1
|
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts. Nanotoxicology 2024; 18:565-581. [PMID: 39295432 PMCID: PMC11581909 DOI: 10.1080/17435390.2024.2404074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuanbao Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Ognjanović M, Bošković M, Kolev H, Dojčinović B, Vranješ-Đurić S, Antić B. Synthesis, Surface Modification and Magnetic Properties Analysis of Heat-Generating Cobalt-Substituted Magnetite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:782. [PMID: 38727376 PMCID: PMC11085861 DOI: 10.3390/nano14090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Here, we present the results of the synthesis, surface modification, and properties analysis of magnetite-based nanoparticles, specifically Co0.047Fe2.953O4 (S1) and Co0.086Fe2.914O4 (S2). These nanoparticles were synthesized using the co-precipitation method at 80 °C for 2 h. They exhibit a single-phase nature and crystallize in a spinel-type structure (space group Fd3¯m). Transmission electron microscopy analysis reveals that the particles are quasi-spherical in shape and approximately 11 nm in size. An observed increase in saturation magnetization, coercivity, remanence, and blocking temperature in S2 compared to S1 can be attributed to an increase in magnetocrystalline anisotropy due to the incorporation of Co ions in the crystal lattice of the parent compound (Fe3O4). The heating efficiency of the samples was determined by fitting the Box-Lucas equation to the acquired temperature curves. The calculated Specific Loss Power (SLP) values were 46 W/g and 23 W/g (under HAC = 200 Oe and f = 252 kHz) for S1 and S2, respectively. Additionally, sample S1 was coated with citric acid (Co0.047Fe2.953O4@CA) and poly(acrylic acid) (Co0.047Fe2.953O4@PAA) to obtain stable colloids for further tests for magnetic hyperthermia applications in cancer therapy. Fits of the Box-Lucas equation provided SLP values of 21 W/g and 34 W/g for CA- and PAA-coated samples, respectively. On the other hand, X-ray photoelectron spectroscopy analysis points to the catalytically active centers Fe2+/Fe3+ and Co2+/Co3+ on the particle surface, suggesting possible applications of the samples as heterogeneous self-heating catalysts in advanced oxidation processes under an AC magnetic field.
Collapse
Affiliation(s)
- Miloš Ognjanović
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Marko Bošković
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Biljana Dojčinović
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Vranješ-Đurić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| | - Bratislav Antić
- VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia; (M.B.); (S.V.-Đ.); (B.A.)
| |
Collapse
|
3
|
Hiba IH, Koh JK, Lai CW, Mousavi SM, Badruddin IA, Hussien M, Wong JP. Polyrhodanine-based nanomaterials for biomedical applications: A review. Heliyon 2024; 10:e28902. [PMID: 38633652 PMCID: PMC11021909 DOI: 10.1016/j.heliyon.2024.e28902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.
Collapse
Affiliation(s)
- Ibrahim Huzyan Hiba
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Jin Kwei Koh
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Jest Phia Wong
- Harper Elite Sdn Bhd, UG-23, PJ Midtown, Jalan Kemajuan, Seksyen 13, 46200, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Khokhryakova C, Shmyrov A, Mizeva I. Does Magnetic Field Influence the Surface Tension of Ferrofluid? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4285-4293. [PMID: 38356339 DOI: 10.1021/acs.langmuir.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Studying the physical properties of ferrofluids is a challenging task, especially when conventional experimental techniques are adapted to the presence of a magnetic field. To date, there has been no definitive understanding of how the magnetic field affects the surface energy of ferrofluid interfaces. In this study, we perform a direct experimental investigation to assess the effect of magnetic fields on the surface tension of ferrofluids. For this purpose, a modified capillary wave technique was modified for use in the presence of an external magnetic field. A decrease in the wavelength of the capillary wave was observed when the magnetic field was oriented perpendicular to the ferrofluid surface, and an increase was recorded when the magnetic field was parallel. We note that the capillary wave pattern elongates along the magnetic field force lines. The observed effect is attributed to the varying influence of the magnetic field along and across the propagating capillary wave. Analysis of the dispersion relation and evaluation of the impacts of various mechanisms influencing capillary waves revealed, that the changes in the surface tension of ferrofluids in the presence of a magnetic field are responsible for the observed behavior. It is shown that the surface tension of the MK 8-40 ferrofluid gradually increases with the applied magnetic field and reaches a grouth up to 10% in a magnetic field of ∼10 kA/m. Thus, the surface tension is found to be influenced by an external magnetic field.
