1
|
Lin H, Zhou C, Li Q, Xie Q, Xia L, Liu L, Bao W, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Nanotechnology-Assisted mesenchymal stem cells treatment for improved cartilage regeneration: A review of current practices. Biochem Pharmacol 2025; 237:116895. [PMID: 40154890 DOI: 10.1016/j.bcp.2025.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cartilage tissue does not promptly elicit an inflammatory response upon injury, hence constraining its capacity for healing and self-regeneration. Mesenchymal Stem Cells (MSC) therapy, enhanced by nanotechnology, offers promising advancements in cartilage repair. Injuries to cartilage often cause chronic pain, where current treatments are inadequate. As MSCs can readily differentiate into chondrocytes and secrete soluble factors, they are essential components in tissue engineering of cartilage repair. Although, like other stem cell applications, clinical applications are restricted by poor post implantation survival and differentiation. Recent studies show that nanoparticles (NPs) can further improve MSC outcomes by promoting cell adhesion, and chondrogenic differentiation allowing for sustained growth factor release. In addition, nanomaterials can improve the biological activity of MSCs, by also facilitating the composition of a conducive microenvironment for cartilage repair. In this review, the application of nanofibrous scaffolds, hydrogels and nanoscale particulate matter to improve mechanical properties in cartilage tissue engineering, are discussed. Moreover, the MSCs and nanotechnology synergistic effects present hope of overcoming the limitations of conventional treatments. Nanotechnology greatly enhances the MSC based cartilage regeneration strategies and could provide better treatment for cartilage related diseases in the future. Future research should be aimed at standardizing MSC harvesting and culturing protocols and contrasting their long-term efficacy.
Collapse
Affiliation(s)
- Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua hospital, Zhoushan 316000 Zhejiang Province, China
| | - Qingping Li
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China.
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China.
| |
Collapse
|
2
|
Lamberger Z, Priebe V, Ryma M, Lang G. A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication. SMALL METHODS 2025; 9:e2401060. [PMID: 39690825 PMCID: PMC11926501 DOI: 10.1002/smtd.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging. However, existing fragmentation methods are often material-specific, poorly scalable, and provide limited control over fragment size and shape. A novel workflow is introduced for producing fiber fragments applicable to various materials and fabrication techniques such as electrospinning, melt-electrowriting, fused deposition modeling, wet spinning, and microfluidic spinning. The method uses a sacrificial membrane as a substrate for precise cryo-sectioning of fibers. A significant advantage is that no additional handling steps, such as fiber detachment or transfer, are needed, resulting in highly reproducible fiber sectioning with a quasi-monodisperse length distribution. The membrane can be rolled before cutting, preventing fibers from sticking together and significantly increasing production efficiency. This method is also versatile, applicable to multiple fiber types and materials without re-parameterization. Cell culture experiments demonstrate that the fibers maintain key properties necessary for cell-fiber interactions, making them suitable for systematic screenings in the development of anisotropic 3D tissue models.
Collapse
Affiliation(s)
- Zan Lamberger
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Vivien Priebe
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Matthias Ryma
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| | - Gregor Lang
- Department for Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, D-97070, Würzburg, Germany
| |
Collapse
|
3
|
Raja IS, Kang MS, Kim J, Kwak M, Han DW. Cellular Behaviors of Human Dermal Fibroblasts on Pyrolytically Stripped Carbon Nanofiber's Surface. Macromol Biosci 2025; 25:e2400603. [PMID: 39871522 DOI: 10.1002/mabi.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Indexed: 01/29/2025]
Abstract
There has been limited exploration of carbon nanofiber as a scaffold for cellular attachment and proliferation. In this work, commercially available, pyrolytically stripped carbon nanofiber (cCNF) is deposited over electrospun nanofiber mats, polycaprolactone (PCL) and poly(D-lactide) (PDLA), to immobilize them and investigate whether the 3D cCNF layer's surface augments cell proliferation of human dermal fibroblasts (nHDF). Spectral characterizations, such as XRD and Raman, show that cCNF exhibited crystalline structure with a high graphitization degree. cCNF layers are modified to have an irregular or planar surface by simple agitation (s-cCNF) or probe sonication (p-cCNF) of the solution. The in vitro cell line studies revealed that p-cCNF is better than s-cCNF in providing a platform that supports a homogenous spread of the fibroblasts all over the nanofiber's surface. The p-cCNF-deposited PCL mat (p-cCNF@PCL) demonstrated cellular growth, similar to that of the neat PCL mat. However, the p-cCNF@PCL mat exhibited remarkable antibacterial properties by reducing the E. coli numbers, ≈16 times greater than the PCL mat. It is concluded that the immobilized, pyrolytically stripped carbon nanofiber's surface has the potential to accommodate cellular growth and inhibit bacterial colonies, suggesting the biomaterial scaffold is promising for in vivo and clinical applications of skin tissue regeneration.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Research Institute of Mechanical Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan, 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Patel DK, Won SY, Jung E, Han SS. Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review. Int J Biol Macromol 2025; 293:139426. [PMID: 39753169 DOI: 10.1016/j.ijbiomac.2024.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms. While the applications of biopolymer-based electrospun nanofibers in the biomedical field have been previously reviewed, recent advancements in the electrospinning technique and its specific applications in areas such as bone regeneration, wound healing, drug delivery, and protein/peptide delivery remain underexplored from a material science perspective. This work systematically highlights the effects of biopolymers and critical parameters, including polymer molecular weight, viscosity, applied voltage, flow rate, and tip-to-collector distance, on the resulting nanofiber properties. The selection criteria for different biopolymers tailored to desired biomedical applications are also discussed. Additionally, the challenges and limitations associated with biopolymer-based electrospun nanofibers, alongside future perspectives for advancing their biomedical applications, are rationally analyzed.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Rakhshani A, Maghsoudian S, Ejarestaghi NM, Yousefi M, Yoosefi S, Asadzadeh N, Fatahi Y, Darbasizadeh B, Nouri Z, Bahadorikhalili S, Shaabani A, Farhadnejad H, Motasadizadeh H. Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation. Int J Biol Macromol 2025; 305:141191. [PMID: 39971028 DOI: 10.1016/j.ijbiomac.2025.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The main objective of this study was to fabricate a pH-sensitive drug carrier based on coaxial electrospun nanofibrous mats for concurrent local delivery of hydrophilic and hydrophobic anti-cancer drugs to improve the anti-tumor efficacy on breast cancer. Therefore, co-axial electrospinning technique was applied to prepare polyethylene oxide-chitosan/polycaprolactone-chitosan (PEO-CS/PCL-CS) pH-sensitive core-shell nanofibers. Doxorubicin hydrochloride (DOX, hydrophilic anti-cancer) and curcumin (CUR, hydrophobic anticancer) were loaded into core and shell sections of the fabricated pH-sensitive coaxial nanofibers, respectively. Their structure and morphology were analyzed via SEM, TEM, TGA, and FTIR techniques. The results of in vitro release analysis indicated that the release of DOX and CUR from the fabricated nanofibers was strongly depended on pH. The combined effects of the two drugs on MCF-7 cell inhibition, as measured by the MTT assay, revealed that the 1:5 ratio of DOX to CUR resulted in a CI of 0.00492, showing the strongest synergistic effect. The results of in-vivo studies indicated that the PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibers possessed remarkable anti-tumor efficacy. As a result, PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibrous mats with pH-responsive and sustainable and controllable manner could improve the local anti-tumor efficacy on breast cancer via inhibiting the side effects of free DOX and CUR drugs.
