1
|
Beiler B, Sáfrány Á, Bató L, Szomor Z, Veres M. Effect of binary porogen mixtures on polymer monoliths prepared by gamma-radiation initiated polymerization. Heliyon 2024; 10:e38852. [PMID: 39435066 PMCID: PMC11492261 DOI: 10.1016/j.heliyon.2024.e38852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Gamma-radiation initiated polymerization is an easy-to-use and simple technique for the preparation of porous polymer monoliths widely used as active materials in separation columns. Herein, binary porogen mixtures of ethyl acetate/acetone/acetonitrile with methanol were used to synthesize diethylene glycol dimethacrylate monoliths with this technique. Systematic studies have been performed to determine the effect of the composition of the solvent mixture on the morphology and the reaction kinetics, including the growth mechanism and the growth rate. The irradiation dose-dependent conversion profiles showed that with binary solvents the polymerization is much faster than with the same compounds used as single solvents. Depending on the type and the composition of the solvent one-, two- and three-dimensional, and fractal growth mechanisms were identified.
Collapse
Affiliation(s)
- Barbara Beiler
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, PO Box 49, H-1525, Budapest, Hungary
| | - Ágnes Sáfrány
- Radiation Chemistry Department, HUN-REN Centre for Energy Research, PO Box 49, H-1525, Budapest, Hungary
| | - Lilia Bató
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, PO Box 49, H-1525, Budapest, Hungary
| | - Zsombor Szomor
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, PO Box 49, H-1525, Budapest, Hungary
| | - Miklós Veres
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, PO Box 49, H-1525, Budapest, Hungary
| |
Collapse
|
2
|
Galindo-Rodriguez GR, Sarwar MS, Rios-Solis L, Dimartino S. Development, characterization and application of 3D printed adsorbents for in situ recovery of taxadiene from microbial cultivations. J Chromatogr A 2024; 1721:464815. [PMID: 38522406 DOI: 10.1016/j.chroma.2024.464815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Microbial cell factories are an attractive alternative to produce high-value natural products using sustainable processes. However, product recovery is one of the main challenges to reduce production cost and make these technologies economically interesting. In this work, new resins were formulated to 3D print hydrophobic adsorbents for the recovery of biologics from microbial cultivations. Benzyl methacrylate (BEMA) and butyl methacrylate (BUMA) were selected as functional monomers suitable for the adsorption of hydrophobic compounds. Pore morphology was tailored through the inclusion of pore forming agents (porogens) in the resin. Different porogens and porogen concentrations were evaluated resulting in materials with different porous networks. Sudan 1 and the anticancer drug paclitaxel were employed as model compounds to test the adsorption performance of hydrophobic and terpene molecules onto the developed 3D printed materials. The material with greatest adsorption capacity was obtained using BEMA monomer with 40 % (v/v) porogen (BEMA40). The performance of BEMA40 to recover taxadiene from small-scale (5 mL) Saccharomyces cerevisiae cultivations was tested and compared with commercial Diaion HP-20 beads. Taxadiene titres on BEMA40 (46 ± 2 mg/L) and Diaion HP-20 (54 ± 4 mg/L) were comparable, with no taxadiene detected in the cells and cell-free media, suggesting near 100 % taxadiene partition on the adsorbents. Compared to commercial beads, 3D printed adsorbents can be customized with adjustments in the resin formulation, are well adaptable to diverse bioreactor types, do not clog sampling ports and columns and are easier to handle during post processing. The results of this work demonstrate the potential of 3D printing to fabricate hydrophobic interaction adsorbent materials and their application in the recovery of biological products.