Collapse
Affiliation(s)
| | - Andrey Shmyrov
- Institute of Continuous Media Mechanics UrB of RAS, ak. Koroleva 1, 614013 Perm, Russia
| | - Irina Mizeva
- Institute of Continuous Media Mechanics UrB of RAS, ak. Koroleva 1, 614013 Perm, Russia
| |
Collapse
|
5
|
Lomphithak T, Helvacioglu S, Armenia I, Keshavan S, Ovejero JG, Baldi G, Ravagli C, Grazú V, Fadeel B. High-Dose Exposure to Polymer-Coated Iron Oxide Nanoparticles Elicits Autophagy-Dependent Ferroptosis in Susceptible Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111719. [PMID: 37299622 DOI: 10.3390/nano13111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Ferroptosis, a form of iron-dependent, lipid peroxidation-driven cell death, has been extensively investigated in recent years, and several studies have suggested that the ferroptosis-inducing properties of iron-containing nanomaterials could be harnessed for cancer treatment. Here we evaluated the potential cytotoxicity of iron oxide nanoparticles, with and without cobalt functionalization (Fe2O3 and Fe2O3@Co-PEG), using an established, ferroptosis-sensitive fibrosarcoma cell line (HT1080) and a normal fibroblast cell line (BJ). In addition, we evaluated poly (ethylene glycol) (PEG)-poly(lactic-co-glycolic acid) (PLGA)-coated iron oxide nanoparticles (Fe3O4-PEG-PLGA). Our results showed that all the nanoparticles tested were essentially non-cytotoxic at concentrations up to 100 μg/mL. However, when the cells were exposed to higher concentrations (200-400 μg/mL), cell death with features of ferroptosis was observed, and this was more pronounced for the Co-functionalized nanoparticles. Furthermore, evidence was provided that the cell death triggered by the nanoparticles was autophagy-dependent. Taken together, the exposure to high concentrations of polymer-coated iron oxide nanoparticles triggers ferroptosis in susceptible human cancer cells.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Selin Helvacioglu
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jesús G Ovejero
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
- Department of Dosimetry and Radioprotection, General University Hospital Gregorio Marañón, 28049 Madrid, Spain
| | - Giovanni Baldi
- Colorobbia Consulting S.R.L., Sovigliana, 50053 Vinci, Italy
| | | | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50001 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
6
|
Zahn D, Landers J, Diegel M, Salamon S, Stihl A, Schacher FH, Wende H, Dellith J, Dutz S. Optimization of Magnetic Cobalt Ferrite Nanoparticles for Magnetic Heating Applications in Biomedical Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101673. [PMID: 37242088 DOI: 10.3390/nano13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Using magnetic nanoparticles for extracorporeal magnetic heating applications in bio-medical technology allows higher external field amplitudes and thereby the utilization of particles with higher coercivities (HC). In this study, we report the synthesis and characterization of high coercivity cobalt ferrite nanoparticles following a wet co-precipitation method. Particles are characterized with magnetometry, X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy (TEM) and calorimetric measurements for the determination of their specific absorption rate (SAR). In the first series, CoxFe3-xO4 particles were synthesized with x = 1 and a structured variation of synthesis conditions, including those of the used atmosphere (O2 or N2). In the second series, particles with x = 0 to 1 were synthesized to study the influence of the cobalt fraction on the resulting magnetic and structural properties. Crystallite sizes of the resulting particles ranged between 10 and 18 nm, while maximum coercivities at room temperatures of 60 kA/m for synthesis with O2 and 37 kA/m for N2 were reached. Magnetization values at room temperature and 2 T (MRT,2T) up to 60 Am2/kg under N2 for x = 1 can be achieved. Synthesis parameters that lead to the formation of an additional phase when they exceed specific thresholds have been identified. Based on XRD findings, the direct correlation between high-field magnetization, the fraction of this antiferromagnetic byphase and the estimated transition temperature of this byphase, extracted from the Mössbauer spectroscopy series, we were able to attribute this contribution to akageneite. When varying the cobalt fraction x, a non-monotonous correlation of HC and x was found, with a linear increase of HC up to x = 0.8 and a decrease for x > 0.8, while magnetometry and in-field Mössbauer experiments demonstrated a moderate degree of spin canting for all x, yielding high magnetization. SAR values up to 480 W/g (@290 kHz, 69 mT) were measured for immobilized particles with x = 0.3, whit the external field amplitude being the limiting factor due to the high coercivities of our particles.
