1
|
Ahmed ZB, Mahammed TH, Chegma T, Seidel V, Yousfi M. Alpha-glucosidase and α-amylase inhibitory activity of Pistacia atlantica Desf. gall extracts and identification of putative bioactives using a combined UPLC fingerprinting and molecular docking approach. J Diabetes Metab Disord 2024; 23:2081-2094. [PMID: 39610533 PMCID: PMC11599667 DOI: 10.1007/s40200-024-01470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 11/30/2024]
Abstract
Aims Pistacia atlantica Desf. (Anacardiaceae) is traditionally used in Mediterranean medicine, with previous studies showing antidiabetic potential in its fruits and leaves. This study evaluates the antidiabetic activity of P. atlantica galls (PAG) extracts using in vitro, chemometric, and in silico approaches. Method The antidiabetic activity of the samples were studied by measuring their half-maximal inhibitory concentrations (IC50s) concentrations according to the in vitro enzyme inhibition assays and modelled as a function of the LC fingerprints using the partial least squares technique. Crystal structures of the human pancreatic α-amylase (HPA) and the α-glucosidase homologue isomaltase were obtained from the Protein Data Bank website (http://www.rcsb.org/pdb). Docking simulations and calculations were carried out using AutoDock Vina. Results PAG extracts inhibited HPA (IC50s ranging from 1.85 to 2.92 mg/mL) and α-glucosidase (IC50s ranging from 34 to 49 µg/mL) activities, with galls collected from male plants showing higher activity than those from female plants. UPLC fingerprinting, linked to chemometric analysis using a partial least squares regression model, putatively identified five compounds (quinic acid, methyl gallate, digalloyl quinic acid, methyl digallate, and valoneic acid dilactone) responsible for this antidiabetic effect. Molecular docking using AutoDock Vina revealed that the identified compounds interacted with key amino acid residues of HPA and α-glucosidase. Conclusions By employing UPLC fingerprinting combined with chemometric analysis and molecular docking simulations, quinic acid and digalloyl quinic acid were identified from P. atlantica gall extract as the most promising ligands for further investigation into their antidiabetic potential. Graphical Abstract
Collapse
Affiliation(s)
- Ziyad Ben Ahmed
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Toufik Hadj Mahammed
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| | - Taha Chegma
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| |
Collapse
|
2
|
Nkemzi AQ, Okaiyeto K, Oyenihi O, Opuwari CS, Ekpo OE, Oguntibeju OO. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of Helichrysum cymosum. 3 Biotech 2024; 14:291. [PMID: 39507059 PMCID: PMC11535088 DOI: 10.1007/s13205-024-04125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
The current research involved the synthesis of zinc oxide nanoparticles (ZnO-NPs) using an aqueous extract of Helichrysum cymosum shoots, and subsequent characterization via different analytical methods, such as UV-Vis spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Transmission electron microscope (TEM), and zeta potential. The biological effects of the ZnO-NPs were then tested against C3A hepatocyte cells and L6 myocyte cell lines via series of analysis, including cytotoxicity, antioxidant, anti-inflammatory, and antidiabetic effect via enzymatic inhibition. The UV-Vis analysis showed a maximum absorption spectrum at 360, and the TEM analysis reveals a spherical and hexagonal structures, with an average dimension of 28.05-58.3 nm, and the XRD reveals a crystalline hexagonal structure. The zeta potential evaluation indicated that the ZnO-NPs are relatively stable at - 20 mV, and the FTIR analysis identified some important functional group associated with phenolics, carboxylic acid, and amides that are responsible for reducing and stabilizing the ZnO-NPs. The synthesized ZnO-NPs demonstrated cytotoxic effects on the cell lines at higher concentrations (125 µg/mL and 250 µg/mL), complicating the interpretation of the results of the inflammatory and antioxidant assays. However, there was a significant (p < 0.05) increase in the inhibitions of pancreatic lipase, alpha-glucosidase, and alpha-amylase, indicating beneficial antidiabetic effects.
Collapse
Affiliation(s)
- Achasih Q. Nkemzi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Omolola Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| | - Chinyerum S. Opuwari
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
| | - Okobi E. Ekpo
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535 South Africa
| |
Collapse
|
3
|
Hoang TNN, Nguyen QL, Le TTN, Vo NH, Dong TAD, Le THA. Comparative Study on the Hypoglycemic Effects of Different Parts of Musa balbisiana. Food Sci Nutr 2024; 12:10347-10356. [PMID: 39723093 PMCID: PMC11666822 DOI: 10.1002/fsn3.4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 12/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder that can cause elevated blood glucose levels due to impaired insulin secretion or resistance. Different parts of Musa balbisiana have been used widely in traditional medicine to treat many disorders. The present study aims to evaluate the antidiabetic ability of the corm, pseudostem, inflorescence, fruit, peel, and seed of M. balbisiana via in vitro experiments by inhibiting α-amylase and α-glucosidase enzymes as well as in vivo models on diabetic alloxan-induced mice. The results show that all investigated parts have performed potential inhibition on two investigated digestive enzymes. Seed poses the highest capacity among surveyed parts on α-amylase (IC50:f μg/mL) and α-glucosidase (IC50: 21.63 μg/mL) as well as effectively lowers the blood glucose index (IG) in alloxan-induced mice. In addition, fruit, corm, and inflorescence are considered essential parts that have high hypoglycemic effects via in vivo experiments. These findings indicate that all M. balbisiana parts are possibly a potential source for hypoglycemic agents; further clinical studies are needed to evaluate the safety of human beings before applying them in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Thi Ngoc Nhon Hoang