Collapse
Affiliation(s)
| | - M Sulaiman Sarwar
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; Centre for Engineering Biology, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
3
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Synthesis of surface-modified porous polysulfides from soybean oil by inverse vulcanization and its sorption behavior for Pb(II), Cu(II), and Cr(III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29264-29279. [PMID: 38573576 DOI: 10.1007/s11356-024-33152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
4
|
Lyu S, Abidin ZZ, Yaw TCS, Resul MFMG. Inverse vulcanization induced oxygen modified porous polysulfides for efficient sorption of heavy metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16940-16957. [PMID: 38326685 DOI: 10.1007/s11356-024-32323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Shiqi Lyu
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - Thomas Choong Shean Yaw
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Mohamad Faiz Mukhtar Gunam Resul
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
5
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Mohammadi A, Kashi PA, Ulbrich M. A smart thermoresponsive macroporous 4D structure by 4D printing of Pickering-high internal phase emulsions stabilized by plasma-functionalized starch nanomaterials for a possible delivery system. Curr Res Food Sci 2024; 8:100686. [PMID: 38380133 PMCID: PMC10878850 DOI: 10.1016/j.crfs.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Adeleh Mohammadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4913815739, Iran
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources, Tehran University, 31587-77871, Karaj, Iran
| | - Marco Ulbrich
- Department of Food Technology and Food Chem., Chair of Food Process Engineering, Technische Universität Berlin, OfficeTK1, Ackerstraße 76, 13355, Berlin, Germany
| |
Collapse
|
6
|
Parente M, Sitharaman B. Synthesis and Characterization of Carbon Microbeads. ACS OMEGA 2023; 8:34034-34043. [PMID: 37744801 PMCID: PMC10515371 DOI: 10.1021/acsomega.3c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
We report a microfluidic-based droplet generation platform for synthesizing micron-sized porous carbon microspheres. The setup employs carbon materials such as graphite, carbon nanotubes, graphene, fullerenes, and carbon black as starting materials. Custom composition, structure, and function are achieved through combinations of carbon materials, cross-linkers, and additives along with variations in process parameters. Carbon materials can be assembled into spheres with a mean diameter of units to hundreds of μm with relatively tight size distribution (<25% RSD). Pore structure and size (tens to hundreds of angstrom) can be modulated by incorporating porogen/coporogen dilutants during synthesis. The microbeads have excellent mechanical stability with an elastic modulus of hundreds of MPa. They can sustain high dynamic fluid flow pressures of up to 9000 psi. This work lays the foundation for synthesizing novel tailorable and customizable carbon microbeads. It opens avenues for applying these novel materials for composite and additive manufacturing, energy, life science, and biomedical applications.
Collapse
|
7
|
Exploring the use of oligomeric carbonates as porogens and ion-conductors in phase-separated structural electrolytes for Lithium-ion batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Shahjin F, Patel M, Hasan M, Cohen JD, Islam F, Ashaduzzaman M, Nayan MU, Subramaniam M, Zhou Y, Andreu I, Gendelman HE, Kevadiya BD. Development of a porous layer-by-layer microsphere with branched aliphatic hydrocarbon porogens. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102644. [PMID: 36549555 PMCID: PMC10460474 DOI: 10.1016/j.nano.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Porous polymer microspheres are employed in biotherapeutics, tissue engineering, and regenerative medicine. Porosity dictates cargo carriage and release that are aligned with the polymer physicochemical properties. These include material tuning, biodegradation, and cargo encapsulation. How uniformity of pore size affects therapeutic delivery remains an area of active investigation. Herein, we characterize six branched aliphatic hydrocarbon-based porogen(s) produced to create pores in single and multilayered microspheres. The porogens are composed of biocompatible polycaprolactone, poly(lactic-co-glycolic acid), and polylactic acid polymers within porous multilayered microspheres. These serve as controlled effective drug and vaccine delivery platforms.
