1
|
Avula SK, Ullah S, Ebrahimi A, Rostami A, Halim SA, Khan A, Anwar MU, Gibbons S, Csuk R, Al-Harrasi A. Dihydrofolate reductase inhibitory potential of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as new anticancer derivatives: In-vitro and in-silico studies. Eur J Med Chem 2025; 283:117174. [PMID: 39708770 DOI: 10.1016/j.ejmech.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety. The resulting compounds have been screened for their dihydrofolate reductase (DHFR) inhibition activity. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR, 19F NMR (spectroscopy when applicable), and HR-ESI-MS spectroscopy techniques. The X-ray crystallography studies have unambiguously confirmed the structure of compounds 6, 11 and 13. Furthermore, their DHFR-inhibitory activity was evaluated in-vitro. The results obtained from the DHFR-inhibitory assay revealed that all the synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives were highly potent inhibitors, with IC50 values in the range 3.48 ± 0.16-30.37 ± 1.20 μM. Ten compounds (15c-15f, 16c-16f, 17e and 17f) among the 32 synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole compounds were found to exhibit exceptional inhibitory while the rest of the derivatives showed moderate activities. Additionally, molecular docking analysis of the most active (16f), moderate (15c) and least active (16a) inhibitors reflect excellent binding of 16f with the binding residues of DHFR with higher docking score (-9.13 kcal/mol) than that of 15c and 16a. The docking analysis correlates well with the inhibitory potential of these synthesized molecules. Overall, this study may pave the way to medicinal analogues of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as potent DHFR inhibition activity.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ali Rostami
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle, Saale, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| |
Collapse
|
2
|
Zhou W, Chen P, Xie XQ, Wu Y, Ding H, Yang R, Song XR, Luo MJ, Xiao Q. Electrochemical Three-Component C-H Functionalization of Indoles with Sodium Bisulfite and Alcohols to Access Indole-Containing Sulfonate Esters. J Org Chem 2025; 90:1085-1095. [PMID: 39754573 DOI: 10.1021/acs.joc.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Herein, an efficient electrochemical three-component C-H functionalization of indoles with sodium bisulfite and alcohols is described, providing a sustainable and convenient synthetic route for the construction of structurally valuable indole-containing sulfonate esters in moderate to good yields. This protocol proceeds in an undivided cell without any metal catalysts or oxidants, features a broad substrate scope, and has an excellent functional group tolerance. Preliminary mechanistic studies suggest that a radical-radical pathway may be involved in this three-component reaction system.
Collapse
Affiliation(s)
- Wei Zhou
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Peng Chen
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xiao-Qing Xie
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yanli Wu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Haixin Ding
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Ruchun Yang
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Xian-Rong Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Mu-Jia Luo
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qiang Xiao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
3
|
Meng Q, Ke X, Xu J. Direct Synthesis of 2-Functionalized 3-Nitroindoles from Diazo(nitro)acetanilides. J Org Chem 2025; 90:1186-1195. [PMID: 39772641 DOI: 10.1021/acs.joc.4c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
2-Hydroxyl/acetoxy-3-nitroindoles are directly and efficiently prepared in good to excellent yields from diazo(nitro)acetanilides under the catalysis of Cu(MeCN)4PF6 in DCM through an intramolecular aromatic C-H insertion or followed by acetylation. 2-Hydroxyl-3-nitroindoles can be further transformed to 3-halo-3-nitroindolin-2-ones and 3-alkanamidoindolin-2-ones readily. All of them are important synthetic building blocks for construction of indole derivatives.
Collapse
Affiliation(s)
- Qingchun Meng
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuan Ke
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Doraghi F, Rezainia L, Morshedsolouk MH, Navid H, Larijani B, Mahdavi M. Transition metal-catalyzed cross-coupling reactions of N-aryl-2-aminopyridines. RSC Adv 2025; 15:1134-1151. [PMID: 39811017 PMCID: PMC11729220 DOI: 10.1039/d4ra08384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Due to the presence of the pyridyl directing group, N-aryl-2-aminopyridines can quickly form stable complexes with metals, leading to cyclization and functionalization reactions. A large number of N-heterocycles and nitrogen-based molecules can be easily constructed via this direct and atom-economical cross-coupling strategy. In this review, we have highlighted the transformations of N-aryl-2-aminopyridines in the presence of various transition metal catalysts, such as palladium, rhodium, iridium, ruthenium, cobalt and copper.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Lina Rezainia
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Mohammad Hossein Morshedsolouk
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Hamed Navid
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Nagesh VV, Pawar AB. Harnessing Dual Reactivity of N-Chloroamides for Cascade C-H Amidation/Chlorination of Indoles under Cobalt-Catalysis: Overriding Hofmann Rearrangement Pathway Leading to Aminocarbonylation. Org Lett 2024; 26:10523-10528. [PMID: 39601445 DOI: 10.1021/acs.orglett.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Herein, we have developed a Cp*Co(III)-catalyzed cascade C-2 amidation/C-3 chlorination of indoles by leveraging the dual functionality of N-chloroamides at ambient temperature. This protocol avoids the aminocarbonylation pathway that may result from the C-H functionalization of isocyanates formed via a potential Hofmann rearrangement of N-chloroamides. In fact, this represents the first example of directed C-H amidation using N-chloroamides as amidating agent. The control experiment indicated that the C-2 C-H amidation occurs prior to C-3 chlorination. Additionally, chloro functionality has been effectively utilized for the construction of C-S and C-N bonds, thereby expanding the molecular diversity of the synthesized compounds.
