecules27030725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Nine samples of ethanolic extracts of poplar-type propolis (EEP) originated from South-Eastern Poland were analyzed in terms of the diversity of the flora around the apiary. The mineral composition, antioxidant properties, polyphenolic profile (HPTLC), and main polyphenolic constituents (HPLC-DAD) were determined. Only minor differences in chemical composition and antioxidant capacity between tested EEPs were found regardless of their botanical origin. However, the biological activity of the EEPs was more diversified. The tested EEPs showed stronger antibacterial activity against Gram-negative bacteria (Escherichia coli) compared to Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis). Staphylococci biofilm inhibition occurred as a result of exposure to the action of four out of nine EEPs (P1–P4). Due to the various compositions of individual EEPs, a different MCF-7 cellular response was observed according to inhibition of cells migration and proliferation. Almost every sample inhibited the migration of breast cancer cells at a low concentration (0.04 µg/mL) of propolis. Even at the lowest concentration (0.02 µg/mL), each EEP inhibited the proliferation of MCF-7 cells, however, the level of inhibition varied between samples.
Collapse
|
41
|
Cilia G, Bortolotti L, Albertazzi S, Ghini S, Nanetti A. Honey bee (Apis mellifera L.) colonies as bioindicators of environmental SARS-CoV-2 occurrence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150327. [PMID: 34543793 PMCID: PMC8438869 DOI: 10.1016/j.scitotenv.2021.150327] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/07/2023]
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. Airflows sustain the infection spread, and in densely urbanized areas airborne particulate matters (PMs) are deemed to aggravate the viral transmission. Apis mellifera colonies are used as bioindicators as they allow environmental sampling of different nature, PMs included. This experiment demonstrates for the first time the possible use of honey bee colonies in the SARS-CoV-2 monitoring. The trial was conducted in Bologna on 18 March 2021, when the third wave of the Italian pandemic was at its peak and environmental conditions allowed high PM concentrations in the air. Sterile swabs were lined up at the hive entrance to sample the dusty material on the body of returning foragers. All of them resulted positive for the target genes of viral SARS-CoV-2 RNA. Likewise, internal samples were taken, but they resulted in no amplification of the target sequences. This experiment does not support speculations about the role of honey bees or their products in SARS-CoV-2 transmission. However, it indicates a novel use of A. mellifera colonies in the environmental detection of airborne human pathogens, at least in a densely urbanized area, deserving better understanding and possible integration with data from automatic air samplers.
Collapse
Affiliation(s)
- Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy.
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| | - Sergio Albertazzi
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnologies, Alma Mater Studiorum - Università di Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy
| |
Collapse
|
42
|
Jagielski P, Łuszczki E, Wnęk D, Micek A, Bolesławska I, Piórecka B, Kawalec P. Associations of Nutritional Behavior and Gut Microbiota with the Risk of COVID-19 in Healthy Young Adults in Poland. Nutrients 2022; 14:350. [PMID: 35057534 PMCID: PMC8779092 DOI: 10.3390/nu14020350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
The numerous consequences of the coronavirus disease 2019 (COVID-19) pandemic in healthy young people and the lack of clarity as to the long-term disease outcomes have spurred the search for risk factors for SARS-CoV-2 infection. We aimed to evaluate the associations of nutritional behaviors, gut microbiota, and physical activity with the risk of COVID-19 in healthy young nonobese people. Data on body composition, anthropometric measurements, physical activity, dietary intake, and gut microbiota were obtained from 95 adults (mean age, 34.66 ± 5.76 years). A balanced diet rich in vegetables and fruit, including nuts, wholegrain cereal products, and legumes, covers the need for vitamins and minerals. Such a diet can be an effective measure to reduce the risk of COVID-19 in nonobese healthy physically active young people with normal immune function. People with balanced diet and an average daily consumption of >500 g of vegetables and fruit and >10 g of nuts had an 86% lower risk of COVID-19 compared with those whose diet was not balanced and who consumed lower amounts of these products. It is well documented that proper nutrition, physical activity, and maintenance of normal weight facilitate good health by ensuring optimal immune function. The beneficial effects of these interventions should be strongly emphasized during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Paweł Jagielski
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland;
| | - Dominika Wnęk
- The Cracow’s Higher School of Health Promotion, 31-158 Krakow, Poland;
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, 31-007 Cracow, Poland;
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 42 Marcelińska Str., 60-354 Poznań, Poland;
| | - Beata Piórecka
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland; (B.P.); (P.K.)
