1
|
Parseghian L, Esmaeili H, Rafati H, Rajabi HR, Alvand ZM. Rapid synthesis of magnetic Fe 3O 4/Ag nanocomposite based on a plant-mediated approach and its biological activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65559-65573. [PMID: 39589419 DOI: 10.1007/s11356-024-35614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
The present study described a quick, efficient, and eco-friendly method for producing Fe3O4-Ag nanocomposite (NC) using Mentha pulegium L. plant extract. Ultrasonic-assisted extraction (UAE) was employed to prepare an aqueous extract due to its speed and effectiveness. During the manufacture of Fe3O4-Ag NC, the prepared plant extracts were utilized as naturally occurring stabilizing precursors. The study also employed several methods for characterizing the synthesized NC, including X-ray diffraction patterns, which estimated the mean particle size to be 52 nm using the Deby-Scherrer equation. The successful synthesis of Fe3O4-Ag NC was approved by a broad absorption band from 400 to 425 nm in the absorption spectrum. Subsequently, the samples' antibacterial, antifungal, and antioxidant potentials (Fe3O4 NPs, Ag NPs, Fe3O4-Ag NC, and the extract) were investigated. Notably, the NP and NC samples showed higher antibacterial activity than the extract, wherein gram-negative bacteria were more significantly affected than gram-positive bacteria. The Fe3O4-Ag NC had MIC values of 0.062 mg/mL against Staphylococcus aureus and Escherichia coli. The Fe3O4-Ag NC was found to have a significant detrimental impact on the bacterial membranes of E. coli and S. aureus, as evidenced by the quick release of cytoplasmic components such as protein, nucleic acid, and potassium. The results also showed that the extract and Fe3O4-Ag NC samples exhibited strong antioxidant activity. The study recommends further investigation on the application of these metal nanoparticles in the water remediation, agriculture, and food industries due to their strong biological activity.
Collapse
Affiliation(s)
- Liana Parseghian
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Hasan Rafati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Zinab Moradi Alvand
- Department of Pharmaceutical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Helal MW, Faried MM, Salah SM, Ashraf M, Nasser N, Shawky Y, Hamdy S, Amir AE, Nabil W, El-Husseini DM. Comparative Analysis of Aptamer-Conjugated Chemical and Green Synthesized Gold Nanoparticles for Targeted Therapy in MCF-7 Cancer Cells. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05091-2. [PMID: 39601974 DOI: 10.1007/s12010-024-05091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer remains a challenging health issue, demanding innovative treatment approaches that maximize efficacy while minimizing damage to healthy cells. Targeted therapy offers a promising strategy tailored to the unique characteristics of breast cancer tumors. Gold nanoparticles have been studied in the context of their therapeutic potential towards cancer treatment showing great success. Recently, aptamers were also investigated for their targeting efficiency towards specific receptors allowing their use in targeting delivery systems. In this study, computational analysis was used to confirm the strong binding between AS1411 aptamer and the nucleolin receptor extensively present on the surface of breast cancer cells, highlighting the aptamer's potential for specific targeting. Furthermore, we investigated and compared the use of AS1411 aptamer-conjugated chemically synthesized (GNPs) and flaxseed-green-synthesized (Fs-GNPs) gold nanoparticles as targeting therapeutic systems for breast cancer cells. Our results showed successful conjugation of the AS1411 aptamer with both, the GNPs and Fs-GNPs. Characterization of the nanoparticles and their conjugates validates their size, charge, and morphology, affirming the success of the conjugation process. Cytotoxicity assessments using the MTT assay demonstrated the effectiveness of the conjugates against breast cancer cells, with the AS1411-Fs-GNPs conjugate exhibiting higher inhibitory efficacy, featuring an IC50 value of 11.13 µg/ml. In contrast, they showed minimal effect on normal cells, emphasizing the selectivity and potential safety of these therapies. To our knowledge, this is the first report of conjugating AS1411 aptamer to green-synthesized gold nanoparticles and its use as a targeting therapeutic system.
Collapse
Affiliation(s)
- Mariam W Helal
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohanad M Faried
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Mazen Ashraf
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nada Nasser
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Yasser Shawky
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara Hamdy
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza El Amir
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Wajeet Nabil
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Dalia M El-Husseini
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
3
|
Ramanjooloo A, Bekah D, Adeyemi SA, Ubanako P, Ngema L, Choonara YE, Williams DE, Polishchuk EA, Andersen RJ, Bhaw-Luximon A. Synthesis and in vitro assessment of gold nanoparticles conjugated with extracts, sterols and pure compounds derived from marine sponges from the Indian and Pacific Oceans. RSC Adv 2024; 14:36115-36131. [PMID: 39529734 PMCID: PMC11551844 DOI: 10.1039/d4ra04068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gold nanoparticles (AuNPs) exhibit different physical properties compared to small molecules, bulk materials and other nanoparticles. Their synthesis using plant extracts, particularly polyflavonoids as phytoreductants, for the conversion of Au(iii) into Au(0) has been reported. In this study, AuNPs were synthesized with extracts, sterols and pure compounds derived from marine sponges using gold(iii) chloride trihydrate. Extracts, hexane (JDH) and ethyl acetate (JDE), sterols (JC-2) and jaspamide were obtained from Jaspis diastra. Pure compounds, namely, contignasterol, ansellone A, motuporamines A and MN100 (a synthetic analog of pelorol), were also used. JC-2 was characterized using NMR and GC-MS, and the major constituent was determined to be β-sitosterol. β-Sitosterol has shown great promise as an anti-cancer molecule, but its poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy. Transmission electron microscopy (TEM) images revealed the formation of spherical AuNPs conjugated with JDH, JDE, JC-2, ansellone and contignasterol with average diameters of 21.1 ± 3.0 nm, 20.7 ± 2.1 nm, 26.2 ± 1.2 nm, 33.3 ± 5.1 nm and 30.8 ± 5.5 nm, respectively. No particle formation was seen with motuporamines A and MN100. Zeta potential values indicated that AuNPs-JC-2 was more stable than AuNPs-JDE, AuNPs-JDH and AuNPs-ansellone. Based on IC50 values, the cytotoxicity of AuNPs-JDH increased in A172, TERA, HeLa and HepG2 cells but showed similar activity in HaCaT cells compared to JDH. The cytotoxicity of AuNPs-JDE decreased in A172 and HaCaT cells but increased in TERA1, HeLa and HepG2 cells compared to JDE. AuNPs-JC-2 showed enhanced cytotoxicity with a decrease in IC50 values from 3.37 ± 0.19 μg mL-1 to 0.52 ± 0.09 μg mL-1 in A172 and from 2.28 ± 0.20 μg mL-1 to 0.78 ± 0.28 μg mL-1 in TERA1 compared to JC-2. The synergistic action of sterols in AuNPs-JC-2 seemed to favour enhanced anti-cancer activity. The presence of sterols increased the ability of transforming Au(iii) into Au(0) to form AuNPs and further enhancing cellular uptake and, thus, anti-cancer activity. AuNPs-contignasterol displayed lower activity than contignasterol in the A172 cell line. No significant difference in activity was observed with AuNPs-ansellone A in the A172 and HaCaT cell lines compared to ansellone A.