Collapse
Affiliation(s)
- Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Md Ashaduzzaman
- Computer Science, University of Nebraska-Omaha, Omaha, NE, USA
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Irene Andreu
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Mella C, Pecchi G, Godard C, Claver C, Márquez A, Campos CH. Immobilized Pd metal‐complex on polymeric resin with high surface areas for recyclable catalyst: Effect of the immobilization method on nature of palladium species. J Appl Polym Sci 2023. [DOI: 10.1002/app.53608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Claudio Mella
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
| | - Gina Pecchi
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) Santiago Chile
| | - Cyril Godard
- Department de Química Física i Inorgánica Universitat Rovira i Virgili Tarragona Spain
| | - Carmen Claver
- Department de Química Física i Inorgánica Universitat Rovira i Virgili Tarragona Spain
| | - Abdiel Márquez
- Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México Ensenada Baja California Mexico
| | - Cristian H. Campos
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
| |
Collapse
|
10
|
Nayeem A, Ali MF, Shariffuddin JH. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114306. [PMID: 36191616 DOI: 10.1016/j.envres.2022.114306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Inverse vulcanized polysulfides have been used as low-cost and effective adsorbents to remediate heavy metals in wastewater. Inverse vulcanization introduces sustainable polysulfide synthesis by solving the rapid desulfurization problem of unstable polysulfides, and provides superior performance compared to conventional commercial adsorbents. The review discussed the brief applications of the inverse vulcanized polysulfides to remove heavy metal wastewater and emphasized the modified synthesis processes for enhanced uptake ratios. The characteristics of polysulfide adsorbents, which play a vital role during the removal process are highlighted with a proper discussion of the interaction between metal ions and polysulfides. The review paper concludes with remarks on the future outlook of these low-cost adsorbents with high selectivity to heavy metals. These polysulfide adsorbents can be prepared using a wide variety of crosslinker monomers including organic hydrocarbons, cooking oils, and agro-based waste materials. They have shown good surface area and excellent metal-binding capabilities compared to the commercially available adsorbents. Proper postmodification processes have enabled the benefits of repetitive uses of the polysulfide adsorbents. The improved surface area obtained by appropriate choice of crosslinkers, modified synthesis techniques, and regeneration through post-modification has made inverse vulcanized polysulfides capable of removing.
Collapse
Affiliation(s)
- Abdullah Nayeem
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Mohd Faizal Ali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
| | - Jun Haslinda Shariffuddin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia; Centre for Sustainability of Ecosystem & Earth Resources, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia.
| |
Collapse
|
11
|
Korzhikova‐Vlakh EG, Tennikova TB. Some factors affecting pore size in the synthesis of rigid polymer monoliths: Theory and its applicability. J Appl Polym Sci 2022. [DOI: 10.1002/app.51431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Otter M, Partl G, Noisternig M, Bakry R. Fluoroponytailed ionic liquids as co-porogens for poly(butyl methacrylate- co-ethylene dimethacrylate) monolithic supports for thin layer chromatography. Analyst 2022; 147:534-541. [DOI: 10.1039/d1an02005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous layered monolithic substrates of poly(butyl methacrylate-co-ethylene dimethacrylate) were synthesized via UV initiated free radical polymerization in the presence of fluoroponytailed ionic liquids as co-porogenic constituents.
Collapse
Affiliation(s)
- Manuel Otter
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| | - Gabriel Partl
- Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Michael Noisternig
- Institute of Pharmacy, Pharmaceutical Technology, Leopold-Franzens-University Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Rania Bakry
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens-University Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Sajid MS, Saleem S, Jabeen F, Fatima B, Zulfikar M, Ashiq MN, Ressom HW, Pukala TL, Najam-Ul-Haq M. Iminodiacetic acid (IDA)-generated mesoporous nanopolymer: a template to relate surface area, hydrophilicity, and glycopeptides enrichment. Mikrochim Acta 2021; 188:417. [PMID: 34762162 PMCID: PMC10165959 DOI: 10.1007/s00604-021-05074-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
A three-step strategy is introduced to develop inherent iminodiacetic (IDA)-functionalized nanopolymer. SEM micrographs show homogenous spherical beads with a particle size of 500 nm. Further modification to COOH-functionalized 1,2-epoxy-5-hexene/DVB mesoporous nanopolymer enriches glycopeptides via hydrophilic interactions followed by their MS determination. Significantly high BET surface area 433.4336 m2 g-1 contributes to the improved surface hydrophilicity which is also shown by high concentration of ionizable carboxylic acids, 14.59 ± 0.25 mmol g-1. Measured surface area is the highest among DVB-based polymers and in general much higher in comparison to the previously reported BET surface areas of co-polymers, terpolymers, MOFs, and graphene-based composites. Thirty-one, 19, and 16 N-glycopeptides are enriched/identified by nanopolymer beads from tryptic digests of immunoglobulin G, horseradish peroxidase, and chicken avidin, respectively, without additional desalting steps. Material exhibits high selectivity (1:400 IgG:BSA), sensitivity (down to 0.1 fmol), regeneration ability up to three cycles, and batch-to-batch reproducibility (RSD > 1%). Furthermore, from 1 μL of digested human serum, 343 N-glycopeptide characteristics of 134 glycoproteins including 30 FDA-approved serum biomarkers are identified via nano-LC-MS/MS. The developed strategy to self-generate IDA on polymeric surface with improved surface area, porosity, and ordered morphology is insignia of its potential as chromatographic tool contributing to future developments in large-scale biomedical glycoproteomics studies.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Shafaq Saleem
- Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - M Zulfikar
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Tara Louise Pukala
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
14
|
Ibadat NF, Ongkudon CM, Saallah S, Misson M. Synthesis and Characterization of Polymeric Microspheres Template for a Homogeneous and Porous Monolith. Polymers (Basel) 2021; 13:3639. [PMID: 34771196 PMCID: PMC8588115 DOI: 10.3390/polym13213639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Monolith is an emerging technology applicable for separation, filtration, and chromatography due to its interconnected pore structure. However, the current templates used to form monolith pores are associated with poor heat dissipation, uneven pore size distribution, and relatively low mechanical strength during monolith scale-up. Templates made from polymeric microsphere particles were synthesized via a solvent evaporation technique using different types of polymer (polystyrene, polycaprolactone, polypropylene, polyethylene, and poly (vinyl-alcohol) at varied polymer (10-40 wt%) and surfactant (5-10%) concentrations. The resulting microsphere particles were tested as a monolith template for the formation of homogenous pores. Among the tested polymers, polystyrene at 10 wt% concentration demonstrated good particle morphology determined to around 1.94-3.45 µm. The addition of surfactant at a concentration of 7-10 wt% during microsphere synthesis resulted in the formation of well-shaped and non-aggregating microsphere particles. In addition, the template has contributed to the production of porous monoliths with enhanced thermal stability. The thermogravimetric analysis (TGA) indicated monolith degradation between 230 °C and 450 °C, implying the material excellent mechanical strength. The findings of the study provide insightful knowledge on the feasibility of polymeric microsphere particles as a pore-directing template to fabricate monoliths with desired pore structures.
Collapse
Affiliation(s)
| | | | | | - Mailin Misson
- Bioprocess Engineering Research Groups, Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; (N.F.I.); (C.M.O.); (S.S.)
| |
Collapse
|
15
|
Che Lah NF, Ahmad AL, Low SC, Zaulkiflee ND. Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio. MEMBRANES 2021; 11:657. [PMID: 34564474 PMCID: PMC8468889 DOI: 10.3390/membranes11090657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor.
Collapse
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia; (N.F.C.L.); (S.C.L.); (N.D.Z.)
| | | | | |
Collapse
|
16
|
Korzhikova-Vlakh E, Antipchik M, Tennikova T. Macroporous Polymer Monoliths in Thin Layer Format. Polymers (Basel) 2021; 13:1059. [PMID: 33801786 PMCID: PMC8037505 DOI: 10.3390/polym13071059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, macroporous polymer monoliths represent widely used stationary phases for a number of dynamic interphase mass exchange processes such as high-performance liquid chromatography, gas chromatography, electrochromatography, solid-phase extraction, and flow-through solid-state biocatalysis. This review represents the first summary in the field of current achievements on the preparation of macroporous polymer monolithic layers, as well as their application as solid phases for thin-layer chromatography and different kinds of microarray.
Collapse
Affiliation(s)
- Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Mariia Antipchik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia;
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Unversitetskiy pr. 26, Petergof, 198584 St. Petersburg, Russia;
| |
Collapse
|
17
|
Delgado-Rangel LH, Huerta-Saquero A, Eufracio-García N, Meza-Villezcas A, Mota-Morales JD, González-Campos JB. Deep eutectic solvent-assisted phase separation in chitosan solutions for the production of 3D monoliths and films with tailored porosities. Int J Biol Macromol 2020; 164:4084-4094. [PMID: 32890563 DOI: 10.1016/j.ijbiomac.2020.08.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023]
Abstract
A facile and greener methodology to obtain pure chitosan-based 3D porous structures in the form of monoliths and films is proposed. It is based on a modified evaporation-induced phase separation process in a chitosan solution precursor. In this approach, a deep eutectic solvent (DES) is used as the nonsolvent system and an ecofriendly, cost effective, simple and versatile alternative for the production of highly structured chitosan materials. The porous heterogeneous structure can be fine-tuned by varying the chitosan content in the precursor solution and chitosan/DES ratio, and enabled the structured polymer to absorb large amounts of water to form hydrogels. This is a versatile and unexplored approach to design porous chitosan with tailored morphology in the absence of crosslinkers, which, based on preliminary studies on V. cholerae biofilm formation, is expected to open new avenues for various applications in biomedical, catalysis, water purification, filtration and other areas where the control of bacterial biofilm formation is critical.