Collapse
Affiliation(s)
- Vinod V Nagesh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
Marinescu M. Bisindole Compounds-Synthesis and Medicinal Properties. Antibiotics (Basel) 2024; 13:1212. [PMID: 39766602 PMCID: PMC11727274 DOI: 10.3390/antibiotics13121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
The indole nucleus stands out as a pharmacophore, among other aromatic heterocyclic compounds with remarkable therapeutic properties, such as benzimidazole, pyridine, quinoline, benzothiazole, and others. Moreover, a series of recent studies refer to strategies for the synthesis of bisindole derivatives, with various medicinal properties, such as antimicrobial, antiviral, anticancer, anti-Alzheimer, anti-inflammatory, antioxidant, antidiabetic, etc. Also, a series of natural bisindole compounds are mentioned in the literature for their various biological properties and as a starting point in the synthesis of other related bisindoles. Drawing from these data, we have proposed in this review to provide an overview of the synthesis techniques and medicinal qualities of the bisindolic compounds that have been mentioned in recent literature from 2010 to 2024 as well as their numerous uses in the chemistry of materials, nanomaterials, dyes, polymers, and corrosion inhibitors.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
7
|
Hernández I, Domínguez G, Soloshonok VA, Landa A, Oiarbide M. Ynone Promoted Deaminative Coupling of Gramines with C- and N-Nucleophiles. J Org Chem 2024; 89:17291-17309. [PMID: 39533799 DOI: 10.1021/acs.joc.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The deaminative coupling of gramines with nucleophiles represents a versatile approach for structure diversification, but often involves non innocent conditions and/or reagents. Here a new acetylenic reagent 2 is developed for the C-N bond activation of gramines and their in situ coupling with C- and N-centered nucleophiles. Using the new acid/base- and redox-neutral ynone reagent 2 the coupling reactions proceed exceedingly as exemplified by the synthesis of several indol-3-ylmethyl derivatives, including new indole-benzodiazepine and indole-hydrazone conjugates.
Collapse
Affiliation(s)
- Iker Hernández
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel Lardizabal Pasealekua 3, 20018 Donostia/San Sebastián, Spain
| | - Guillermo Domínguez
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel Lardizabal Pasealekua 3, 20018 Donostia/San Sebastián, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel Lardizabal Pasealekua 3, 20018 Donostia/San Sebastián, Spain
| | - Aitor Landa
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel Lardizabal Pasealekua 3, 20018 Donostia/San Sebastián, Spain
| | - Mikel Oiarbide
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel Lardizabal Pasealekua 3, 20018 Donostia/San Sebastián, Spain
| |
Collapse
|
8
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
9
|
Cui X, Yin L, Zhang Y, Jiang X, Li L, Bi X. Salivary microbiota composition before and after use of proton pump inhibitors in patients with laryngopharyngeal reflux: a self-control study. BMC Oral Health 2024; 24:1194. [PMID: 39379876 PMCID: PMC11460238 DOI: 10.1186/s12903-024-05000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Issues associated with proton pump inhibitor (PPI) usage have been documented. PPIs affect the gastrointestinal microbiome, as well as the saliva microbiota of healthy individuals. However, the alterations in the saliva microbiota of laryngopharyngeal reflux (LPR) patients remain unclear. This study aims to examine the composition of saliva microbiota in LPR patients before and after PPI usage through a self-controlled study. METHODS Thirty-two adult LPR patients participated in the study. Saliva samples were collected before and after an 8-week regimen of twice-daily administration of 20-mg esomeprazole. The impact of PPI administration on bacterial communities was assessed using 16 S rRNA gene sequencing. The functional and metabolic changes in saliva microbial communities after PPI usage were analyzed using PICRUSt2 based on our 16 S rRNA gene sequencing results. RESULTS The alpha diversity within the salivary microbiota, as measured by the PD-whole-tree index, exhibited a significant difference between samples collected before and after PPI application (P = 0.038). Additionally, PCoA analysis of unweighted UniFrac distances (beta diversity) revealed distinct separation of saliva sample microbiota structures before and after PPI application in LPR patients, with statistical significance (Adonis test, R2 = 0.063, P< 0.010). Taxon-based analysis indicated that PPI administration increased the abundance of Epsilonproteobacteria, Campylobacterales, Campylobacteraceae, Campylobacter, and Campylobacter_gracilis, while reducing the abundance of Lactobacillaceae and Lactobacillus in salivary samples ( P< 0.050). Using LEfSe to compare bacterial abundances, Bacillaceae and Anoxybacillus were found to be enriched before PPI usage in LPR patients. Furthermore, the proportion of genes responsible for indole alkaloid biosynthesis in the salivary microbiota of LPR patients significantly increased after PPI therapy (P< 0.050). CONCLUSIONS These findings indicate that PPIs induce alterations in the salivary microbiota of LPR patients. CHINESE CLINICAL TRIAL REGISTRY No. ChiCTR2300067507. Registered on January 10,2023 retrospectively. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Xiaohuan Cui
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Longlong Yin
- Hebei North University, Zhangjiakou, 075051, China
| | - Yanping Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China.