Collapse
Affiliation(s)
- Avin Ramanjooloo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
- Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal Albion Mauritius
| | - Devesh Bekah
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, School of Therapeutic Science, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, University of the Witwatersrand Johannesburg South Africa
| | - David E Williams
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Elena A Polishchuk
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia 2036 Main Mall Vancouver, B.C. V6T 1Z1 Canada
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research (CBBR), University of Mauritius Réduit 80837 Mauritius
| |
Collapse
|
4
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
5
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
6
|
Namakka M, Rahman MR, Bin Mohamad Said KA, Muhammad A. Insights into micro-and nano-zero valent iron materials: synthesis methods and multifaceted applications. RSC Adv 2024; 14:30411-30439. [PMID: 39318464 PMCID: PMC11420651 DOI: 10.1039/d4ra03507k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The growing threat of environmental pollution to global environmental health necessitates a focus on the search for sustainable wastewater remediation materials coupled with innovative remediation strategies. Nano and micro zero-valent iron materials have attracted substantial researchers' attention due to their distinct physiochemical properties. This review article delves into novel micro- and nano-zero valent iron (ZVI) materials, analysing their synthesis methods, and exploring their multifaceted potential as a powerful tool for environmental remediation. This analysis contributes to the ongoing search of effective solutions for environmental remediation. Synthesis techniques are analysed based on their efficacy, scalability, and environmental impact, providing insights into existing methodologies, current challenges, and future directions for optimisation. Factors influencing ZVI materials' physicochemical properties and multifunctional engineering applications, including their role in wastewater and soil remediation, are highlighted. Environmental concerns, pros and cons, and the potential industrial applications of these materials are also discussed, accenting the importance of understanding the synthesis methods, materials' applications and their impacts on humans and the environment. The review is designed to provide insights into nano-and micro-ZVI materials, and their potential engineering applications, as well as guide researchers in the choice of ZVI materials' synthesis methods from a variety of nanoparticle synthesis strategies fostering nexus between these methods and industrial applications.
Collapse
Affiliation(s)
- Murtala Namakka
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
- Ahmadu Bello University Zaria Kaduna state Nigeria
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Khairul Anwar Bin Mohamad Said
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak 94300 Kota Samarahan Malaysia
| | - Adamu Muhammad
- Nigerian National Petroleum Corporation Limited, NNPCl Nigeria
| |
Collapse
|
7
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|
8
|
Talebi Tadi A, Farhadiannezhad M, Nezamtaheri MS, Goliaei B, Nowrouzi A. Biosynthesis and characterization of gold nanoparticles from citrullus colocynthis (L.) schrad pulp ethanolic extract: Their cytotoxic, genotoxic, apoptotic, and antioxidant activities. Heliyon 2024; 10:e35825. [PMID: 39247262 PMCID: PMC11379555 DOI: 10.1016/j.heliyon.2024.e35825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
The age-old discipline of plant therapy has gained renewed importance through the utilization of plants for the synthesis of metal nanoparticles. However, toxicity testing and characterization of the recently synthesized nanomaterials are essential to evaluating their appropriate application. Citrullus colocynthis is a medicinal plant with several health benefits. Herein, we used its ethanolic pulp extract (PE) to manufacture gold nanoparticles (PE-AuNPs). Various approaches were employed to assess the MTT50 and NR50 values of PE and PE-AuNPs at different concentrations in the human hepatocarcinoma cell line (HepG2). The study aimed to assess the genotoxic effects and in vivo toxicity of PE and PE-AuNPs at MTT50 dosages. The quasi-spherical, cubic/triangular prisms, and nail-looking particles exhibited no antioxidant properties. They had an absorbance peak between 540 and 560 nm, diameters of less than 20 nm, hydrodynamic diameters of 177.9 nm, and a negative surface charge (-10.3 mV). The significant role of plant phytochemicals in the formation of metal nanoparticles is confirmed by the diminished antioxidant capacity of extract residues following PE-AuNP synthesis. PE-AuNPs exhibited in vivo and cytotoxic effects at relatively lower concentrations compared to PE. In contrast to PE, PE-AuNPs exhibited lower genotoxic at MTT50 dosages. Despite having MTT50 values of approximately 1.95 ± 0.06 and 0.89 ± 0.03 mg/ml, PE and PE-AuNPs can still be considered biocompatible. Nonetheless, our results suggest that the characteristics of recently produced nanoparticles can differ from those of the matching plant. Further investigation can provide a better understanding of the possible therapeutic and pharmacological impacts of PE-AuNPs.
Collapse
Affiliation(s)
- Abbas Talebi Tadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farhadiannezhad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
10
|
Park S, Nguyen VP, Wang X, Paulus YM. Gold Nanoparticles for Retinal Molecular Optical Imaging. Int J Mol Sci 2024; 25:9315. [PMID: 39273264 PMCID: PMC11395175 DOI: 10.3390/ijms25179315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.