Collapse
Affiliation(s)
- Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Yousefi
- Department of Healthcare Emergency Management, Faculty of Medicine, Boston University, Boston, MA, USA; Graduate, Veterinary Medicine School, Āzad University, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Asadzadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
6
|
Fredi G, Santi S, Soccio M, Lotti N, Dorigato A. Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure-Property Relationships and Thermo-Mechanical and Biological Characterization. Molecules 2025; 30:841. [PMID: 40005152 PMCID: PMC11858335 DOI: 10.3390/molecules30040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This study explores, for the first time, the application of electrospun biobased poly(butylene 2,5-furanoate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) mats in biomedical and drug delivery fields, through a careful investigation of their structure-property relationship. PBF mats, with a glass transition temperature (Tg) of 25-30 °C and an as-spun crystallinity of 18.8%, maintained their fibrous structure (fiber diameter ~1.3 µm) and mechanical properties (stiffness ~100 MPa, strength ~4.5 MPa, strain at break ~200%) under treatment in physiological conditions (37 °C, pH 7.5). In contrast, PPeF mats, being amorphous with a Tg of 14 °C, underwent significant densification, with geometrical density increasing from 0.68 g/cm³ to 1.07 g/cm³, which depressed the specific (i.e., normalized by density) mechanical properties. DSC analysis revealed that the treatment promoted crystallization in PBF (reaching 45.9% crystallinity), while PPeF showed limited, but interestingly not negligible, structural reorganization. Both materials promoted good cell adhesion and were biocompatible, with lactate dehydrogenase release not exceeding 20% after 48 h. The potential of PBF mats for drug delivery was evaluated using dexamethasone. The mats exhibited a controlled drug release profile, with ~10% drug release in 4 h and ~50% in 20 h. This study demonstrates the versatility of these biopolyesters in biomedical applications and highlights the impact of polymer structure on material performance.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| | - Sofia Santi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (M.S.); (N.L.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, Viale del Risorgimento 2, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Research on Buildings and Construction CIRI-EC, Via del Lazzaretto 15/5, 40131 Bologna, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; (M.S.); (N.L.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, Viale del Risorgimento 2, 40136 Bologna, Italy
- Interdepartmental Center for Industrial Agro-Food Research, CIRI-AGRO, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento Via Sommarive 9, 38123 Trento, Italy;
| |
Collapse
|
7
|
Lamberger Z, Mussoni C, Murenu N, Andrade Mier M, Stahlhut P, Ahmad T, Schaefer N, Villmann C, Zwingelberg S, Groll J, Lang G. Streamlining the Highly Reproducible Fabrication of Fibrous Biomedical Specimens toward Standardization and High Throughput. Adv Healthc Mater 2025; 14:e2402527. [PMID: 39676391 PMCID: PMC11804836 DOI: 10.1002/adhm.202402527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Soft nano- and microfiber-based polymer scaffolds bear enormous potential for their use in cell culture and tissue engineering since they mimic natural collagen structures and may thus serve as biomimetic adhesive substrates. They have, however, so far been restricted to small-scale production in research labs with high batch-to-batch variation. They are commonly produced via electrospinning or melt electrowriting and their delicate nature poses obstacles in detachment, storage, and transportation. This study focuses on overcoming challenges in the high throughput production and practical handling, introducing new methods to reproducibly prepare such scaffolds suitable for quantitative cell culture applications. Attention is given to the seamless handling and transfer of samples without compromising structural integrity. Challenges in detaching fibers without damage as well as storage, and transport are addressed. Cell culture studies demonstrate the methodological advantages, emphasizing the potential for standardized testing and biological readouts of these delicate fiber materials. The developed methods are applicable across various electrospinning and melt electrowriting approaches and can essentially contribute to their utilization in laboratory research and commercial applications.
Collapse
Affiliation(s)
- Zan Lamberger
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Camilla Mussoni
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Nicoletta Murenu
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 5D‐97078WürzburgGermany
| | - Mateo Andrade Mier
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 5D‐97078WürzburgGermany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Natascha Schaefer
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 5D‐97078WürzburgGermany
| | - Carmen Villmann
- Institute for Clinical NeurobiologyUniversity Hospital WürzburgVersbacherstr. 5D‐97078WürzburgGermany
| | - Sarah Zwingelberg
- Department of OphthalmologyUniversity Hospital DüsseldorfMerowingerplatz 1A40225DüsseldorfGermany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| |
Collapse
|
8
|
Abedi-Firoozjah R, Bahramian B, Tavassoli M, Ahmadi N, Noori SMA, Hashemi M, Oladzadabbasabadi N, Assadpour E, Zhang F, Jafari SM. A comprehensive review of gum-based electrospun nanofibers for food packaging: Preparation, developments, and potential applications. Int J Biol Macromol 2025; 288:138717. [PMID: 39674448 DOI: 10.1016/j.ijbiomac.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/17/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Gums represent an intriguing group of biopolymers utilized in the food industry owing to their exceptional properties. These intricate carbohydrate biomolecules possess the capacity to form gels and mucilage structures by binding with water. Their stabilizing potential, heightened viscosity, emulsifying characteristics, broad compatibility, and cost-effectiveness render them a valuable resource in the realm of food packaging. Electrospun nanofibers (ENFs) derived from gums offer an amplified surface-to-volume ratio in comparison to bulk materials at the macroscopic level, resulting in increased porosity and enhanced mechanical properties. These attributes have the potential to enhance surface functionalities and diversify their range of applications. Despite the limited availability of gum types for the synthesis of ENFs, extensive research has been dedicated to the advancement of gum-based ENFs and the exploration of their applications. This review paper delves into the influence of gum properties on solution spinnability and the prospective applications of gum-based ENFs in active and intelligent food packaging.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnam Bahramian
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran.
| | - Neshat Ahmadi
- Department of Food Science and Technology, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Selvaraj S, Perera M, Yapa P, Munaweera I, Perera IC, Senapathi T, Weerasinghe L. In vitro analysis of XLAsp-P2 peptide loaded cellulose acetate nanofiber for wound healing. J Pharm Sci 2025; 114:911-922. [PMID: 39542360 DOI: 10.1016/j.xphs.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Recently, nanofiber-based wound dressings are currently a viable strategy to expedite the healing of wounds by providing a suitable microenvironment for tissue growth with active ingredients. This research study subjects the development of electrospun cellulose acetate (CA) nanofibers loaded with the XLAsp-P2, an antimicrobial peptide (AMP) that holds great potential for enhanced wound healing as a therapeutic agent. The synthesized XLAsp-P2-loaded CA nanofibers were fabricated via three loading percentages, 0.1 %, 0.2 %, and 0.3 % w/w, and characterized and evaluated their antimicrobial potential with MTT assay and Agar overlay methods as an alternative strategy. FT-IR analysis confirmed the compatibility of the peptide-loaded CA nanocomposite, showing distinct peaks corresponding to the constituent materials. Scanning electron microscopy (SEM) analysis was employed to characterize the morphology of electrospun peptide CA nanocomposites and illustrate the fiber's size at the nanoscale. The in vitro release study during the 24 hr, 87 % of the peptide was released which was approximately 5.2 mg; which was closer matched to the square root model of Higuchi at room temperature. MTT assay presented sensitive results towards Gram-positive bacteria compared to Gram Negative bacteria; which corresponded to the inhibition zones of the Agar overlay method proving that Escherichia coli (ATCC 25922) 17.66 ± 0.38 mm and Pseudomonas aeruginosa (ATCC 27853) 17.44 ± 0.38 mm exhibited moderate susceptibility, while Staphylococcus aureus (ATCC 25923)19.89 ± 0.69 mm and Bacillus cereus (ATCC 11778) 23.00 ± 0.33 mm showed promising responses. Collectively, The study's findings indicate that the XLAsp-P2 incorporated CA mat possesses an opportunity to function as an efficient platform for delivering therapeutic peptides.
Collapse
Affiliation(s)
- Saranya Selvaraj
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Monali Perera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Inoka C Perera
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Tharindu Senapathi
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| |
Collapse
|
10
|
Salimbeigi G, McGuinness GB. Optimizing solvent systems for electrospun PLGA scaffolds: effects on microstructure and mechanical properties for biomedical applications. RSC Adv 2025; 15:3259-3272. [PMID: 39896431 PMCID: PMC11783371 DOI: 10.1039/d4ra07881k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Electrospun scaffolds fabricated from poly(lactic-co-glycolic acid) (PLGA) have garnered widespread interest in biomedical applications due to their ability to mimic the extracellular matrix (ECM) structure with a tunable degradability profile. The properties of electrospun scaffolds are meticulously tailored for specific applications through the adjustment of polymer properties, solution parameters, and processing conditions. Solvent selection is crucial, influencing polymer spinnability and scaffold topographical, physical and mechanical features. Hansen solubility theory aids in predicting suitable solvent systems. The absence of specific data prompted a solubility experiment to determine Hansen solubility parameters for PLGA. Subsequently, various solvent systems were investigated for their impact on the microstructure of electrospun PLGA scaffolds. Optimizing the electrospinning process resulted in fibrous scaffolds with consistent average fibre diameter from different solvent systems, allowing a focused examination of the solvent's isolated influence on mechanical properties. PLGA samples electrospun using hexafluoro isopropanol (HFIP) displayed lower Young's modulus and ultimate tensile strength but higher failure strains than those created using binary solvent systems composed of tetrahydrofuran (THF), dichloromethane (DCM), and dimethylformamide (DMF). This research advances the understanding and optimization of electrospun PLGA scaffolds, enhancing their potential for biomedical applications.