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Quang Liem Nguyen
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Thanh Ngan Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Ngoc Hoa Vo
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| | - Thi Anh Dao Dong
- Department of Food Technology, Faculty of Chemical EngineeringHo chi Minh City University of Technology (HCMUT)Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and TechnologyHo chi Minh City University of Industry and Trade (HUIT)Ho Chi Minh CityVietnam
| |
Collapse
|
4
|
Wang J, Bi C, Xi H, Wei F. Effects of administering berberine alone or in combination on type 2 diabetes mellitus: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1455534. [PMID: 39640489 PMCID: PMC11617981 DOI: 10.3389/fphar.2024.1455534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Despite the availability of multiple therapies for Type 2 diabetes mellitus (T2DM), challenges remain due to side effects and efficacy limitations. Berberine (BBR) has shown broad anti-diabetic effects, prompting a systematic assessment of its efficacy and safety through a meta-analysis. Methods A comprehensive search was conducted across eight database and search engines from inception until 06/09/2024. Only randomized controlled trials (RCTs) meeting inclusion criteria were analyzed. The Cochrane risk of bias assessment tool and Jadad scale were used to evaluate study quality. Meta-analysis was performed using RevMan v5.3 and Stata/SE v15.1. Results Fifty studies involving 4,150 participants were included. BBR alone significantly reduced fasting plasma glucose (FPG) (MD = -0.59 mmol/L, p = 0.048), 2-h postprandial blood glucose (2hPBG) (MD = -1.57 mmol/L, p < 0.01), low-density lipoprotein cholesterol (LDL-C) (MD = -0.30 mmol/L, p < 0.01), total cholesterol (TC) (MD = -0.30 mmol/L, p = 0.034), and triglycerides (TG) (MD = -0.35 mmol/L, p < 0.01). When combined with hypoglycemic drugs, BBR significantly improved FPG (MD = -0.99 mmol/L, p < 0.01), 2hPBG (MD = -1.07 mmol/L, p < 0.01), glycated hemoglobin (HbA1c) (MD = -0.69%, p < 0.01), and other metabolic markers, including fasting insulin (Fins), homeostasis model assessment index for assessing insulin resistance (HOMA-IR), lipid profiles and inflammatory markers. The most common BBR dosage was 0.9-1.5 g/d, with treatment cycles typically lasting 1-3 months. Conclusion Current evidence suggests that BBR alone or in combination has significant potential for treating type 2 diabetes mellitus (T2DM). Future research should encompass a broader scope, including not just the beneficial effects of BBR in head-to-head studies, but more crucially, delving into its mechanisms of action with hypoglycemic drugs to optimize T2DM treatment strategies.
Collapse
Affiliation(s)
- Jiacheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenhao Bi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbin Xi
- Department of Traditional Chinese Medicine Classics, Tai’an Hospital of Traditional Chinese Medicine, Tai’an, China
| | - Fengqin Wei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
6
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
7
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
8
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
9
|
Ziyanok-Demirtas S. A Holistic In Silico and In Vivo Approach to Exploring the Antidiabetic, Antioxidant, and Hepatoprotective Properties of Rose of Sharon. Life (Basel) 2024; 14:686. [PMID: 38929670 PMCID: PMC11204520 DOI: 10.3390/life14060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant global health burden that necessitates the exploration of effective and accessible therapeutic options. Phytotherapy has played a vital role in healthcare, with plant extracts being integral to traditional medicinal practices. The therapeutic potential of Hibiscus syriacus (Rose of Sharon), a plant with a rich ethnobotanical history, in the management of DM and its associated complications was investigated. In this study, the therapeutic potential of Hibiscus syriacus L. extract (HSE) against DM in streptozotocin (STZ)-induced diabetic rats was assessed, focusing on its effects on glucose regulation, antioxidative defense, and liver protection. The administration of the HSE extract substantially reduced hyperglycemia and increased insulin production, with concurrent improvements in body weight and hydration. The enhanced activity of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), suggests reduced oxidative stress, which is further supported by molecular docking results with the 3GTV superoxide dismutase enzyme, showing a binding energy of -6.3 kcal/mol. A decrease in MDA levels also indicates a reduction in oxidative stress. Notably, HSE treatment led to decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and improved lipid profiles, indicating its hepatoprotective and lipid-modifying benefits. These findings support the inclusion of HSE as an adjunctive therapy in DM management strategies. This study promotes the consideration of Hibiscus syriacus L. therapeutic properties in global health contexts.