Collapse
Affiliation(s)
- Diana Zahn
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Joachim Landers
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Marco Diegel
- Leibniz Institute of Photonic Technology (IPHT), D-07745 Jena, Germany
| | - Soma Salamon
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Andreas Stihl
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
- Jena Center for Soft Matter (JSCM), Friedrich-Schiller-University Jena, D-07745 Jena, Germany
| | - Felix H Schacher
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, D-07743 Jena, Germany
- Jena Center for Soft Matter (JSCM), Friedrich-Schiller-University Jena, D-07745 Jena, Germany
| | - Heiko Wende
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology (IPHT), D-07745 Jena, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, D-98693 Ilmenau, Germany
- Leibniz Institute of Photonic Technology (IPHT), D-07745 Jena, Germany
- Leupold Institute for Applied Natural Sciences (LIAN), Westsächsische Hochschule Zwickau, D-08056 Zwickau, Germany
| |
Collapse
|
7
|
Arosio P, Orsini F, Brero F, Mariani M, Innocenti C, Sangregorio C, Lascialfari A. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core-shell nanoparticles: a brief review of the situation. Dalton Trans 2023; 52:3551-3562. [PMID: 36880505 DOI: 10.1039/d2dt03387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In this perspective article, we present a short selection of some of the most significant case studies on magnetic nanoparticles for potential applications in nanomedicine, mainly magnetic resonance. For almost 10 years, our research activity focused on the comprehension of the physical mechanisms on the basis of the nuclear relaxation of magnetic nanoparticles in the presence of magnetic fields; taking advantage of the insights gathered over this time span, we report on the dependence of the relaxation behaviour on the chemico-physical properties of magnetic nanoparticles and discuss them in full detail. In particular, a critical review is carried out on the correlations between their efficiency as contrast agents in magnetic resonance imaging and the magnetic core of magnetic nanoparticles (mainly iron oxides), their size and shape, and the coating and solvent used for making them biocompatible and well dispersible in physiological media. Finally, the heuristic model proposed by Roch and coworkers is presented, as it was extensively adopted to describe most of the experimental data sets. The large amount of data analyzed allowed us to highlight both the advantages and limitations of the model.
Collapse
Affiliation(s)
- Paolo Arosio
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesco Orsini
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesca Brero
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lascialfari
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
8
|
Saeidi H, Mozaffari M, Ilbey S, Dutz S, Zahn D, Azimi G, Bock M. Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020331. [PMID: 36678084 PMCID: PMC9861161 DOI: 10.3390/nano13020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely applied as magnetic resonance imaging (MRI) contrast agents. MNPs offer significant contrast improvements in MRI through their tunable relaxivities, but to apply them as clinical contrast agents effectively, they should exhibit a high saturation magnetization, good colloidal stability and sufficient biocompatibility. In this work, we present a detailed description of the synthesis and the characterizations of europium-substituted Mn-Zn ferrite (Mn0.6Zn0.4EuxFe2-xO4, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, and 0.15, herein named MZF for x = 0.00 and EuMZF for others). MNPs were synthesized by the coprecipitation method and subsequent hydrothermal treatment, coated with citric acid (CA) or pluronic F127 (PF-127) and finally characterized by X-ray Diffraction (XRD), Inductively Coupled Plasma (ICP), Vibrating Sample Magnetometry (VSM), Fourier-Transform Infrared (FTIR), Dynamic Light Scattering (DLS) and MRI Relaxometry at 3T methods. The XRD studies revealed that all main diffraction peaks are matched with the spinel structure very well, so they are nearly single phase. Furthermore, XRD study showed that, although there are no significant changes in lattice constants, crystallite sizes are affected by europium substitution significantly. Room-temperature magnetometry showed that, in addition to coercivity, both saturation and remnant magnetizations decrease with increasing europium substitution and coating with pluronic F127. FTIR study confirmed the presence of citric acid and poloxamer (pluronic F127) coatings on the surface of the nanoparticles. Relaxometry measurements illustrated that, although the europium-free sample is an excellent negative contrast agent with a high r2 relaxivity, it does not show a positive contrast enhancement as the concentration of nanoparticles increases. By increasing the europium to x = 0.15, r1 relaxivity increased significantly. On the contrary, europium substitution decreased r2 relaxivity due to a reduction in saturation magnetization. The ratio of r2/r1 decreased from 152 for the europium-free sample to 11.2 for x = 0.15, which indicates that Mn0.6Zn0.4Eu0.15Fe1.85O4 is a suitable candidate for dual-mode MRI contrast agent potentially. The samples with citric acid coating had higher r1 and lower r2 relaxivities than those of pluronic F127-coated samples.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Morteza Mozaffari
- Faculty of Physics, University of Isfahan, Isfahan 8174673441, Iran
- Correspondence: ; Tel.: +98-31-3793-4741
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Diana Zahn
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhof-Straße 2, 98693 Ilmenau, Germany
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106 Freiburg, Germany
| |
Collapse
|
9
|
Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, Albarqi HA, Campos L, Wyatt CR, Farsad K, Dhagat P, Sun C, Taratula OR, Taratula O. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. SMALL METHODS 2022; 6:e2200916. [PMID: 36319445 PMCID: PMC9772135 DOI: 10.1002/smtd.202200916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 88723, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Kingdom of Saudi Arabia
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, 97239, USA
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, 97239, USA
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| |
Collapse
|
10
|
Duong HTK, Abdibastami A, Gloag L, Barrera L, Gooding JJ, Tilley RD. A guide to the design of magnetic particle imaging tracers for biomedical applications. NANOSCALE 2022; 14:13890-13914. [PMID: 36004758 DOI: 10.1039/d2nr01897g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | | | - Lucy Gloag
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Liam Barrera
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
11
|
Mobinikhaledi A, Ahadi N, Haseli M. The Use of MnCoFe 2O 4@GT@Cu Magnetic Nanoparticles in the Synthesis of Benzopyrans. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2085985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Akbar Mobinikhaledi
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Najmieh Ahadi
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Mohammad Haseli
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
12
|
Andina RI, Kingchok S, Laohhasurayotin K, Traiphol N, Traiphol R. Multi-reversible thermochromic polydiacetylene-CuZnFe2O4 magnetic nanocomposites with tunable colorimetric response to acid-base. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Sánchez EH, Vasilakaki M, Lee SS, Normile PS, Andersson MS, Mathieu R, López-Ortega A, Pichon BP, Peddis D, Binns C, Nordblad P, Trohidou K, Nogués J, De Toro JA. Crossover From Individual to Collective Magnetism in Dense Nanoparticle Systems: Local Anisotropy Versus Dipolar Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106762. [PMID: 35689307 DOI: 10.1002/smll.202106762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.
