1
|
Seth A, Mandal P, Hitaishi P, Giri RP, Murphy BM, Ghosh SK. Assembly of graphene oxide vs. reduced graphene oxide in a phospholipid monolayer at air-water interfaces. Phys Chem Chem Phys 2025; 27:1884-1900. [PMID: 39744966 DOI: 10.1039/d4cp02706j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane. Surface pressure-area isotherm and electrostatic surface potential measurements, along with advanced X-ray scattering techniques, have been utilized in this study. Experimental findings demonstrate a strong interaction between negatively charged GO flakes and a positively charged monolayer, primarily dictated by electrostatic forces. These GO flakes assemble horizontally beneath the head groups of the monolayer. In contrast, rGO flakes permeate the zwitterionic lipid layer through dominant hydrophobic interaction. This organization of GNMs alters the in-plane elasticity of the lipid film, exhibiting a drop in the electrostatic potential of the surface according to the extent of oxygen-containing groups. These results provide a solid groundwork for designing devices and sensors aimed at augmenting the biomedical applications of GNMs.
Collapse
Affiliation(s)
- Ajit Seth
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
2
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, Stegarescu A, Tripon S, Soran ML, Bâldea I. Natrium Alginate and Graphene Nanoplatelets-Based Efficient Material for Resveratrol Delivery. Gels 2024; 11:15. [PMID: 39851987 PMCID: PMC11765397 DOI: 10.3390/gels11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
In this study, alginate-based composite beads were developed for the delivery of resveratrol, a compound with therapeutic potential. Two formulations were prepared: one with sodium alginate and resveratrol (AR) and another incorporating graphene nanoplatelets (AGR) to improve drug release control. The beads were formed by exploiting alginate's ability to gel via ionic cross-linking. For the AGR formulation, sodium alginate was dissolved in water, and graphene was dispersed in isopropyl alcohol to achieve smaller flakes. Resveratrol was dissolved in an ethanol/water mixture and added to the graphene dispersion; the resulting solution was mixed with the alginate one. For the AR formulation, the resveratrol solution was mixed directly with the alginate solution. Both formulations were introduced into a calcium chloride solution to form the beads. The release of resveratrol was studied in phosphate-buffered saline at different pH values. Results showed that the presence of graphene in the AGR sample increased drug release, particularly at pH 6.8, indicating a pH-driven release mechanism. Kinetic analysis revealed that the Higuchi model best describes the release mechanism. Finally, cytotoxicity tests showed the biocompatibility of the system in normal human cells. These findings suggest that graphene-enhanced alginate matrices have significant potential for controlled drug delivery applications.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Stefano Bellucci
- R.A.I.T. 88 S.R.L, Via Pieve Torina 64/66, 00156 Rome, Italy;
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Septimiu Tripon
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
- Electron Microscopy Center, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.L.); (I.K.); (A.T.); (A.S.); (S.T.)
| | - Ioana Bâldea
- Department of Physiology, Iuliu Haţieganu University of Medicine and Pharmacy, Clinicilor 1, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Banerjee D, Bhattacharya A, Puri A, Munde S, Mukerjee N, Mohite P, Kazmi SW, Sharma A, Alqahtani T, Shmrany HA. Innovative approaches in stem cell therapy: revolutionizing cancer treatment and advancing neurobiology - a comprehensive review. Int J Surg 2024; 110:7528-7545. [PMID: 39377430 PMCID: PMC11634158 DOI: 10.1097/js9.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cell therapy represents a transformative frontier in medical science, offering promising avenues for revolutionizing cancer treatment and advancing our understanding of neurobiology. This review explores innovative approaches in stem cell therapy that have the potential to reshape clinical practices and therapeutic outcomes in cancer and neurodegenerative diseases. In this dynamic and intriguing realm of cancer research, recent years witnessed a surge in attention toward understanding the intricate role of mesenchymal stem cells (MSCs). These cells, capable of either suppressing or promoting tumors across diverse experimental models, have been a focal point in the exploration of exosome-based therapies. Exosomes released by MSCs have played a pivotal role, in unraveling the nuances of paracrine signaling and its profound impact on cancer development. Recent studies have revealed the complex nature of MSC-derived exosomes, showcasing both protumor and antitumor effects. Despite their multifaceted involvement in tumor growth, these exosomes show significant promise in influencing both tumor development and chemosensitivity, acting as a pivotal factor that increases stem cells' potential for medicinal use. Endogenous MSCs, primarily originating from the bone marrow, exhibited a unique migratory response to damaged tissue sites. The genetic modification of stem cells, including MSCs, opened avenues for the precise delivery of therapeutic payloads in the milieu around the tumor (TME). Stem cell therapy offers groundbreaking potential for treating neurodegenerative and autoimmune disorders by regenerating damaged tissues and modulating immune responses. This approach aims to restore lost function and promote healing through targeted cellular interventions. In this review, we explored the molecular complexities of cancer and the potential for breakthroughs in personalized and targeted therapies. This analysis offers hope for transformative advancements in both cancer treatment and neurodegenerative disorders, highlighting the promise of precision medicine in addressing these challenging conditions.