| |
Collapse
|
43
|
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59:1850-1861. [PMID: 35028901 PMCID: PMC8757925 DOI: 10.1007/s12035-021-02696-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 infects cells via its spike protein binding to its surface receptor on target cells and results in acute symptoms involving especially the lungs known as COVID-19. However, increasing evidence indicates that many patients develop a chronic condition characterized by fatigue and neuropsychiatric symptoms, termed long-COVID. Most of the vaccines produced so far for COVID-19 direct mammalian cells via either mRNA or an adenovirus vector to express the spike protein, or administer recombinant spike protein, which is recognized by the immune system leading to the production of neutralizing antibodies. Recent publications provide new findings that may help decipher the pathogenesis of long-COVID. One paper reported perivascular inflammation in brains of deceased patients with COVID-19, while others showed that the spike protein could damage the endothelium in an animal model, that it could disrupt an in vitro model of the blood-brain barrier (BBB), and that it can cross the BBB resulting in perivascular inflammation. Moreover, the spike protein appears to share antigenic epitopes with human molecular chaperons resulting in autoimmunity and can activate toll-like receptors (TLRs), leading to release of inflammatory cytokines. Moreover, some antibodies produced against the spike protein may not be neutralizing, but may change its conformation rendering it more likely to bind to its receptor. As a result, one wonders whether the spike protein entering the brain or being expressed by brain cells could activate microglia, alone or together with inflammatory cytokines, since protective antibodies could not cross the BBB, leading to neuro-inflammation and contributing to long-COVID. Hence, there is urgent need to better understand the neurotoxic effects of the spike protein and to consider possible interventions to mitigate spike protein-related detrimental effects to the brain, possibly via use of small natural molecules, especially the flavonoids luteolin and quercetin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA, 02111, USA.
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, 02111, USA.
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, 33759, USA.
| |
Collapse
|
44
|
Ali AM, Alkhamees AA, Abd Elhay ES, Taha SM, Hendawy AO. COVID-19-Related Psychological Trauma and Psychological Distress Among Community-Dwelling Psychiatric Patients: People Struck by Depression and Sleep Disorders Endure the Greatest Burden. Front Public Health 2022; 9:799812. [PMID: 35071173 PMCID: PMC8777039 DOI: 10.3389/fpubh.2021.799812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
COVID-19 has created a general state of worry and distress, especially among vulnerable groups such as those with psychiatric diagnoses. Worldwide, psychiatric care provision has drastically suffered during the pandemic, with many patients unable to access proper care, which may have implications for increased mental health consequences in patients with psychiatric disorders (e.g., relapse and suicide). This cross-sectional study used structural equation modeling to investigate COVID-19-related trauma and distress among Arab psychiatric population during COVID-19 quarantine. Patients with pre-existing psychiatric disorders (N = 168) completed an online survey that comprised the Depression Anxiety Stress Scale 21 (DASS-21), the Impact of Event Scale-Revised (IES-R), and a questionnaire on COVID-19-related attitudes/perceptions, sources of information, used protective measures, and socio-demographic information. Respondents commonly reported feeling down-hearted/blue, trouble concentrating, along with symptoms of avoidance and rumination related to the pandemic. Patients with depression and sleep disorders expressed higher COVID-19-related trauma than patients with other disorders. Perceived physical health mediated the effect of co-morbid chronic physical disorders on COVID-19 trauma, psychological distress, perceived vulnerability to COVID-19, and perceived likelihood of recovery in case of contracting COVID-19. Perceived physical health and perceived vulnerability to COVID-19 were strong direct predictors of COVID-19-related trauma and psychological distress. Staying at home negatively predicted COVID-19 trauma and exerted an indirect negative effect on psychological distress via COVID-19 trauma. COVID-19 trauma, age, and marital status directly predicted psychological distress, with COVID-19 trauma being the strongest predictor. Educational level, income, having family members working in the medical field, keeping up to date with the news on deaths/infected cases or the development of COVID-19 drugs or vaccines, satisfaction with available information on COVID-19, and using different protective measures were not associated with significant differences in COVID-19 trauma and psychological distress scores. Immuno-psychiatric interventions should be designed to target COVID-19-trauma and distress among younger single patients with perceived poor physical health, especially those diagnosed with depression and sleep disorders.
Collapse
Affiliation(s)
- Amira M. Ali
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia,*Correspondence: Abdulmajeed A. Alkhamees
| | - Eman S. Abd Elhay
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Samah M. Taha
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Amin O. Hendawy
- Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan,Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| |
Collapse
|
45
|
Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.