| | - Xingwang Jiang
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Lina Li
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Xinxin Bi
- Senior Department of Otolaryngology Head and Neck Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Department of Otorhinolaryngology Head and Neck Surgery, the Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| |
Collapse
|
10
|
Sterligov GK, Rasskazova MA, Drokin EA, Isaeva DK, Ageshina AA, Rzhevskiy SA, Shurupova OV, Topchiy MA, Minaeva LI, Asachenko AF. Metal-Free Synthesis of 2-(per)Fluoroalkyl-3-nitro Indoles via Intramolecular Cyclization of Amides. J Org Chem 2024; 89:14028-14037. [PMID: 39264970 DOI: 10.1021/acs.joc.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
A metal-free intramolecular cyclization of N-acyl amides for the synthesis of 3-nitro-2-(per)fluoroalkyl indoles is reported. Good functional group tolerance and a broad range of substrates are the features of this approach. The developed method is easy to operate and is suitable for the preparation of 2-difluoromethyl/trifluoromethyl/perfluoroethyl/perfluoropropyl indoles in yields of 84 to 99%. Also, the application of this protocol in the gram scale is shown.
Collapse
Affiliation(s)
- Grigorii K Sterligov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maria A Rasskazova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Egor A Drokin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Dilshodakhon K Isaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Alexandra A Ageshina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Sergey A Rzhevskiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Olga V Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Maxim A Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Lidiya I Minaeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| | - Andrey F Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy prospect 29, 119991 Moscow, Russia
| |
Collapse
|
11
|
Ghorpade M, Soppina V, Kanvah S. Substitution Effects on Subcellular Organelle Localization in Live-cell Imaging. Chembiochem 2024; 25:e202400273. [PMID: 38924297 DOI: 10.1002/cbic.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
A series of D-π-A indole-containing fluorescent probes were developed, followed by an investigation of their photophysical properties and compounds' suitability for subcellular imaging in living cells. We demonstrate that the preference for mitochondrial localization was lost when morpholine was substituted, resulting in the accumulation of the molecule in the lysosomes. However, interestingly, the presence of a nitro group led to their localization within the lipid droplets despite the presence of the morpholine pendant. We also showcase the probes' sensitivity to pH, the influence of added chloroquine, and the temperature response on the changes in fluorescence intensity within lysosomes. The design of the probes with strong intramolecular charge transfer and substantial Stokes shift could facilitate extensive application in various cellular lysosomal models and contribute to a better understanding of the mechanisms involved in stimuli-responsive diseases.
Collapse
Affiliation(s)
- Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055
| |
Collapse
|
12
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
13
|
Iazzetti A, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Marrone F, Serraiocco A, Zoppoli R. Palladium-Catalyzed Tsuji-Trost-Type Reaction of 3-Indolylmethylacetates with O, and S Soft Nucleophiles. Molecules 2024; 29:3434. [PMID: 39065012 PMCID: PMC11280231 DOI: 10.3390/molecules29143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The chemical valorization of widespread molecules in renewable sources is a field of research widely investigated in the last decades. In this context, we envisaged that indole-3-carbinol, present in different Cruciferae plants, could be a readily available building block for the synthesis of various classes of indoles through a palladium-catalyzed Tsuji-Trost-type reaction with O and S soft nucleophiles. The regiochemical outcome of this high-yielding functionalization shows that the nucleophilic substitution occurs only at the benzylic position. Interestingly, with this protocol, the sulfonyl unit could be appended to the indole nucleus, providing convenient access to new classes of molecules with potential bioactivity.
