1
|
Hussain S, Salman M, Al-Ahmary KM, Ahmed M. Synthesis of potential adsorbent for removal of malachite green dye using alginate hydrogel nanocomposites. Int J Biol Macromol 2024; 289:138816. [PMID: 39689795 DOI: 10.1016/j.ijbiomac.2024.138816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Hydrogels are highly porous, hydrophilic, insoluble, 3D networks with a large capacity for water absorption. The goal of this research was to formulate sodium alginate/silica (SA/SiO2) hydrogel and hydrogel nanocomposite (SA/SiO2/ZnO-NPs) by impregnating the ZnO-NPs and cross-linking was furnished with siloxane network making use of the sol-gel method. The synthesized hydrogel/hydrogel nanocomposite was analyzed with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta-sizer, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analyzer (TGA). Using the batch adsorption method, the hydrogel/hydrogel nanocomposite was examined for the ability to adsorb malachite green (MG) dye from aqueous media under different conditions like adsorbent dosage, contact time, pH and temperature. MG's maximum removal (97.31 %) was achieved by SA/SiO2/ZnO-NPs adsorbent at pH = 8; the temperature was recorded as 333 K, utilizing 25 min at a dose level of 0.09 g. Langmuir and Temkin's models were utilized to assess the adsorption mechanism, and the maximum adsorption capacity (qmax) of 227.27 mg/g for SA/SiO2 hydrogel and 322.58 mg/g for SA/SiO2/ZnO-NPs hydrogel nanocomposite was obtained. At pH 8, the optimal adsorption was taken place in 25 min. The pseudo-second-order kinetic model deals with the adsorption process, and thermodynamic data reveals the endothermic and spontaneous nature of the adsorption process. The presence of -COOH groups in the synthesized hydrogel/hydrogel nanocomposite improved the cationic dye affinity towards hydrogel/hydrogel nanocomposite through H-bonding and electrostatic interactions. Thus, SA/SiO2 hydrogel and SA/SiO2/ZnO hydrogel nanocomposite could be efficient and promising adsorbents to deal with organic dye pollutants for a sustainable environment. Moreover, addressing the limitations such as SA and ZnO exhibit sensitivity to alterations in pH which could potentially influence the performance in practical scenarios where pH regulation is not maintained.
Collapse
Affiliation(s)
- Sajjad Hussain
- Center for Applied Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Salman
- Center for Applied Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan.
| |
Collapse
|
2
|
Saha A, Mishra P, Biswas G, Bhakta S. Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications. RSC Adv 2024; 14:11197-11216. [PMID: 38590352 PMCID: PMC11000228 DOI: 10.1039/d4ra01047g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Silica nanoparticles (SiNPs) have emerged as a multipurpose solution with wide-ranging applications in various industries such as medicine, agriculture, construction, cosmetics, and food production. In 1961, Stöber introduced a ground-breaking sol-gel method for synthesizing SiNPs, which carried a new era of exploration both in academia and industry, uncovering numerous possibilities for these simple yet multifaceted particles. Inspite of numerous reported literature with wide applicability, the synthesis of these nanoparticles with the desired size and functionalities poses considerable challenges. Over time, researchers have strived to optimize the synthetic route, particularly by developing greener approaches that minimize environmental impact. By reducing hazardous chemicals, energy consumption, and waste generation, these greener synthesis methods have become an important focus in the field. This review aims to provide a comprehensive analysis of the various synthetic approaches available for different types of SiNPs. Starting from the Stöber' method, we analyze other methods as well to synthesis different types of SiNPs including mesoporous, core-shell and functionalized nanoparticles. With increasing concerns with the chemical methods associated for environmental issues, we aim to assist readers in identifying suitable greener synthesis methods tailored to their specific requirements. By highlighting the advancements in reaction time optimization, waste reduction, and environmentally friendly precursors, we offer insights into the latest techniques that contribute to greener and more sustainable SiNPs synthesis. Additionally, we briefly discuss the diverse applications of SiNPs, demonstrating their relevance and potential impact in fields such as medicine, agriculture, and cosmetics. By emphasizing the greener synthesis methods and economical aspects, this review aims to inspire researchers and industry professionals to adopt environmentally conscious practices while harnessing the immense capabilities of SiNPs.
Collapse
Affiliation(s)
- Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
- Cooch Behar College Cooch Behar 736101 West Bengal India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar 736101 West Bengal India
| | | |
Collapse
|
3
|
Moghadam RP, Shukla CA, Ranade VV. Novel Machine Learning-Based Method for Estimation of the Surface Area of Porous Silica Particles. Ind Eng Chem Res 2023; 62:18810-18821. [PMID: 37969176 PMCID: PMC10636746 DOI: 10.1021/acs.iecr.3c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
This work reports a novel and quick method to estimate the surface area of porous materials. Conventionally, surface area measurement requires the BET method/N2 adsorption experiment which is time-consuming. In this work, we developed a method based on machine learning (ML) and the adsorption of a conductive dye on porous materials. The rate and quantity of dye adsorption, which is characterized by dynamic measurement of conductivity, provide an indirect measure of surface area and zeta potential. An ML-based soft sensor is developed to relate the measured conductivity profiles with surface area and zeta potential. A phenomenological model on dye adsorption is also developed, validated, and used to augment experimental data for training the soft sensor. The developed method was tested for porous silica particles with a range of surface areas (250-1100 m2/g) and zeta potential (-17 mV: -29 mV). The developed soft sensor was able to estimate the surface area and zeta potential quite well. The developed approach and method reduce overall measurement time for surface area from several hours to a few minutes. The method can potentially be implemented in continuous plants producing porous materials like silica.
Collapse
Affiliation(s)
- Roja P. Moghadam
- Multiphase Reactors and Process
Intensification Group, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| | - Chinmay A. Shukla
- Multiphase Reactors and Process
Intensification Group, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| | - Vivek V. Ranade
- Multiphase Reactors and Process
Intensification Group, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
4
|
Flores D, Almeida CMR, Gomes CR, Balula SS, Granadeiro CM. Tailoring of Mesoporous Silica-Based Materials for Enhanced Water Pollutants Removal. Molecules 2023; 28:molecules28104038. [PMID: 37241778 DOI: 10.3390/molecules28104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The adsorptive performance of mesoporous silica-based materials towards inorganic (metal ions) and organic (dyes) water pollutants was investigated. Mesoporous silica materials with different particle size, surface area and pore volume were prepared and tailored with different functional groups. These materials were then characterised by solid-state techniques, namely vibrational spectroscopy, elemental analysis, scanning electron microscopy and nitrogen adsorption-desorption isotherms, allowing the successful preparation and structural modifications of the materials to be confirmed. The influence of the physicochemical properties of the adsorbents towards the removal of metal ions (Ni2+, Cu2+ and Fe3+) and organic dyes (methylene blue and methyl green) from aqueous solutions was also investigated. The results reveal that the exceptionally high surface area and suitable ζ-potential of the nanosized mesoporous silica nanoparticles (MSNPs) seem to favour the adsorptive capacity of the material for both types of water pollutants. Kinetic studies were performed for the adsorption of organic dyes by MSNPs and large-pore mesoporous silica (LPMS), suggesting that the process follows a pseudo-second-order model. The recyclability along consecutive adsorption cycles and the stability of the adsorbents after use were also investigated, showing that the material can be reused. Current results show the potentialities of novel silica-based material as a suitable adsorbent to remove pollutants from aquatic matrices with an applicability to reduce water pollution.