Collapse
Affiliation(s)
- Sedef Ziyanok-Demirtas
- Department of Biology, Faculty of Science and Arts, Bursa Uludag University, Bursa 16059, Turkey
| |
Collapse
|
10
|
Swargiary A, Daimari M, Swargiary A, Biswas A, Brahma D, Singha H. Identification of phytocompounds as potent inhibitors of sodium/glucose cotransporter-2 leading to diabetes treatment. J Biomol Struct Dyn 2024:1-14. [PMID: 38379332 DOI: 10.1080/07391102.2024.2319674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Type-II diabetes, a major metabolic disorder has threatened the very existence of a healthy life since long ago. Commercially available antidiabetic drugs are known for several adverse effects. The present study attempted to identify potential phytocompounds as inhibitors of sodium/glucose cotransporter-2 (SGLT2), a major protein that helps in glucose re-absorption from renal tubules. A total of 28 phytocompounds were collected based on the literature survey. 3D co-ordinates of phytocompounds were collected from PubChem database. Molecular docking was carried out with SGLT2 protein and the best 3 docking complexes were subjected to molecular dynamics simulation for 100 ns. Free energy changes were also analyzed using MM/PBSA analysis. Phytocompounds were also analyzed for their drug-likeness and ADMET properties. Docking study observed a strong binding affinity of phytocompounds (> -7.0 kcal/mol). More than 10 phytocompounds showed better binding affinity compared to reference drugs. Further analysis of three best docking complexes when analyzed by MD simulation showed better stability and compactness of the complexes compared to reference drug, empagliflozin. MM/PBSA analysis also revealed that van der Waals force and electrostatic energy are the major binding energy involved in the complex formation. Like docking energy, free energy analysis also observed stronger binding energies (ΔGGAS) in SGLT2-phytocompound complexes compared to empagliflozin complex. All the phytocompounds showed drug-likeness and considerable ADMET properties. The study, therefore, suggests that Trifolirhizin-6'-monoacetate, Aspalathin, and Quercetin-3-glucoside could be a possible inhibitor of SGLT2 protein. However, further studies need to be carried out to reveal the exact mode of activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananta Swargiary
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Manita Daimari
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Arup Swargiary
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Arup Biswas
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Dulur Brahma
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| | - Hiloljyoti Singha
- Pharmacology and Bioinformatics Laboratory, Department of Zoology, Bodoland University, Kokrajhar, Assam, India
| |
Collapse
|
11
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
12
|
Amatto PDPG, Chaves L, Braga GG, Carmona F, Pereira AMS. Effect of Crocus sativus L. (saffron) and crocin in the treatment of patients with type-2 diabetes mellitus: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117255. [PMID: 37778521 DOI: 10.1016/j.jep.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocus sativus L. (saffron, Iridaceae) has been traditionally used for thousands of years as herbal medicine for many diseases, including type-2 diabetes mellitus (T2DM), especially in Sri Lanka. Systematic reviews and meta-analysis on C. sativus for T2DM value traditional knowledge about this species. AIM OF THE STUDY To assess the effectiveness of C. sativus powdered plant, hydroethanolic extract and crocin in reducing fasting blood sugar (FBG), glycated hemoglobin (HbA1c), blood pressure, and other metabolic parameters in patients with T2DM. MATERIAL AND METHODS Systematic review and meta-analysis based on searches in PubMed, Embase, and Cochrane, including all randomized clinical trials (RCTs) published before January 2, 2023. Two independent reviewers extracted the data and assessed the risks of bias. The effects of C. sativus and crocin were assessed on glycemic, metabolic, and blood pressure parameters. Weighted (WMD) or standardized (SMD) mean differences (before-after) and 95% confidence intervals (95%CI) of the outcomes were extracted or estimated and meta-analyses were conducted using RevMan 5.4 (Cochrane Collaboration). This protocol was registered in PROSPERO (#CRD42023390073). RESULTS Fifteen of 29 studies were included. Saffron powdered plant decreased AST (WMD -1.19, 95%CI -2.24, -0.13), but increased BMI (WMD 0.56, 95%CI 0.07, 1.05); saffron extract decreased HbA1c (WMD -0.35, 95%CI -0.65, -0.06), FBG (WMD -26.90, 95%CI -38.87, -14.93), creatinine (WMD -0.12, 95%CI -0.19, -0.05), and total cholesterol (WMD -9.29, 95%CI -18.25, -0.33); and crocin decreased HbA1c (WMD -0.43, 95%CI -0.66, -0.20), FBG (WMD -14.10, 95%CI -22.91, -5.30), and systolic blood pressure (WMD -8.18, 95%CI -12.75, -3.61), but increased creatinine levels (WMD 0.24, 95%CI 0.17, 0.32). Of the 15 included studies, 14 had a moderate risk of bias, and one study had a low risk of bias. CONCLUSION C. sativus (saffron) powdered plant, extract, and crocin have potential as an adjunct treatment for T2DM, improving control of metabolic and clinical parameters. However, C. sativus extract seems to be superior because it was effective in more parameters and did not induce adverse effects. Since many studies were at moderate risk of bias, further high-quality research is needed to firmly establish the clinical efficacy of this plant.
Collapse
Affiliation(s)
- Pedro de Padua G Amatto
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil.
| | - Lucas Chaves
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Giovana Graça Braga
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Fábio Carmona
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Botanical Garden of Medicinal Plants Ordem e Progresso, 14690-000, Jardinopólis, Brazil.
| |
Collapse
|
13
|
Bagheri SM, Hakimizadeh E, Allahtavakoli M. Nephroprotective Effect of Ferula assa-foetida Oleo Gum Resin on Type 2 Diabetic Rats. Curr Pharm Des 2024; 30:2485-2492. [PMID: 38910415 DOI: 10.2174/0113816128303631240530045628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 06/25/2024]
Abstract
OBJECTIVE Diabetic nephropathy is one of the main causes of kidney failure in the end stage of diabetes worldwide. On the other hand, asafoetida is a gum whose hypoglycemic effects have been proven. The present study was conducted with the aim of using asafoetida to prevent diabetic nephropathy. METHODS Diabetes was induced by a high-fat diet (60%) and streptozotocin injection (35 mg/kg) in rats. Diabetic rats were treated with an oral dose of 50 mg/kg of asafoetida for 8 weeks. At the end of the experiment, serum and urine parameters were examined. Antioxidant enzymes and lipid peroxidation levels in the kidney were also determined along with its histological examination. The expression levels of tumor necrosis factor-alpha and Transforming growth factor beta genes were also evaluated. RESULTS Glucose, cholesterol, triglyceride, and HbA1c concentrations were significantly reduced in the asafoetida 50. On the other hand, in the treatment group, serum creatinine, urea, and albumin levels decreased and increased in urine. Antioxidant enzymes in the kidney improved significantly, and the expression of tumour necrosis factor-alpha and transforming growth factor-beta genes decreased. Histopathological examination also showed that necrosis, epithelial damage, and leukocyte infiltration increased in the diabetic and decreased in the treatment group. CONCLUSION The result of biochemical analysis, enzymatic, and histological examinations showed that asafoetida may delay the progression of diabetic nephropathy due to the presence of anti-inflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Seyyed Majid Bagheri
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
14
|
Tchuente Djoko C, Tamfu AN, Nyemb JN, Toko Feunaing R, Laurent S, Henoumont C, Talla E, Venditti A. In vitro α-glucosidase inhibitory activity of isolated compounds and semisynthetic derivative from aerial parts of Erythrina senegalensis DC. Nat Prod Res 2023; 37:3994-4003. [PMID: 36647748 DOI: 10.1080/14786419.2023.2167205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
The current study was conducted to isolate the phytoconstituents from Erythrina senegalensis leaves and stem bark and evaluate their inhibitory activity against α-glucosidase, digestive enzyme related to diabetes mellitus. Phytochemical investigation of the leaves resulted in the isolation of three saponins (3-5), two triterpenoids (7 and 8) and two steroids (10a and 10b) as inseparable mixture, while one saponin (6), one triterpenoid (9) and one mixture of two cinnamates (2a and 2b) were isolated from the stem bark. Except for compounds 2 b, 7, 8, 10a and 10 b all the isolated compounds are reported here for the first time from the genus Erythrina. Acetylation of the mixture of two cinnamates (2a and 2b) led to a new diester derivative (1) trivially called erythrinamate. The extracts and pure compounds (3, 4, 6) showed good α-glucosidase inhibitory activity compared to the standard drug acarbose. The findings suggest that saponins of E. senegalensis could be used to develop potential anti-hyperglycemic drugs.
