1
|
Cai R, Yao P, Yi Y, Merder J, Li P, He D. The Hunt for Chemical Dark Matter across a River-to-Ocean Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11988-11997. [PMID: 38875444 DOI: 10.1021/acs.est.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Thousands of mass peaks emerge during molecular characterization of natural dissolved organic matter (DOM) using ultrahigh-resolution mass spectrometry. While mass peaks assigned to certain molecular formulas have been extensively studied, the uncharacterized mass peaks that represent a significant fraction of organic matter and convey biogenic elements and energy have been previously ignored. In this study, we introduce the term dark DOM (DDOM) for unassigned mass peaks and have explored its characteristics and environmental behaviors using a data set of 38 DOM extracts covering the Yangtze River-to-ocean continuum. We identified a total of 9141 DDOM molecules, which exhibited higher molecular weight and greater diversity than the DOM subset with assigned DOM formulas. Although DDOM contributed a smaller fraction of relative abundance, it significantly impacted the molecular weight and molecular composition of bulk DOM. A portion of DDOM with higher molecular weight was found to increase molecular abundance across the river-to-ocean continuum. These compounds could contain halogenated organic molecules and might have a high potential to contribute to the refractory organic carbon pool. With this study, we underline the contribution of dark matter to the total DOM pool and emphasize that more DDOM research is needed to understand its contribution to global biogeochemical cycles and carbon sequestration.
Collapse
Affiliation(s)
- Ruanhong Cai
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Piao Yao
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Yuanbi Yi
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Julian Merder
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
| | - Penghui Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Ding He
- Department of Ocean Science, Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
2
|
Varsegov IS, Ul’yanovskii NV, Kosyakov DS, Shavrina IS, Lebedev AT. A Chromatography–Mass Spectrometry Study of the Transformation of the Benzalkonium Cation in Aqueous Solutions under the Action of Active Bromine. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [PMCID: PMC9924194 DOI: 10.1134/s1061934822140088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- I. S. Varsegov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, 163002 Arkhangelsk, Russia
| | - N. V. Ul’yanovskii
- Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, 163002 Arkhangelsk, Russia
| | - D. S. Kosyakov
- Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, 163002 Arkhangelsk, Russia
| | - I. S. Shavrina
- Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, 163002 Arkhangelsk, Russia
| | - A. T. Lebedev
- Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, 163002 Arkhangelsk, Russia
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Lebedev AT, Detenchuk EA, Latkin TB, Bavcon Kralj M, Trebše P. Aqueous Chlorination of D-Limonene. Molecules 2022; 27:2988. [PMID: 35566337 PMCID: PMC9099452 DOI: 10.3390/molecules27092988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) is one of the most widespread monocyclic terpenes, being both a natural and industrial compound. It is widely present in the environment, including in water supplies. Therefore, it may be subjected to aqueous chlorination at water treatment stations during drinking water preparation. Besides, being a component of numerous body care and cosmetic products, it may present at high levels in swimming pool waters and could also be subjected to aqueous chlorination. Laboratory experiments with aqueous chlorination of D-limonene demonstrated the prevalence of the conjugated electrophilic addition of HOCl molecule to the double bonds of the parent molecule as the primary reaction. The reaction obeys the Markovnikov rule, as the levels of the corresponding products were higher than those of the alternative ones. Fragmentation pattern in conditions of electron ionization enabled the assigning of the structures for four primary products. The major products of the chlorination are formed by the addition of two HOCl molecules to limonene. The reactions of electrophilic addition are usually accompanied by the reactions of elimination. Thus, the loss of water molecules from the products of various generations results in the reproduction of the double bond, which immediately reacts further. Thus, a cascade of addition-elimination reactions brings the most various isomeric polychlorinated species. At a ratio of limonene/active chlorine higher than 1:10, the final products of aqueous chlorination (haloforms) start forming, while brominated haloforms represent a notable portion of these products due to the presence of bromine impurities in the used NaOCl. It is worth mentioning that the bulk products of aqueous chlorination are less toxic in the bioluminescence test on V. fischeri than the parent limonene.
Collapse
Affiliation(s)
- Albert T. Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
- MASSECO d.o.o., 6230 Postojna, Slovenia
| | - Elena A. Detenchuk
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Tomas B. Latkin
- Core Facility Arktika, Northern Arctic Federal University, 163002 Arkhangelsk, Russia;
| | - Mojca Bavcon Kralj
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| |
Collapse
|
4
|
Detenchuk EA, Mazur DM, Latkin TB, Lebedev AT. Halogen substitution reactions of halobenzenes during water disinfection. CHEMOSPHERE 2022; 295:133866. [PMID: 35134400 DOI: 10.1016/j.chemosphere.2022.133866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Although being successfully applied all over the world for more than 100 years water disinfection by means of chlorination possesses certain drawbacks, first of all formation of hazardous disinfection by-products (DBP). Aromatic halogenated DBPs significantly contribute to the total organic halogen and developmental toxicity of chlorinated water. The present study deals with investigation of possible substitution of one halogen for another in aromatic substrates in conditions of aqueous chlorination/bromination. The reaction showed high yields especially in case of substrates with proper position of an activating group in the aromatic ring. Thus, ipso-substitution of iodine by chlorine is the main process of aqueous chlorination of para-iodoanisole. Oxidation of the eliminating I+ ions into non-reactive IO3- species facilitates the substitution. Oxidation of eliminating Br+ is not so easy while being highly reactive it attacks initial substrates forming polybrominated products. Substitution of iodine and bromine by chlorine may also involve migration of electrophilic species inside the aromatic ring resulting in larger number of isomeric DBPs. Substitution of chlorine by bromine in aromatic substrates during aqueous bromination is not so pronounced as substitution of bromine by chlorine in aqueous chlorination due to higher electronegativity of chlorine atom. However, formation of some chlorine-free polybrominated products proves possibility of that process.
Collapse
Affiliation(s)
- E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - T B Latkin
- Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia.
| |
Collapse
|
5
|
Lebedev AT, Richardson SD. Planet Contamination with Chemical Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051621. [PMID: 35268722 PMCID: PMC8911829 DOI: 10.3390/molecules27051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Albert T. Lebedev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
6
|
Mazur DM, Lebedev AT. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77. [PMCID: PMC9924213 DOI: 10.1134/s1061934822140052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The purity of drinking water is an important issue of the human life quality. Water disinfection has saved millions people from the diseases spread with water. However, that procedure has a certain drawback due to formation of toxic organic disinfection products. Establishing the structures of these products and the mechanisms of their formation and diminishing their levels in drinking water represent an important task for chemistry and medicine, while mass spectrometry is the most efficient tool for the corresponding studies. The current review throws light upon natural and anthropogenic sources of the formation of disinfection by-products (DBPs) and the mechanisms of their formation related to the structural peculiarities and the presence of functional groups. In addition to chlorination, bromination is discussed since it is used quite often as an alternative method of disinfection, particularly, for the purification of swimming pool water. The benefits of the contemporary GC/MS and LC/MS methods for the elucidation of DBP structures and study of the mechanisms of their formation are discussed. The reactions characteristic for various functional groups and directions of transformation of certain classes of organic compounds in conditions of aqueous chlorination/bromination are also covered in the review.
Collapse
Affiliation(s)
- D. M. Mazur
- Organic Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. T. Lebedev
- M.V. Lomonosov Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|