Collapse
Affiliation(s)
- Daniela Flores
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Carlos R Gomes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Salete S Balula
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos M Granadeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Güçbilmez Y, Yavuz Y, Çalış İ, Yargıç AŞ, Koparal AS. Low temperature synthesis of MCM-48 and its adsorbent capacity for the removal of basic red 29 dye from model solutions. Heliyon 2023; 9:e15659. [PMID: 37180891 PMCID: PMC10172900 DOI: 10.1016/j.heliyon.2023.e15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
The low temperature synthesis of MCM-48 was performed and its adsorptive properties were investigated for the first time in literature by studying Basic Red 29 (BR29) dye adsorption from model solutions. The modification of the surface properties and pore structure of silica-based material MCM-48 induced by BR29 adsorption were characterized using XRD, nitrogen physisorption, and SEM methods before and after dye adsorption. The effects of contact time, solution pH, dye concentration, and temperature on the adsorption capacity of MCM-48 were investigated. Different adsorption models and different kinetic models were used, respectively to define the equilibrium data and the kinetics of adsorption. Adsorption data was seen to fit the Langmuir isotherm and the pseudo-second-order kinetic model. In addition, MCM-48 was found to be very successful for the removal of the BR29 dye model solutions, even at an initial dye concentration of 500 mg/L for which the removal efficiency was above 97%.
Collapse
Affiliation(s)
- Yeşim Güçbilmez
- Department of Chemical Engineering, ESTU, 26555, Eskisehir, Turkey
| | - Yusuf Yavuz
- Department of Environmental Engineering, ESTU, 26555, Eskisehir, Turkey
| | - İbrahim Çalış
- Central Research Laboratory, Bartın University, 74100, Bartın, Turkey
| | - A. Şeyda Yargıç
- Department of Chemical Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - A. Savaş Koparal
- Department of Health Programs, Anadolu University, 26555, Eskisehir, Turkey
| |
Collapse
|
6
|
Duan F, Zhu Y, Lu Y, Xu J, Wang A. Fabrication porous adsorbents templated from aqueous foams using astragalus membranaceus and attapulgite as stabilizer for efficient removal of cationic dyes. J Environ Sci (China) 2023; 127:855-865. [PMID: 36522113 DOI: 10.1016/j.jes.2022.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/17/2023]
Abstract
The water-based foam stabilized by the natural surfactant applied in the fabrication of porous materials has attracted extensive attention, as the advantages of cleanness, convenience and low cost. Particularly, the development of a green preparation method has became the main research focus and frontier. In this work, a green liquid foam with high stability was prepared by synergistic stabilization of natural plant astragalus membranaceus (AMS) and attapulgite (APT), and then a novel porous material with sufficient hierarchical pore structure was templated from the foam via a simple free radical polymerization of acrylamide (AM). The characterization results revealed that the amphiphilic molecules from AMS adsorbed onto the water-air interface and formed a protective shell to prevent the bubble breakup, and APT gathered in the plateau border and formed a three-dimensional network structure, which greatly slowed down the drainage rate. The porous material polyacrylamide/astragalus membranaceus/attapulgite (PAM/AMS/APT) showed the excellent adsorption performance for cationic dyes of Methyl Violet (MV) and Methylene Blue (MB) in water, and the maximum adsorption capacity could reach to 709.13 and 703.30 mg/g, respectively. Furthermore, the polymer material enabled to regenerate and cycle via a convenient calcination process, and the adsorption capacity was still higher than 200 mg/g after five cycles. In short, this research provided a new idea for the green preparation of porous materials and the treatment of water pollution.
Collapse
Affiliation(s)
- Fangzhi Duan
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yushen Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiang Xu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
7
|
Nayl AA, Abd-Elhamid AI, Arafa WAA, Ahmed IM, AbdEl-Rahman AME, Soliman HMA, Abdelgawad MA, Ali HM, Aly AA, Bräse S. A Novel P@SiO 2 Nano-Composite as Effective Adsorbent to Remove Methylene Blue Dye from Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:514. [PMID: 36676250 PMCID: PMC9864475 DOI: 10.3390/ma16020514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO2 nanocomposite. Using kinetic studies, methylene blue (MB) dye was selected to study the removal behavior of the P@SiO2 nanocomposite. The obtained composite was characterized using several advanced techniques. The experimental results showed rapid kinetic adsorption where the equilibrium was reached within 100 s, and the pseudo-second-order fitted well with experimental data. Moreover, according to Langmuir, one gram of P@SiO2 nanocomposite can remove 76.92 mg of the methylene blue dye. The thermodynamic studies showed that the adsorption process was spontaneous, exothermic, and ordered at the solid/solution interface. Finally, the results indicated that the presence of NaCl did not impact the adsorption behavior of MB dye. Due to the significant efficiency and promising properties of the prepared P@SiO2 nanocomposite, it could be used as an effective adsorbent material to remove various cationic forms of pollutants from aqueous solutions in future works.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Aref M. E. AbdEl-Rahman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Mbarek WB, Escoda L, Saurina J, Pineda E, Alminderej FM, Khitouni M, Suñol JJ. Nanomaterials as a Sustainable Choice for Treating Wastewater: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8576. [PMID: 36500069 PMCID: PMC9737022 DOI: 10.3390/ma15238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/15/2023]
Abstract
The removal of dyes from textile effluents utilizing advanced wastewater treatment methods with high efficiency and low cost has received substantial attention due to the rise in pollutants in water. The purpose of this work is to give a comprehensive analysis of the different treatments for removing chemical dyes from textile effluents. The capability and potential of conventional treatments for the degradation of dyeing compounds in aqueous media, as well as the influence of multiple parameters, such as the pH solution, initial dye concentration, and adsorbent dose, are presented in this study. This study is an overview of the scientific research literature on this topic, including nanoreductive and nanophotocatalyst processes, as well as nanoadsorbents and nanomembranes. For the purpose of treating sewage, the special properties of nanoparticles are currently being carefully researched. The ability of nanomaterials to remove organic matter, fungus, and viruses from wastewater is another benefit. Nanomaterials are employed in advanced oxidation techniques to clean wastewater. Additionally, because of their small dimensions, nanoparticles have a wide effective area of contact. Due to this, nanoparticles' adsorption and reactivity are powerful. The improvement of nanomaterial technology will be beneficial for the treatment of wastewater. This report also offers a thorough review of the distinctive properties of nanomaterials used in wastewater treatment, as well as their appropriate application and future possibilities. Since only a few types of nanomaterials have been produced, it is also important to focus on their technological feasibility in addition to their economic feasibility. According to this study, nanoparticles (NPs) have a significant adsorption area, efficient chemical reactions, and electrical conductivity that help treat wastewater effectively.
Collapse
Affiliation(s)
- Wael Ben Mbarek
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Lluisa Escoda
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Joan Saurina
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohamed Khitouni
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Joan-Josep Suñol
- Department of Physics, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain
| |
Collapse
|
9
|
Tee GT, Gok XY, Yong WF. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113248. [PMID: 35405129 DOI: 10.1016/j.envres.2022.113248] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Adsorption has gained much attention as one of the efficient approaches to remediate the contaminants in wastewater. Herein, this critical review focuses on the preparation, modification, application and regeneration of the biosorbents, nanoparticles and magnetic biosorbents for the wastewater treatment in recent 5 years (2017-2021). Among these materials, the development of magnetic biosorbents is attractive owing to their variable active sites, high specific surface area, easy separation and low cost. To improve the adsorption performance of biosorbents, the chemical activations such as acid, alkali and salt activations of biosorbents are discussed. In general, the oxidation reaction in acid, alkali and salt activations increases the porosity of biosorbents. The surface characteristics, surface chemistry of the biosorbents and magnetic biosorbents such as electrostatic interaction, π-π interaction and hydrogen bonding are highlighted. Ionic compounds are separated through ion exchange, surface charge and electrostatic interactions while the organic pollutants are removed via hydrophobicity, π-π interactions and hydrogen bonding. The effect of solution pH, adsorbent dosage, initial concentration of pollutants, adsorption duration and temperature on the adsorption capacity, and removal efficiency are discussed. Generally, an increase in adsorbent dosage resulted in a decrease in adsorption capacity due to the excessive active sites. On the other hand, a higher initial concentration or an increase in contact time of adsorbent increased the driving force, subsequently enhancing the adsorption capacity. Finally, this review will be concluded with a summary, challenges and future outlook of magnetic biosorbents. It is anticipated that this review will provide insights into engineering advanced and suitable materials to achieve cost-effective and scalable adsorbents for practical and sustainable environmental remediation.