Collapse
Affiliation(s)
- Sumin Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Das AK, Borah M, Kalita JJ, Bora U. Cytotoxic potential of Curcuma caesia rhizome extract and derived gold nanoparticles in targeting breast cancer cell lines. Sci Rep 2024; 14:17223. [PMID: 39060291 PMCID: PMC11282265 DOI: 10.1038/s41598-024-66175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Among all types of cancer, breast cancer is the most aggressive, as it is responsible for most of the cancer related death of women. Though several medical therapies are available, the scenario of curing such disease is not favorable. Therefore, there is an urgent need to find alternatives to deal with it. The knowledge of ethnopharmacy might give some better solution to mitigate such deadly diseases. Here, we are using the rhizome of Curcuma caesia Roxb. (Black turmeric), as well as gold nanoparticles (GNPs) synthesized with it to check their specific cytotoxic potentiality against breast cancer cell lines. In our study, ethanolic extract was used to evaluate the cytotoxic effect of the rhizome. GNPs were synthesized by using the same extract and characterized by UV-Vis spectroscopy (UV-Vis), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Thermo gravimetric analysis (TGA). The TEM, XRD, FTIR and TGA results revealed the successful synthesis and capping of GNPs. The UV-Vis Spectrum showed a sharp and narrow absorption peak at 550 nm and HRTEM confirmed both the stability and successful synthesis of the nanoparticles. The MTT assay of the crude extract revealed strong cytotoxicity against breast cancer cell lines viz. MCF-7 (ER+) and MDA MB-231 (Triple Negative Breast Cancer, TNBC) by showing IC50 values as 15.70 ± 0.029 and 21.57 ± 0.031 μg/mL respectively. For extract mediated GNPs, the IC50 values were found to be 6.44 ± 0.045 and 5.87 ± 0.031μg/mL respectively in both breast cancer cell lines. As the IC50 value for GNPs was found to be much lower than that of crude extract, it indicates a higher efficiency of the GNP. However, both the rhizome extract and its mediated GNPs showed more toxicity towards MDA MB-231 (TNBC) cell lines. It was also observed that the GNPs showed more toxicity towards TNBC cell lines compared to the rhizome extract. No toxicity was found in case of other cell lines such as L 929 and HeLa for both crude extract as well as for GNPs. These observations suggests that both the crude rhizome extract and its derived GNPs exhibit selective cytotoxic potential against breast cancer cell lines, which might be exploited for target specific treatment. Moreover, with an understanding of the mechanism behind the GNPs therapeutic efficiency, it can be developed as a personalized therapy to treat such type of cancers.
Collapse
Affiliation(s)
- Ajoy Kumar Das
- Department of Botany, Arya Vidyapeeth College (Autonomous), Gopinath Nagar, Guwahati, Assam, 781 016, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| | - Maina Borah
- Department of Botany, Pandu College, Guwahati, Assam, 781 012, India
| | - Jon Jyoti Kalita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Utpal Bora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
12
|
Renzi E, Esposito A, Leone L, Chávez M, Pineda T, Lombardi A, Nastri F. Biohybrid materials comprising an artificial peroxidase and differently shaped gold nanoparticles. NANOSCALE ADVANCES 2024; 6:3533-3542. [PMID: 38989515 PMCID: PMC11232542 DOI: 10.1039/d4na00344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
The immobilization of biocatalysts on inorganic supports allows the development of bio-nanohybrid materials with defined functional properties. Gold nanomaterials (AuNMs) are the main players in this field, due to their fascinating shape-dependent properties that account for their versatility. Even though incredible progress has been made in the preparation of AuNMs, few studies have been carried out to analyze the impact of particle morphology on the behavior of immobilized biocatalysts. Herein, the artificial peroxidase Fe(iii)-Mimochrome VI*a (FeMC6*a) was conjugated to two different anisotropic gold nanomaterials, nanorods (AuNRs) and triangular nanoprisms (AuNTs), to investigate how the properties of the nanosupport can affect the functional behavior of FeMC6*a. The conjugation of FeMC6*a to AuNMs was performed by a click-chemistry approach, using FeMC6*a modified with pegylated aza-dibenzocyclooctyne (FeMC6*a-PEG4@DBCO), which was allowed to react with azide-functionalized AuNRs and AuNTs, synthesized from citrate-capped AuNMs. To this end, a literature protocol for depleting CTAB from AuNRs was herein reported for the first time to prepare citrate-AuNTs. The overall results suggest that the nanomaterial shape influences the nanoconjugate functional properties. Besides giving new insights into the effect of the surfaces on the artificial peroxidase properties, these results open up the way for creating novel nanostructures with potential applications in the field of sensing devices.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Alessandra Esposito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Miriam Chávez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Chemistry for Energy and Environment, University of Cordoba, Campus Rabanales Ed. Marie Curie Córdoba E-14014 Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo via Cintia Naples 80126 Italy
| |
Collapse
|
13
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
14
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
15
|
Chandran N, Ramesh S, Shanmugam R. Synthesis of Silver Nanoparticles Using Azadirachta indica and Syzygium aromaticum Extract and Its Antibacterial Action Against Enterococcus faecalis: An In Vitro Study. Cureus 2024; 16:e65044. [PMID: 39165463 PMCID: PMC11335174 DOI: 10.7759/cureus.65044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Nanotechnology is the study of manipulating matter at the atomic scale involving particles smaller than 100 nm. Silver nanoparticles (AgNPs) are gaining popularity across diverse sectors including medical, food, healthcare, consumer goods, and industrial fields due to their distinctive physical and chemical characteristics. The eco-friendly synthesis of AgNPs offers a straightforward, cost-effective, and environmentally benign method devoid of hazardous chemicals. Methodology Eighty milliliters (mL) of silver nitrate mixed with 20 mL of Azadirachta indica and Syzygium aromaticum plant extract underwent two days of magnetic stirring for AgNP synthesis. Characterization was done via ultraviolet-visible (UV-vis)-spectroscopy (300-700 nm), and antimicrobial properties, which were checked with Enterococcus faecalis, were assessed using the agar-well diffusion method. Results The change in color and peak observed in the UV-vis spectrum confirmed the successful synthesis of AgNPs. Both neem and clove extract-mediated synthesis of AgNPs exhibited antibacterial activity against E. faecalis. However, neem extract synthesized AgNPs displayed a larger inhibitory zone diameter and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values compared to those synthesized using clove extract. Conclusion Incorporating neem and clove extracts in AgNP synthesis offers a practical, eco-friendly, and cost-efficient method with notable efficacy. These AgNPs exhibit antibacterial activity against E. faecalis, suggesting their viability as potent antibacterial agents for addressing oral pathogens. Their sustainable synthesis underscores a promising avenue for developing effective antimicrobial solutions in oral healthcare.
Collapse
Affiliation(s)
- Neena Chandran
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sindhu Ramesh
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
16
|
Chakravarty P, Deka H, Chowdhury D. Green titanium dioxide (TiO 2) nanoparticles assisted biodegradation of anthracene employing Serratia quinivorans HP5. J Basic Microbiol 2024; 64:e2300680. [PMID: 38381060 DOI: 10.1002/jobm.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The anthracene biodegradation potential of Serratia quinivorans HP5 was studied under a controlled laboratory environment. The green TiO2 nanoparticles (NPs) synthesized from Paenibacillus sp. HD1PAH was used to accelerate the biodegradation process. The synergistic application of TiO2 NPs and S. quinivorans HP5 resulted in a reduction of anthracene concentration by 1.2 folds in liquid-medium and 1.5 folds in contaminated soil. Gas-chromatography and mass-spectrometric investigation showed the production of four anthracene derivatives, namely 1,2-anthracene dihydrodiol, 6,7-benzocoumarin, anthrone, and 9,10-anthraquinoneat the termination of experimental periods. Furthermore, bacterial biomass increased by 23.3 folds in the presence of TiO2 NPs, and overall soil enzyme activities were enhanced by 4.2 folds in the treated samples. In addition, there was a negative correlation observed between the biomass of S. quinivorans HP5 and the concentrations of anthracene, suggesting the involvement of bacterium in anthracene biodegradation processes. The degradation pathway of anthracene revealed its transformation into the less toxic compound 9,10-anthraquinone. Overall, this study elucidates a novel biodegradation pathway for anthracene and highlights the potential of nano-assisted bacterial remediation as a promising approach for environmental cleanup.