Collapse
Affiliation(s)
- Dhrupad Banerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, India
| | - Arghya Bhattacharya
- Department of Pharmacology, Bengal School of Technology (a college of pharmacy), Sugandha, West Bengal, India
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - Syeda W. Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
4
|
Papadiamantis AG, Mavrogiorgis A, Papatzelos S, Mintis D, Melagraki G, Lynch I, Afantitis A. A systematic review on the state-of-the-art and research gaps regarding inorganic and carbon-based multicomponent and high-aspect ratio nanomaterials. Comput Struct Biotechnol J 2024; 25:211-229. [PMID: 39526292 PMCID: PMC11550189 DOI: 10.1016/j.csbj.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the state-of-the-art with respect to multicomponent nanomaterials (MCNMs) and high aspect ratio nanomaterials (HARNs), with a focus on their physicochemical characterisation, applications, and hazard, fate, and risk assessment. Utilising the PRISMA approach, this study investigates specific MCNMs including cerium-zirconium mixtures (CexZryO2) and ZnO nanomaterials doped with transition metals and rare earth elements, as well as Titanium Carbide (TiC) nanomaterials contained in Ti-6Al-4V alloy powders. HARNs of interest include graphene, carbon-derived nanotubes (CNTs), and metallic nanowires, specifically Ag-based nanowires. The review reveals a significant shift in research and innovation (R&I) efforts towards these advanced nanomaterials due to their unique properties and functionalities that promise enhanced performance across various applications including photocatalysis, antibacterial and biomedical uses, and advanced manufacturing. Despite the commercial potential of MCNMs and HARNs, the review identifies critical gaps in our understanding of their environmental fate and transformations upon exposure to new environments, and their potential adverse effects on organisms and the environment. The findings underscore the necessity for further research focused on the environmental transformations and toxicological profiles of these nanomaterials to inform Safe and Sustainable by Design (SSbD) strategies. This review contributes to the body of knowledge by cataloguing current research, identifying research gaps, and highlighting future directions for the development of MCNMs and HARNs, facilitating their safe and effective integration into industry.
Collapse
Affiliation(s)
- Anastasios G. Papadiamantis
- NovaMechanics Ltd., Nicosia, Cyprus
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, UK
- Entelos Institute, Larnaca, Cyprus
| | | | | | - Dimitris Mintis
- NovaMechanics Ltd., Nicosia, Cyprus
- Entelos Institute, Larnaca, Cyprus
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | - Iseult Lynch
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, UK
- Entelos Institute, Larnaca, Cyprus
| | - Antreas Afantitis
- NovaMechanics Ltd., Nicosia, Cyprus
- Entelos Institute, Larnaca, Cyprus
| |
Collapse
|
5
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Seesala VS, Sheikh L, Basu B, Mukherjee S. Mechanical and Bioactive Properties of PMMA Bone Cement: A Review. ACS Biomater Sci Eng 2024; 10:5939-5959. [PMID: 39240690 DOI: 10.1021/acsbiomaterials.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Over the past few decades, poly(methyl methacrylate) (PMMA) based bone cement has been clinically used extensively in orthopedics for arthroplasty and kyphoplasty, due to its biocompatibility and excellent primary fixation to the host bone. In this focused review, we discuss the use of various fillers and secondary chemical moieties to improve the bioactivity and the physicochemical properties. The viscosity of the PMMA blend formulations and working time are crucial to achieving intimate contact with the osseous tissue, which is highly sensitive to organic or inorganic fillers. Hydroxyapatite as a reinforcement resulted in compromised mechanical properties of the modified cement. The possible mechanisms of the additive- or filler-dependent strengthening or weakening of the PMMA blend are critically reviewed. The addition of layered double hydroxides with surface functionalization appears to be a promising approach to enhance the bonding of filler with the PMMA matrix. Such an approach consequently improves the mechanical properties, owing to enhanced dispersion as well as contributions from crack bridging. Finally, the use of emerging alternatives, such as nanoparticles, and the use of natural biomolecules were highlighted to improve bioactivity and antibacterial properties.