Collapse
Affiliation(s)
- Guat Teng Tee
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
10
|
Saad RA, Younes G, El-Dakdouki MH, Al-Oweini R. Vanadium-Substituted Polyoxomolybdates for Methylene Blue Adsorption from Aqueous Solutions. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02130-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Coral-Reef Shaped Mesoporous Silica Obtained from Coal Fly Ash with High Adsorption Capacity. Top Catal 2022. [DOI: 10.1007/s11244-022-01670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
de Paula FDC, Effting L, Arízaga GGC, Giona RM, Tessaro AL, Bezerra FM, Bail A. Spherical mesoporous silica designed for the removal of methylene blue from water under strong acidic conditions. ENVIRONMENTAL TECHNOLOGY 2022; 43:2278-2289. [PMID: 33390095 DOI: 10.1080/09593330.2021.1871662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
This work proposes a novel technology for environmental remediation based on mesoporous silica spheres, which were successfully synthesized by the solvothermal method using the cetyltrimethylammonium bromide as a structuring agent. The adsorbent was designed to remove cationic dyes at strong acidic conditions. The surface was modified by a careful thermal treatment aiming at the condensation of silanol to siloxane groups. The adsorbent was characterized by XRD, SEM, FTIR, N2 adsorption/desorption and the equilibrium technique to determine the pHpzc. The kinetic of the adsorption followed a pseudo-second-order model and the process was ruled by physical forces. The isotherms were fitted to Freundlich and Temkin models, indicating that the physisorption occurred with multilayer formation, with the interaction adsorbate-adsorbate being relevant to the whole process. The adsorption capacity was approximately 60 mg g-1 and the adsorbents performance in the fast-contact system showed removal of 65%wt. of a 93 mg L-1 methylene blue (MB) solution in a single application.
Collapse
Affiliation(s)
- Felipe do Casal de Paula
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Luciane Effting
- Departamento de Química, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Renata Mello Giona
- LaMaFi - Laboratório de Materiais e Fenômenos Interfaciais, Universidade Tecnológica Federal do Paraná (UTFPR), Medianeira, Brazil
| | - Andre Luiz Tessaro
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
- Programa de Pós-Graduação em Engenharia Ambiental (PPGEA), Universidade Tecnológica Federal do Paraná, Apucarana, Brazil
| | - Fabricio Maestá Bezerra
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
- Programa de Pós-Graduação em Engenharia Ambiental (PPGEA), Universidade Tecnológica Federal do Paraná, Apucarana, Brazil
| | - Alesandro Bail
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| |
Collapse
|
13
|
Tan WT, Zhou H, Tang SF, Zeng P, Gu JF, Liao BH. Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118899. [PMID: 35085653 DOI: 10.1016/j.envpol.2022.118899] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron-manganese oxides could be introduced into biochar. In this study, iron-manganese (Fe-Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5-10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe-Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
Collapse
Affiliation(s)
- Wen-Tao Tan
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Shang-Feng Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| |
Collapse
|
14
|
Highly Efficient and Rapid Removal of Methylene Blue from Aqueous Solution Using Folic Acid-Conjugated Dendritic Mesoporous Silica Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10040705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Dendritic Mesoporous Silica Nanoparticles (DMSNs) are considered superior in the adsorption of unfavorable chemical compounds and biological pollutants. Herein, we have synthesized folic acid-terminated dendritic mesoporous silica nanoparticles (FA-DMSN) for the removal of cationic dyes, methylene blue (MB), from aqueous solutions. The structural, morphological, functional, specific surface area, pore size distribution, and thermal properties of the synthesized DMSNs were identified using a scanning electron microscope (SEM), a transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Brunauer−Emmett−Teller (BET), and Thermogravimetric Analyzer (TGA). The synthesized DMSNs exhibited a high surface area (521 m2 −1) and pore volume (1.2 cm3 g−1). In addition, it features both wide pore size and narrow distributions, which strongly affect the adsorption performance in terms of the equilibrium uptake time. Moreover, the impact of pH, contacting time, and dye’s initial concentration on the removal efficiency of MB was studied. The extraction efficiency of FA-DMSN was found to be three times more effective than the bare DMSN materials. Langmuir isotherm fitted the experimental data very well with a correlation coefficient value of 0.99. According to the Langmuir model, the maximum adsorption capacity was 90.7 mg/g. Furthermore, the intra−particle diffusion model revealed a significantly fast intra-particle diffusion which can be attributed to the presence of the large pore’s channels. Finally, the fast adsorption of MB molecules, reaching their equilibrium capacity within tens of seconds, as well as the low cost and ease of FA-DMSN fabrication, makes the developed material an effective adsorbent for water remediations.
Collapse
|
15
|
Ghoniem MG, Ali FAM, Abdulkhair BY, Elamin MRA, Alqahtani AM, Rahali S, Ben Aissa MA. Highly Selective Removal of Cationic Dyes from Wastewater by MgO Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1023. [PMID: 35335846 PMCID: PMC8950184 DOI: 10.3390/nano12061023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
Abstract
The organic synthetic dyes employed in industries are carcinogenic and harmful. Dyes must be removed from wastewater to limit or eliminate their presence before dumping into the natural environment. The current study aims to investigate the use of MgO nanoparticles to eliminate basic fuchsine (BF), as a model cationic dye pollutant, from wastewater. The MgO nanorods were synthesized through a coprecipitation method. The obtained nanocomposite was characterized using various techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), and FTIR spectroscopy. It was found that the variation of dye concentration and pH influenced the removal of BF by MgO. The adsorption capacity of 493.90 mg/g is achieved under optimum operating conditions (pH = 11, contact time = 236 min, and initial BF concentration = 200 ppm). Pseudo-second-order adsorption kinetics and Freundlich isotherm models best fitted BF sorption onto MgO nanorods. The BF sorption mechanism is associated with the electrostatic attractions and hydrogen bond between the O-H group of MgO and the NH2 groups of BF, as indicated by the pH, isotherms, and FTIR studies. The reusability study indicates that MgO was effectively used to eliminate BF in at least four continuous cycles. The investigation of MgO with different dyes suggests the high adsorption selectivity of BF, crystal violet (CV), and malachite green (MG) dyes compared with methyl orange (MO) dye. Overall, MgO nanorods can act as a potential and promising adsorbent for the efficient and rapid removal of cationic dyes (CV, MG, and BF) from wastewater.
Collapse
Affiliation(s)
- Monira Galal Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Fatima Adam Mohamed Ali
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Babiker Yagoub Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Mohamed Rahmt Allah Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Arwa Mofareh Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.G.G.); (B.Y.A.); (M.R.A.E.); (A.M.A.)