Collapse
Affiliation(s)
- Golestan Salimbeigi
- School of Mechanical and Manufacturing Engineering, Dublin City University Dublin 9 Ireland
| | - Garrett B McGuinness
- School of Mechanical and Manufacturing Engineering, Dublin City University Dublin 9 Ireland
| |
Collapse
|
11
|
Aydin B, Arol N, Burak N, Usta A, Ceylan M. Investigation of Chitosan-Based Hydrogels and Polycaprolactone-Based Electrospun Fibers as Wound Dressing Materials Based on Mechanical, Physical, and Chemical Characterization. Gels 2025; 11:39. [PMID: 39852010 PMCID: PMC11764951 DOI: 10.3390/gels11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The aim of this project is to fabricate fiber mats and hydrogel materials that constitute the two main components of a wound dressing material. The contributions of boric acid (BA) and zinc oxide (ZnO) to the physical and mechanical properties of polycaprolactone (PCL) is investigated. These materials are chosen for their antimicrobial and antifungal effects. Additionally, since chitosan forms brittle hydrogels, it is reinforced with polyvinyl alcohol (PVA) to improve ductility and water uptake properties. For these purposes, PCL, BA, ZnO, PVA, and chitosan are used in different ratios to fabricate nanofiber mats and hydrogels. Mechanical, physical, and chemical characteristics are examined. The highest elastic modulus and tensile strength are obtained from samples with 6% BA and 10% ZnO concentrations. ZnO-decorated fibers exhibit a higher elastic modulus than those with BA, though BA-containing fibers exhibit greater elongation before breakage. All fibers exhibit hydrophobic properties, which help to prevent biofilm formation. In compression tests, CS12 demonstrates the highest strength. Increasing the PVA content enhances ductility, while a higher concentration of chitosan results in a denser structure. This outcome is confirmed by FTIR and swelling tests. These findings highlight the optimal combinations of nanofibrous mats and hydrogels, offering guidance for future wound dressing designs that balance mechanical strength, water absorption, and antimicrobial properties. By stacking these nanofibrous mats and hydrogels in different orders, it is expected to achieve a wound care material that is suitable for various applications. The authors encourage experimentation with different configurations of these nanofiber and hydrogel stackings to observe their mechanical behavior under real-life conditions in future studies.
Collapse
Affiliation(s)
- Barkin Aydin
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nihat Arol
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Nimet Burak
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Aybala Usta
- Department of Mechanical Engineering, Engineering Faculty, Marmara University, 34854 Istanbul, Türkiye; (B.A.); (N.A.); (N.B.)
| | - Muhammet Ceylan
- Department of Mechatronics Engineering, Engineering Faculty, Istanbul Ticaret University, 34854 Istanbul, Türkiye;
| |
Collapse
|
12
|
Sajithkumar A, Shenoy M, Vinod KRB, Nadakkavukkaran D. Nanotechnology applications in oral pathology: A scoping review. J Oral Maxillofac Pathol 2025; 29:127-136. [PMID: 40248621 PMCID: PMC12002578 DOI: 10.4103/jomfp.jomfp_187_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 04/19/2025] Open
Abstract
Developments in tissue engineering, diagnosis, and therapy of oral diseases can be made possible by nanotechnology. The purpose of this scoping review was to assess the state of nanotechnology applications in oral pathology at the moment. A thorough search for research published between 2000 and 2024 was done using various online data bases. Relevant studies were identified, screened, and included in accordance with the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines standards as per the selection criterion. A total of 57 studies satisfied the requirements for inclusion. Significant findings show that in oral disease, nanotechnology greatly enhances treatment delivery, regeneration capacity, and diagnostic accuracy. Among the most promising tools identified were nanofibers, liposomes, quantum dots, and gold nanoparticles. In the field of oral pathology, nanotechnology has great potential for novel approaches to early diagnosis, targeted therapy, and tissue regeneration. However, additional investigation are needed to solve safety and biocompatibility challenges.
Collapse
Affiliation(s)
- Akhil Sajithkumar
- Chief Dental Surgeon, White Petals Dental Clinic, Pampakuda, Ernakulam, Kerala, India
| | - Mahesh Shenoy
- Department of OMFS and Diagnostic Services, College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - K. RB Vinod
- Department of Oral and Maxillofacial Pathology, Al-Azhar Dental College, Al-Azhar Campus, Perumpillichira, Thodupuzha, Kerala, India
| | - Davis Nadakkavukkaran
- Department of Oral and Maxillofacial Surgery, Sree Anjaneya Institute of Dental Sciences, Atholi, Modakkallur, Calicut, Kerala, India
| |
Collapse
|
13
|
Patiño Vidal C, Muñoz-Shugulí C, Guivier M, Puglia D, Luzi F, Rojas A, Velásquez E, Galotto MJ, López-de-Dicastillo C. PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications. Molecules 2024; 29:5452. [PMID: 39598841 PMCID: PMC11597656 DOI: 10.3390/molecules29225452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Safety and Resources Valorization Research Group (INVAGRO), Faculty of Engineering, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre Km 1 1/2, Riobamba 060108, Ecuador
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
| | - Cristina Muñoz-Shugulí
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
- Faculty of Sciences, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba 060106, Ecuador
| | - Manon Guivier
- Polymer Chemistry and Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Débora Puglia
- Materials Science and Technology Laboratory, Civil and Environmental Engineering Department, University of Perugia (UNIPG), 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche (UNIVPM), 60131 Ancona, Italy;
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
14
|
Hodaei H, Esmaeili Z, Erfani Y, Esnaashari SS, Geravand M, Adabi M. Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method. Sci Rep 2024; 14:23796. [PMID: 39394234 PMCID: PMC11470087 DOI: 10.1038/s41598-024-74865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Wound management is a critical aspect of healthcare, necessitating effective and innovative wound dressing materials. Many existing wound dressings lack effectiveness and exhibit limitations, including poor antimicrobial activity, toxicity, inadequate moisture regulation, and weak mechanical performance. The aim of this study is to develop a natural-based nanofibrous structure that possesses desirable characteristics for use as a wound dressing. The chemical analysis confirmed the successful creation of Zein (Ze) (25% w/v) /gelatin (Gel) (10% w/v) /chitosan (CS) (2% w/v) /Polyvinyl alcohol (PVA) (10% w/v) nanofibrous scaffolds loaded with vitamin E tocopheryl polyethylene glycol succinate (Vit E). The swelling percentages of nanofiber (NF), NF + Vit E, cross-linked nanofiber (CNF), and CNF + Vit E were 49%, 110%, 410%, and 676%, respectively; and the degradation rates of NF, NF + Vit E, CNF, and CNF + Vit E were 29.57 ± 5.06%, 33.78 ± 7.8%, 14.03 ± 7.52%, 43 ± 6.27%, respectively. The antibacterial properties demonstrated that CNF impregnated with antibiotics reduced Escherichia coli (E. coli) counts by approximately 27-28% and Staphylococcus aureus (S. aureus) counts by about 34-35% compared to negative control. In conclusion, cross-linked Ze/Gel/CS/PVA nanofibrous scaffolds loaded with Vit E have potential as suitable wound dressing materials because environmentally friendly materials contribute to sustainable wound care and controlled degradation ensures wound dressings breakdown harmlessly.
Collapse
Affiliation(s)
- Homa Hodaei
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahvash Geravand
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
16
|
Kim WJ, Bae J, Lee EH, Kim J, Kim PJ, Ma PX, Woo KM. Long noncoding RNA MALAT1 mediates fibrous topography-driven pathologic calcification through trans-differentiation of myoblasts. Mater Today Bio 2024; 28:101182. [PMID: 39205874 PMCID: PMC11357808 DOI: 10.1016/j.mtbio.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Prosthesis-induced pathological calcification is a significant challenge in biomaterial applications and is often associated with various reconstructive medical procedures. It is uncertain whether the fibrous extracellular matrix (ECM) adjacent to biomaterials directly triggers osteogenic trans-differentiation in nearby cells. To investigate this possibility, we engineered a heterogeneous polystyrene fibrous matrix (PSF) designed to mimic the ECM. Our findings revealed that the myoblasts grown on this PSF acquired osteogenic properties, resulting in mineralization both in vitro and in vivo. Transcriptomic analyses indicated a notable upregulation in the expression of the long noncoding RNA metastsis-associated lung adenocarcinoma transcript 1 (Malat1) in the C2C12 myoblasts cultured on PSF. Intriguingly, silencing Malat1 curtailed the PSF-induced mineralization and downregulated the expression of bone morphogenetic proteins (Bmps) and osteogenic markers. Further, we found that PSF prompted the activation of Yap1 signaling and epigenetic modifications in the Malat1 promoter, crucial for the expression of Malat1. These results indicate that the fibrous matrix adjacent to biomaterials can instigate Malat1 upregulation, subsequently driving osteogenic trans-differentiation in myoblasts and ectopic calcification through its transcriptional regulation of osteogenic genes, including Bmps. Our findings point to a novel therapeutic avenue for mitigating prosthesis-induced pathological calcification, heralding new possibilities in the field of biomaterial-based therapies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter X. Ma
- Department of Biologic and Material Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Pharmacology & Dental Therapeutics, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
17
|
Tran TXT, Sun GM, Tran HVA, Jeong YH, Slama P, Chang YC, Lee IJ, Kwak JY. Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture. J Funct Biomater 2024; 15:262. [PMID: 39330237 PMCID: PMC11433135 DOI: 10.3390/jfb15090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.