Collapse
|
46
|
Agrawal PK, Agrawal C, Blunden G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | | |
Collapse
|
47
|
Al-Fakeh MS, Osman SOM, Gassoumi M, Rabhi M, Omer M. Characterization, Antimicrobial and Anticancer Properties of Palladium Nanoparticles Biosynthesized Optimally Using Saudi Propolis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2666. [PMID: 34685107 PMCID: PMC8540078 DOI: 10.3390/nano11102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/09/2023]
Abstract
Due to their unique physicochemical characteristics, palladium nanoparticles (Pd-NPs) have shown tremendous promise in biological applications. The biosynthesis of Pd-NPs employing Saudi propolis has been designed to be environmental, fast, controlled, and cost-effective. The formation and stability of biosynthesized Pd-NPs by Saudi propolis extract were proved by ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), and Zeta potential analysis. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) findings show that the average particle size of Pd-NPs is between 3.14 and 4.62 nm, which is in quantum scale. The Saudi propolis enhanced the antimicrobial activity against B. subtilis, S. aureus, E. coli, K. pneumoniae, and C. albicans. Pd-NPs show effective anticancer activity against ductal carcinoma (MCF-7) with IC50 of 104.79 µg/mL.
Collapse
Affiliation(s)
- Maged S. Al-Fakeh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Taiz University, Taiz 3086, Republic of Yemen
| | - Samir Osman Mohammed Osman
- Department of Physics, College of Science, Ibb University, Ibb 009674, Yemen
- Engineer College, Aljanad University for Science & Technology, Taiz 009674, Yemen
| | - Malek Gassoumi
- Department of Physics, College of Science, Qassim University, P.O. 64, Buraidah 51452, Saudi Arabia;
- Unite de Recherche Matériaux Advances et Nanotechnologies, Institut Supérieur des Sciences Appliquées et de Technologie de Kasserine, Université de Kairouan, BP 471, 1200 Kasserine, Tunisia
| | - Mokded Rabhi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mohamed Omer
- Department of Radiologic Science, College of Applied Medical Sciences, Buraidah 51452, Saudi Arabia;
| |
Collapse
|
48
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|
49
|
Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13158467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quality and safety attributes of poultry products have attracted increasing widespread attention and interest from scholarly groups and the general population. As natural and safe alternatives to synthetic and artificial chemical drugs (e.g., antibiotics), botanical products are recently being used in poultry farms more than 60% of the time for producing organic products. Medicinal plants, and honeybee products, are natural substances, and they were added to poultry diets in a small amount (between 1% and 3%) as a source of nutrition and to provide health benefits for poultry. In addition, they have several biological functions in the poultry body and may help to enhance their welfare. These supplements can increase the bodyweight of broilers and the egg production of laying hens by approximately 7% and 10% and enhance meat and egg quality by more than 25%. Moreover, they can improve rooster semen quality by an average of 20%. Previous research on the main biological activities performed by biotics has shown that most research only concentrated on the notion of using botanical products as growth promoters, anti-inflammatory, and antibacterial agents. In the current review, the critical effects and functions of bee products and botanicals are explored as natural and safe alternative feed additives in poultry production, such as antioxidants, sexual-stimulants, immuno-stimulants, and for producing healthy products.
Collapse
|
50
|
Bhargava P, Mahanta D, Kaul A, Ishida Y, Terao K, Wadhwa R, Kaul SC. Experimental Evidence for Therapeutic Potentials of Propolis. Nutrients 2021; 13:2528. [PMID: 34444688 PMCID: PMC8397973 DOI: 10.3390/nu13082528] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is produced by honeybees from materials collected from plants they visit. It is a resinous material having mixtures of wax and bee enzymes. Propolis is also known as bee glue and used by bees as a building material in their hives, for blocking holes and cracks, repairing the combs and strengthening their thin borders. It has been extensively used since ancient times for different purposes in traditional human healthcare practices. The quality and composition of propolis depend on its geographic location, climatic zone and local flora. The New Zealand and Brazilian green propolis are the two main kinds that have been extensively studied in recent years. Their bioactive components have been found to possess a variety of therapeutic potentials. It was found that Brazilian green propolis improves the cognitive functions of mild cognitive impairments in patients living at high altitude and protects them from neurodegenerative damage through its antioxidant properties. It possesses artepillin C (ARC) as the key component, also known to possess anticancer potential. The New Zealand propolis contains caffeic acid phenethyl ester (CAPE) as the main bioactive with multiple therapeutic potentials. Our lab performed in vitro and in vivo assays on the extracts prepared from New Zealand and Brazilian propolis and their active ingredients. We provided experimental evidence that these extracts possess anticancer, antistress and hypoxia-modulating activities. Furthermore, their conjugation with γCD proved to be more effective. In the present review, we portray the experimental evidence showing that propolis has the potential to be a candidate drug for different ailments and improve the quality of life.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Debajit Mahanta
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin 791121, India
| | - Ashish Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Keiji Terao
- CycloChem Co., Ltd., 7-4-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan; (Y.I.); (K.T.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305-8565, Japan; (P.B.); (D.M.); (A.K.); (R.W.)
- Kaul-Tech Co., Ltd., Nagakunidai 3-24, Tsuchiura 300-0810, Japan
| |
Collapse
|