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Mohamed Ali Ben Aissa
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
16
|
Khakbaz F, Mirzaei M, Mahani M. Enhanced adsorption of crystal violet using Bi 3+ – intercalated Cd-MOF: isotherm, kinetic and thermodynamic study. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2032890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
17
|
Elella MHA, Aamer N, Mohamed YMA, El Nazer HA, Mohamed RR. Innovation of high-performance adsorbent based on modified gelatin for wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04079-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Conde-González J, Lorenzo-Luis P, Salvadó V, Havel J, Peña-Méndez E. A new cotton functionalized with iron(III) trimer-like metal framework as an effective strategy for the adsorption of triarylmethane dye: An insight into the dye adsorption processes. Heliyon 2021; 7:e08524. [PMID: 34934840 PMCID: PMC8661022 DOI: 10.1016/j.heliyon.2021.e08524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
A new Cotton@Fe-BTC composite formed by Fe-BTC (BTC-H3: trimesic acid) metal framework (Fe-BTC MOF loading as high 38 wt %) supported by cellulose fiber is synthesized in aqueous media using a simple and green preparation method, described for the first time in this manuscript. This new strategy relies on the synergetic effect of the pure cellulose and MOFs frameworks resulting in hybrid nanofibers of MOFs@cellulose composite. A complete characterization of the composite material reveals its structural similarity to MIL-100(Fe), a Fe-BTC material. The Cotton@Fe-BTC composite potential use as an eco-friendly and low-cost adsorbent was evaluated for its adsorptive performance for the removal of dye belonging to the triarylmethane dye family (Malachite Green (MQ), Brilliant Green (BG), Pararosaniline (PR), Basic Fuchsine (BF), Crystal Violet (CV), Methyl Green (Met-G), Victoria Blue B (VB), Acid Fuchsin (AF) and Aniline Blue (AB)) in aqueous solution. The fast kinetics and high dye removal efficiencies (>90%) obtained in aqueous solutions. The structure of Cotton@Fe-BTC network, contributed to the remarkable adsorption properties towards a variety of triphenylmethanedye. The interparticle studies showed two main steps in the dye adsorption processes, with the exception of AF and BG. The equilibrium adsorption capacities qe (mg/g) follow the order: AF (3.64)
Collapse
Affiliation(s)
- J.E. Conde-González
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Tenerife, Spain
| | - P. Lorenzo-Luis
- Inorganic Chemistry Area, Section of Chemistry Faculty of Science, Tenerife, Spain
- Instituto Universitario de Bio-Orgánica “Antonio González”, University of La Laguna, Tenerife, Spain
| | - V. Salvadó
- Department de Química, Facultat de Ciències, Universitat de Girona, C/ M Aurèlia Capmany, 69, 17003 Girona, Spain
| | - J. Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00 Brno, Czech Republic
| | - E.M. Peña-Méndez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
19
|
Abu Elella MH, Goda ES, Gamal H, El-Bahy SM, Nour MA, Yoon KR. Green antimicrobial adsorbent containing grafted xanthan gum/SiO 2 nanocomposites for malachite green dye. Int J Biol Macromol 2021; 191:385-395. [PMID: 34537301 DOI: 10.1016/j.ijbiomac.2021.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023]
Abstract
Recently, removal of synthetic dyes, especially cationic dye of malachite green (MG), and inhibition of the growth of pathogenic microorganism from drinking water have gained much interest due to their high toxic potency for aquatic biosystems. Herein, a new dye adsorbent with outstanding antibacterial activity was fabricated based on xanthan gum (XG) and SiO2 nanoparticles through ultrasonication followed by the crosslinking polymerization with vinyl imidazole monomer. The nano adsorbents were characterized with various techniques such as FTIR, XRD, SEM, EDX, and TEM. The nanocomposites were applied as a filter for discarding MG dye and killing the growth of bacterial strains such as E.coli and S.aureus which are considered as the common impurities for drinking water. The data revealed that a maximum adsorption capacity was recorded as 99.5% (Qmax = 588.2 mg/g) at optimum conditions including 10 mg nanocomposite, 10 mL of MG dye (450 ppm), pH = 7, the temperature of 30 °C, and the adsorption time was adjusted within 6 h. The process of dye adsorption was applied to the common isotherm models of Langmuir, Temkin, and Freundlich, and the findings showed that the adsorption behavior was well fitted with the Langmuir one (R2 = 0.9983). Moreover, different adsorption kinetic models such as pseudo-first order, pseudo-second order, and intra-particle diffusion were studied for understanding the mechanism of MG adsorption onto nanocomposite surface. It was found that both intraparticle diffusion and pseudo-first-order have participated evenly in the adsorption mechanism of MG dye. Ultimately, the as-prepared nanocomposites were tested against the growth of S. aureus, and E.coli manifesting a superior inhibition diameter as 23.5 ± 0.50, and 25.33 ± 0.47 mm against E.coli, and S. aureus, respectively. Therefore, our new XG-g-PVI/SiO2 adsorbent is a very promising adsorbent for the fast and efficient capture of dyes from aqueous solutions.
Collapse
Affiliation(s)
| | - Emad S Goda
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea; Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt.
| | - Heba Gamal
- Home Economy Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A Nour
- Fire Protection Laboratory, National Institute of Standards, 136, Giza 12211, Egypt
| | - Kuk Ro Yoon
- Organic Nanomaterials Lab, Department of Chemistry, Hannam University, Daejeon 34054, Republic of Korea
| |
Collapse
|
20
|
Cirillo G, Curcio M, Madeo LF, Iemma F, De Filpo G, Hampel S, Nicoletta FP. Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules 2021; 26:molecules26227001. [PMID: 34834096 PMCID: PMC8625859 DOI: 10.3390/molecules26227001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and qexp12 of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and qexp12 of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and qexp12 of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
- Correspondence: ; Tel.: +39-0984493208
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| |
Collapse
|
21
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
22
|
Tarhan T. Removal of carbol fuchsin from aqueous solution by using three-dimensional porous, economic, and eco-friendly polymer. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1789-1803. [PMID: 33931914 DOI: 10.1002/wer.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
In this study, a three-dimensional (3D) porous polydimethylsiloxane (PDMS) was prepared using a cheap material with a highly simple and different method. PDMS was firstly applied for the removal of carbol fuchsin (CF) cationic organic dye pollution in this study. Besides, the adsorption capacity of 3D PDMS for removal of the CF was found quite high compared to other materials in already published results. The synthesized PDMS was characterized using several spectroscopic and imaging techniques such as FTIR, Raman, SEM, stereomicroscope, EDX, UV/Vis, and TGA. The optimal conditions were found as 10 mg L-1 initial concentration, 20 mg of adsorbent dose, 2 h contact time, pH 10, and 25°C temperature. The removal % of CF and the maximum adsorption capacity were calculated at approximately 89% and 88.8 mg g-1 , respectively. Furthermore, the equilibrium studies showed that the Langmuir isotherm model fitted well with the removal of CF. Moreover, according to the kinetic results, the second-order kinetic model was found suitable (qe,cal 89.3 mg g-1 and qe,exp 88.8 mg g-1 close to each other) for the adsorption of CF. Also, the thermodynamic studies indicated that adsorption occurs spontaneously, and the adsorption process was physical adsorption. Besides, the reusability of the adsorbent was studied. PRACTITIONER POINTS: Water treatment technology should be low cost, economically viable and in the meantime, eco-friendly. The 3D porous PDMS was prepared by using cheap material with a highly simple method and eco-friendly This unique material was firstly applied for the removal of organic dye in water in this study.