Collapse
Affiliation(s)
- Paramita Chakravarty
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, India
| |
Collapse
|
17
|
Chen S, Wang L, Hu Y, Liu S, Geng L, Li Y. High Drug Capacity of Nano-Levodopa-Liposomes: Preparation, In Vitro Release and Brain-Targeted Research. Appl Biochem Biotechnol 2024; 196:3317-3330. [PMID: 37646886 DOI: 10.1007/s12010-023-04673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In this work, nano-levodopa-liposomes (L-dopa-Lip) suspension was prepared by rotary-evaporated film-ultrasonic method, and freeze-drying powders of L-dopa-Lip were also obtained to improve the stability. The products were characterized by TEM, DLS, and TG-DSC, and the phase-transition temperature (Tm) and encapsulation efficiency were calculated. The brain-targeting and in vitro release of the drug was also studied. The results showed that L-dopa-Lip were well-formed spherical vesicles, and the sizes were about 100 nm, and the encapsulation efficiency was higher than 90%. The drug release temperature of L-dopa-Lip was 68 °C, and the in vitro release property and mathematical model were also studied. The brain targeting of L-dopa-Lip in vivo was explored by injecting the gold nanoparticles (AuNPs) labeled L-dopa-Lip (AuNPs-L-dopa-Lip) through the tail vein. ICP-MS and TEM showed that L-dopa-Lip had brain targeting, suggesting the potential treatment of L-dopa-Lip on brain dysfunction. The results of this work might be helpful for designing drug-loaded liposomes for the treatment of central nervous system (CNS) diseases and monitoring their distributions in vivo.
Collapse
Affiliation(s)
- Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lin Wang
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yue Hu
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Sha Liu
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yayong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| |
Collapse
|
18
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
19
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
20
|
Ariski RT, Lee KK, Kim Y, Lee CS. The impact of pH and temperature on the green gold nanoparticles preparation using Jeju Hallabong peel extract for biomedical applications. RSC Adv 2024; 14:14582-14592. [PMID: 38708107 PMCID: PMC11066618 DOI: 10.1039/d4ra00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized via the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea. The visible-range absorption spectrum of gold nanoparticles from green synthesis (HAuNPs) that are red wine in color occurs at a wavelength of λ = 517 nm. The morphology and particle size distribution were analysed using transmission electron microscopy (TEM) and ImageJ software. The TEM images reveal that the HAuNPs exhibit a high degree of dispersion and uniformity in their spherical shape, with an average size of approximately 7 nm. Moreover, elevating the initial pH level of the mixed solution has an impact on the decrease in particle dimensions, as evidenced by the blue shift observed in the UV-visible spectroscopy absorbance peak. Elevating the reaction temperature may accelerate the synthesis duration. However, it does not exert a substantial impact on the particle dimensions. The outcomes of an avidin-biocytin colorimetric assay provide preliminary analyses of possible sensor tunability using HAuNPs. The cytotoxicity of HAuNPs was evaluated through in vitro studies using the MTT assay on RAW 264.7 cell lines. The results indicated that the HAuNPs exhibited lower cytotoxicity compared to both chemically reduced gold nanoparticles (CAuNPs).
Collapse
Affiliation(s)
- Ridhola Tri Ariski
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| | - Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention (NIWDC) Gwangju 62407 Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon 34141 Republic of Korea
- Department of Biotechnology, University of Science & Technology (UST) Daejeon 34113 Republic of Korea
| |
Collapse
|
21
|
Sassa-deepaeng T, Khumpirapang N, Yodthong W, Myat YY, Anuchapreeda S, Okonogi S. Effects of Salts and Other Contaminants on Ciprofloxacin Removal Efficiency of Green Synthesized Copper Nanoparticles. Vet Sci 2024; 11:179. [PMID: 38668446 PMCID: PMC11053963 DOI: 10.3390/vetsci11040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
Ciprofloxacin (CIP), a broad-spectrum fluoroquinolone antibiotic, is commonly used in aquaculture to prevent and treat bacterial infections in aquatic animals. For this reason, aquatic environments contain CIP and its derivatives, which lead to the development of drug-resistant bacteria. In the present study, copper nanoparticles were prepared using Garcinia mangostana extract (GME-CuNPs) as a reducing agent and evaluated for their CIP removal efficiency (CRE). The results demonstrate that within 20 min, GME-CuNPs at 25 mM possess a CRE of 92.02 ± 0.09% from CIP-containing aqueous media with pH 6-7. The CRE is influenced by both monovalent and divalent salts. A high salt concentration significantly reduces the CRE. Contaminants in fish wastewater can reduce the CRE, but phenolics, flavonoids, tannins, and ammonia do not affect the CRE. Our results reveal that the CRE is controlled by electrostatic attraction between the negatively charged GME-CuNPs and the cationic species of CIP. The CRE is reduced by wastewater with a pH higher than 8.0, in which the CIP molecules have a negative charge, resulting in a repulsive force due to the negative charge of GME-CuNPs. In fish wastewater with a pH lower than 7.0, GME-CuNPs show the potential to achieve a CRE above 80%. Therefore, pH adjustment to a range of 6-7 in fish wastewater before treatment is deemed imperative. It is concluded that the newly developed GME-CuNPs possess excellent activity in CIP elimination from actual fish wastewater samples. Our findings suggest that GME-CuNPs can be a promising tool to effectively eliminate antibiotics from the environment.