Collapse
Affiliation(s)
- Elena H Sánchez
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Marianna Vasilakaki
- Institute of Nanoscience and Nanotechnology NCSR "Demokritos", Agia Paraskevi, 153 10, Greece
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering, 31 Biopolis Way, #09-01, The Nanos, Singapore, 138669, Singapore
| | - Peter S Normile
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Mikael S Andersson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Roland Mathieu
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden
| | - Alberto López-Ortega
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
- Departamento de Ciencias, Universidad Pública de Navarra, Pamplona, 31006, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra, Pamplona, 31006, Spain
| | - Benoit P Pichon
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67000, France
- Institut Universitaire de France, Paris Cedex 05, 75231, France
| | - Davide Peddis
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di, Genova, Via Dodecaneso 31, Genova, 1-16146, Italy
- Istituto di Structura della Materia-CNR, Monterotondo Scalo (RM), 00015, Italy
| | - Chris Binns
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Per Nordblad
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden
| | - Kalliopi Trohidou
- Institute of Nanoscience and Nanotechnology NCSR "Demokritos", Agia Paraskevi, 153 10, Greece
| | - Josep Nogués
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - José A De Toro
- Instituto Regional de Investigación Científica Aplicada (IRICA) and Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
14
|
Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications. NANOMATERIALS 2022; 12:nano12030343. [PMID: 35159687 PMCID: PMC8840257 DOI: 10.3390/nano12030343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
This paper describes the preparation and obtained magnetic properties of large single domain iron oxide nanoparticles. Such ferrimagnetic particles are particularly interesting for diagnostic and therapeutic applications in medicine or (bio)technology. The particles were prepared by a modified oxidation method of non-magnetic precursors following the green rust synthesis and characterized regarding their structural and magnetic properties. For increasing preparation temperatures (5 to 85 °C), an increasing particle size in the range of 30 to 60 nm is observed. Magnetic measurements confirm a single domain ferrimagnetic behavior with a mean saturation magnetization of ca. 90 Am2/kg and a size-dependent coercivity in the range of 6 to 15 kA/m. The samples show a specific absorption rate (SAR) of up to 600 W/g, which is promising for magnetic hyperthermia application. For particle preparation temperatures above 45 °C, a non-magnetic impurity phase occurs besides the magnetic iron oxides that results in a reduced net saturation magnetization.
Collapse
|
15
|
Phong LTH, Manh DH, Nam PH, Lam VD, Khuyen BX, Tung BS, Bach TN, Tung DK, Phuc NX, Hung TV, Mai TL, Phan TL, Phan MH. Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles. RSC Adv 2021; 12:698-707. [PMID: 35425141 PMCID: PMC8978697 DOI: 10.1039/d1ra07407e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Cobalt doped magnetite nanoparticles (CoxFe3−xO4 NPs) are investigated extensively because of their potential hyperthermia application. However, the complex interrelation among chemical compositions and particle size means their correlation with the magnetic and heating properties is not trivial to predict. Here, we prepared CoxFe3−xO4 NPs (0 ≤ x ≤ 1) to investigate the effects of cobalt content and particle size on their magnetic and heating properties. A detailed analysis of the structural features indicated the similarity between the crystallite and particle sizes as well as their non-monotonic change with the increase of Co content. Magnetic measurements for the CoxFe3−xO4 NPs (0 ≤ x ≤ 1) showed that the blocking temperature, the saturation magnetization, the coercivity, and the anisotropy constant followed a similar trend with a maximum at x = 0.7. Moreover, 57Fe Mössbauer spectroscopy adequately explained the magnetic behaviour, the anisotropy constant, and saturation magnetization of low Co content samples. Finally, our study shows that the relaxation loss is a primary contributor to the SAR in CoxFe3−xO4 NPs with low Co contents as well as their potential application in magnetic hyperthermia. The interrelation among chemical compositions, structure, and heating properties of cobalt doped magnetite nanoparticles (CoxFe3−xO4 NPs) for their potential hyperthermia application.![]()
Collapse
Affiliation(s)
- L T H Phong
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - D H Manh
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - P H Nam
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - V D Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - B X Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - B S Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - T N Bach
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - D K Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - N X Phuc
- Duy Tan University Da Nang Viet Nam
| | - T V Hung
- Institute of Low Temperatures and Structure Research, Polish Academy of Sciences 50-422 Wroclaw Poland
| | - Thi Ly Mai
- Science and Technology Advances, Van Lang University Ho Chi Minh city Binh Thach Vietnam
| | - The-Long Phan
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies Yongin 17035 Republic of Korea
| | - Manh Huong Phan
- Department of Physics, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
16
|
Inorganic Materials and Metal-Organic Frameworks: Editorial Announcement. NANOMATERIALS 2021; 11:nano11123279. [PMID: 34947628 PMCID: PMC8707181 DOI: 10.3390/nano11123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022]
Abstract
Dear Readers, [...].