Collapse
Affiliation(s)
- Tuba Tarhan
- Vocational High School of Health Services, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
23
|
Transformation of Glass Fiber Waste into Mesoporous Zeolite-Like Nanomaterials with Efficient Adsorption of Methylene Blue. SUSTAINABILITY 2021. [DOI: 10.3390/su13116207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recycling and reusing glass fiber waste (GFW) has become an environmental concern, as the means of disposal are becoming limited as GFW production increases. Therefore, this study developed a novel, cost-effective method to turn GFW into a mesoporous zeolite-like nanomaterial (MZN) that could serve as an environmentally benign adsorbent and efficient remover of methylene blue (MB) from solutions. Using the Taguchi optimizing approach to hydrothermal alkaline activation, we produced analcime with interconnected nanopores of about 11.7 nm. This MZN had a surface area of 166 m2 g−1 and was negatively charged with functional groups that could adsorb MB ranging from pH 2 to 10 and all with excellent capacity at pH 6.0 of the maximum Langmuir adsorption capacity of 132 mg g−1. Moreover, the MZN adsorbed MB exothermically, and the reaction is reversible according to its thermodynamic parameters. In sum, this study indicated that MZN recycled from glass fiber waste is a novel, environmentally friendly means to adsorb cation methylene blue (MB), thus opening a gateway to the design and fabrication of ceramic-zeolite and tourmaline-ceramic balls and ceramic ring-filter media products. In addition, it has environmental applications such as removing cation dyes and trace metal ions from aqueous solutions and recycling water.
Collapse
|
24
|
A significant improvement in adsorption behavior of mesoporous TUD-1 silica through neodymium incorporation. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Templated synthesis of NiO/SiO2 nanocomposite for dye removal applications: Adsorption kinetics and thermodynamic properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Maria Rahman M, Al Foisal J, Ihara H, Takafuji M. Efficient removal of methylene blue dye from an aqueous solution using silica nanoparticle crosslinked acrylamide hybrid hydrogels. NEW J CHEM 2021. [DOI: 10.1039/d1nj04383h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silica nanoparticle cross-linked acrylamide polymer hydrogels showed promising adsorption behavior for organic dye removal in a neutral to basic pH range with a rapid adsorption rate, high adsorption capacity and excellent regeneration efficacy.
Collapse
Affiliation(s)
- M. Maria Rahman
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
- Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh
| | - Jannat Al Foisal
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
- Okinawa College, National Institute of Technology, 905 Henoko, Ns, Okinawa, 905-2192, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
27
|
Cadenbach T, Benitez MJ, Morales AL, Costa Vera C, Lascano L, Quiroz F, Debut A, Vizuete K. Nanocasting synthesis of BiFeO 3 nanoparticles with enhanced visible-light photocatalytic activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1822-1833. [PMID: 33364141 PMCID: PMC7736686 DOI: 10.3762/bjnano.11.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
In this work, monodisperse BiFeO3 nanoparticles with a particle diameter of 5.5 nm were synthesized by a nanocasting technique using mesoporous silica SBA-15 as a hard template and pre-fabricated metal carboxylates as metal precursors. To the best of our knowledge, the synthesized particles are the smallest BiFeO3 particles ever prepared by any method. The samples were characterized by X-ray powder diffraction, transmission electron microscopy and UV-vis diffuse reflectance spectroscopy. The phase purity of the product depends on the type of carboxylic acid used in the synthesis of the metal precursors, the type of solvent in the wet impregnation process, and the calcination procedure. By using tartaric acid in the synthesis of the metal precursors, acidified 2-methoxyethanol in the wet impregnation process and a calcination procedure with intermediate plateaus, monodisperse 5.5 nm BiFeO3 nanoparticles were successfully obtained. Furthermore, the nanoparticles were applied in photodegradation reactions of rhodamine B in aqueous solution under visible-light irradiation. Notably, the cast BiFeO3 nanoparticles demonstrated very high efficiencies and stability under visible-light irradiation, much higher than those of BiFeO3 nanoparticles synthesized by other synthetic methods. The possible mechanism in the photodegradation process has been deeply discussed on the basis of radical trapping experiments.
Collapse
Affiliation(s)
- Thomas Cadenbach
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierias, El Politécnico, Diego de Robles y Vía Interoceánica, 170901, Quito, Ecuador
| | - Maria J Benitez
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - A Lucia Morales
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierias, El Politécnico, Diego de Robles y Vía Interoceánica, 170901, Quito, Ecuador
| | - Cesar Costa Vera
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - Luis Lascano
- Departamento de Física, Facultad de Ciencias, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - Francisco Quiroz
- Departamento de Ciencia de los Alimentos y Biotecnología DECAB, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí, PO Box 171-5-231B, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí, PO Box 171-5-231B, Ecuador
| |
Collapse
|
28
|
Kollofrath D, Geppert M, Polarz S. Copolymerization of Mesoporous Styrene-Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuli-Responsive Remediation of Water. CHEMSUSCHEM 2020; 13:5100-5111. [PMID: 32662565 PMCID: PMC7540170 DOI: 10.1002/cssc.202001264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Indexed: 06/11/2023]
Abstract
For every mass product, there are problems associated with the resulting waste. Residues of hormones in urine cannot be removed sufficiently from wastewater, and this has undesired consequences. An ideal adsorbent would take up the impurity, enable a simple separation and recyclability. Polymer colloids with high affinity towards the drug, accessible porosity, high surface area, and stimuli-responsive properties would be candidates, but such a complex system does not exist. Here, porous vinyl-functionalized organosilica nanoparticles prepared from a styrene bridged sol-gel precursor act as monomers. Initiation of the polymerization at the pore walls and addition of functional monomers result in a special copolymer, which is covalently linked to the surface and covers it. An orthogonal modification of external surface was done by click attachment of a thermoresponsive polymer. The final core-shell system is able to remove quantitatively hydrophobic molecules such as the hormone progesterone from water. A change of temperature closes the pores and induces the aggregation of the particles. After separation one can reopen the particles and recycle them.
Collapse
Affiliation(s)
- Dennis Kollofrath
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Marcel Geppert
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Sebastian Polarz
- Institute of Inorganic ChemistryLeibniz-University of HannoverCallinstrasse 930167HannoverGermany
- Department of ChemistryUniversity of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
29
|
Nistor MA, Muntean SG, Maranescu B, Visa A. Phosphonate metal–organic frameworks used as dye removal materials from wastewaters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Andreea Nistor
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| | | | - Bianca Maranescu
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| | - Aurelia Visa
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| |
Collapse
|
30
|
Milošević MM, Milanović M, Stijepović I, Srdić VV, Antov MG. Evaluation of mesoporous silica and Nb-doped titanate as molecule carriers through adsorption/desorption study. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1573866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maja M. Milošević
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Marija Milanović
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Stijepović
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Vladimir V. Srdić
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Mirjana G. Antov
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
31
|
Guerritore M, Castaldo R, Silvestri B, Avolio R, Cocca M, Errico ME, Avella M, Gentile G, Ambrogi V. Hyper-Crosslinked Polymer Nanocomposites Containing Mesoporous Silica Nanoparticles with Enhanced Adsorption Towards Polar Dyes. Polymers (Basel) 2020; 12:E1388. [PMID: 32575792 PMCID: PMC7362258 DOI: 10.3390/polym12061388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/16/2023] Open
Abstract
The development of new styrene-based hyper-crosslinked nanocomposites (HCLN) containing mesoporous silica nanoparticles (MSN) is reported here as a new strategy to obtain functional high surface area materials with an enhanced hydrophilic character. The HCLN composition, morphology and porous structure were analyzed using a multi-technique approach. The HCLN displayed a high surface area (above 1600 m2/g) and higher microporosity than the corresponding hyper-crosslinked neat resin. The enhanced adsorption properties of the HCLN towards polar organic dyes was demonstrated through the adsorption of a reactive dye, Remazol Brilliant Blue R (RB). In particular, the HCLN containing 5phr MSN showed the highest adsorption capacity of RB.