Collapse
Affiliation(s)
- Tanongsak Sassa-deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand;
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Wachira Yodthong
- Lampang Inland Fisheries Research and Development Center, Lampang 52000, Thailand;
| | - Yin Yin Myat
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
| | - Songyot Anuchapreeda
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (Y.Y.M.); (S.A.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
22
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
23
|
Ahmad S, Ahmad S, Ali S, Esa M, Khan A, Yan H. Recent Advancements and Unexplored Biomedical Applications of Green Synthesized Ag and Au Nanoparticles: A Review. Int J Nanomedicine 2024; 19:3187-3215. [PMID: 38590511 PMCID: PMC10999736 DOI: 10.2147/ijn.s453775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Green synthesis of silver (Ag) and gold (Au) nanoparticles (NPs) has acquired huge popularity owing to their potential applications in various fields. A large number of research articles exist in the literature describing the green synthesis of Ag and Au NPs for biomedical applications. However, these findings are scattered, making it time-consuming for researchers to locate promising advancements in Ag and Au NPs synthesis and their unexplored biomedical applications. Unlike other review articles, this systematic study not only highlights recent advancements in the green synthesis of Ag and Au NPs but also explores their potential unexplored biomedical applications. The article discusses the various synthesis approaches for the green synthesis of Ag and Au NPs highlighting the emerging developments and novel strategies. Then, the article reviews the important biomedical applications of green synthesized Ag and Au NPs by critically evaluating the expected advantages. To expose future research direction in the field, the article describes the unexplored biomedical applications of the NPs. Finally, the articles discuss the challenges and limitations in the green synthesis of Ag and Au NPs and their biomedical applications. This article will serve as a valuable reference for researchers, working on green synthesis of Ag and Au NPs for biomedical applications.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Muhammad Esa
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
24
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
25
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
27
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
28
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
29
|
Bandyopadhyay A, Das T, Nandy S, Sahib S, Preetam S, Gopalakrishnan AV, Dey A. Ligand-based active targeting strategies for cancer theranostics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3417-3441. [PMID: 37466702 DOI: 10.1007/s00210-023-02612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
In the past decades, for the intermediate or advanced cancerous stages, preclinical and clinical applications of nanomedicines in cancer theranostics have been extensively studied. Nevertheless, decreased specificity and poor targeting efficiency with low target concentration of theranostic are the major drawbacks of nanomedicine in employing clinical substitution over conventional systemic therapy. Consequently, ligand decorated nanocarrier-mediated targeted drug delivery system can transcend the obstructions through their enhanced retention activity and increased permeability with effective targeting. The highly efficient and specific nanocarrier-mediated ligand-based active therapy is one of the novel and promising approaches for delivery of the therapeutics for different cancers in recent years to restrict various cancer growth in vivo without harming healthy cells. The article encapsulates the features of nanocarrier-mediated ligands in augmentation of active targeting approaches of various cancers and summarizes ligand-based targeted delivery systems in treatment of cancer as plausible theranostics.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Tuyelee Das
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Synudeen Sahib
- S.S. Cottage, Njarackal,, P.O.: Perinad, Kollam, 691601, Kerala, India
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, 59053, Ulrika, Sweden
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
30
|
Li C, Wang Z, Lei H, Zhang D. Recent progress in nanotechnology-based drug carriers for resveratrol delivery. Drug Deliv 2023; 30:2174206. [PMID: 36852655 PMCID: PMC9980162 DOI: 10.1080/10717544.2023.2174206] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Resveratrol is a polyphenol with diverse pharmacological activities, but its clinical efficacy is limited due to low solubility/permeability, light-induced isomerization, auto-oxidation, and rapid metabolism. Nanodelivery systems, such as liposomes, polymeric nanoparticles, lipid nanocarriers, micelles, nanocrystals, inorganic nanoparticles, nanoemulsions, protein-based nanoparticles, exosomes, macrophages, and red blood cells (RBCs) have shown great potential for improving the solubility, biocompatibility, and therapeutic efficacy of resveratrol. This review comprehensively summarizes the recent advances in resveratrol nanoencapsulation and describes potential strategies to improve the pharmacokinetics of existing nanoformulations, enhance targeting, reduce toxicity, and increase drug release and encapsulation efficiency. The article also suggests that in order to avoid potential safety issues, resveratrol nanoformulations must be tested in vivo in a wide range of diseases.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Zhen Wang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Hui Lei
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China,CONTACT Hui Lei
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China,Dan Zhang Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou646000, Sichuan, PR China
| |
Collapse
|
31
|
Duncan JBW, Basu S, Vivekanand P. Honey gold nanoparticles attenuate the secretion of IL-6 by LPS-activated macrophages. PLoS One 2023; 18:e0291076. [PMID: 37682929 PMCID: PMC10490926 DOI: 10.1371/journal.pone.0291076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that coordinates host immune responses to infection. Though essential to the acute phase response, prolonged IL-6-mediated recruitment of mononuclear cells has been implicated in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and Crohn's disease. Accordingly, identifying novel therapeutics that diminish circulating IL-6 levels could benefit individuals suffering from chronic inflammation. In immunocompetent hosts, bacterial lipopolysaccharide (LPS) recognition by toll-like receptor 4 (TLR4) activates the transcription factor NF-κB, driving macrophage production of IL-6. Interestingly, both citrate-stabilized and 'green' synthesized gold nanoparticles (AuNPs) have been shown to modulate the cytokine responses of LPS-activated macrophages. Here we demonstrate that AuNPs, synthesized with commercial and locally sourced honey, downregulate LPS-induced macrophage secretion of IL-6. Compared to LPS-only controls, inhibition of IL-6 levels was observed for all three types of honey AuNPs. The effect was likely driven by honey AuNP-mediated perturbation of the TLR4/NF-κB signaling pathway, as evidenced by a reduction in the phosphorylation of IκB. Further investigation into the anti-inflammatory properties of honey AuNPs may yield novel therapeutics for the treatment of chronic inflammation.