Collapse
Affiliation(s)
- Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L. go Francesco Vito 1, 00168 Rome, RM, Italy
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, RM, Italy
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L’Aquila, Via Vetoio, 67100 Coppito, AQ, Italy;
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Via R. Balzarini, 64100 Teramo, TE, Italy;
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Andrea Serraiocco
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| | - Roberta Zoppoli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Rome, RM, Italy; (A.G.); (F.M.); (A.S.); (R.Z.)
| |
Collapse
|
14
|
Gu X, Dai M, Qing X, Liu Y, Zhang Z, Wei Z, Liang T. Iron-Catalyzed Friedel-Crafts-type 3,5-Diacylation of Indoles. J Org Chem 2024; 89:10272-10282. [PMID: 38967436 DOI: 10.1021/acs.joc.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The exploration of remote functionalization of indoles is impeded by the inherently dominant reactivity intrinsic to the pyrrole moiety. Herein, we delineate a novel strategy facilitated by Lewis acid mediation, enabling the remote C-H functionalization, which culminates in the synthesis of an array of selectively functionalized indole derivatives, encompassing 3-trifluoroacetyl and 5-benzoyl motifs, utilizing trifluoroacetic anhydride and various acyl chlorides. Notably, the protocol exhibits versatility, as epitomized by the extension of C5-acylation to alkylation and sulfonation reactions. This methodology is distinguished by its exemplary regio- and chemo-selectivity, extensive substrate scope, commendable tolerance to a diverse array of functional groups, and the employment of comparatively mild reaction conditions.
Collapse
Affiliation(s)
- Xiaoting Gu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Maoyi Dai
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xirui Qing
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yifeng Liu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
15
|
Falah K, Zhang P, Nigam AK, Maity K, Chang G, Granados JC, Momper JD, Nigam SK. In Vivo Regulation of Small Molecule Natural Products, Antioxidants, and Nutrients by OAT1 and OAT3. Nutrients 2024; 16:2242. [PMID: 39064685 PMCID: PMC11280313 DOI: 10.3390/nu16142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.
Collapse
Affiliation(s)
- Kian Falah
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick Zhang
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anisha K. Nigam
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Koustav Maity
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Geoffrey Chang
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Song W, Ji L, Zhang Y, Cao L. New cytotoxic indole derivatives with anti-FADU potential produced by the endophytic fungus Penicillium oxalicum 2021CDF-3 through the OSMAC strategy. Front Microbiol 2024; 15:1400803. [PMID: 38873167 PMCID: PMC11169714 DOI: 10.3389/fmicb.2024.1400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Fungi possess well-developed secondary metabolism pathways that are worthy of in-depth exploration. The One Strain Many Compounds (OSMAC) strategy is a useful method for exploring chemically diverse secondary metabolites. In this study, continued chemical investigations of the marine red algae-derived endophytic fungus Penicillium oxalicum 2021CDF-3 cultured in PDB media yielded six structurally diverse indole derivatives, including two new prenylated indole alkaloids asperinamide B (1) and peniochroloid B (5), as well as four related derivatives (compounds 2-4 and 6). The chemical structures of these compounds, including the absolute configurations of 1 and 5, were determined by extensive analyses of HRESIMS, 1D and 2D NMR spectroscopic data, and TDDFT-ECD calculations. Compound 1 was found to possess an unusual 3-pyrrolidone dimethylbenzopyran fused to the bicyclo[2.2.2]diazaoctane moiety, which was rare in previously reported prenylated indole alkaloids. In vitro cytotoxic experiments against four human tumor cell lines (HeLa, HepG2, FADU, and A549) indicated that 1 strongly inhibited the FADU cell line, with an IC50 value of 0.43 ± 0.03 μM. This study suggested that the new prenylated indole alkaloid 1 is a potential lead compound for anti-FADU drugs.
Collapse
Affiliation(s)
- Wei Song
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Lianlian Ji
- Department of Pediatrics, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yanxia Zhang
- Shandong Research Center of Engineering and Technology for Safety Inspection of Food and Drug, Shandong Institute for Food and Drug Control, Jinan, China
| | - Longhe Cao
- Department of Otolaryngology, The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
17
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
18
|
Nandi R, Ajarul S, Mandal PK, Manna AS, Kayet A, Maiti DK. Hybrid Heterocycles: Ag(I)-Catalyzed C-C/C-N/C-O Coupled Cascade Dual Cyclization to Valuable Indolo-4 H-indolones and Indolo-4 H-chromenes. J Org Chem 2024; 89:2556-2570. [PMID: 38276896 DOI: 10.1021/acs.joc.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herein, we report a highly efficient Ag(I)-catalyzed indolyzation with Friedel-Crafts alkylation through a cascade cyclization strategy for accessing valuable hybrid heterocycles for the first time. This general strategy consists of forming four C-C/C-N/C-O bonds toward dual annulation reactions of 2-alkynylanilines with methyl benzoate-2-carboxaldehydes and aromatic amines, as well as with salicylaldehydes and malononitrile. Variably substituted new indolo-4H-phthalimidines and indolo-4H-chromenes were synthesized with excellent yields (85-93%) under mild reaction conditions.