Collapse
Affiliation(s)
- Marco Guerritore
- Department of Chemical, Materials and Production Engineering (DICMaPI)—University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy; (M.G.); (V.A.)
| | - Rachele Castaldo
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Brigida Silvestri
- Department of Chemical, Materials and Production Engineering (DICMaPI)—University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy; (M.G.); (V.A.)
| | - Roberto Avolio
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Mariacristina Cocca
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Maria Emanuela Errico
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Maurizio Avella
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Gennaro Gentile
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering (DICMaPI)—University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy; (M.G.); (V.A.)
- National Research Council of Italy, Institute for Polymers Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy; (R.A.); (M.C.); (M.E.E.); (M.A.); (G.G.)
| |
Collapse
|
32
|
Qin P, Zhu W, Han L, Zhang X, Zhao B, Zhang X, Lu M. Monodispersed mesoporous SiO 2@metal-organic framework (MSN@MIL-101(Fe)) composites as sorbent for extraction and preconcentration of phytohormones prior to HPLC-DAD analysis. Mikrochim Acta 2020; 187:367. [PMID: 32494885 DOI: 10.1007/s00604-020-04326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
The monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites were prepared by grafting MSN-NH2 onto MIL-101(Fe) particles with a solvothermal method. The adsorption ability of the composites was greatly improved compared to that of pristine MSNs or MIL-101(Fe) for phytohormones (Phys). The MSN@MIL-101(Fe) composites were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometer, and mapping analysis. Using MSN@MIL-101(Fe) composites as sorbent, a dispersive solid-phase extraction procedure (dSPE) was developed to extract three endogenous Phys (abscisic acid (ABA), indole-3-aceticacid (IAA), and indole-3-butyric acid (IBA)) and two exogenous Phys (1-naphthylacetic acid (1-NAA) and 2-naphthylacetic acid (2-NAA)) prior to HPLC-DAD analysis. The experimental parameters including sample volume, sorbent amount, adsorption time, adsorption pH, desorption time, and desorption solvent on extraction efficiency were optimized and evaluated. Under optimized conditions, the working range of 0.08 to 0.45 ng mL-1 with enrichment factors from 144 to 207 were achieved. The linear range is 0.75-200 ng mL-1 for IAA, 0.20-200 ng mL-1 for ABA, and 1.0-200 ng mL-1 for IBA, 1-NAA, and 2-NAA. With MSN@MIL-101(Fe) as sorbent for extraction of Phys and determination by HPLC-DAD, two endogenous Phys (IAA and ABA) were detected from mung bean sprouts which were made in a laboratory, and the results were further confirmed by high-resolution mass spectrometry. The composites can be applied to extract other small molecules, which have similar chemical structures with Phys in biological, environmental, and food samples. Graphical abstract Schematic presentation of a dispersive solid-phase extraction using monodispersed mesoporous SiO2@metal-organic framework composites (MSNs@MIL-101(Fe)) as the sorbent for extraction, clean-up, and preconcentration of phytohormones in mung bean sprouts prior to HPLC-DAD analysis.
Collapse
Affiliation(s)
- Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Wenli Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Bing Zhao
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Xuebin Zhang
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
33
|
Xi H, Li Q, Yang Y, Zhang J, Guo F, Wang X, Xu S, Ruan S. Synergistic modification of bentonite by acid activation and hydroxyl iron pillaring for enhanced dye adsorption capacity. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1518-1529. [PMID: 32616703 DOI: 10.2166/wst.2020.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the fact of natural abundance, low cost and environmental friendliness, the far-from-sufficient adsorption capacity of natural bentonite (BT) has limited such a promising application to remove dye pollutants. In this paper, we proposed a facile modification strategy to enhance adsorption performance of bentonite utilizing synergistic acid activation and hydroxyl iron pillaring, by which the adsorbent (abbreviated as S-Fe-BT) exhibited the highest adsorption capacity (246.06 mg/g) and a high rapid adsorption rate for a typical organic dye, Rhodamine B (RhB). This could be ascribed to the increased interlayer spacing, the increased specific surface area, and the optimized OH/Fe ratio after the synthetic modification of the pristine BT. The adsorption behavior of RhB onto S-Fe-BT was well described by the pseudo-second-order kinetic model, indicating a chemical-adsorption-controlled process. Furthermore, its adsorption isotherm matched well with the Langmuir model due to a monolayer adsorption process. This paper opens a promising direction to remove the dye pollution using low cost bentonite adsorbents treated by such a convenient modification strategy.
Collapse
Affiliation(s)
- Huan Xi
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China E-mail: ; ; Nanjing Hydraulic Research Institute, Nanjing 211100, China
| | - Qingqing Li
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China E-mail: ;
| | - Yan Yang
- Nanjing Hydraulic Research Institute, Nanjing 211100, China; Desalination and Alternative Water Development & Utilization Research Center, Hohai University, Nanjing 211100, China
| | - Jianfeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 211100, China E-mail: ; ; Jiangsu Engineering Research Center on Utilization of Alternative Water Resources, Hohai University, Nanjing 211100, China
| | - Feng Guo
- Nanjing Hydraulic Research Institute, Nanjing 211100, China; Desalination and Alternative Water Development & Utilization Research Center, Hohai University, Nanjing 211100, China
| | - Xiaogang Wang
- Nanjing Hydraulic Research Institute, Nanjing 211100, China
| | - Shikai Xu
- Nanjing Hydraulic Research Institute, Nanjing 211100, China
| | - Shiping Ruan
- Nanjing Hydraulic Research Institute, Nanjing 211100, China
| |
Collapse
|
34
|
A. Ahmed I, S. Hussein H, H. Ragab A, S. Al-Radadi N. Synthesis and Characterization of Silica-Coated Oxyhydroxide Aluminum/Doped Polymer Nanocomposites: A Comparative Study and Its Application as a Sorbent. Molecules 2020; 25:E1520. [PMID: 32230753 PMCID: PMC7180808 DOI: 10.3390/molecules25071520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
The present investigation is a comparison study of two nanocomposites: Nano-silica-coated oxyhydroxide aluminum (SiO2-AlOOH; SCB) and nano-silica-coated oxyhydroxide aluminum doped with polyaniline (SiO2-AlOOH-PANI; SBDP). The prepared nanocomposites were evaluated by monitoring the elimination of heavy metal Ni(II) ions from aquatic solutions. The synthesized nanocomposites were analyzed and described by applying scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques, as well as Zeta potential distribution. In this study, two adsorbents were applied to investigate their adsorptive capacity to eliminate Ni(II) ions from aqueous solution. The obtained results revealed that SBDP nanocomposite has a higher negative zeta potential value (-47.2 mV) compared with SCB nanocomposite (-39.4 mV). The optimum adsorption was performed at pH 8, with approximately 94% adsorption for SCB and 97% adsorption for SBDP nanocomposites. The kinetics adsorption of Ni ions onto SCB and SBDP nanocomposites was studied by applying the pseudo first-order, pseudo second-order, and Mories-Weber models. The data revealed that the adsorption of Ni ions onto SCB and SBDP nanocomposites followed the pseudo second-order kinetic model. The equilibrium adsorption data were analyzed using three models: Langmuir, Freundlich, and Dubinin-Radusekevisch-Kanager Isotherm. It was concluded that the Langmuir isotherm fits the experimental results well for the SCB and SBDP nanocomposites. Thermodynamic data revealed that the adsorption process using SCB nanocomposites is an endothermic and spontaneous reaction. Meanwhile, the Ni ion sorption on SBDP nanocomposites is exothermic and spontaneous reaction.