Collapse
Affiliation(s)
- Luis Humberto Delgado-Rangel
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica S/N, Ciudad Universitaria, Morelia 58030, Mexico
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada KM 107, Ensenada, Baja California 22860, Mexico
| | - Nancy Eufracio-García
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada KM 107, Ensenada, Baja California 22860, Mexico
| | - Anaid Meza-Villezcas
- Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada KM 107, Ensenada, Baja California 22860, Mexico
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada-Universidad Nacional Autónoma de México, Boulevard Juriquilla N° 3001, Querétaro, Querétaro 76230, Mexico.
| | - J Betzabe González-Campos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica S/N, Ciudad Universitaria, Morelia 58030, Mexico.
| |
Collapse
|
18
|
Role of porogenic solvent type on the performance of a monolithic imprinted column. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Antipchik M, Dzhuzha A, Sirotov V, Tennikova T, Korzhikova‐Vlakh E. Molecularly imprinted macroporous polymer monolithic layers for L‐phenylalanine recognition in complex biological fluids. J Appl Polym Sci 2020. [DOI: 10.1002/app.50070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mariia Antipchik
- Institute of Macromolecular Compounds Russian Academy of Sciences St. Petersburg Russia
| | | | - Vasilii Sirotov
- Institute of Chemistry Saint‐Petersburg State University St. Petersburg Russia
| | - Tatiana Tennikova
- Institute of Chemistry Saint‐Petersburg State University St. Petersburg Russia
| | | |
Collapse
|
20
|
Fathi Til R, Alizadeh-Khaledabad M, Mohammadi R, Pirsa S, Wilson LD. Molecular imprinted polymers for the controlled uptake of sinapic acid from aqueous media. Food Funct 2020; 11:895-906. [DOI: 10.1039/c9fo01598a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) were synthesized via a precipitation polymerization method using 4-vinylpyridine as a functional monomer and ethylene glycol dimethacrylate as a cross-linker for selective separation of sinapic acid from water.
Collapse
Affiliation(s)
- Roya Fathi Til
- Department of Food Science and Technology
- Faculty of Agriculture
- Urmia University
- Urmia
- Iran
| | | | - Reza Mohammadi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Sajad Pirsa
- Department of Food Science and Technology
- Faculty of Agriculture
- Urmia University
- Urmia
- Iran
| | - Lee D. Wilson
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
21
|
Mansour FR, Waheed S, Paull B, Maya F. Porogens and porogen selection in the preparation of porous polymer monoliths. J Sep Sci 2019; 43:56-69. [DOI: 10.1002/jssc.201900876] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Fotouh R. Mansour
- Department of Pharmaceutical Analytical ChemistryFaculty of PharmacyTanta University Tanta Egypt
- Pharmaceutical Services CenterFaculty of PharmacyTanta University Tanta Egypt
| | - Sidra Waheed
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences, ChemistryUniversity of Tasmania Hobart Australia
- ARC Centre of Excellence for Electromaterials Science (ACES) School of Natural Sciences, ChemistryUniversity of Tasmania Hobart Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences, ChemistryUniversity of Tasmania Hobart Australia
- ARC Centre of Excellence for Electromaterials Science (ACES) School of Natural Sciences, ChemistryUniversity of Tasmania Hobart Australia
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences, ChemistryUniversity of Tasmania Hobart Australia
| |
Collapse
|
22
|
Vasiliu S, Lungan M, Racovita S, Popa M. Porous microparticles based on methacrylic copolymers and gellan as drug delivery systems. POLYM INT 2019. [DOI: 10.1002/pi.5917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Silvia Vasiliu