Collapse
|
17
|
Shatooti S, Mozaffari M, Reiter G, Zahn D, Dutz S. Heat dissipation in Sm 3+ and Zn 2+ co-substituted magnetite (Zn 0.1Sm xFe 2.9-xO 4) nanoparticles coated with citric acid and pluronic F127 for hyperthermia application. Sci Rep 2021; 11:16795. [PMID: 34408225 PMCID: PMC8373957 DOI: 10.1038/s41598-021-96238-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, Sm3+ and Zn2+ co-substituted magnetite Zn0.1SmxFe2.9-xO4 (x = 0.0, 0.01, 0.02, 0.03, 0.04 and 0.05) nanoparticles, have been prepared via co-precipitation method and were electrostatically and sterically stabilized by citric acid and pluronic F127 coatings. The coated nanoparticles were well dispersed in an aqueous solution (pH 5.5). Magnetic and structural properties of the nanoparticles and their ferrofluids were studied by different methods. XRD studies illustrated that all as-prepared nanoparticles have a single phase spinel structure, with lattice constants affected by samarium cations substitution. The temperature dependence of the magnetization showed that Curie temperatures of the uncoated samples monotonically increased from 430 to 480 °C as Sm3+ content increased, due to increase in A-B super-exchange interactions. Room temperature magnetic measurements exhibited a decrease in saturation magnetization of the uncoated samples from 98.8 to 71.9 emu/g as the Sm3+ content increased, which is attributed to substitution of Sm3+ (1.5 µB) ions for Fe3+ (5 µB) ones in B sublattices. FTIR spectra confirmed that Sm3+ substituted Zn0.1SmxFe2.9-xO4 nanoparticles were coated with both citric acid and pluronic F127 properly. The mean particle size of the coated nanoparticles was 40 nm. Calorimetric measurements showed that the maximum SLP and ILP values obtained for Sm3+ substituted nanoparticles were 259 W/g and 3.49 nHm2/kg (1.08 mg/ml, measured at f = 290 kHz and H = 16kA/m), respectively, that are related to the sample with x = 0.01. Magnetic measurements revealed coercivity, which indicated that hysteresis loss may represent a substantial portion in heat generation. Our results show that these ferrofluids are potential candidates for magnetic hyperthermia applications.
Collapse
Affiliation(s)
- S. Shatooti
- grid.411750.60000 0001 0454 365XFaculty of Physics, University of Isfahan, 81746-73441 Isfahan, Iran ,grid.5963.9Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - M. Mozaffari
- grid.411750.60000 0001 0454 365XFaculty of Physics, University of Isfahan, 81746-73441 Isfahan, Iran
| | - G. Reiter
- grid.5963.9Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - D. Zahn
- grid.6553.50000 0001 1087 7453Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany
| | - S. Dutz
- grid.6553.50000 0001 1087 7453Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, Germany
| |
Collapse
|
18
|
Ma Z, Wang Q, Ai J, Su B. Ferromagnetic Liquid Droplet on a Superhydrophobic Surface for the Transduction of Mechanical Energy to Electricity Based on Electromagnetic Induction. ACS NANO 2021; 15:12151-12160. [PMID: 34142804 DOI: 10.1021/acsnano.1c03539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferromagnetic liquids undergo reversible magnetization changes upon varying external magnetic field levels. The movement of ferromagnetic liquid droplets across a coil under an external magnetic field holds promise as an energy transducer from mechanical force to electricity; however, it suffers from an adhesive issue between the ferromagnetic liquid and the solid pedestal. We introduce a superhydrophobic support that uses antiwetting surfaces to remarkably reduce adhesion during the movement of ferromagnetic liquid droplets. Maxwell numerical simulation was utilized to analyze the working mechanism and improve further electrical outputs. By controlling the droplet size, the strength of the magnetic bottom and the tilting speed of the test condition, we generated a ferromagnetic liquid droplet-based superhydrophobic magnetoelectric energy transducer (FLD-SMET) that can convert vibrational energy to electricity. When a 100 μL ferromagnetic liquid droplet was used for FLD-SMET under a 13 mT magnetic field, an electrical voltage response of 280 μV and electrical current response of ∼7.5 μA were generated using a shaking machine with a tilting speed of 9.5°/s. We thus show that such a device can serve as a self-powered light buoy floating on a water surface. Our study presents an applied concept for the design of droplet-based energy harvesters to convert surrounding vibrational energy to electricity.