Collapse
Affiliation(s)
- Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sk Ajarul
- Government General Degree College at Salboni, Bhimpur, Paschim, Medinipur 721516, West Bengal, India
| | - Prakash K Mandal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anirban Kayet
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
19
|
Boshoff HI, Malhotra N, Barry CE, Oh S. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Pharmaceuticals (Basel) 2024; 17:211. [PMID: 38399426 PMCID: PMC10892018 DOI: 10.3390/ph17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is notorious as the leading cause of death worldwide due to a single infectious entity and its causative agent, Mycobacterium tuberculosis (Mtb), has been able to evolve resistance to all existing drugs in the treatment arsenal complicating disease management programs. In drug discovery efforts, natural products are important starting points in generating novel scaffolds that have evolved to specifically bind to vulnerable targets not only in pathogens such as Mtb, but also in mammalian targets associated with human diseases. Structural diversity is one of the most attractive features of natural products. This review provides a summary of fused-nitrogen-containing heterocycles found in the natural products reported in the literature that are known to have antitubercular activities. The structurally targeted natural products discussed in this review could provide a revealing insight into novel chemical aspects with novel biological functions for TB drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.I.B.); (N.M.); (C.E.B.III)
| |
Collapse
|
20
|
Lu P, Shi Y, Zhang J, Hong K, Xue Y, Liu L. New prenylated indole-benzodiazepine-2,5-diones with α-glucosidase inhibitory activities from the mangrove-derived Aspergillus spinosus. Int J Biol Macromol 2024; 257:128808. [PMID: 38101666 DOI: 10.1016/j.ijbiomac.2023.128808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Mangrove-derived fungi have been demonstrated to be promising source of structurally diverse and widely active secondary metabolites. During our search for new bioactive compounds, eight new indole-benzodiazepine-2,5-dione derivatives asperdinones A-H (1-8) and two known congeners (9 and 10) were isolated from the culture extracts of the mangrove-derived fungus Aspergillus spinosus WHUF0344 guided by one strain many compounds (OSMAC) and the heteronuclear 1H, 13C single-quantum coherence (HSQC) based small molecule accurate recognition technology (SMART) strategies. The structures and absolute configurations of the new compounds were elucidated by detailed spectroscopic analyze and electronic circular dichroism (ECD) calculations. The putative biosynthetic pathway of these compounds was proposed. Compounds 1-10 were evaluated for their antibacterial and α-glucosidase inhibitory activities. None of compounds showed antibacterial activity. Compounds 2-6 and 8 exhibited moderate inhibitory effects against α-glucosidase with IC50 values in the range of 24.65-312.25 μM. Besides, both 3 and 4 inhibited α-glucosidase variedly. Furthermore, the molecular docking study showed that compounds 2-4 were perfectly docking into the active sites of α-glucosidase. This study not only enriched the chemical diversity of secondary metabolites from the mangrove-derived fungi, but also provided potential hit compounds for further development of α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Peiyu Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Yaxin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
21
|
Bonato Wille AP, Pereira da Motta K, Pinto Brites N, Luchese C, Frederico Schumacher R, Antunes Wilhelm E. Synthesis and investigation of new indole-containing vinyl sulfide derivatives: In silico and in vitro studies for potential therapeutic applications. Chem Biodivers 2024; 21:e202301460. [PMID: 38117615 DOI: 10.1002/cbdv.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/22/2023]
Abstract
Indoles featuring organosulfur compounds serve as privileged structural scaffolds in various biologically active compounds. This study investigates the biological properties of five synthetic sulphenyl vinyl indoles (3 a-e) using both in silico and in vitro methods. Computational analyses employing Swiss ADME and Molinspiration software reveal the remarkable inhibitory activity of compound 3 d against proteases and kinases (scores of 0.18 and 0.06, respectively). Furthermore, it demonstrates the ability to modulate ionic and G protein-coupled receptors (scores: -0.06 and 0.31, respectively) and serves as a ligand for nuclear receptors (score 0.15). In vitro investigations highlight the compounds' efficacy in countering ABTS+ radical attacks and reducing lipid peroxidation levels. Particularly noteworthy is the superior efficacy of compounds 3 a, 3 b, and 3 e in DPPH (EC50 3 a: 268.5 μM) and TEAC assays (EC50 3 a: 49.9 μM; EC50 3 b: 133.4 μM, and EC50 3 e: 84.9 μM), as well as TBARS levels. Compound 3 c significantly reduces acetylcholinesterase activity, positioning itself as a noteworthy enzyme inhibitor. This study emphasizes the versatile biological potential of synthetic indole derivatives, suggesting their applicability for therapeutic purposes.