Collapse
Affiliation(s)
- Thi Xuan Thuy Tran
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
- Department of Medical Sciences, The Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Gyu-Min Sun
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
| | - Hue Vy An Tran
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
| | - Young Hun Jeong
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Young-Chae Chang
- Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42272, Republic of Korea;
| | - In-Jeong Lee
- 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
- 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
18
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
19
|
El-Ghoul Y, Altuwayjiri AS, Alharbi GA. Synthesis and characterization of new electrospun medical scaffold-based modified cellulose nanofiber and bioactive natural propolis for potential wound dressing applications. RSC Adv 2024; 14:26183-26197. [PMID: 39161434 PMCID: PMC11332191 DOI: 10.1039/d4ra04231j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Recently, the design of polymer nanofibers using the electrospinning process has attracted much interest. Particularly the use of natural polymers has promoted many advantages in their biomedical applications. However, the combination of multiple natural polymers remains a great challenge in terms of electrospun production and applied performance. From this perspective, the current investigation highlights the study of the preparation of electrospun nanomaterial scaffolds based on combined natural polymers for improved wound healing performance. First, we have synthesized a crosslinked polymer by reacting microcrystalline cellulose (MC) and chitosan (CS) biopolymer via the intermediate of citric acid as a crosslinking agent. Then a natural propolis biomolecule was incorporated into the polymer network. Different MC/CS blend ratios of 90/10 and 70/30 were then used and various machine parameters were optimized to obtain nanofiber scaffolds with excellent strength and structures. SEM, IR, physicochemical, mechanical, and morpho-logical characterization were then performed. SEM evaluation revealed homogeneous and bead-free nanofibrous structures, with well-defined morphology and a random deposition that could accurately mimic the extracellular matrix of native skin. The calculated average nanofiber diameters for the MC/CS blend ratios at 90/10 and 70/30 were 431.4 and 441.2 nm, respectively. The results showed that when the chitosan amount increased, larger nanofibers with narrow diameter distribution appeared. The prepared nanomaterials had a significant and close water vapor permeability of about 1735.12 and 1698.52 g per m per day for the two blend ratios of 90/10 and 70/30, respectively. The examination of swelling behavior revealed a noteworthy enhancement in hydrophilicity, a necessary attribute for improved healing efficacy. FT-IR analysis confirmed the success and the stability of the chemical crosslinking reaction between the two biopolymers before nanofiber conception. Excellent mechanical properties were acquired, based on the chitosan content. Both developed nanofiber scaffolds exhibited high tensile strength and Young's modulus values. The incorporation of 30% chitosan versus 10% results in an increase in tensile strength of 11% and 14% in Young's modulus. Therefore, we could adjust the different mechanical properties simply by varying the mixing rate of the electrospun polymers. Using epithelial HepG2 cells, viability and kinetic cell adhesion assays were assessed to obtain biological evaluation. No cytotoxicity was observed and good cytocompatibility was confirmed. Functionalized nanofiber biomaterials with different MC/CS ratios substantiated significant bactericidal effectiveness against Gram-positive and Gram-negative bacterial culture strains. The novel functional electrospun wound dressing scaffold demonstrated effective and promising biomedical performance, healing both acute and chronic wounds.
Collapse
Affiliation(s)
- Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
- Textile Engineering Laboratory, University of Monastir Monastir 5019 Tunisia
| | | | - Ghadah A Alharbi
- Department of Chemistry, College of Science, Qassim University Buraidah 51452 Saudi Arabia
| |
Collapse
|
20
|
Hanuman S, B HK, Pai KSR, Nune M. Surface-Conjugated Galactose on Electrospun Polycaprolactone Nanofibers: An Innovative Scaffold for Uterine Tissue Engineering. ACS OMEGA 2024; 9:34314-34328. [PMID: 39157094 PMCID: PMC11325431 DOI: 10.1021/acsomega.3c10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
The uterus, a vital organ in the female reproductive system, nurtures and supports developing embryos until maturity. This study focuses on addressing uterine related problems by creating a nanofibrous scaffold to regenerate uterine myometrial tissue, closely resembling the native extracellular matrix (ECM) for enhanced efficacy. To achieve this, we utilized polycaprolactone (PCL) as a biomaterial and employed an electrospinning technique to generate PCL nanofibers in both random and aligned orientations. Due to the inherent hydrophobic nature of PCL nanofibers, a two-step wet chemistry surface modification technique is used, involving the conjugation of galactose onto them. Galactose, a lectin-binding sugar, was chosen to enhance the scaffold's hydrophilicity, thereby improving cell adhesion and fostering l-selectin-based interactions between the scaffold and uterine cells. These interactions, in turn, activated uterine fibroblasts, leading to ECM remodeling. The optimized electrospinning process successfully generated random and aligned nanofibers. Subsequent surface modification was carried out, and the modified scaffold was subjected to various physicochemical characterization, such as the ninhydrin assay, enzyme-linked lectin assay techniques that revealed successful galactose conjugation, and mechanical characterization to assess any changes in material bulk properties resulting from the modification. The tensile strength of random galactose-modified PCL fibers reached 0.041 ± 0.01 MPa, outperforming random unmodified PCL fibers (0.026 ± 0.01 MPa), aligned unmodified PCL fibers (0.011 ± 0.001 MPa), and aligned modified PCL fibers (0.016 ± 0.002 MPa). Cytocompatibility studies with human uterine fibroblast cells showed enhanced viability and proliferation on the modified scaffolds. Initial pilot studies were attempted in the current study involving subcutaneous implantation in the dorsal area of Wistar rats to assess biocompatibility and tissue response before proceeding to intrauterine implantation indicated that the modification did not induce adverse inflammation in vivo. In conclusion, our study introduces a surface-modified PCL nanofibrous material for myometrial tissue engineering, offering promise in addressing myometrial damage and advancing uterine health and reproductive well-being.
Collapse
Affiliation(s)
- Srividya Hanuman
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Harish Kumar B
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K. Sreedhara Ranganath Pai
- Department
of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Manasa Nune
- Manipal
Institute of Regenerative Medicine, Manipal
Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
21
|
Santos MS, Silva JC, Carvalho MS. Hierarchical Biomaterial Scaffolds for Periodontal Tissue Engineering: Recent Progress and Current Challenges. Int J Mol Sci 2024; 25:8562. [PMID: 39201249 PMCID: PMC11354458 DOI: 10.3390/ijms25168562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The periodontium is a complex hierarchical structure composed of alveolar bone, periodontal ligament, cementum, and gingiva. Periodontitis is an inflammatory disease that damages and destroys the periodontal tissues supporting the tooth. Periodontal therapies aim to regenerate the lost tissues, yet current treatments lack the integration of multiple structural/biochemical instructive cues to induce a coordinated regeneration, which leads to limited clinical outcomes. Hierarchical biomaterial scaffolds offer the opportunity to recreate the organization and architecture of the periodontium with distinct compartments, providing structural biomimicry that facilitates periodontal regeneration. Various scaffolds have been fabricated and tested preclinically, showing positive regenerative results. This review provides an overview of the recent research on hierarchical scaffolds for periodontal tissue engineering (TE). First, the hierarchical structure of the periodontium is described, covering the limitations of the current treatments used for periodontal regeneration and presenting alternative therapeutic strategies, including scaffolds and biochemical factors. Recent research regarding hierarchical scaffolds is highlighted and discussed, in particular, the scaffold composition, fabrication methods, and results from in vitro/in vivo studies are summarized. Finally, current challenges associated with the application of hierarchical scaffolds for periodontal TE are debated and future research directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
23
|
Macagnano A, Molinari FN, Papa P, Mancini T, Lupi S, D’Arco A, Taddei AR, Serrecchia S, De Cesare F. Nanofibrous Conductive Sensor for Limonene: One-Step Synthesis via Electrospinning and Molecular Imprinting. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1123. [PMID: 38998727 PMCID: PMC11243275 DOI: 10.3390/nano14131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Detecting volatile organic compounds (VOCs) emitted from different plant species and their organs can provide valuable information about plant health and environmental factors that affect them. For example, limonene emission can be a biomarker to monitor plant health and detect stress. Traditional methods for VOC detection encounter challenges, prompting the proposal of novel approaches. In this study, we proposed integrating electrospinning, molecular imprinting, and conductive nanofibers to fabricate limonene sensors. In detail, polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) served here as fiber and cavity formers, respectively, with multiwalled carbon nanotubes (MWCNT) enhancing conductivity. We developed one-step monolithic molecularly imprinted fibers, where S(-)-limonene was the target molecule, using an electrospinning technique. The functional cavities were fixed using the UV curing method, followed by a target molecule washing. This procedure enabled the creation of recognition sites for limonene within the nanofiber matrix, enhancing sensor performance and streamlining manufacturing. Humidity was crucial for sensor working, with optimal conditions at about 50% RH. The sensors rapidly responded to S(-)-limonene, reaching a plateau within 200 s. Enhancing fiber density improved sensor performance, resulting in a lower limit of detection (LOD) of 137 ppb. However, excessive fiber density decreased accessibility to active sites, thus reducing sensitivity. Remarkably, the thinnest mat on the fibrous sensors created provided the highest selectivity to limonene (Selectivity Index: 72%) compared with other VOCs, such as EtOH (used as a solvent in nanofiber development), aromatic compounds (toluene), and two other monoterpenes (α-pinene and linalool) with similar structures. These findings underscored the potential of the proposed integrated approach for selective VOC detection in applications such as precision agriculture and environmental monitoring.