Collapse
Affiliation(s)
- Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jingwei Ai
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R. China
| |
Collapse
|
19
|
Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this paper, we present a theoretical study on the maximum specific loss power in the admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating time of the nanoparticles (Δto) at the optimum temperature of approx. 43 °C for the efficient destruction of tumor cells in a short period of time, was also studied. We found the maximum specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally, the optimal heating temperature (To) of 43 °C was obtained for a very wide range of values of the magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (Δto) were found in very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility of intracellular therapy which is much more effective due to the ability to destroy tumor cells from within and (ii) the reduced cell toxicity.
Collapse
|
20
|
Applications and Properties of Magnetic Nanoparticles. NANOMATERIALS 2021; 11:nano11051297. [PMID: 34069120 PMCID: PMC8156573 DOI: 10.3390/nano11051297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
|
21
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
22
|
Mollarasouli F, Zor E, Ozcelikay G, Ozkan SA. Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta 2021; 226:122108. [PMID: 33676664 DOI: 10.1016/j.talanta.2021.122108] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
A revolutionary impact on the pharmaceutical and biomedical applications has been arisen in the few years to come as a result of the advances made in magnetic nanoparticles (MNPs) research. The use of MNPs opens wide opportunities in diagnostics, drug and gene delivery, in vivo imaging, magnetic separation, and hyperthermia therapy, etc. Besides, their possible integration in sensors makes them an ideal essential element of innovative pharmaceutical and biomedical applications. Nowadays, MNPs-based electrochemical sensors have attracted great attention to pharmaceutical and biomedical applications owing to their high sensitivity, stability. Selectivity towards the target as well as their simplicity of manufacture. Therefore, this review focus on recent advances with cutting-edge approaches dealing with the synthesis, design, and advantageous analytical performance of MNPs in the electrochemical sensors utilized for pharmaceutical and biomedical applications between 2015 and 2020. The challenges existing in this research area and some potential strategies/future perspectives for the rational design of electrochemical sensors are also outlined.
Collapse
Affiliation(s)
| | - Erhan Zor
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University, Konya, 42090, Turkey; Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, 42090, Turkey
| | - Goksu Ozcelikay
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
23
|
Yadav P, Awasthi SK. Probing the catalytic activity of highly efficient sulfonic acid fabricated cobalt ferrite magnetic nanoparticles for the clean and scalable synthesis of dihydro, spiro and bis quinazolinones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An exceptionally productive, rapid, simple, and eco-friendly approach for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been developed utilizing acidic magnetically retrievable cobalt ferrite nanoparticles (CFNP@SO3H).
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Satish K. Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
24
|
Shams SF, Ghazanfari MR, Pettinger S, Tavabi AH, Siemensmeyer K, Smekhova A, Dunin-Borkowski RE, Westmeyer GG, Schmitz-Antoniak C. Structural perspective on revealing heat dissipation behavior of CoFe 2O 4-Pd nanohybrids: great promise for magnetic fluid hyperthermia. Phys Chem Chem Phys 2020; 22:26728-26741. [PMID: 33078790 DOI: 10.1039/d0cp02076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Loss mechanisms in fluid heating of cobalt ferrite (CFO) nanoparticles and CFO-Pd heterodimer colloidal suspensions are investigated as a function of particle size, fluid concentration and magnetic field amplitude. The specific absorption rate (SAR) is found to vary with increasing particle size due to a change in dominant heating mechanism from susceptibility to hysteresis and frictional loss. The maximum SAR is obtained for particle diameters of 11-15 nm as a result of synergistic contributions of susceptibility loss, including Néel and Brownian relaxation and especially hysteresis loss, thereby validating the applicability of linear response theory to superparamagnetic CFO nanoparticles. Our results show that the ferrofluid concentration and magnetic field amplitude alter interparticle interactions and associated heating efficiency. The SAR of the CFO nanoparticles could be maximized by adjusting the synthesis parameters. Despite the paramagnetic properties of individual palladium nanoparticles, CFO-Pd heterodimer suspensions were observed to have surprisingly improved magnetization as well as SAR values, when compared with CFO ferrofluids. This difference is attributed to interfacial interactions between the magnetic moments of paramagnetic Pd and superparamagnetic/ferrimagnetic CFO. SAR values measured from CFO-Pd heterodimer suspensions were found to be 47-52 W gFerrite-1, which is up to a factor of two higher than the SAR values of commercially available ferrofluids, demonstrating their potential as efficient heat mediators. Our results provide insight into the utilization of CFO-Pd heterodimer suspensions as potential nanoplatforms for diagnostic and therapeutic biomedical applications, e.g., in cancer hyperthermia, cryopreserved tissue warming, thermoablative therapy, drug delivery and bioimaging.