Collapse
Affiliation(s)
- Cyrille Tchuente Djoko
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, The University of Maroua, Kaele, Cameroon
| | - Romeo Toko Feunaing
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Céline Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, Mons, Belgium
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
| | | |
Collapse
|
15
|
Prananda AT, Dalimunthe A, Harahap U, Simanjuntak Y, Peronika E, Karosekali NE, Hasibuan PAZ, Syahputra RA, Situmorang PC, Nurkolis F. Phyllanthus emblica: a comprehensive review of its phytochemical composition and pharmacological properties. Front Pharmacol 2023; 14:1288618. [PMID: 37954853 PMCID: PMC10637531 DOI: 10.3389/fphar.2023.1288618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Phyllanthus emblica Linn, a prominent member of the euphorbiaceae family, exhibits extensive distribution across a multitude of tropical and subtropical nations. Referred to as "Balakka" in Indonesia, this plant assumes various names across regions, such as "kimalaka," "balakka," "metengo," "malaka," and "kemloko" in North Sumatra, Ternate, Sundanese, and Java respectively. Phyllanthus emblica thrives in tropical locales like Indonesia, Malaysia, and Thailand, while also making its presence felt in subtropical regions like India, China, Uzbekistan, and Sri Lanka. The fruits of Balakka are enriched with bioactive constituents recognized for their wide-ranging benefits, including antioxidant, anti-aging, anti-cholesterol, anti-diabetic, immunomodulatory, antipyretic, analgesic, anti-inflammatory, chemoprotective, hepatoprotective, cardioprotective, antimutagenic, and antimicrobial properties. Comprising a spectrum of phenolic compounds (such as tannins, phenolic acids, and flavonoids), alkaloids, phytosterols, terpenoids, organic acids, amino acids, and vitamins, the bioactive components of Malacca fruit offer a diverse array of health-promoting attributes. In light of these insights, this review aims to comprehensively examine the pharmacological activities associated with P. emblica and delve into the intricate composition of its phytochemical constituents.
Collapse
Affiliation(s)
- Arya Tjipta Prananda
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yogi Simanjuntak
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Epina Peronika
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Natasya Elsa Karosekali
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Putri Cahaya Situmorang
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
16
|
Lu SH, Li XX, Zuo HJ, Li WN, Pan JP, Huang J. Monoterpenoid Glycosides from the Leaves of Ligustrum robustum and Their Bioactivities (II). Molecules 2023; 28:7274. [PMID: 37959693 PMCID: PMC10647328 DOI: 10.3390/molecules28217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Ligustrum robustum has been not only used as a heat-clearing and detoxicating functional tea (Ku-Ding-Cha) but also consumed as a hypotensive, anti-diabetic, and weight-reducing folk medicine. From the leaves of L. robustum, ten new monoterpenoid glycosides named ligurobustosides T10 (1a), T11 (1b), T12 (2a), T13 (2b), T14 (3a), T15 (3b), F1 (4b), T16 (5a), T17 (5b), and E1 (6b), together with five known ones (4a, 6a, 7, 8a, 8b), were separated and identified using the spectroscopic method and chemical method in this research. The results of biological tests exhibited that the fatty acid synthase (FAS) inhibitory action of compound 5 (IC50: 4.38 ± 0.11 μM) was as strong as orlistat (IC50: 4.46 ± 0.13 μM), a positive control; the α-glucosidase inhibitory actions of compounds 1-4 and 7-8, and the α-amylase inhibitory actions of compounds 1-8 were medium; the ABTS radical scavenging capacities of compounds 1-3 and 5-8 (IC50: 6.27 ± 0.23 ~ 8.59 ± 0.09 μM) were stronger than l-(+)-ascorbic acid (IC50: 10.06 ± 0.19 μM) served as a positive control. This research offered a theoretical foundation for the leaves of L. robustum to prevent diabetes and its complications.
Collapse
Affiliation(s)
- Shi-Hui Lu
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China; (W.-N.L.); (J.-P.P.)