Collapse
Affiliation(s)
- Ana Paula Bonato Wille
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Ketlyn Pereira da Motta
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | - Nathan Pinto Brites
- Department of Chemistry, Federal University of Santa Maria, Santa Maria Brazil, CEP, 97105-900, RS, Brazil
| | - Cristiane Luchese
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| | | | - Ethel Antunes Wilhelm
- Postgraduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil CEP, 96010-900, RS, Brazil
| |
Collapse
|
22
|
Nguyen HT, Tuan AN, Thi TAD, Van KT, Le-Nhat-Thuy G, Thi PH, Thi QGN, Thi CB, Quang HT, Van Nguyen T. Synthesis, in vitro Α-Glucosidase, and acetylcholinesterase inhibitory activities of novel Indol-Fused Pyrano[2,3-D]Pyrimidine compounds. Bioorg Med Chem Lett 2024; 98:129566. [PMID: 38008338 DOI: 10.1016/j.bmcl.2023.129566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
In this study, new indol-fused pyrano[2,3-d]pyrimidines were designed and synthesized. These products were obtained in moderate to good yields and their structures were assigned by NMR, MS, and IR analysis. Afterwards, the biological important of the products was highlighted by evaluating in vitro for α-glucosidase inhibitory activity as well as acetylcholinesterase (AChE) inhibitory activity. Eleven products revealed substantial inhibitory activity against α-glucosidase enzyme, among which, two most potent products 11d,e were approximately 93-fold more potent than acarbose as a standard antidiabetic drug. Besides that, product 11k exhibited good AChE inhibition. The substituents on the 5-phenyl ring, attached to the pyran ring, played a critical role in inhibitory activities. The biological potencies have provided an opportunity to further investigations of indol-fused pyrano[2,3-d]pyrimidines as potential anti-diabetic agents.
Collapse
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Anh Nguyen Tuan
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ket Tran Van
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Military Technology Academy, 236 Hoang Quoc Viet, Bac Tu Liem, Hanoi, Vietnam
| | - Giang Le-Nhat-Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Cham Ba Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hung Tran Quang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
23
|
Petrova A, Tretyakova E, Khusnutdinova E, Kazakova O, Slita A, Zarubaev V, Ma X, Jin H, Xu H, Xiao S. Antiviral opportunities of Mannich bases derived from triterpenic N-propargylated indoles. Chem Biol Drug Des 2024; 103:e14370. [PMID: 37802645 DOI: 10.1111/cbdd.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Oleanolic and glycyrrhetic acids alkyne derivatives were synthesized as a result of propargylation of the indole NH-group condensed with the triterpene A-ring, the following aminomethylation led to a series of Mannich bases. The synthesized compounds were tested for their potential inhibition of influenza A/PuertoRico/8/34 (H1N1) virus in Madin-Darby canine kidney (MDCK) cell culture and SARS-CoV-2 pseudovirus in baby hamster kidney-21-human angiotensin-converting enzyme 2 (BHK-21-hACE2) cells. Mannich bases of oleanolic and glycyrrhetic acids N-propargylated indoles 7, 8, and 12 were the most efficacious against influenza virus A with IC50 7-10 μM together with a low toxicity (CC50 > 145 μM) and high selectivity index SI value 20. Indolo-oleanolic acid morpholine amide Mannich base holding N-methylpiperazine moiety 9 showed anti-SARS-CoV-2 pseudovirus activity with EC50 value of 14.8 μM. Molecular docking and dynamics modeling investigated the binding mode of the compounds 7 and 12 into the binding pocket of influenza A virus M2 protein and compound 9 into the RBD domain of SARS-CoV-2 spike glycoprotein.
Collapse
Affiliation(s)
| | | | | | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, Ufa, Russian Federation
| | - Alexander Slita
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Vladimir Zarubaev
- Department of Virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental Virology Laboratory, St. Petersburg, Russian Federation
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
24
|
Zhang B, Erb FR, Vasilopoulos A, Voight EA, Alexanian EJ. General Synthesis of N-Alkylindoles from N, N-Dialkylanilines via [4 + 1] Annulative Double C-H Functionalization. J Am Chem Soc 2023; 145:26540-26544. [PMID: 38029320 PMCID: PMC10789186 DOI: 10.1021/jacs.3c10751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Strategies enabling the construction of indoles and novel polycyclic heterocycles from simple building blocks streamline syntheses in synthetic and medicinal chemistry. Herein, we report a C-H functionalization approach to N-alkylindoles proceeding via a double, site-selective C(sp3)-H/C(sp2)-H [4 + 1] annulation of readily accessed N,N-dialkylanilines. This protocol features a site-selective hydrogen atom transfer by a tuned N-tBu amidyl radical and addition of a sulfonyl diazo coupling partner, which promotes highly site-selective homolytic aromatic substitution of the (hetero)aromatic core. Mild decarboxylation of the annulation product enables the overall introduction of a carbyne equivalent into the N,N-dialkylaniline scaffold. Furthermore, the site-selectivity and mild conditions of the indolization facilitate direct access to N-alkyl indole scaffolds in late-stage functionalization (LSF) settings.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Frederik R. Erb
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Eric A. Voight
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
25
|
Pazur EJ, Tasker NR, Wipf P. C3-Functionalization of indoles with α-heteroaryl-substituted methyl alcohols. Org Biomol Chem 2023; 21:8651-8657. [PMID: 37873703 DOI: 10.1039/d3ob01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The transition metal-free Cs2CO3/Oxone®-mediated C3-alkylation of indoles proceeds in moderate to high yields with a variety of C4-C7 functionalized indoles and is applicable to 2-, 3- and 4-hydroxymethyl pyridines and related electron-deficient heterocycles, permitting novel late-stage drug functionalizations. Preliminary mechanistic studies support a hydrogen autotransfer-type chain process starting with an initial oxidation of the alcohol to the corresponding aldehyde, followed by a subsequent condensation onto indole and reduction/hydride delivery from another equivalent of the primary alcohol.