Collapse
Affiliation(s)
- S Fatemeh Shams
- Peter-Grünberg-Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brero F, Basini M, Avolio M, Orsini F, Arosio P, Sangregorio C, Innocenti C, Guerrini A, Boucard J, Ishow E, Lecouvey M, Fresnais J, Lartigue L, Lascialfari A. Coating Effect on the 1H-NMR Relaxation Properties of Iron Oxide Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10091660. [PMID: 32847105 PMCID: PMC7559778 DOI: 10.3390/nano10091660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
We present a 1H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter dTEM = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes. A full structural, morpho-dimensional and magnetic characterization was performed by means of Transmission Electron Microscopy, Atomic Force Microscopy and DC magnetometry. The magnetization curves showed that the investigated nanoparticles displayed a different approach to the saturation depending on the coatings, the less steep ones being those of the two samples coated with P(MAA-stat-MAPEG), suggesting the possibility of slightly different local magnetic disorders induced by the presence of the various polyelectrolytes on the particles’ surface. For each series, 1H NMR relaxivities were found to depend very slightly on the surface coating. We observed a higher transverse nuclear relaxivity, r2, at all investigated frequencies (10 kHz ≤ νL ≤ 60 MHz) for the larger diameter series, and a very different frequency behavior for the longitudinal nuclear relaxivity, r1, between the two series. In particular, the first one (dTEM = 17 nm) displayed an anomalous increase of r1 toward the lowest frequencies, possibly due to high magnetic anisotropy together with spin disorder effects. The other series (dTEM = 8 nm) displayed a r1 vs. νL behavior that can be described by the Roch’s heuristic model. The fitting procedure provided the distance of the minimum approach and the value of the Néel reversal time (τ ≈ 3.5 ÷ 3.9·10−9 s) at room temperature, confirming the superparamagnetic nature of these compounds.
Collapse
Affiliation(s)
- Francesca Brero
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy; (M.A.); (A.L.)
- Correspondence: ; Tel.: +39-0382-987-483
| | - Martina Basini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (M.B.); (F.O.); (P.A.)
| | - Matteo Avolio
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy; (M.A.); (A.L.)
| | - Francesco Orsini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (M.B.); (F.O.); (P.A.)
| | - Paolo Arosio
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (M.B.); (F.O.); (P.A.)
| | - Claudio Sangregorio
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; (C.S.); (C.I.)
- Dipartimento di Chimica “U. Schiff” and INSTM, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy;
| | - Claudia Innocenti
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; (C.S.); (C.I.)
- Dipartimento di Chimica “U. Schiff” and INSTM, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy;
| | - Andrea Guerrini
- Dipartimento di Chimica “U. Schiff” and INSTM, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy;
| | - Joanna Boucard
- CNRS, CEISAM UMR 6230, Université de Nantes, F-44000 Nantes, France; (J.B.); (E.I.); (L.L.)
| | - Eléna Ishow
- CNRS, CEISAM UMR 6230, Université de Nantes, F-44000 Nantes, France; (J.B.); (E.I.); (L.L.)
| | - Marc Lecouvey
- CSPBAT-UMR CNRS 7244, Université Sorbonne Paris Nord, 74 rue Marcel Cachin, 93017 Bobigny, France;
| | - Jérome Fresnais
- CNRS, Laboratoire de Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, PHENIX—UMR 8234, CEDEX 05 F-75252 Paris, France;
| | - Lenaic Lartigue
- CNRS, CEISAM UMR 6230, Université de Nantes, F-44000 Nantes, France; (J.B.); (E.I.); (L.L.)
| | - Alessandro Lascialfari
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, Via Bassi 6, 27100 Pavia, Italy; (M.A.); (A.L.)
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy; (M.B.); (F.O.); (P.A.)
| |
Collapse
|