- Guangxi Database Construction and Application Engineering Research Center for in Tracorporal Pharmacochemistry of TCM, Baise 533000, China
- Key Laboratory of Youjiang Basin Characteristic Ethnic Medicine Research in Guangxi, Baise 533000, China
| | - Xiu-Xia Li
- Nursing School, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Hao-Jiang Zuo
- Department of Laboratory Science of Public Health, West China School of Public Health, Sichuan University, Chengdu 610041, China;
| | - Wei-Neng Li
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China; (W.-N.L.); (J.-P.P.)
| | - Jia-Ping Pan
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China; (W.-N.L.); (J.-P.P.)
| | - Jing Huang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023; 15:3821. [PMID: 37686853 PMCID: PMC10490373 DOI: 10.3390/nu15173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lycopene is a compound of colored origin that shows strong antioxidant activity. The positive effect of lycopene is the result of its pleiotropic effect. The ability to neutralize free radicals via lycopene is one of the foundations of its pro-health effect, including the ability to inhibit the development of many civilization diseases. Therefore, this study focuses on the importance of the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases, diseases within the nervous system, diabetes, liver diseases, and ulcerative colitis. According to the research mentioned, lycopene supplementation has significant promise for the treatment of illnesses marked by chronic inflammation and oxidative stress. However, the majority of the supporting data for lycopene's health benefits comes from experimental research, whereas the evidence from clinical studies is both scarcer and less certain of any health benefits. Research on humans is still required to establish its effectiveness.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
18
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
19
|
Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, Susanti D, Oyinloye BE, Noriega L, Famuti A, Fadaka AO, Ajiboye BO. Profiling the Antidiabetic Potential of Compounds Identified from Fractionated Extracts of Entada africana toward Glucokinase Stimulation: Computational Insight. Molecules 2023; 28:5752. [PMID: 37570723 PMCID: PMC10420681 DOI: 10.3390/molecules28155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Valens Munyembaraga
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- University Teaching Hospital of Butare, Huye 15232, Rwanda
| | - Oluwafemi Shittu Bakare
- Department of Biochemistry, Faculty Science, Adekunle Ajasin University, Akungba Akoko 342111, Ondo State, Nigeria;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Babatunji Emmanuel Oyinloye
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
| | - Lloyd Noriega
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
| | - Ayodeji Famuti
- Honey T Scientific Company, Ibadan 234002, Oyo State, Nigeria;
| | | | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti 371104, Ekiti State, Nigeria
| |
Collapse
|
20
|
Pathomwichaiwat T, Jinatongthai P, Prommasut N, Ampornwong K, Rattanavipanon W, Nathisuwan S, Thakkinstian A. Effects of turmeric (Curcuma longa) supplementation on glucose metabolism in diabetes mellitus and metabolic syndrome: An umbrella review and updated meta-analysis. PLoS One 2023; 18:e0288997. [PMID: 37471428 PMCID: PMC10359013 DOI: 10.1371/journal.pone.0288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS This study aims to comprehensively review the existing evidence and conduct analysis of updated randomized controlled trials (RCTs) of turmeric (Curcuma longa, CL) and its related bioactive compounds on glycemic and metabolic parameters in patients with type 2 diabetes (T2DM), prediabetes, and metabolic syndrome (MetS) together with a sub-group analysis of different CL preparation forms. METHODS An umbrella review (UR) and updated systematic reviews and meta-analyses (SRMAs) were conducted to evaluate the effects of CL compared with a placebo/standard treatment in adult T2DM, prediabetes, and MetS. The MEDLINE, Embase, The Cochrane Central Register of Control Trials, and Scopus databases were searched from inception to September 2022. The primary efficacy outcomes were hemoglobin A1C (HbA1C) and fasting blood glucose (FBG). The corrected covered area (CCA) was used to assess overlap. Mean differences were pooled across individual RCTs using a random-effects model. Subgroup and sensitivity analyses were performed for various CL preparation forms. RESULTS Fourteen SRMAs of 61 individual RCTs were included in the UR. The updated SRMA included 28 studies. The CCA was 11.54%, indicating high overlap across SRMAs. The updated SRMA revealed significant reduction in FBG and HbA1C with CL supplementation, obtaining a mean difference (95% confidence interval [CI]) of -8.129 (-12.175, -4.084) mg/dL and -0.134 (-0.304, -0.037) %, respectively. FBG and HbA1C levels decreased with all CL preparation forms as did other metabolic parameters levels. The results of the sensitivity and subgroup analyses were consistent with those of the main analysis. CONCLUSION CL supplementation can significantly reduce FBG and HbA1C levels and other metabolic parameters in T2DM and mitigate related conditions, including prediabetes and MetS. TRIAL REGISTRATION PROSPERO (CRD42016042131).
Collapse
Affiliation(s)
- Thanika Pathomwichaiwat
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Mahidol University, Bangkok, Thailand
| | - Peerawat Jinatongthai
- Faculty of Pharmaceutical Sciences, Pharmacy Practice Division, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Napattaoon Prommasut
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kanyarat Ampornwong
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Surakit Nathisuwan
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- Faculty of Medicine Ramathibodi Hospital, Department of Clinical Epidemiology and Biostatistics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Elkomy NMIM, El-Shaibany A, Elnagar GM, Abdelkhalek AS, Al-Mahbashi H, Elaasser MM, Raweh SM, Aldiyarbi MA, Raslan AE. Evaluation of acute oral toxicity, anti-diabetic and antioxidant effects of Aloe vera flowers extract. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116310. [PMID: 36863642 DOI: 10.1016/j.jep.2023.