Collapse
Affiliation(s)
- John Benjamin W. Duncan
- Department of Biology, Susquehanna University, Selinsgrove, Pennsylvania, United States of America
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, Selinsgrove, Pennsylvania, United States of America
| | - Pavithra Vivekanand
- Department of Biology, Susquehanna University, Selinsgrove, Pennsylvania, United States of America
| |
Collapse
|
32
|
Abu-Khudir R, Almutairi HH, Abd El-Rahman SS, El-Said KS. The Palliative and Antioxidant Effects of Hesperidin against Lead-Acetate-Induced Testicular Injury in Male Wistar Rats. Biomedicines 2023; 11:2390. [PMID: 37760831 PMCID: PMC10525152 DOI: 10.3390/biomedicines11092390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lead (Pb)-induced reprotoxicity is a detrimental consequence of Pb exposure, which results in abnormal spermatogenesis, testicular degeneration, and pathogenic sperm changes. The association between impaired male reproductive function and Pb-induced oxidative stress (OS) has been demonstrated, with consequent testicular antioxidant deficiency. The current study investigated the protective role of the natural antioxidant hesperidin (HSD) against lead-acetate (PbAc)-induced testicular toxicity. Male Wistar rats (n = 40) were randomly divided into four experimental groups: Group I (negative control) received 2.0 mL/kg BW 0.9% saline; Group II received 100 mg/kg BW PbAc; Group III received 100 mg/kg BW HSD; and Group IV received HSD two hours before PbAc using the abovementioned doses. The treatments were administered daily for 30 consecutive days. The results showed that HSD treatment significantly restored PbAc-induced decrease in body, epididymal, and testicular weights as well as in semen parameters, reproductive hormones, and testicular markers of OS. Reduced MDA levels and improved testicular histopathological findings were also observed. Collectively, this study sheds light on the preventive role of HSD against PbAc-induced testicular injury, which is mediated via the suppression of OS and the modulation of reproductive hormones as well as the plausibility of HSD being used as a supplementary therapeutic option for recovery.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Karim Samy El-Said
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
33
|
Oh IH, Park E, Chang ST, Lim S. Foldable RF Energy Harvesting System Based on Vertically Layered Metal Electrodes within a Single Sheet of Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300197. [PMID: 36906919 DOI: 10.1002/adma.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Indexed: 05/19/2023]
Abstract
Radio frequency energy harvesting (RFEH) systems have emerged as a critical component for powering devices and replacing traditional batteries, with paper being one of the most promising substrates for use in flexible RFEH systems. However, previous paper-based electronics with optimized porosity, surface roughness, and hygroscopicity still face limitations in terms of the development of integrated foldable RFEH systems within a single sheet of paper. In the present study, a novel wax-printing control and water-based solution process are used to realize an integrated foldable RFEH system within a single sheet of paper. The proposed paper-based device includes vertically layered foldable metal electrodes, a via-hole, and stable conductive patterns with a sheet resistance of less than 1 Ω sq-1 . The proposed RFEH system exhibits an RF/DC conversion efficiency of 60% and an operating voltage of 2.1 V in 100 s at a distance of 50 mm and a transmitted power of 50 mW. The integrated RFEH system also demonstrates stable foldability, with RFEH performance maintained up to a folding angle of 150°. The single-sheet paper-based RFEH system thus has the potential for use in practical applications associated with the remote powering of wearable and Internet-of-Things devices and in paper electronics.
Collapse
Affiliation(s)
- In Hyeok Oh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eiyong Park
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suk Tai Chang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
34
|
Kour S, Biswas I, Sheoran S, Arora S, Sheela P, Duppala SK, Murthy DK, Pawar SC, Singh H, Kumar D, Prabhu D, Vuree S, Kumar R. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
35
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, NisaAndrabi SU, Barabadi H, Mohanta YK, Mostafavi E. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Palanisamy DS, Gounder BS, Selvaraj K, Kandhasamy S, Alqahtani T, Alqahtani A, Chidambaram K, Arunachalam K, Alkahtani AM, Chandramoorthy HC, Sharma N, Rajeshkumar S, Marwaha L. Synergistic antibacterial and mosquitocidal effect of Passiflora foetida synthesized silver nanoparticles. BRAZ J BIOL 2023; 84:e263391. [PMID: 36651434 DOI: 10.1590/1519-6984.263391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/26/2022] [Indexed: 01/11/2023] Open
Abstract
Silver nanoparticles are opted to have various applications in different fields ranging from traditional medicines to culinary items. It is toxic and most effective against bacteria, fungi viruses, parasites, parasite carrying vectors such as mosquitoes and their larvae and other eukaryotic microorganisms at low concentration without any side effects and toxicity to humans. In view of these data, the present research has been investigated by synthesizing silver nanoparticles using 1mM silver nitrate and aqueous extract of Passiflora foetida. The variation of nanoparticles in size and shape concerning the concentration of extract prepared were analysed. The formation of silver nanoparticles was confirmed by colour changing from yellowish green to reddish-brown implicating the surface plasmon resonance. Further, it was concluded by obtaining an absorbance peak at 420 nm using UV-Visible spectrophotometer analysis. FTIR analysis was used to identify the capping ligands, which included alkanes, aromatic groups and nitro compounds. The average grain size of ~12 nm to 14 nm with crystalline phase was revealed by X-ray Diffraction studies. The SEM images depicted the surface morphology with agglomeration; TEM studies showed the shape of nanoparticles as spherical and hexagonal with sizes ranging from 40 nm to 100 nm and EDAX analysis confirmed the presence of elemental silver as the principal constituent. The characterized silver nanoparticles were then tested for synergistic antibacterial effects with tetracycline, and the results show that they are more active against E. coli and S. aureus, but moderately effective against B. cereus and K. pneumoniae . It also had a strong larval and pupal toxic effects on the dengue vector, Aedes aegypti with the highest mortality. As a result, silver nanoparticles could be a viable alternative for a variety of applications.
Collapse
Affiliation(s)
- D S Palanisamy
- Bharathiar University, Research and Development Centre, Coimbatore, India.,Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - B S Gounder
- Government Arts College, Department of Botany, Salem, India
| | - K Selvaraj
- Bharathiar University, Research and Development Centre, Coimbatore, India.,Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - S Kandhasamy
- Nandha Arts and Science College, Department of Biotechnology, Erode, India
| | - T Alqahtani
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - A Alqahtani
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - K Chidambaram
- King Khalid University, College of Pharmacy, Department of Pharmacology, Abha, Saudi Arabia
| | - K Arunachalam
- Mulungushi University, School of Science, Engineering and Technology, Department of Science and Mathematics, Kabwe, Zambia
| | - A M Alkahtani
- King Khalid University, College of Medicine, Department of Microbiology & Clinical Parasitology, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- King Khalid University, College of Medicine, Department of Microbiology & Clinical Parasitology, Abha, Saudi Arabia.,King Khalid University, College of Medicine, Centre for Stem Cell Research, Abha, Saudi Arabia
| | - N Sharma
- Maharishi Markandeshwar University, Research and Development Centre, Solan, Himachal Pradesh, India
| | - S Rajeshkumar
- Saveetha Institute of Medical and Technical Sciences, Department of Pharmacology, Chennai, India
| | - L Marwaha
- Lovely Professional University, School of Bioengineering and Bio Sciences, Department of Zoology, Punjab, India
| |
Collapse
|
38
|
Anti-neoplastic Effects of Gold Nanoparticles Synthesized Using Green Sources on Cervical and Melanoma Cancer Cell Lines. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-022-01056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010463. [PMID: 36615655 PMCID: PMC9823860 DOI: 10.3390/molecules28010463] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The unique biological and physicochemical characteristics of biogenic (green-synthesized) nanomaterials (NMs) have attracted significant interest in different fields, with applications in the agrochemical, food, medication delivery, cosmetics, cellular imaging, and biomedical industries. To synthesize biogenic nanomaterials, green synthesis techniques use microorganisms, plant extracts, or proteins as bio-capping and bio-reducing agents and their role as bio-nanofactories for material synthesis at the nanoscale size. Green chemistry is environmentally benign, biocompatible, nontoxic, and economically effective. By taking into account the findings from recent investigations, we shed light on the most recent developments in the green synthesis of nanomaterials using different types of microbes and plants. Additionally, we cover different applications of green-synthesized nanomaterials in the food and textile industries, water treatment, and biomedical applications. Furthermore, we discuss the future perspectives of the green synthesis of nanomaterials to advance their production and applications.