Collapse
Affiliation(s)
- Ethan J Pazur
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
26
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
27
|
Kee Cheng J, Tan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Compounds Involving Indole Derivatives. CHEM REC 2023; 23:e202300147. [PMID: 37358342 DOI: 10.1002/tcr.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N-H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C-C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
28
|
Oswald IWH, Paryani TR, Sosa ME, Ojeda MA, Altenbernd MR, Grandy JJ, Shafer NS, Ngo K, Peat JR, Melshenker BG, Skelly I, Koby KA, Page MFZ, Martin TJ. Minor, Nonterpenoid Volatile Compounds Drive the Aroma Differences of Exotic Cannabis. ACS OMEGA 2023; 8:39203-39216. [PMID: 37901519 PMCID: PMC10601067 DOI: 10.1021/acsomega.3c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Cannabis sativa L. produces a wide variety of volatile secondary metabolites that contribute to its unique aroma. The major volatile constituents include monoterpenes, sesquiterpenes, and their oxygenated derivates. In particular, the compounds ß-myrcene, D-(+)-limonene, ß-caryophyllene, and terpinolene are often found in greatest amounts, which has led to their use in chemotaxonomic classification schemes and legal Cannabis sativa L. product labeling. While these compounds contribute to the characteristic aroma of Cannabis sativa L. and may help differentiate varieties on a broad level, their importance in producing specific aromas is not well understood. Here, we show that across Cannabis sativa L. varieties with divergent aromas, terpene expression remains remarkably similar, indicating their benign contribution to these unique, specific scents. Instead, we found that many minor, nonterpenoid compounds correlate strongly with nonprototypical sweet or savory aromas produced by Cannabis sativa L. Coupling sensory studies to our chemical analysis, we derive correlations between groups of compounds, or in some cases, individual compounds, that produce many of these diverse scents. In particular, we identified a new class of volatile sulfur compounds (VSCs) containing the 3-mercaptohexyl functional group responsible for the distinct citrus aromas in certain varieties and skatole (3-methylindole) as the key source of the chemical aroma in others. Our results provide not only a rich understanding of the chemistry of Cannabis sativa L. but also highlight how the importance of terpenes in the context of the aroma of Cannabis sativa L. has been overemphasized.
Collapse
Affiliation(s)
- Iain W. H. Oswald
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Twinkle R. Paryani
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Manuel E. Sosa
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
- Chemistry
and Biochemistry Department, Cal Poly Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Marcos A. Ojeda
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Mark R. Altenbernd
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Jonathan J. Grandy
- Sepsolve
Analytical Schauenburg Analytics, 826 King Street North Unit 15, Waterloo, Ontario N2J4G8, Canada
| | - Nathan S. Shafer
- Markes
International-Schauenburg Analytics, 2355 Gold Meadow Drive, Gold River, California 95670, United States
| | - Kim Ngo
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Jack R. Peat
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Bradley G. Melshenker
- 710
Labs, 8149 Santa Monica
Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Ian Skelly
- 710
Labs, 8149 Santa Monica
Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Kevin A. Koby
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Michael F. Z. Page
- Chemistry
and Biochemistry Department, Cal Poly Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Thomas J. Martin
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| |
Collapse
|
29
|
Zhang JX, Zhang BD, Shi Y, Zhai YN, Ren JW, Cai L, Sun LY, Liu L. Penindolacid A, a new indole alkaloid from the marine-derived fungus Penicillium sp. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:554-559. [PMID: 37614032 DOI: 10.1002/mrc.5389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Jin-Xin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Dan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Zhai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Yan Sun
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Saleem F, Khan KM. Indole Derivatives: Unveiling New Frontiers in Medicinal and Synthetic Organic Chemistry. Molecules 2023; 28:5477. [PMID: 37513349 PMCID: PMC10385700 DOI: 10.3390/molecules28145477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, significant attention has been given to indoles, a diverse group of heterocyclic compounds widely found in nature that play a crucial role in various bioactive natural and synthetic substances [...].