- ‘Petru Poni’ Institute of Macromolecular Chemistry Iasi Romania
| | | | | | - Marcel Popa
- Gheorghe Asachi Technical University of Iasi Faculty of Chemical Engineering and Environmental Protection ‘Cristofor Simionescu’, Department of Natural and Synthetic Polymers Iasi Romania
- Academy of Romanian Scientists Bucuresti Romania
| |
Collapse
|
23
|
Mella C, Torres CC, Pecchi G, Campos CH. Mesoporous Palladium N,N'-Bis(3-Allylsalicylidene)o-Phenylenediamine-Methyl Acrylate Resins as Heterogeneous Catalysts for the Heck Coupling Reaction. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12162612. [PMID: 31426313 PMCID: PMC6721152 DOI: 10.3390/ma12162612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Palladium N,N'-bis(3-allylsalicylidene)o-phenylenediamine complex (PdAS) immobilized onto mesoporous polymeric methyl acrylate (MA) based resins (PdAS(x)-MA, x = 1, 2, 5, or 10 wt.%) were successfully prepared as heterogeneous catalysts for the Heck reaction. The catalysts were synthesized via radical suspension polymerization using PdAS as a metal chelate monomer, divinylbenzene and MA as co-monomers. The effect of the PdAS(x) content on the physicochemical properties of the resins is also reported. The catalysts were characterized by using a range of analytical techniques. The large surface area (>580 m2·g-1) and thermal stability (up to 250 °C) of the PdAS(x)-MA materials allows their application as catalysts in the C-C coupling reaction between iodobenzene and MA in the presence of trimethylamine at 120 °C using DMF as the solvent. The PdAS(10)-MA catalyst exhibited the highest catalytic performance with no significant catalytic loss being observed after five reuses, thereby indicating excellent catalyst stability in the reaction medium.
Collapse
Affiliation(s)
- Claudio Mella
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Cecilia C Torres
- Depto. de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile
| | - Gina Pecchi
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 8340518, Chile
| | - Cristian H Campos
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile.
| |
Collapse
|
24
|
Aguirre-Medel S, Jana P, Kroll P, Sorarù GD. Towards Porous Silicon Oxycarbide Materials: Effects of Solvents on Microstructural Features of Poly(methylhydrosiloxane)/Divynilbenzene Aerogels. MATERIALS 2018; 11:ma11122589. [PMID: 30572610 PMCID: PMC6315683 DOI: 10.3390/ma11122589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
Abstract
We investigate the impact of solvents on the microstructure of poly(methylhydrosiloxane)/divinylbenzene (PMHS/DVB) aerogels. The gels are obtained in highly diluted conditions via hydrosilylation reaction of PMHS bearing Si-H groups and cross-linking it with C=C groups of DVB. Polymer aerogels are obtained after solvent exchange with liquid CO2 and subsequent supercritical drying. Samples are characterized using microscopy and porosimetry. Common pore-formation concepts do not provide a solid rationale for the observed data. We postulate that solubility and swelling of the cross-linked polymer in various solvents are major factors governing pore formation of these PMHS/DVB polymer aerogels.
Collapse
Affiliation(s)
- Susana Aguirre-Medel
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA.
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, I-38123 Trento, Italy.
| | - Prasanta Jana
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, I-38123 Trento, Italy.
| | - Peter Kroll
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA.
| | - Gian Domenico Sorarù
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, I-38123 Trento, Italy.