Collapse
Affiliation(s)
- Antonella Macagnano
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabricio Nicolas Molinari
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- National Institute of Industrial Technology (INTI), Buenos Aires B1650WAB, Argentina
| | - Paolo Papa
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Tiziana Mancini
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Stefano Lupi
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Annalisa D’Arco
- Department of Physics, Sapienza University of Rome, 00185 Rome, Italy; (T.M.); (A.D.)
| | - Anna Rita Taddei
- High Equipment Centre, Electron Microscopy Section, University of Tuscia, University Square, Building D, 01100 Viterbo, Italy;
| | - Simone Serrecchia
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
| | - Fabrizio De Cesare
- Institute of Atmospheric Pollution Research (IIA)-CNR, Montelibretti, 00010 Rome, Italy; (F.N.M.); (P.P.); (S.S.); (F.D.C.)
- Department for Innovation in Biological, Agrofood and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
24
|
Iwoń Z, Krogulec E, Tarnowska I, Łopianiak I, Wojasiński M, Dobrzyń A, Jastrzębska E. Maturation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) on polycaprolactone and polyurethane nanofibrous mats. Sci Rep 2024; 14:12975. [PMID: 38839879 PMCID: PMC11153585 DOI: 10.1038/s41598-024-63905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Inez Tarnowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Dobrzyń
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
25
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
26
|
Zamani-Babgohari F, Irannejad A, Kalantari Pour M, Khayati GR. Synthesis of carboxymethyl starch co (polyacrylamide/ polyacrylic acid) hydrogel for removing methylene blue dye from aqueous solution. Int J Biol Macromol 2024; 269:132053. [PMID: 38704075 DOI: 10.1016/j.ijbiomac.2024.132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Natural polysaccharides, notably starch, have garnered attention for their accessibility, cost-effectiveness, and biodegradability. Modifying starch to carboxymethyl starch enhances its solubility, swelling capacity, and adsorption efficiency. This research examines the synthesis of an effective hydrogel adsorbent based on carboxymethyl starch for the elimination of methylene blue from aqueous solutions. The hydrogel was synthesized using polyacrylamide and polyacrylic acid as monomers, ammonium persulfate as the initiator, and N,N'-methylenebisacrylamide as the cross-linker. Through FESEM, swelling morphology was evaluated in both distilled water and methylene blue dye. The adsorption data elucidated that the adsorption capacity of the hydrogel significantly depends on the dosage of the adsorbent, pH, and concentration of the MB dye. At a pH of 7 and a dye concentration of 250 mg/L, the hydrogel exhibited an impressive 95 % removal rate for methylene blue. The results indicate that the adsorption process follows pseudo-second-order kinetics and conforms well to the Langmuir adsorption isotherm, indicating a maximum adsorption capacity of 1700 mg/g. According to the pseudo-second-order kinetic model and FTIR analysis, methylene blue chemisorbs to the adsorbent material. Hydrogel absorbents regulate adsorption through both intra-particle diffusion and liquid film diffusion. These results highlight the potential of the new hydrogel absorber for water purification.
Collapse
Affiliation(s)
- Fatemeh Zamani-Babgohari
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Irannejad
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Maryam Kalantari Pour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gholam Reza Khayati
- Department of Materials Engineering and Metallurgy, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
27
|
Fouad SA, Ismail AM, Abdel Rafea M, Abu Saied MA, El-Dissouky A. Preparation and Characterization of Chitosan Nanofiber: Kinetic Studies and Enhancement of Insulin Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:952. [PMID: 38869577 PMCID: PMC11173695 DOI: 10.3390/nano14110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
Insulin-loaded nanofibers were prepared using chitosan as a natural polymer. The loaded insulin with polyethylene oxide was used for preparing monolayer batch S1. Nanofiber S1 was coated by seven layers of film on both sides to form batch S2 as a sandwich containing Layer A (CS, PEG and PEO) and Layer B (PEG and PEO) using electrospinning apparatus. SEM, TEM and FT-IR techniques were used to confirm the drug loading within the composite nanofibers. The in vitro activity that provided a sustained and controlled release of the drug from the nanofiber batch was studied at different pH values spectrophotometrically using a dialysis method. In batches S1 and S2, the release of insulin from nanofiber proceeds via burst release necessary to produce the desired therapeutic activity, followed by slow step. The rate and the percentage release of insulin in batch S2 are found to be higher at all pH values.
Collapse
Affiliation(s)
- Sarah A. Fouad
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt; (S.A.F.); (A.E.-D.)
| | - Amel M. Ismail
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt; (S.A.F.); (A.E.-D.)
| | - M. Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - M. A. Abu Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab, Alexandria 21934, Egypt
| | - Ali El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt; (S.A.F.); (A.E.-D.)