Collapse
Affiliation(s)
- Inas A. Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia;
| | - H. S. Hussein
- Chemical Engineering & Pilot Plant Department, Engineering Division, National Research Centre, Cairo 11865, Egypt;
| | - Ahmed H. Ragab
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia;
| | - Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, Madinah Monawara 20012, Saudi Arabia;
| |
Collapse
|
35
|
Soltani R, Marjani A, Hosseini M, Shirazian S. Meso-architectured siliceous hollow quasi-capsule. J Colloid Interface Sci 2020; 570:390-401. [PMID: 32182479 DOI: 10.1016/j.jcis.2020.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/31/2023]
Abstract
Reactive dyes have been identified to be highly hazardous pollutants because they were shown to be more toxic towards mammals than general organic compounds and organic dyes. Accordingly, for the first time, meso-architectured mercapto-modified siliceous hollow quasi-capsules (SH-SHQC) were prepared by a facile, ultrasonic-assisted, and one-step synthesis protocol. Adsorptive removal of rhodamine B (RhB) and methylene blue (MB) onto SH-SHQC in a batch system has been investigated. Isotherm results agreed very well with the Langmuir equation for both dyes. The maximum adsorption capacity of SH-SHQC for RhB and MB was determined with the Langmuir equation and was found to be 147.06 and 119.05 mg g-1 at 298 K, respectively (pH: 6.0 for RhB and 7.0 for MB; adsorbent dosage: 15.0 mg; the volume of the dye solution: 40.0 mL). Among different kinetic models, the pseudo-first-order equation was better fitted since experimental data agreed very well with theoretical data. SH-SHQC was shown to be a promising adsorbent for adsorptive removal of reactive dyes from aqueous solutions. To date, there has been no report on the adsorption of reactive dye cations by meso-architectured mercapto-modified siliceous hollow quasi-capsules prepared by an ultrasonic-assisted, one-pot, and sol-gel synthesis method.
Collapse
Affiliation(s)
- Roozbeh Soltani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mina Hosseini
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
36
|
Truskewycz A, Taha M, Jampaiah D, Shukla R, Ball AS, Cole I. Interfacial separation of concentrated dye mixtures from solution with environmentally compatible nitrogenous-silane nanoparticles modified with Helianthus annuus husk extract. J Colloid Interface Sci 2020; 560:825-837. [PMID: 31711669 DOI: 10.1016/j.jcis.2019.10.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
The capacity of an adsorbent to bind and remove dye from solution greatly depends on the type of functionalization present on the nanoparticles surface, and its interaction with the dye molecules. Within this study, nitrogenous silane nanoparticles were hydrothermally synthesized resulting in the formation of rapid and highly efficient adsorbents for concentrated mixed dyes. The amorphous silane nanoparticles exhibited a monolayer based mechanism of mixed dye adsorption with removal capacities between 416.67 and 714.29 mg/g of adsorbent. Dye removal was predominantly due to the electrostatic attraction between the positively charged silane nanoparticles (13.22-8.20 mV) and the negatively charged dye molecules (-54.23 mV). Addition of H. annuus extract during synthesis resulted in three times the surface area and 10 times increased pore volume compared to the positive control. XPS analysis showed that silane treatments had various nitrogen containing functionalities at their surface responsible for binding dye. The weak colloidal stability of silane particles (13.22-8.20 mV) was disrupted following dye binding, resulting in their rapid coagulation and flocculation which facilitated the separation of bound dye molecules from solution. The suitability for environmental applications using these treatments was supported by a bacterial viability assay showing >90% cell viability in treated dye supernatants.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia; Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt
| | - Deshetti Jampaiah
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia; Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ivan Cole
- Advanced Manufacturing and Fabrication, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
37
|
Saxena R, Saxena M, Lochab A. Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater. ChemistrySelect 2020. [DOI: 10.1002/slct.201903542] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Reena Saxena
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| | - Megha Saxena
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| | - Amit Lochab
- Department of ChemistryKirori Mal CollegeUniversity of Delhi Delhi 110007
| |
Collapse
|
38
|
Abboud M, Sahlabji T, Haija MA, El-Zahhar AA, Bondock S, Ismail I, Keshk SMAS. Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater. NEW J CHEM 2020. [DOI: 10.1039/d0nj00076k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis, characterization, and methylene blue (MB) adsorption study of a new lignosulfonate/amino-functionalized SBA-15 nanocomposite are described.
Collapse
Affiliation(s)
- Mohamed Abboud
- Catalysis Research Group
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Taher Sahlabji
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
- Saudi Arabia
| | - Mohammad Abu Haija
- Department of Chemistry
- Khalifa University of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Adel A. El-Zahhar
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
- Saudi Arabia
| | - Samir Bondock
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
- Saudi Arabia
| | - Issam Ismail
- Department of Chemistry
- Khalifa University of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Sherif M. A. S. Keshk
- Nanomaterials and Systems for Renewable Energy Laboratory
- Research and Technology Center of Energy
- Hammam Lif
- Tunisia
| |
Collapse
|
39
|
Wu Q, He L, Jiang ZW, Li Y, Zhao TT, Li YH, Huang CZ, Li YF. One-step synthesis of Cu(II) metal-organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption. J Environ Sci (China) 2019; 86:203-212. [PMID: 31787185 DOI: 10.1016/j.jes.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Efficient removal of non-biodegradable and hazardous dyes from wastewater remains a hot research topic. Herein, a rationally designed a Cu(II)-based metal-organic gel (Cu-MOG) with a nanoporous 3D network structure prepared via a simple one-step mixing method was successfully employed for the removal of cationic dyes. The Cu-MOG exhibited high efficiency, with an adsorption capacity of up to 650.32 mg/g, and rapid adsorption efficiency, with the ability to adsorb 80% of Neutral Red within 1 min. The high adsorption efficiency was attributed to its large specific surface area, which enabled it to massively bind cationic dyes through electrostatic interaction, and a nanoporous structure that promoted intra-pore diffusion. Remarkably, the Cu-MOG displayed size-selective adsorption, based on adsorption studies concerning dyes of different sizes as calculated by density functional theory. Additionally, the adsorption performance of the Cu-MOG still maintained removal efficiency of 100% after three regeneration cycles. These results suggested that the Cu-MOG could be expected to be a promising and competitive candidate to conveniently process wastewater.
Collapse
Affiliation(s)
- Qing Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Ting Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Han Li
- College of Science, Beihua University, Jilin 132013, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
40
|
Environmentally Friendly Mesoporous Nanocomposite Prepared from Al-Dross Waste with Remarkable Adsorption Ability for Toxic Anionic Dye. J CHEM-NY 2019. [DOI: 10.1155/2019/7685204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, a mesoporous nanocomposite composed of nanogibbsite (α-Al(OH)3) and nanosilica was prepared. Gibbsite nanoparticles (GNPs) with a crystal size of ≈38 nm were prepared from Al-dross industrial waste products in an acidic environment at 100°C. Nanosilica (NS) with a crystal size of ≈13 nm was prepared from sodium silicate using dilute hydrochloric acid. The deposition of nanosilica onto gibbsite particles was investigated. The mesoporous silica-gibbsite (NSG) nanocomposite was examined by evaluating its ability to adsorb the toxic anionic dye Eriochrome black T (EBT) from aqueous solution. The compositional and morphological properties of NSG nanocomposites were studied by means of the FTIR spectroscopy, X-ray fluorescence (XRF), XRD, SEM, and TEM techniques. The effect of dye concentration, pH, adsorbent dose, contact time, and temperature was investigated. The sorption models, the isotherms, and the thermodynamic parameters ΔHo, ΔGo, and ΔSo were evaluated. The N2 adsorption-desorption isotherms revealed that mixing the two prepared materials (NS and GNPs) to form the NSG nanocomposite resulted in good properties (a surface area of 62.34 m2·g−1, a pore radius of 22.717 nm, and a pore volume of 0.7081 cm3·g−1). The results show that the prepared NSG nanocomposite has a remarkable ability to adsorb toxic anionic dyes.