| |
Collapse
|
25
|
Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2616-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Khan H, Sharma S. Next-generation organometallic adsorbents for safe removal of excessive fluoride from aqueous systems. J Appl Polym Sci 2018. [DOI: 10.1002/app.46993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huma Khan
- Membrane Science & Separation Technology Division; Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Bhavnagar Gujarat India
| | - Saroj Sharma
- Membrane Science & Separation Technology Division; Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Bhavnagar Gujarat India
- Academy of Scientific and Innovative Research; Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Bhavnagar Gujarat India
| |
Collapse
|
27
|
Cai Y, Yan W, Peng X, Liang M, Yu L, Zou H. Influence of solubility parameter difference between monomer and porogen on structures of poly (acrylonitrile-styrene-divinylbenzene) resins. J Appl Polym Sci 2018. [DOI: 10.1002/app.46979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanbo Cai
- The State Key Lab of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065
| | - Wu Yan
- China Geological Survey Institute of Multipurpose Utilization of Mineral Resources; Chengdu 610041
| | - Xuesong Peng
- The State Key Lab of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065
| | - Mei Liang
- The State Key Lab of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065
| | - Lin Yu
- The State Key Lab of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065
| | - Huawei Zou
- The State Key Lab of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065
| |
Collapse
|
28
|
Physicochemical, biological and release studies of chitosan membranes incorporated with Euphorbia umbellata fraction. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Ghafari M, Atkinson JD. Tailoring the pore size distribution of self-cross-linked 4,4′-bis(chloromethyl)-1,1′-biphenyl polymers using reactive and non-reactive co-solvents. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Vashchuk А, Fainleib A, Starostenko O, Grande D. Ionic liquids and thermosetting polymers: a critical survey. Polym J 2018. [DOI: 10.15407/polymerj.40.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Wendland MS. Highly microporous free-radically generated polymeric materials using a novel contorted monomer. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Sehlleier YH, Dobrowolny S, Xiao L, Heinzel A, Schulz C, Wiggers H. Micrometer-sized nano-structured silicon/carbon composites for lithium-ion battery anodes synthesized based on a three-step Hansen solubility parameter (HSP) concept. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Duarte M, Billing J, Yilmaz E. Solvent-free synthesis of chiral molecularly imprinted polymers: Porosity control using a nano-sized solid porogen. J Appl Polym Sci 2016. [DOI: 10.1002/app.44104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mariana Duarte
- MIP Technologies AB, A Subsidiary of Biotage AB; Box 737 Lund 22007 Sweden
- Department of Biomedical Engineering; Division of Nanobiotechnology; Lund University; Box 118 Lund 22100 Sweden
| | - Johan Billing
- MIP Technologies AB, A Subsidiary of Biotage AB; Box 737 Lund 22007 Sweden
| | - Ecevit Yilmaz
- MIP Technologies AB, A Subsidiary of Biotage AB; Box 737 Lund 22007 Sweden
| |
Collapse
|
34
|
Mane S, Badiger M, Rajan C, Ponrathnam S, Chavan N. Role of aliphatic hydrocarbon content in non-solvating porogens toward porosity of cross-linked microbeads. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Mane S, Ponrathnam S, Chavan N. Interfacial tension approach toward drug loading with two-dimensional crosslinked polymer embedded gold: Adsorption kinetics evaluation. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1074911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Mane S, Ponrathnam S, Chavan N. Crosslinked polymer embedded Cu/Ag for comparative drug adsorption and kinetics evaluation. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1119684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Mane S, Ponrathnam S, Chavan N. Design and synthesis of cauliflower-shaped hydroxyl functionalized core-shell polymer. Des Monomers Polym 2015. [DOI: 10.1080/15685551.2015.1070504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Sachin Mane
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
| | - Surendra Ponrathnam
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
| | - Nayaku Chavan
- Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
38
|
Mane S, Ponrathnam S, Chavan N. Role of Interfacial Tension of Solvating Diluents and Hydrophilic–Hydrophobic Cross-Linkers in Hyper-Cross-Linked Solid Supports. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sachin Mane
- Polymer Science and Engineering
Division, National Chemical Laboratory, Pune-411008, India
| | - Surendra Ponrathnam
- Polymer Science and Engineering
Division, National Chemical Laboratory, Pune-411008, India
| | - Nayaku Chavan
- Polymer Science and Engineering
Division, National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
39
|
Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds-A Mini-Review. NANOMATERIALS 2015; 5:981-1003. [PMID: 28347047 PMCID: PMC5312915 DOI: 10.3390/nano5020981] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022]
Abstract
Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties.
Collapse
|
40
|
Voltammetric sensor for theophylline using sol–gel immobilized molecularly imprinted polymer particles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1413-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Podkościelna B, Bartnicki A, Podkościelny P. New Ion Exchangers Based on Copolymers: 2,3-(2-Hydroxy-3-Methacryloyloxypropoxy)Naphthalene–Styrene. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.906454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|