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm.f. is widely used in various traditional systems of medicine worldwide. Since over 5000 years ago, several cultures have used A. vera extract medicinally for conditions ranging from diabetes to eczema. It has been shown to reduce the symptoms of diabetes by enhancing insulin secretion and protecting pancreatic islets. AIM OF THE WORK This research study aimed to investigate the in-vitro antioxidant effect, the acute oral toxicity, and the possible pharmacological in-vivo anti-diabetic activity with histological examination of the pancreas of the standardized deep red A. vera flowers methanolic extracts (AVFME). MATERIALS AND METHODS The liquid-liquid extraction procedure and TLC technique were used to investigate chemical composition. Total phenolics and flavonoids in AVFME were quantified by Folin-Ciocalteu and AlCl3 colorimetric methods, respectively. The present study involved evaluating the in-vitro antioxidant effect of AVFME using ascorbic acid as the reference standard, an acute oral toxicity study by using thirty-six albino rats and different concentrations of AVFME (200 mg/kg, 2, 4, 8 and 10 g/kg b.w.). Furthermore, the in-vivo anti-diabetic study was performed on alloxan-induced diabetes in rats (120 mg/kg, I.P.) and two doses of AVFME (200 and 500 mg/kg b.w., orally) were used as compared to glibenclamide (5 mg/kg, orally) as a standard hypoglycemic sulfonylurea medication. A histological examination of the pancreas was performed. RESULTS AVFME resulted in the highest phenolic content of 150.44 ± 4.62 mg gallic acid equivalent per gram (GAE/g) along with flavonoid content of 70.38 ± 0.97 mg of quercetin equivalent per gram (QE/g). An in-vitro study revealed that the antioxidant effect of AVFME was strong as ascorbic acid. The results of the in-vivo studies showed that the AVFME didn't cause any apparent toxicity signs or death in all groups at different doses which proves the safety of this extract with a wide therapeutic index. The antidiabetic activity of AVFME demonstrated a considerable drop in blood glucose levels as glibenclamide, without severe hypoglycemia or significant weight gain which is considered an advantage of AVFME over glibenclamide use. The histopathological study of pancreatic tissues confirmed the protective effect of AVFME on the pancreatic beta-cells. The extract is proposed to have antidiabetic activity through inhibition of α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Molecular docking studies were conducted to understand possible molecular interactions with these enzymes. CONCLUSION AVFME represents a promising alternative source of active constituents against diabetes mellitus (DM) based on its oral safety, antioxidant, anti-hyperglycemic activities, and pancreatic protective effects. These data revealed the antihyperglycemic activity of AVFME is mediated by pancreatic protective effects while significantly enhancing insulin secretion through increasing functioning beta cells. This suggests that AVFME has the potential as a novel antidiabetic therapy or a dietary supplement for the treatment of type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Nesreen M I M Elkomy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Amina El-Shaibany
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Yemen.
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Hassan Al-Mahbashi
- Department of Forensic Medicine and Clinical Toxicology, College of Medicine, Sana'a University, Sanaa, Yemen.
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787, Nasr City, Cairo, Egypt.
| | - Salwa M Raweh
- Pharmacognosy Department, University of Sana'a, Pharmacy College, Yemen.
| | - Maha A Aldiyarbi
- Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Ali E Raslan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
| |
Collapse
|
22
|
Alyahya AAI, Asad M, Alhussaini MS, Abdelsalam KEA, Alenezi EA. The antidiabetic effect of methanolic extract of Holarrhena pubescens seeds is mediated through multiple mechanisms of action. Saudi Pharm J 2023; 31:824-833. [PMID: 37228324 PMCID: PMC10203776 DOI: 10.1016/j.jsps.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Holarrhena pubescens is widely used in Indian and Chinese medicine in the treatment of diabetes. The current work determined the oral hypoglycemic and antidiabetic effects of seed extract in rats. The probable mechanism of action was evaluated in-vitro by α - glucosidase inhibition, glucose metabolism in insulinoma (INS-1) cells to reflect secretion of insulin, and protein glycation inhibition. Its potential for herb-drug interaction was evaluated in the cytochrome P450 3A4 (CYP3A4) inhibition assay. The seed extract increased serum insulin levels and reduced serum blood glucose levels in the oral glucose tolerance test. It also reduced the serum glucose levels in streptozocin-induced diabetes. The extract also inhibited α -glucosidase enzyme activity and demonstrated that it can increase the secretion of insulin from INS to 1-rat insulinoma cell line cells in-vitro in a concentration-dependent manner. However, it had a very weak inhibitory effect on protein glycation and it did not affect the activity of CYP3A4. The results of the study showed that H. pubescens seed extract increases insulin secretion and inhibits glucose absorption both in-vivo and in-vitro with a weak protein glycation inhibitory effect. The herb is devoid of CYP3A4 inhibitory effect indicating that it may not have pharmacokinetic interaction with the drug metabolized by this enzyme.
Collapse
|
23
|
Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int J Mol Sci 2023; 24:ijms24109085. [PMID: 37240430 DOI: 10.3390/ijms24109085] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.
Collapse
Affiliation(s)
- Clement G Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Jameka Grigsby
- Department of Biological Sciences, School of Arts and Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA
| | - Ariane Mbemi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Daryllynn Nelson
- Department of Health Administration, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Bryan Mildort
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2400 6th St, NW, Washington, DC 20059, USA
| | - Lekan Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Paul B Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA
| |
Collapse
|
24
|
Espinoza-Hernández FA, Moreno-Vargas AD, Andrade-Cetto A. Diabetes-Related Mechanisms of Action Involved in the Therapeutic Effect of Croton Species: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2014. [PMID: 37653931 PMCID: PMC10223760 DOI: 10.3390/plants12102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
Over the years, ethnopharmacological and phytochemical investigations have been conducted to understand the potential effects of the Croton genus on several diseases. It has been revealed that these terpenoid-rich species traditionally used to treat gastrointestinal diseases, heal wounds, and relieve pain have a wide range of therapeutic effects; however, those used to treat diabetes, as well as their action mechanisms, have not been reviewed so far. Therefore, the main objective of this review was to compile all Croton species that have shown pharmacological effects against diabetes and describe their action mechanisms. Through a search of the literature, 17 species with hypoglycemic, antihyperglycemic, antilipidemic, antihypertensive, antioxidant, and anti-inflammatory effects were found. Among the mechanisms by which they exerted these effects were the inhibition of α-glucosidases, the promotion of insulin secretion, and the increase in glucose uptake. Interestingly, it was found that some of them may have antihyperglycemic properties, although there were no ethnopharmacological reports that support their traditional use. Moreover, others only presented studies on their hypoglycemic effect in fasting, so further works are encouraged to describe the mechanisms involved in lowering fasting blood glucose levels, such as hepatic glucose production, especially for C. cajucara, C. cuneatus, C. gratissimus var. gratissimus, C. guatemalensis, and C. membranaceus. It is expected that this review contributes to the plant science knowledge of the genus, and it can be used in future references on the identification and development of new molecules/phytomedicines that help in the treatment of diabetes.