Collapse
|
41
|
Salman M, Jahan S, Kanwal S, Mansoor F. Recent advances in the application of silica nanostructures for highly improved water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21065-21084. [PMID: 31124071 DOI: 10.1007/s11356-019-05428-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The demand for high-quality safe and clean water supply has revolutionized water treatment technologies and become a most focused subject of environmental science. Water contamination generally marks the presence of numerous toxic and harmful substances. These contaminants such as heavy metals, organic and inorganic pollutants, oil wastes, and chemical dyes are discharged from various industrial effluents and domestic wastes. Among several water treatment technologies, the utilization of silica nanostructures has received considerable attention due to their stability, sustainability, and cost-effective properties. As such, this review outlines the latest innovative approaches for synthesis and application of silica nanostructures in water treatment, apart from exploring the gaps that limit their large-scale industrial application. In addition, future challenges for improved water remediation and water quality technologies are keenly discussed.
Collapse
Affiliation(s)
- Muhammad Salman
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Shanaz Jahan
- Department of Geology, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Shamsa Kanwal
- Department of Basic Sciences, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, Pakistan
| | - Farrukh Mansoor
- Department of Basic Sciences, Khwaja Fareed University of Engineering and Information Technology, Abu Dhabi Road, Rahim Yar Khan, Pakistan
| |
Collapse
|
42
|
Chu TPM, Nguyen NT, Vu TL, Dao TH, Dinh LC, Nguyen HL, Hoang TH, Le TS, Pham TD. Synthesis, Characterization, and Modification of Alumina Nanoparticles for Cationic Dye Removal. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E450. [PMID: 30717156 PMCID: PMC6384569 DOI: 10.3390/ma12030450] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022]
Abstract
In the present study, alumina nanoparticles (nano-alumina) which were successfully fabricated by solvothermal method, were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), and Brunauer⁻Emmett⁻Teller (BET) methods. The removal of cationic dye, Rhodamine B (RhB), through adsorption method using synthesized nano-alumina with surface modification by anionic surfactant was also investigated. An anionic surfactant, sodium dodecyl sulfate (SDS) was used to modify nano-alumina surface at low pH and high ionic strength increased the removal efficiency of RhB significantly. The optimum adsorption conditions of contact time, pH, and adsorbent dosage for RhB removal using SDS modified nano-alumina (SMNA) were found to be 120 min, pH 4, and 5 mg/mL respectively. The RhB removal using SMNA reached a very high removal efficiency of 100%. After four times regeneration of adsorbent, the removal efficiency of RhB using SMNA was still higher than 86%. Adsorption isotherms of RhB onto SMNA at different salt concentrations were fitted well by a two-step model. A very high adsorption capacity of RhB onto SMNA of 165 mg/g was achieved. Adsorption mechanisms of RhB onto SMNA were discussed on the basis of the changes in surface modifications, the change in surface charges and adsorption isotherms.
Collapse
Affiliation(s)
- Thi Phuong Minh Chu
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| | - Ngoc Trung Nguyen
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| | - Thi Lan Vu
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| | - Thi Huong Dao
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| | - Lan Chi Dinh
- HUS High School for Gifted Students, VNU-University of Science, Vietnam National University, Hanoi, 182 Luong The Vinh, Thanh Xuan, Hanoi 10000, Vietnam.
| | - Hai Long Nguyen
- HUS High School for Gifted Students, VNU-University of Science, Vietnam National University, Hanoi, 182 Luong The Vinh, Thanh Xuan, Hanoi 10000, Vietnam.
| | - Thu Ha Hoang
- High School of Education Sciences, University of Education, Vietnam National University, Hanoi, Kieu Mai, Phuc Dien, Bac Tu Liem, Hanoi 10000, Vietnam.
| | - Thanh Son Le
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| | - Tien Duc Pham
- Faculty of Chemistry, VNU-University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam.
| |
Collapse
|
43
|
Natural Minerals as Support of Silicotungstic Acid for Photocatalytic Degradation of Methylene Blue in Wastewater. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Shao F, Zhang L, Jiao L, Wang X, Miao L, Li H, Zhou F. Enzyme-Free Immunosorbent Assay of Prostate Specific Antigen Amplified by Releasing pH Indicator Molecules Entrapped in Mesoporous Silica Nanoparticles. Anal Chem 2018; 90:8673-8679. [DOI: 10.1021/acs.analchem.8b02019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fengying Shao
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
| | - Lianhua Zhang
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lei Jiao
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
| | - Xiaoying Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Luyang Miao
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
| | - He Li
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China
| |
Collapse
|
45
|
Shen Z, Zhou H, Chen H, Xu H, Feng C, Zhou X. Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange. NANOMATERIALS 2018; 8:nano8050317. [PMID: 29747457 PMCID: PMC5977331 DOI: 10.3390/nano8050317] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023]
Abstract
Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N₂ adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process.
Collapse
Affiliation(s)
- Zhichuan Shen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China.
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China.
| | - Hongjun Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China.
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China.
| | - Huayao Chen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China.
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China.
| | - Hua Xu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China.
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China.
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510220, China.
| | - Xinhua Zhou
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510220, China.
- Guangzhou Key Lab for Efficient Use of Agricultural Chemicals, Guangzhou 510220, China.
| |
Collapse
|
46
|
Phan TTN, Nikoloski AN, Bahri PA, Li D. Adsorption and photo-Fenton catalytic degradation of organic dyes over crystalline LaFeO3-doped porous silica. RSC Adv 2018; 8:36181-36190. [PMID: 35558479 PMCID: PMC9088607 DOI: 10.1039/c8ra07073c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/16/2018] [Indexed: 01/20/2023] Open
Abstract
LaFeO3 (LFO)-doped mesoporous silica (HPS) (HPS-xLFO with theoretical LFO/silica molar ratio x = 0.075, 0.15, 0.3) was successfully prepared via impregnation of metal ions into the porous silica HPS-0LFO support and subsequent calcination. The characterization studies suggest that increasing the doping of LFO, which exhibited a particle size of ∼10–15 nm, in the silica support led to a reduction in surface area and bandgap of the resulting catalyst. The use of HPS-0.15LFO yielded a superior removal rate (98.9%) of Rhodamine B (RhB), thanks to the effective dark adsorption and visible light-induced photo-Fenton degradation, both of which were greater than those of pure LFO crystals. This enhancement could be explained by the unique properties of the mesoporous silica support. In particular, the wide-opening mesopores created a large surface area to dope LFO as active sites and minimize diffusion of RhB into pores during the photo-Fenton reaction. The photo-Fenton catalytic degradation of RhB could reach 98.6% within 90 min exposure to visible light irradiation under optimized conditions: RhB concentration = 10 mg L−1, catalyst dosage = 1 g L−1, pH = 6 and H2O2 = 15 mM. Moreover, the recycle and reuse test proved the good stability and repetitive use of HPS-0.15LFO for high performance RhB removal. LFO-doped mesoporous silica yielded high removal rate of dye, due to the dark adsorption and visible light-induced photo-Fenton degradation.![]()
Collapse
Affiliation(s)
- Thi To Nga Phan
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Aleksandar N. Nikoloski
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Parisa Arabzadeh Bahri
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Dan Li
- Chemical and Metallurgical Engineering and Chemistry
- School of Engineering and Information Technology
- Murdoch University
- Australia
| |
Collapse
|