Collapse
|
40
|
Lopus M. Nano-ayurvedic medicine and its potential in cancer treatment. JOURNAL OF INTEGRATIVE MEDICINE 2022; 21:117-119. [PMID: 36610811 DOI: 10.1016/j.joim.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/14/2022] [Indexed: 12/25/2022]
Abstract
Nano-ayurvedic medicine is an emerging field in which nanoparticles are functionalized with active principles of potent ayurvedic herbs to enhance their efficacy and target-specific delivery. Scientific advances in the past couple of decades have revealed the molecular mechanisms behind the anticancer potential of several ayurvedic herbs, attributed chiefly to their secondary metabolites including polyphenols and other active substances. With the advancement of nanotechnology, it has been established that size-, shape-, and surface-chemistry-optimized nanoparticles can be utilized as synergizing carriers for these phytochemicals. Nano-ayurvedic medicine utilizes herbs that are commonly used in Ayurveda to functionalize different nanoparticles and thereby enhance their potency and target specificity. Studies have shown that the active phytochemicals of such herbs can be coated onto the nanoparticles of different metals, such as gold, and that they work more efficiently than the free herbal extract, for example, in inhibiting cancer cell proliferation. Recently, an Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homeopathy (AYUSH)-based clinical trial in humans indicated the anticancer potential of such formulations. Nano-ayurvedic medicine is emerging as a potential treatment option for hyperproliferative diseases.
Collapse
Affiliation(s)
- Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India.
| |
Collapse
|
41
|
Bhandari M, Raj S, Kumar A, Kaur DP. Bibliometric analysis on exploitation of biogenic gold and silver nanoparticles in breast, ovarian and cervical cancer therapy. Front Pharmacol 2022; 13:1035769. [PMID: 36618941 PMCID: PMC9818348 DOI: 10.3389/fphar.2022.1035769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Multifunctional nanoparticles are being formulated to overcome the side effects associated with anticancer drugs as well as conventional drug delivery systems. Cancer therapy has gained the advancement due to various pragmatic approaches with better treatment outcomes. The metal nanostructures such as gold and silver nanoparticles accessible via eco-friendly method provide amazing characteristics in the field of diagnosis and therapy towards cancer diseases. The environmental friendly approach has been proposed as a substitute to minimize the use of hazardous compounds associated in chemical synthesis of nanoparticles. In this attempt, researchers have used various microbes, and plant-based agents as reducing agents. In the last 2 decades various papers have been published emphasizing the benefits of the eco-friendly approach and advantages over the traditional method in the cancer therapy. Despite of various reports and published research papers, eco-based nanoparticles do not seem to find a way to clinical translation for cancer treatment. Present review enumerates the bibliometric data on biogenic silver and gold nanoparticles from Clarivate Analytics Web of Science (WoS) and Scopus for the duration 2010 to 2022 for cancer treatment with a special emphasis on breast, ovarian and cervical cancer. Furthermore, this review covers the recent advances in this area of research and also highlights the obstacles in the journey of biogenic nanodrug from clinic to market.
Collapse
Affiliation(s)
- Meena Bhandari
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| | - Seema Raj
- Department of Chemistry, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India,*Correspondence: Seema Raj, ,
| | - Ashwani Kumar
- Department of Computer Sciences, School of Engineering and Technology, K.R Mangalam University, Gurugram, India
| | - Dilraj Preet Kaur
- Department of Physics, School of Basic and Applied Sciences, K.R Mangalam University, Gurugram, India
| |
Collapse
|
42
|
Xulu JH, Ndongwe T, Ezealisiji KM, Tembu VJ, Mncwangi NP, Witika BA, Siwe-Noundou X. The Use of Medicinal Plant-Derived Metallic Nanoparticles in Theranostics. Pharmaceutics 2022; 14:2437. [PMID: 36365255 PMCID: PMC9698412 DOI: 10.3390/pharmaceutics14112437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 08/20/2023] Open
Abstract
In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.
Collapse
Affiliation(s)
- Jabulile Happiness Xulu
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tanaka Ndongwe
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Port Harcourt, PMB 5323 Choba, Rivers State, Nigeria
| | - Vuyelwa J. Tembu
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Pretoria 0204, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
43
|
Roszczenko P, Szewczyk OK, Czarnomysy R, Bielawski K, Bielawska A. Biosynthesized Gold, Silver, Palladium, Platinum, Copper, and Other Transition Metal Nanoparticles. Pharmaceutics 2022; 14:2286. [PMID: 36365105 PMCID: PMC9692384 DOI: 10.3390/pharmaceutics14112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 09/29/2023] Open
Abstract
Nanomedicine is a potential provider of novel therapeutic and diagnostic routes of treatment. Considering the development of multidrug resistance in pathogenic bacteria and the commonness of cancer, novel approaches are being sought for the safe and efficient synthesis of new nanoparticles, which have multifaceted applications in medicine. Unfortunately, the chemical synthesis of nanoparticles raises justified environmental concerns. A significant problem in their widespread use is also the toxicity of compounds that maintain nanoparticle stability, which significantly limits their clinical use. An opportunity for their more extensive application is the utilization of plants, fungi, and bacteria for nanoparticle biosynthesis. Extracts from natural sources can reduce metal ions in nanoparticles and stabilize them with non-toxic extract components.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Olga Klaudia Szewczyk
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
44
|
Patra B, Deep SK, Rosalin R, Pradhan SN. Flavored Food Additives on the Leaves of Piper betle L.: A Human Health Perspective. Appl Biochem Biotechnol 2022; 194:4439-4461. [PMID: 35386064 DOI: 10.1007/s12010-022-03912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
Natural products and traditional ethnomedicines are of great effect in therapeutics. Such types of medicine have been practiced in certain areas of the world to treat different health conditions. This pilot investigation aims to review the cumulative health effect of addendums used in betel quid such as areca nut, lime, and tobacco-associated betel quid chewing and without tobacco-associated chewing. This review shows that betel leaf extract and its essential oil could inhibit growth of microbes and damage different gram-positive and gram-negative bacteria as well as various fungus species. Some studies concluded that the combination of Piper leaves essential oil with antibiotics have potential effect on oral microorganisms. Long-term consumption of betel quid with tobacco is known to cause cancer, chromosomal aberrations, and pharynx tumors. However, consumption of betel leaf without tobacco has health benefits because of ethnomedicinal properties. Its essential is oil utilized as raw material for perfumes and mouth fresheners manufacturing. Scientific researches on this plant revealed that it possesses many beneficial activities to be used for developing novel drugs. However, compounds of betel leaves have beneficial natural antioxidant. Chewing and intake of leaves have effect on moving parts of salivary gland which is the main step of digestion. Its components also act as heartbeat regulators in relaxing the blood vessels to reduce hypertension. So this review discussed the natural compounds of betel leaves which is used as traditional medicine to further develop drug discovery.