Collapse
Affiliation(s)
- Faiza Saleem
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- Husein Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Pakistan Academy of Science, 3-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| |
Collapse
|
31
|
Maspero A, Vavassori F, Nardo L, Vesco G, Vitillo JG, Penoni A. Synthesis, Characterization, Fluorescence Properties, and DFT Modeling of Difluoroboron Biindolediketonates. Molecules 2023; 28:4688. [PMID: 37375243 DOI: 10.3390/molecules28124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We report a simple and efficient strategy to enhance the fluorescence of biocompatible biindole diketonates (bdks) in the visible spectrum through difluoroboronation (BF2bdks complexes). Emission spectroscopy testifies an increase in the fluorescence quantum yields from a few percent to as much as >0.7. This massive increment is essentially independent of substitutions at the indole (-H, -Cl, and -OCH3) and corresponds to a significant stabilization of the excited state with respect to non-radiative decay mechanisms: the non-radiative decay rates are reduced by as much as an order of magnitude, from 109 s-1 to 108 s-1, upon difluoroboronation. The stabilization of the excited state is large enough to enable sizeable 1O2 photosensitized production. Different time-dependent (TD) density functional theory (DFT) methods were assessed in their ability to model the electronic properties of the compounds, with TD-B3LYP-D3 providing the most accurate excitation energies. The calculations associate the first active optical transition in both the bdks and BF2bdks electronic spectra to the S0 → S1 transition, corresponding to a shift in the electronic density from the indoles to the oxygens or the O-BF2-O unit, respectively.
Collapse
Affiliation(s)
- Angelo Maspero
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Federico Vavassori
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Luca Nardo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Guglielmo Vesco
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Andrea Penoni
- Department of Science and High Technology and INSTM, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| |
Collapse
|
32
|
Tajik M, Shiri M, Hussain FHS, Lotfi Nosood Y, Baeiszadeh B, Amini Z, Bikas R, Pyra A. Highly regioselective and diastereoselective synthesis of novel pyrazinoindolones via a base-mediated Ugi- N-alkylation sequence. RSC Adv 2023; 13:16963-16969. [PMID: 37288378 PMCID: PMC10243185 DOI: 10.1039/d3ra02065g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
An efficient base-mediated/metal-free approach has been developed for the synthesis of 1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide derivatives via intramolecular indole N-H alkylation of novel bis-amide Ugi-adducts. In this protocol the Ugi reaction of (E)-cinnamaldehyde derivatives, 2-chloroaniline, indole-2-carboxylic acid and different isocyanides was designed for the preparation of bis-amides. The main highlight of this study is the practical and highly regioselective preparation of new polycyclic functionalized pyrazino derivatives. This system is facilitated by Na2CO3 mediation in DMSO and 100 °C conditions.
Collapse
Affiliation(s)
- Maryam Tajik
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Morteza Shiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Faiq H S Hussain
- Medical Analysis Department, Applied Science Faculty, Tishk International University Erbil Kurdistan Region Iraq
| | - Yazdanbakhsh Lotfi Nosood
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Behnaz Baeiszadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Zahra Amini
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University Vanak Tehran 1993893973 Iran
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin 34148-96818 Iran
| | - Anna Pyra
- Faculty of Chemistry, University of Wrocław 14 Joliot-Curie 50-383 Wroclaw Poland
| |
Collapse
|
33
|
Abaev VT, Aksenov NA, Aksenov DA, Aleksandrova EV, Akulova AS, Kurenkov IA, Leontiev AV, Aksenov AV. One-Pot Synthesis of Polynuclear Indole Derivatives by Friedel–Crafts Alkylation of γ-Hydroxybutyrolactams. Molecules 2023; 28:molecules28073162. [PMID: 37049924 PMCID: PMC10095734 DOI: 10.3390/molecules28073162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The Friedel–Crafts reaction of novel 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones was used for low cost, one-pot preparation of polycyclic indole derivatives structurally similar to Ergot alkaloids.
Collapse
Affiliation(s)
- Vladimir T. Abaev
- Department of Chemistry, Biology and Biotechnology, North-Ossetian State University Named after K. L. Khetagurov, 46 Vatutin St., Vladikavkaz 362025, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Elena V. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alesia S. Akulova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| |
Collapse
|
34
|
Synthesis and Biological Evaluation of Sclareolide-Indole Conjugates and Their Derivatives. Molecules 2023; 28:molecules28041737. [PMID: 36838727 PMCID: PMC9961340 DOI: 10.3390/molecules28041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Sclareolide is a sesquiterpene lactone isolated from various plant sources in tons every year and is commercially used as a flavor ingredient in the cosmetic and food industries. Antitumor and antiviral activities of sclareolide have been previously reported. However, biological studies of sclareolide synthetic analogous are few. In view of these, we developed a robust synthetic method that allows the assembly of 36 novel sclareolide-indole conjugates and their derivatives. The synthetic method was based on TiCl4-promoted nucleophilic substitution of sclareolide-derived hemiacetal 4, while electron-rich aryles including indoles, polyphenol ethers, and pyrazolo [1,5-a]pyridine were good substrates. The stereochemistry of the final products was confirmed by single-crystal X-ray diffraction analysis, while the antiproliferative activities of selected final products were tested in K562 and MV4-11 cancer cell lines. Cytometric flow analysis shows that lead compounds 8k- and 10-induced robust apoptosis in MV4-11 cancer cells, while they exhibited weak impact on cell cycle progression. Taken together, our study suggests that sclareolide could be a good template and substrate for the synthesis of novel antiproliferative compounds.
Collapse
|