Collapse
Affiliation(s)
- Fernanda Artemisa Espinoza-Hernández
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| | - Angelina Daniela Moreno-Vargas
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| |
Collapse
|
25
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
26
|
Lu SH, Zuo HJ, Huang J, Li WN, Huang JL, Li XX. Chemical Constituents from the Leaves of Ligustrum robustum and Their Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010362. [PMID: 36615556 PMCID: PMC9822135 DOI: 10.3390/molecules28010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
The leaves of Ligustrum robustum have been consumed as Ku-Ding-Cha for clearing heat and removing toxins, and they have been used as a folk medicine for curing hypertension, diabetes, and obesity in China. The phytochemical research on the leaves of L. robustum led to the isolation and identification of two new hexenol glycosides, two new butenol glycosides, and five new sugar esters, named ligurobustosides X (1a), X1 (1b), Y (2a), and Y1 (2b) and ligurobustates A (3a), B (3b), C (4b), D (5a), and E (5b), along with seven known compounds (4a and 6-10). Compounds 1-10 were tested for their inhibitory effects on fatty acid synthase (FAS), α-glucosidase, and α-amylase, as well as their antioxidant activities. Compound 2 showed strong FAS inhibitory activity (IC50 4.10 ± 0.12 μM) close to that of the positive control orlistat (IC50 4.46 ± 0.13 μM); compounds 7 and 9 revealed moderate α-glucosidase inhibitory activities; compounds 1-10 showed moderate α-amylase inhibitory activities; and compounds 1 and 10 displayed stronger 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) ammonium salt (ABTS) radical scavenging effects (IC50 3.41 ± 0.08~5.65 ± 0.19 μM) than the positive control l-(+)-ascorbic acid (IC50 10.06 ± 0.19 μM). This study provides a theoretical foundation for the leaves of L. robustum as a functional tea to prevent diabetes and its complications.
Collapse
Affiliation(s)
- Shi-Hui Lu
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
- Correspondence: (S.-H.L.); (J.H.); (X.-X.L.)
| | - Hao-Jiang Zuo
- Department of Laboratory Science of Public Health, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Jing Huang
- Key Laboratory of Drug Targeting, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (S.-H.L.); (J.H.); (X.-X.L.)
| | - Wei-Neng Li
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jie-Lian Huang
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xiu-Xia Li
- Nursing School, Youjiang Medical University for Nationalities, Baise 533000, China
- Correspondence: (S.-H.L.); (J.H.); (X.-X.L.)
| |
Collapse
|
27
|
In Vitro Evaluation of α-amylase and α-glucosidase Inhibition of 2,3-Epoxyprocyanidin C1 and Other Constituents from Pterocarpus erinaceus Poir. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010126. [PMID: 36615320 PMCID: PMC9822058 DOI: 10.3390/molecules28010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus is a metabolic disorder which is one of the leading causes of mortality and morbidities in elderly humans. Chronic diabetes can lead to kidney failure, blindness, limb amputation, heart attack and stroke. Physical activity, healthy diets and medications can reduce the incidence of diabetes, so the search for more efficient antidiabetic therapies, most especially from natural products, is a necessity. Herein, extract from roots of the medicinal plant Pterocarpus erinaceus was purified by column chromatography and afforded ten compounds which were characterized by EIMS, HR-FAB-MS, 1D and 2D NMR techniques. Amongst them were, a new trimeric derivative of epicatechin, named 2,3-Epoxyprocyanidin C1 (1); two pentacyclic triterpenoids, friedelin (2) and betulin (3); angolensin (4); flavonoids such as 7-methoxygenistein (5), 7-methoxydaidzein (6), apigenin 7-O-glucoronide (8) and naringenin 7-O-β-D-glucopyranoside (9); and an ellagic acid derivative (10). The extract and compounds were evaluated for their antidiabetic potential by α-amylase and α-glucosidase inhibitory assays. IC50 values of compound 7 (48.1 ± 0.9 µg/mL), compound 8 (48.6 ± 0.1 µg/mL), compound 9 (50.2 ± 0.5 µg/mL) and extract (40.5 ± 0.8 µg/mL) when compared to that of acarbose (26.4 ± 0.3 µg/mL) indicated good α-amylase inhibition. In the α-glucosidase assay, the extract (IC50 = 31.2 ± 0.1 µg/mL), compound 7 (IC50 = 39.5 ± 1.2 µg/mL), compound 8 (IC50 = 40.9 ± 1.3 µg/mL), compound 1 (IC50 = 41.6 ± 1.0 µg/mL), Compound 4 (IC50 = 43.4 ± 0.5 µg/mL), compound 5 (IC50 = 47.6 ± 0.9 µg/mL), compound 6 (IC50 = 46.3 ± 0.2 µg/mL), compound 7 (IC50 = 45.0 ± 0.8 µg/mL), compound 9 (IC50 = 44.8 ± 0.6 µg/mL) and compound 11 (IC50 = 47.5 ± 0.4 µg/mL) all had moderate-to-good inhibitions, compared to acarbose (IC50 = 22.0 ± 0.5 µg/mL). The ability to inhibit α-amylase and α-glucosidase indicates that P. erinaceus and its compounds can lower blood glucose levels by delaying hydrolysis of carbohydrates into sugars, thereby providing a source of natural antidiabetic remedy.