Collapse
Affiliation(s)
- Biswajit Patra
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Saroj Kumar Deep
- School of Life Sciences, Sambalpur University, Sambalpur, Odisha, India
| | - Rosina Rosalin
- Department of Botany, Baruneswar Mohavidyalaya, Jajpur, Odisha, India
| | | |
Collapse
|
45
|
Biologically Derived Gold Nanoparticles and Their Applications. Bioinorg Chem Appl 2022; 2022:8184217. [PMID: 35959230 PMCID: PMC9359863 DOI: 10.1155/2022/8184217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 12/01/2022] Open
Abstract
Nanotechnology is a rapidly evolving discipline as it has a wide variety of applications in several fields. They have been synthesized in a variety of ways. Traditional processes such as chemical and physical synthesis have limits, whether in the form of chemical contamination during synthesis operations or in subsequent applications and usage of more energy. Over the last decade, research has focused on establishing easy, nontoxic, clean, cost-effective, and environmentally friendly techniques for nanoparticle production. To achieve this goal, biological synthesis was created to close this gap. Biosynthesis of nanoparticles is a one-step process, and it is ecofriendly in nature. The metabolic activities of biological agents convert dissolved metal ions into nanometals. For biosynthesis of metal nanoparticles, various biological agents like plants, fungus, and bacteria are utilized. In this review paper, the aim is to provide a summary of contemporary research on the biosynthesis of gold nanoparticles and their applications in various domains have been discussed.
Collapse
|
46
|
Mellor RD, Uchegbu IF. Ultrasmall-in-Nano: Why Size Matters. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2476. [PMID: 35889699 PMCID: PMC9317835 DOI: 10.3390/nano12142476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/06/2023]
Abstract
Gold nanoparticles (AuNPs) are continuing to gain popularity in the field of nanotechnology. New methods are continuously being developed to tune the particles' physicochemical properties, resulting in control over their biological fate and applicability to in vivo diagnostics and therapy. This review focuses on the effects of varying particle size on optical properties, opsonization, cellular internalization, renal clearance, biodistribution, tumor accumulation, and toxicity. We review the common methods of synthesizing ultrasmall AuNPs, as well as the emerging constructs termed ultrasmall-in-nano-an approach which promises to provide the desirable properties from both ends of the AuNP size range. We review the various applications and outcomes of ultrasmall-in-nano constructs in vitro and in vivo.
Collapse
Affiliation(s)
| | - Ijeoma F. Uchegbu
- School of Pharmacy, University College London (UCL), 29–39 Brunswick Square, London WC1N 1AX, UK;
| |
Collapse
|
47
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
48
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
49
|
Ravi P, Somu P, Acharya D, Gomez LA, Thathapudi JJ, Ramachandra YL, Rudraiah SB, Isaq M, Karua CS, Arifullah M, Poojari CC, Lee YR. Isolation and Phytochemical Screening of Endophytic Fungi Isolated from Medicinal Plant Mappia foetida and Evaluation of Its In Vitro Cytotoxicity in Cancer. Appl Biochem Biotechnol 2022; 194:4570-4586. [PMID: 35536539 DOI: 10.1007/s12010-022-03929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Isolated endophyte fungi from Mappia foetida have been explored as a potential source for the mass production of anticancer drug lead compounds in the current study. Since medical plants are not feasible economically for mass production of bioactive pharmaceutical important molecules using plant tissue culture due to factors like media design and fungal contamination, endophyte fungal mass culture have been an alternative for the relatively easy and inexpensive production. Two endophytic fungi isolated, Alternaria alternata and Fusarium species were mass cultured and their prepared alcoholic extract subjected to standard procedures to identify the phytochemical screening by gas chromatography-mass spectrometry (GCMS), high-performance liquid chromatography (HPLC), UV visible spectrophotometry (UV-VIS), and Fourier transform infrared spectroscopy (FTIR). GC-MS analysis revealed the presence of three major compounds in the extracts. The phytochemical screening confirmed the presence of an anticancer compound (camptothecin) in their extract. Moreover, the dose-dependent anticancer activity of ethanol extract was demonstrated against cervical carcinoma (HeLa), breast carcinoma (MCF-7), non-small cell lung carcinoma (H1975), and hepatocellular carcinoma cell line (Hep G2) by MTT assay where doxorubicin was used as the positive control. Furthermore, the microscopic examination also confirmed the cytotoxic effect of extract of endophytic fungi Alternaria alternata and Fusarium species against tested cancer cells. Hence, endophytic fungi Alternaria alternata and Fusarium species might be exploited for mass production of phytochemicals having anticancer activity.
Collapse
Affiliation(s)
- Pooja Ravi
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea. .,Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to Be University), Saveetha Nagar, Thandalam, Chennai, 602105, India.
| | - Diptikanta Acharya
- Department of Biotechnology, GIET University, Gunupur, Odisha, India, 765022
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Jesse Joel Thathapudi
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Karunya Nagar, Coimbatore, Tamil Nadu, 641114, India
| | - Yerappa Lakshmikanth Ramachandra
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Sunitha Bommanahalli Rudraiah
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Mona Isaq
- Department of Biotechnology & Bioinformatics, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga Dist., Karnataka, India, 577 451
| | - Chetan Shekhar Karua
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Mohammed Arifullah
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli, 17600, Kelantan, Malaysia
| | - Chandrappa Chinna Poojari
- Department of Biotechnology, Shridevi Institute of Engineering & Technology, Sira Road, Tumkur, Karnataka, India, 572106.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
50
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Ray RR. Nanoparticles Based Antibacterial Vaccines: Novel Strategy to Combat Antimicrobial Resistance. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|