| |
Collapse
|
28
|
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv 2024; 14:13535-13564. [PMID: 38665493 PMCID: PMC11043667 DOI: 10.1039/d4ra00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland Brisbane Queens-land 4072 Australia
| | - Muhammad Wahab Amjad
- 6 Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh 15213 Pittsburgh Pennsylvania USA
| |
Collapse
|
29
|
Yang L, Wang X, Xiong M, Liu X, Luo S, Luo J, Wang Y. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Sci Rep 2024; 14:3942. [PMID: 38365964 PMCID: PMC10873321 DOI: 10.1038/s41598-024-54638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Electrospun scaffolds play important roles in the fields of regenerative medicine and vascular tissue engineering. The aim of the research described here was to develop a vascular scaffold that mimics the structural and functional properties of natural vascular scaffolding. The mechanical properties of artificial vascular tissue represent a key issue for successful transplantation in small diameter engineering blood vessels. We blended silk fibroin (SF) and fibrin to fabricate a composite scaffold using electrospinning to overcome the shortcomings of fibrin with respect to its mechanical properties. Subsequently, we then carefully investigated the morphological, mechanical properties, hydrophilicity, hemocompatibility, degradation, cytocompatibility and biocompatibility of the SF/fibrin (0:100), SF/fibrin (15:85), SF/fibrin (25:75), and SF/fibrin (35:65) scaffolds. Based on these in vitro results, we implanted SF/fibrin (25:75) vascular scaffold subcutaneously and analyzed its in vivo degradation and histocompatibility. The fiber structure of the SF/fibrin hybrid scaffold was smooth and uniform, and its fiber diameters were relatively small. Compared with the fibrin scaffold, the SF/fibrin scaffold clearly displayed increased mechanical strength, but the hydrophilicity weakened correspondingly. All of the SF/fibrin scaffolds showed excellent blood compatibility and appropriate biodegradation rates. The SF/fibrin (25:75) scaffold increased the proliferation and adhesion of MSCs. The results of animal experiments confirmed that the degradation of the SF/fibrin (25:75) scaffold was faster than that of the SF scaffold and effectively promoted tissue regeneration and cell infiltration. All in all, the SF/fibrin (25:75) electrospun scaffold displayed balanced and controllable biomechanical properties, degradability, and good cell compatibility. Thus, this scaffold proved to be an ideal candidate material for artificial blood vessels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Surgical Base, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Wang
- Biomedical College, Guangdong University of Technology, Guangzhou, China
| | - Man Xiong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Liu
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sidong Luo
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinxian Luo
- Department of Thyroid and Mammary Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yeyang Wang
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- Orthopaedic Center, Zhaoqing Central People's Hospital, Zhaoqing, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Iwoń Z, Krogulec E, Kierlańczyk A, Baranowska P, Łopianiak I, Wojasiński M, Jastrzębska E. Improving rodents and humans cardiac cell maturity in vitrothrough polycaprolactone and polyurethane nanofibers. Biomed Mater 2024; 19:025031. [PMID: 38290152 DOI: 10.1088/1748-605x/ad240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(ϵ-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used. They were rat ventricular cardiomyoblasts (H9c2), mouse atrial cardiomyocytes (CMs) (HL-1), and human ventricular CMs. Based on the results, it can be concluded that cardiac cells cultured on nanofibers exhibit greater maturity in terms of orientation, morphology, and gene expression levels compared to cells cultured on polystyrene plates. Additionally, the physicochemical properties of nanofibers affecting the functionality of cardiac cells from different species and different parts of the heart were evaluated. These studies can support research on understanding and explaining mechanisms leading to cellular maturity present in the heart and the selection of nanofibers that will effectively help the maturation of CMs.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michal Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
31
|
Ramanjooloo A, Chummun Phul I, Goonoo N, Bhaw-Luximon A. Electrospun polydioxanone/fucoidan blend nanofibers loaded with anti-cancer precipitate from Jaspis diastra and paclitaxel: Physico-chemical characterization and in-vitro screening. Int J Biol Macromol 2024; 259:129218. [PMID: 38185297 DOI: 10.1016/j.ijbiomac.2024.129218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Nanofibers for drug delivery systems have gained much attention during the past years. This paper describes for the first time the loading of a bioactive precipitate (JAD) from the marine sponge Jaspis diastra in PDX and fucoidan-PDX. JAD was characterized by LC-MS/MS and the major component was jaspamide (1) with a purity of 62.66 %. The cytotoxicity of JAD was compared with paclitaxel (PTX). JAD and PTX displayed IC50 values of 1.10 ± 0.7 μg/mL and 0.21 ± 0.12 μg/mL on skin fibroblasts L929 cells whilst their IC50 values on uveal MP41 cancer cells, were 2.10 ± 0.55 μg/mL and 1.38 ± 0.68 μg/mL, respectively. JAD was found to be less cytotoxic to healthy fibroblasts compared to PTX. JAD and PTX loaded scaffolds showed sustained release over 96 h in physiological medium which is likely to reduce the secondary cytotoxic effect induced by JAD and PTX alone. The physico-chemical properties of the loaded and unloaded scaffolds together with their degradation and action on tumor microenvironment by using L929 and MP41 cells were investigated. JAD and PTX at a concentration of 0.5 % (drug/polymer, w/w) in the electrospun mats prevented growth and proliferation of L929 and MP41 cells. Co-culture of L929 and MP41 showed that the JAD and PTX loaded mats inhibited the growth of both cells and caused cell death.
Collapse
Affiliation(s)
- Avin Ramanjooloo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius; Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal, Albion, Mauritius
| | - Itisha Chummun Phul
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - Nowsheen Goonoo
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, University of Mauritius, Réduit, Mauritius.
| |
Collapse
|
32
|
Hashemi SS, Najari M, Parvin M, Kalani MM, Assadi M, Seyedian R, Zaeri S. Wound healing effects of dexpanthenol-loaded core/shell electrospun nanofibers: Implication of oxidative stress in wound healing. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:97-106. [PMID: 38164485 PMCID: PMC10722473 DOI: 10.22038/ijbms.2023.71412.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/12/2023] [Indexed: 01/03/2024]
Abstract
Objectives Knowing the detrimental role of oxidative stress in wound healing and the anti-oxidant properties of Dexpanthenol (Dex), we aimed to produce Dex-loaded electrospun core/shell nanofibers for wound healing study. The novelty was measuring oxidative stress in wounds to know how oxidative stress was affected by Dex-loaded fibers. Materials and Methods TPVA solution containing Dex 6% (w/v) (core) and PVA/chitosan solution (shell) were coaxially electrospun with variable injection rates of the shell solution. Fibers were then tested for physicochemical properties, drug release profile, and effects on wound healing. Levels of tissue lipid peroxidation and superoxide dismutase activity were measured. Results Fibers produced at shell injection rate of 0.3 ml/hr (F3 fibers) showed core/shell structure with an average diameter of 252 nm, high hydrophilicity (swelling: 157% at equilibrium), and low weight loss (13.6%). Dex release from F3 fibers seemed to be ruled by the Fickian mechanism based on the Korsmeyer-Peppas model (R2 = 0.94, n = 0.37). Dex-loaded F3 fibers promoted fibroblast viability (128.4%) significantly on day 5 and also accelerated wound healing compared to the neat F3 fibers at macroscopic and microscopic levels on day 14 post-wounding. The important finding was a significant decrease in malondialdehyde (0.39 nmol/ mg protein) level and an increase in superoxide dismutase (5.29 unit/mg protein) activity in Dex-loaded F3 fiber-treated wound tissues. Conclusion Dex-loaded core/shell fibers provided nano-scale scaffolds with sustained release profile that significantly lowered tissue oxidative stress. This finding pointed to the importance of lowering oxidative stress to achieve proper wound healing.
Collapse
Affiliation(s)
- Seyede Sahar Hashemi
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmoud Najari
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Milad Parvin
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Mehdi Kalani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ramin Seyedian
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sasan Zaeri
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
33
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Zheng S, Wei H, Cheng H, Qi Y, Gu Y, Ma X, Sun J, Ye F, Guo F, Cheng C. Advances in nerve guidance conduits for peripheral nerve repair and regeneration. AMERICAN JOURNAL OF STEM CELLS 2023; 12:112-123. [PMID: 38213640 PMCID: PMC10776341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Peripheral nerve injury (PNI) can cause partial or total motor and sensory nerve function, leading to physical disability and nerve pain that severely affects patients' quality of life. Autologous nerve transplantation is currently the clinically recognized gold standard, but due to its inherent limitations, researchers have been searching for alternative treatments. Nerve guidance conduits (NGCs) have attracted much attention as a favorable alternative to promote the repair and regeneration of damaged peripheral nerves. In this review, we provide an overview of the anatomy of peripheral nerves, peripheral nerve injury and repair, and current treatment methods. Importantly, different design strategies of NGCs used for the treatment of PNI and their applications in PNI repair are highlighted. Finally, an outlook on the future development and challenges of NGCs is presented.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hong Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yanru Qi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yajun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Fangfang Guo
- Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| |
Collapse
|
35
|
Ye YJ, Xu YF, Hou YB, Yin DC, Su DB, Zhao ZX. Regulation of Tendon Stem Cell Behavior by Designed Nanoporous Topography of Microfibers. Biomacromolecules 2023; 24:5859-5870. [PMID: 38015033 DOI: 10.1021/acs.biomac.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Nano scale topography scaffold is more bioactive and biomimetic than smooth fiber topographies. Tendon stem cells (TSCs) play important roles in the tendinogenesis of tendon tissue engineering, but the effects and mechanisms of nano topography on TSC behavior are still unclear. This study determined whether the morphology, proliferation, cytoskeleton, and differentiation of TSCs are affected by topography of scaffold in vitro. The porous PA56 scaffolds were prepared with different concentration ratios of glycerol as the molecular template by electrospinning. Its topological characteristics, hydrophilicity, and degradation properties varied with glycerol proportion and movement rate of the receiving plate. Porous fibers promoted the proliferation of TSCs and the number of TSCs varied with topography. Although there was no significant difference due to the small sample size, the number of pseudopodia and cell polarizability still showed differences among different topographies. The morphology of actin cytoskeleton of TSCs showed difference among cultured on porous fibers, smooth fibers, and in culture media with no fiber, suggesting the orientation growth of cells on porous fiber. Moreover, porous fibers promoted teno-lineage differentiation of TSCs by upregulating tendon-specific gene expression. These findings provide evidence that nano porous topography scaffold promotes TSC proliferation, cytoskeleton orientation, and tenogenic differentiation.