Collapse
|
28
|
Potential Roles of Anti-Inflammatory Plant-Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes. Molecules 2022; 27:molecules27217352. [PMID: 36364178 PMCID: PMC9657994 DOI: 10.3390/molecules27217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders, the characteristics of which include chronic hyperglycemia owing to defects in insulin function, insulin secretion, or both. Inflammation plays a crucial role in DM pathogenesis and innate immunity in the development of microvascular complications of diabetes. In addition, hyperglycemia and DM mediate a proinflammatory microenvironment that can result in various microvascular complications, including diabetic nephropathy (DNP), diabetic neuropathy (DN), and diabetic retinopathy (DR). DNP is a major cause of end-stage renal disease. DNP can lead to albuminuria, decreased filtration, mesangium expansion, thickening of the basement membrane, and eventually renal failure. Furthermore, inflammatory cells can accumulate in the interstitium and glomeruli to deteriorate DNP. DN is another most prevalent microvascular complication of DM and the main cause of high mortality, disability, and a poor quality of life. DNs have a wide range of clinical manifestations because of the types of fiber dysfunctions and complex structures of the peripheral nervous system. DR is also a microvascular and multifactorial disease, as well as a major cause of visual impairment globally. Pathogenesis of DR is yet to be fully revealed, however, numerous studies have already confirmed the role of inflammation in the onset and advancement of DR. Despite evidence, and better knowledge regarding the pathogenesis of these microvascular complications of diabetes, there is still a deficiency of effective therapies. Bioactive compounds are mainly derived from plants, and these molecules have promising therapeutic potential. In this review, evidence and molecular mechanisms regarding the role of inflammation in various microvascular complications of diabetes including DNP, DN, and DR, have been summarized. The therapeutic potential of several bioactive compounds derived from plants in the treatment of these microvascular complications of diabetes has also been discussed.
Collapse
|
29
|
Polyphenol-Rich Leaf of Annona squamosa Stimulates Insulin Release from BRIN-BD11 Cells and Isolated Mouse Islets, Reduces (CH2O)n Digestion and Absorption, and Improves Glucose Tolerance and GLP-1 (7-36) Levels in High-Fat-Fed Rats. Metabolites 2022; 12:metabo12100995. [PMID: 36295897 PMCID: PMC9609604 DOI: 10.3390/metabo12100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
Annona squamosa, commonly known as custard apple, is traditionally used for the treatment of various diseases including diabetes, cardiovascular disease (CVD), and gastritis. This study was undertaken to investigate the effects of an ethanolic (80% v/v) extract of A. squamosa (EEAS) leaves in vitro on insulin secretion from clonal pancreatic BRIN BD11 β-cells and mouse islets, including mechanistic studies on the effect of EEAS on membrane potential and intracellular calcium ion concentration. Additional in vitro glucose-lowering actions were assessed. For in vivo studies, high-fat-fed (HFF) obese/normal rats were selected. EEAS increased insulin secretion in vitro in a dose-dependent manner. This effect was linked to β-cell membrane depolarisation and cytoplasmic Ca2+ influx. In the presence of isobutyl methylxanthine (IBMX), tolbutamide, or KCl, the insulin-releasing effect of EEAS was increased, suggesting its effect was also mediated via a KATP-independent pathways. EEAS inhibited insulin glycation, glucose absorption, and DPP-IV enzyme activity in vitro and enhanced glucose uptake and insulin action in 3T3L1 cells. In vivo, gut motility, food intake, glucose tolerance, plasma insulin, and active GLP-1 (7-36) levels were improved, whereas plasma DPP-IV levels were reduced in HFF rats. EEAS attenuated the absorption of sucrose and glucose as well as decreased serum glucose levels after sucrose loading and in situ intestinal perfusion in non-diabetic rats. Rutin, proanthocyanidin, and squafosacin G were putatively identified as the anti-hyperglycaemic phytomolecules in EEAS using HPLC followed by LC-MS analysis. This study illustrates the potential of A. squamosa and its phytoconstituents as a source of potential antidiabetic agents.
Collapse
|
30
|
Insulin Secretory Actions of Ethanol Extract of Eucalyptus citriodora Leaf, including Plasma DPP-IV and GLP-1 Levels in High-Fat-Fed Rats, as Well as Characterization of Biologically Effective Phytoconstituents. Metabolites 2022; 12:metabo12080757. [PMID: 36005629 PMCID: PMC9414540 DOI: 10.3390/metabo12080757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the numerous adverse effects of synthetic drugs, researchers are currently studying traditional medicinal plants to find alternatives for diabetes treatment. Eucalyptus citriodora is known to be used as a remedy for various illnesses, including diabetes. This study aimed to explore the effects of ethanol extract of Eucalyptus citriodora (EEEC) on in vitro and in vivo systems, including the mechanism/s of action. The methodology used involved the measurement of insulin secretion from clonal pancreatic β-cells, BRIN BD11, and mouse islets. Other in vitro systems further examined EEEC’s glucose-lowering properties. Obese rats fed a high-fat-fed diet (HFF) were selected for in vivo evaluation, and phytoconstituents were detected via RP-HPLC followed by LC-MS. EEEC induced insulin secretion in a concentration-dependent manner with modulatory effects, similar to 1 µM glucagon-like peptide 1 (GLP-1), which were partly declined in the presence of Ca2+-channel blocker (Verapamil), KATP-channel opener (Diazoxide), and Ca2+ chelation. The insulin secretory effects of EEEC were augmented by isobutyl methylxanthine (IBMX), which persisted in the context of tolbutamide or a depolarizing concentration of KCl. EEEC enhanced insulin action in 3T3-L1 cells and reduced glucose absorption, and protein glycation in vitro. In HFF rats, it improved glucose tolerance and plasma insulin, attenuated plasma DPP-IV, and induced active GLP-1 (7-36) levels in circulation. Rhodomyrtosone B, Quercetin-3-O-β-D-glucopyranoside, rhodomyrtosone E, and quercitroside were identified as possible phytoconstituents that may be responsible for EEEC effects. Thus, these findings revealed that E. citriodora could be used as an adjunct nutritional supplement to manage type 2 diabetes.
Collapse
|