Collapse
Affiliation(s)
- Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yi-Fan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Ya-Bo Hou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| |
Collapse
|
36
|
Wu S, Li Y, Chen S, Zhai H, Ling P. Design and construction of poly (L-lactic-acid) nanofibrous yarns and threads with controllable structure and performances. J Mech Behav Biomed Mater 2023; 148:106214. [PMID: 37918339 DOI: 10.1016/j.jmbbm.2023.106214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
The design and development of electrospun nanofibrous yarns (ENYs) have attracted intensive attentions in the fields of biomedical textiles and tissue engineering, but the inferior fiber arrangement structure, low yarn eveness, and poor tensile properties of currently-obtained ENYs has been troubled for a long time. In this study, a series of innovative strategies which combined a modified electrospinning method with some traditional textile processes like hot stretching, twisting, and plying, were designed and implemented to generate poly (L-lactic-acid) (PLLA) ENYs with adjustable morphology, structure, and tensile properties. PLLA ENYs made from bead-free and uniform PLLA nanofibers were fabricated by our modified electrospinning method, but the as-spun PLLA ENYs exhibited relatively lower fiber alignment degree and tensile properties. A hot stretching technique was explored to process the primary PLLA ENYs to improve the fiber alignment and crystallinity, resulting in a 779.7% increasement for ultimate stress and a 470.4% enhancement for Young's modulus, respectively. Then, the twisting post-treatment was applied to process as-stretched PLLA ENYs, and the tensile performances of as-twisted ENYs was found to present a trend of first increasing and then decreasing with the increasing of twisting degree. Finally, the PLLA threads made from different numbers of as-stretched PLLA ENYs were also manufactured with a traditional plying process, demonstrating the feasibility of further improving the yarn diameter and tensile properties. In all, this study reported a simple and cost-effective technique roadmap which could generate high performance PLLA nanofiber-constructed yarns or threads with controllable structures like highly aligned fiber orientation, twisted structure, and plied structure.
Collapse
Affiliation(s)
- Shaohua Wu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China; College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Huiyuan Zhai
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
37
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
38
|
Dawson C, Xu F, Hoare T. Reactive Cell Electrospinning of Anisotropically Aligned and Bilayer Hydrogel Nanofiber Networks. ACS Biomater Sci Eng 2023; 9:6490-6503. [PMID: 37870742 DOI: 10.1021/acsbiomaterials.3c01013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Structured hydrogels that incorporate aligned nanofibrous morphologies have been demonstrated to better replicate the structures of native extracellular matrices and thus their function in guiding cell responses. However, current techniques for nanofiber fabrication are limited in their ability to create hydrogel scaffolds with tunable directional alignments and cell types/densities, as required to reproduce more complex native tissue structures. Herein, we leverage a reactive cell electrospinning technique based on the dynamic covalent cross-linking of poly(ethylene glycol methacrylate (POEGMA) precursor polymers to fabricate aligned hydrogel nanofibers that can be directly loaded with cells during the electrospinning process. The scaffolds were found to support high C2C12 myoblast viabilities greater than 85% over 14 days, with changes in the electrospinning collector allowing for the single-step fabrication of nonaligned, aligned, or cross-aligned nanofibrous networks. Cell aspect ratios on aligned scaffolds were found on average to be 27% higher compared to those on nonaligned scaffolds; furthermore, cell-loaded bilayer scaffolds with perpendicular fiber alignments showed evidence of enabling localized directional cell responses to individual layer fiber directions while avoiding delamination between the layers. This fabrication approach thus offers potential for better mimicking the structure and thus function of aligned and multilayered tissues (e.g., smooth muscle, neural, or tendon tissues).
Collapse
Affiliation(s)
- Chloe Dawson
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
39
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Kikionis S, Iliou K, Karra AG, Polychronis G, Choinopoulos I, Iatrou H, Eliades G, Kitraki E, Tseti I, Zinelis S, Ioannou E, Roussis V. Development of Bi- and Tri-Layer Nanofibrous Membranes Based on the Sulfated Polysaccharide Carrageenan for Periodontal Tissue Regeneration. Mar Drugs 2023; 21:565. [PMID: 37999389 PMCID: PMC10671875 DOI: 10.3390/md21110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Konstantina Iliou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Aikaterini G. Karra
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Georgios Polychronis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Ioannis Choinopoulos
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efthymia Kitraki
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Ioulia Tseti
- Uni-Pharma S.A., 35 Kalyftaki Str., 14564 Kifissia, Greece;
| | - Spiros Zinelis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| |
Collapse
|
41
|
Masella M, Léonforté F. Chitosan Polysaccharides from a Polarizable Multiscale Approach. ACS OMEGA 2023; 8:35592-35607. [PMID: 37810703 PMCID: PMC10551911 DOI: 10.1021/acsomega.3c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 10/10/2023]
Abstract
We report simulations of chitosan polysaccharides in the aqueous phase, at infinite dilute conditions and zero ionic strength. Those simulations are performed by means of a polarizable multiscale modeling scheme that relies on a polarizable all atom force field to model solutes and on a polarizable solvent coarse grained approach. Force field parameters are assigned only from quantum chemistry ab initio data. We simulate chitosan monomer units, dimers and 50-long chains. Regarding the 50-long chains we simulate three sets of ten randomly built chain replica at three different pH conditions (corresponding to different chain protonation states, the chain degree of deacetylation is 85%). Our simulations show the persistence length of 50-long chitosan chains at strong acidic conditions (pH <5) to be 24 ± 2 nm (at weak/negligible ionic strength conditions), and to be 1 order of magnitude shorter at usual pH conditions. Our simulation data support the most recent simulation and experimental studies devoted to chitosan polysaccharides in the aqueous phase.
Collapse
Affiliation(s)
- Michel Masella
- Laboratoire
de Biologie Bioénergétique, Métalloprotéines et Stress, Service de Bioénergétique,
Biologie Structurale et Mécanismes, Institut Joliot, CEA Saclay, Gif sur Yvette Cedex F-91191, France
| | - Fabien Léonforté
- L’Oréal
Group, Research & Innovation, Aulnay-Sous-Bois 93600, France
| |
Collapse
|
42
|
Miętus M, Kolankowski K, Gołofit T, Denis P, Bandzerewicz A, Spychalski M, Mąkosa-Szczygieł M, Pilarek M, Wierzchowski K, Gadomska-Gajadhur A. From Poly(glycerol itaconate) Gels to Novel Nonwoven Materials for Biomedical Applications. Gels 2023; 9:788. [PMID: 37888360 PMCID: PMC10606113 DOI: 10.3390/gels9100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Electrospinning is a process that has attracted significant interest in recent years. It provides the opportunity to produce nanofibers that mimic the extracellular matrix. As a result, it is possible to use the nonwovens as scaffolds characterized by high cellular adhesion. This work focused on the synthesis of poly(glycerol itaconate) (PGItc) and preparation of nonwovens based on PGItc gels and polylactide. PGItc gels were synthesized by a reaction between itaconic anhydride and glycerol. The use of a mixture of PGItc and PLA allowed us to obtain a material with different properties than with stand-alone polymers. In this study, we present the influence of the chosen ratios of polymers and the OH/COOH ratio in the synthesized PGItc on the properties of the obtained materials. The addition of PGItc results in hydrophilization of the nonwovens' surface without disrupting the high porosity of the fibrous structure. Spectral and thermal analyzes are presented, along with SEM imagining. The preliminary cytotoxicity research showed that nonwovens were non-cytotoxic materials. It also helped to pre-determine the potential application of PGItc + PLA nonwovens as subcutaneous tissue fillers or drug delivery systems.
Collapse
Affiliation(s)
- Magdalena Miętus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Krzysztof Kolankowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Maciej Spychalski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland;
| | - Marcin Mąkosa-Szczygieł
- Department of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway;
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Agnieszka Gadomska-Gajadhur
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| |
Collapse
|
43
|
Zhai Y, Yang L, Zheng W, Wang Q, Zhu Z, Han F, Hao Y, Ma S, Cheng G. A precise design strategy for a cell-derived extracellular matrix based on CRISPR/Cas9 for regulating neural stem cell function. Biomater Sci 2023; 11:6537-6544. [PMID: 37593879 DOI: 10.1039/d2bm01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The extracellular matrix (ECM) is a natural microenvironment pivotal for stem cell survival, as well as proliferation, differentiation and metastasis, composed of a variety of biological molecular complexes secreted by resident cells in tissues and organs. Heparan sulfate proteoglycan (HSPG) is a type of ECM protein that contains one or more covalently attached heparan sulfate chains. Heparan sulphate chains have high affinity with growth factors, chemokines and morphogens, acting as cytokine-binding domains of great importance in development and normal physiology. Herein, we constructed endogenous HSPG2 overexpression in mouse embryonic fibroblasts based on the CRISPR/Cas9 synergistic activation mediator system and then fabricated a cell-derived HSPG2 functional ECM (ECMHSPG2). The ECMHSPG2 is capable of enriching basic fibroblast growth factor (bFGF), which binds more strongly than the negative control ECM. With a growing bFGF concentration, ECMHSPG2 could better maintain neural stem cell (NSCs) stemness and promote NSC proliferation and differentiation in culture. These findings provide a precise design strategy for producing a specific cell-derived ECM for biomaterials in research and regenerative medicine.
Collapse
Affiliation(s)
- Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Zhanchi Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Fang Han
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|
44
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
45
|
Cao S, Wei Y, Xu H, Weng J, Qi T, Yu F, Liu S, Xiong A, Liu P, Zeng H. Crosstalk between ferroptosis and chondrocytes in osteoarthritis: a systematic review of in vivo and in vitro studies. Front Immunol 2023; 14:1202436. [PMID: 37520558 PMCID: PMC10376718 DOI: 10.3389/fimmu.2023.1202436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Recent scientific reports have revealed a close association between ferroptosis and the occurrence and development of osteoarthritis (OA). Nevertheless, the precise mechanisms by which ferroptosis influences OA and how to hobble OA progression by inhibiting chondrocyte ferroptosis have not yet been fully elucidated. This study aims to conduct a comprehensive systematic review (SR) to address these gaps. Methods Following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, we conducted a comprehensive search of the Embase, Ovid, ProQuest, PubMed, Scopus, the Cochrane Library, and Web of Science databases to identify relevant studies that investigate the association between ferroptosis and chondrocytes in OA. Our search included studies published from the inception of these databases until January 31st, 2023. Only studies that met the predetermined quality criteria were included in this SR. Results In this comprehensive SR, a total of 21 studies that met the specified criteria were considered suitable and included in the current updated synthesis. The mechanisms underlying chondrocyte ferroptosis and its association with OA progression involve various biological phenomena, including mitochondrial dysfunction, dysregulated iron metabolism, oxidative stress, and crucial signaling pathways. Conclusion Ferroptosis in chondrocytes has opened an entirely new chapter for the investigation of OA, and targeted regulation of it is springing up as an attractive and promising therapeutic tactic for OA. Systematic review registration https://inplasy.com/inplasy-2023-3-0044/, identifier INPLASY202330044.
Collapse
Affiliation(s)
- Siyang Cao
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huihui Xu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National & Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Castellano M, Dodero A, Scarfi S, Mirata S, Pozzolini M, Tassara E, Sionkowska A, Adamiak K, Alloisio M, Vicini S. Chitosan-Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers (Basel) 2023; 15:2931. [PMID: 37447576 DOI: 10.3390/polym15132931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Composite chitosan-collagen nanofibrous mats embedded with curcumin were prepared via a single-step electrospinning procedure and explored as wound-healing patches with superior biological activity. A mild crosslinking protocol consisting of a short exposure to ammonia vapor and UV radiation was developed to ensure proper stability in physiological-like conditions without affecting the intrinsic biocompatibility of chitosan and collagen. The fabricated composite patches displayed a highly porous, homogeneous nanostructure consisting of fibers with an average diameter of 200 nm, thermal stability up to 200 °C, mechanical features able to ensure protection and support to the new tissues, and water-related properties in the ideal range to allow exudate removal and gas exchange. The release kinetic studies carried out in a simulated physiological environment demonstrated that curcumin release was sustained for 72 h when the mats are crosslinked hence providing prolonged bioactivity reflected by the displayed antioxidant properties. Remarkably, combining chitosan and collagen not only ensures prolonged stability and optimal physical-chemical properties but also allows for better-promoting cell adhesion and proliferation and enhanced anti-bacteriostatic capabilities with the addition of curcumin, owing to its beneficial anti-inflammatory effect, ameliorating the attachment and survival/proliferation rates of keratinocytes and fibroblasts to the fabricated patches.
Collapse
Affiliation(s)
- Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sonia Scarfi
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Marina Pozzolini
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Eleonora Tassara
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Katarzyna Adamiak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
47
|
Ponphaiboon J, Krongrawa W, Aung WW, Chinatangkul N, Limmatvapirat S, Limmatvapirat C. Advances in Natural Product Extraction Techniques, Electrospun Fiber Fabrication, and the Integration of Experimental Design: A Comprehensive Review. Molecules 2023; 28:5163. [PMID: 37446825 DOI: 10.3390/molecules28135163] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The present review explores the growing interest in the techniques employed for extracting natural products. It emphasizes the limitations of conventional extraction methods and introduces superior non-conventional alternatives, particularly ultrasound-assisted extraction. Characterization and quantification of bioactive constituents through chromatography coupled with spectroscopy are recommended, while the importance of method development and validation for biomarker quantification is underscored. At present, electrospun fibers provide a versatile platform for incorporating bioactive extracts and have extensive potential in diverse fields due to their unique structural and functional characteristics. Thus, the review also highlights the fabrication of electrospun fibers containing bioactive extracts. The preparation of biologically active extracts under optimal conditions, including the selection of safe solvents and cost-effective equipment, holds promising potential in the pharmaceutical, food, and cosmetic industries. Integration of experimental design into extraction procedures and formulation development is essential for the efficient production of health products. The review explores potential applications of encapsulating natural product extracts in electrospun fibers, such as wound healing, antibacterial activity, and antioxidant properties, while acknowledging the need for further exploration and optimization in this field. The findings discussed in this review are anticipated to serve as a valuable resource for the processing industry, enabling the utilization of affordable and environmentally friendly, natural, and raw materials.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wantanwa Krongrawa
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wah Wah Aung
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Chinatangkul
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Faculty of Pharmacy, Siam University, Bangkok 10160, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
48
|
Sadat Mirbagheri M, Akhavan-Mahdavi S, Hasan A, Saeed Kharazmi M, Mahdi Jafari S. Propolis-loaded nanofiber scaffolds based on polyvinyl alcohol and polycaprolactone. Int J Pharm 2023:123186. [PMID: 37385356 DOI: 10.1016/j.ijpharm.2023.123186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Propolis-loaded electrospun nanofibers (PENs) have been regarded as promising candidates for biomedical purposes such as wound healing/dressing owing to their outstanding pharmacological and biological properties. This paper focuses on the development of electrospun nanofibers with optimum levels of propolis (PRP) and two polymer types (polycaprolactone (PCL) and polyvinyl alcohol (PVA)). Hence, response surface methodology (RSM) was employed to investigate the variation of the scaffold characteristics including porosity, average diameter, wettability, release, and tensile strength. For each response, a second-order polynomial model with a high coefficient of determination (R2) values ranging from 0.95 to 0.989 was developed using multiple linear regression analysis. The overall optimum region with the best characteristics was found to be at PCL/6% PRP and PVA/5% PRP. After selecting the optimal samples, the cytotoxicity assay showed no toxicity for the optimal concentrations of PRP. Furthermore, Fourier transform infrared (FTIR) spectra revealed that no new chemical functional groups were introduced in the PENs. Uniform fibers were found in the optimum samples without the appearance of a bead-like structure in the fibers. In conclusion, nanofibers containing the optimal concentration of PRP with suitable properties can be used in biomedical and tissue engineering.
Collapse
Affiliation(s)
- Mahnaz Sadat Mirbagheri
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sahar Akhavan-Mahdavi
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Qatar
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
49
|
Pant B, Park M, Kim AA. Electrospun Nanofibers for Dura Mater Regeneration: A Mini Review on Current Progress. Pharmaceutics 2023; 15:pharmaceutics15051347. [PMID: 37242589 DOI: 10.3390/pharmaceutics15051347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Dural defects are a common problem in neurosurgical procedures and should be repaired to avoid complications such as cerebrospinal fluid leakage, brain swelling, epilepsy, intracranial infection, and so on. Various types of dural substitutes have been prepared and used for the treatment of dural defects. In recent years, electrospun nanofibers have been applied for various biomedical applications, including dural regeneration, due to their interesting properties such as a large surface area to volume ratio, porosity, superior mechanical properties, ease of surface modification, and, most importantly, similarity with the extracellular matrix (ECM). Despite continuous efforts, the development of suitable dura mater substrates has had limited success. This review summarizes the investigation and development of electrospun nanofibers with particular emphasis on dura mater regeneration. The objective of this mini-review article is to give readers a quick overview of the recent advances in electrospinning for dura mater repair.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
50
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|