Collapse
Affiliation(s)
- Venkata Sundeep Seesala
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Lubna Sheikh
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru 560012, India
| | - Subrata Mukherjee
- Advanced Materials and Characterization Group, Research and Development Division, Tata Steel Ltd, Jamshedpur 831001, India
| |
Collapse
|
7
|
Palaniappan N, Cole I, Kuznetsov A, Oz T, Kujawska M, Thomas KJ. Lanthanum nanoparticle decorated carbon nanotubes: Facile method of synthesis and studies of their redox stability, cytotoxicity and corrosion inhibition on the magnesium alloy in 3.5 % NaCl environment. DIAMOND AND RELATED MATERIALS 2024; 148:111403. [DOI: 10.1016/j.diamond.2024.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
8
|
Taghiyeva N, Hasanova U, Millet M, Gardiennet C, Gakhramanova Z, Mirzayev MH, Gahramanli L, Pham-Huu C, Aliyeva S, Aliyeva G, Rzayev F, Gasimov E, Boulogne C, Akhundzada HV. Synthesis and Characterization of Novel Adsorbents Based on Functionalization of Graphene Oxide with Schiff Base and Reduced Schiff Base for Pesticide Removal. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4096. [PMID: 39203274 PMCID: PMC11355997 DOI: 10.3390/ma17164096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Graphene oxide (GO) nanosheets were functionalized with Schiff base and reduced Schiff base. Covalent and non-covalent functionalized GO nanostructures have been tested for the removal of pesticides with different chemical structures and properties (e.g., Epoxiconazole, Dimethomorph, Cyprodinil, Chlorothalonil, Acetochlor, Trifluralin) from aqueous solutions. The structure and morphology characteristics of the prepared structures were analyzed using techniques such as solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Results of the experiments showed that, although the non-covalent functionalization did not affect the adsorption properties of GO much, the covalent functionalization increased the adsorption capacity of GO against the mentioned pesticides.
Collapse
Affiliation(s)
- Narinj Taghiyeva
- CPML (UFAZ), Azerbaijan State Oil and Industry University, Azadliq Avenue, 20, Baku AZ1010, Azerbaijan;
- ICPEES (UMR 7515 CNRS), CNRS and University of Strasbourg, 25 Rue Becquerel, 67087 Strasbourg CEDEX 8, France;
| | - Ulviyya Hasanova
- BSU (ICESCO Biomedical Materials Chair), Baku State University, Z. Khalilov Str. 23, Baku AZ1148, Azerbaijan;
| | - Maurice Millet
- ICPEES (UMR 7515 CNRS), CNRS and University of Strasbourg, 25 Rue Becquerel, 67087 Strasbourg CEDEX 8, France;
| | - Carole Gardiennet
- CRM2 UMR 7036 CNRS, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France (C.B.)
| | - Zarema Gakhramanova
- GPOGC (ASOIU), Azerbaijan State Oil and Industry University, Azadliq Avenue, 20, Baku AZ1010, Azerbaijan; (Z.G.); (S.A.); (G.A.); (H.V.A.)
| | - Mushfig H. Mirzayev
- Binagadi Medical Center Named after A.D. Malikov, Azadlig 195, Baku AZ1054, Azerbaijan;
| | - Lala Gahramanli
- Nano Research Laboratory, Baku State University, Z. Khalilov Str. 23, Baku AZ1148, Azerbaijan;
| | - Cuong Pham-Huu
- ICPEES (UMR 7515 CNRS), CNRS and University of Strasbourg, 25 Rue Becquerel, 67087 Strasbourg CEDEX 8, France;
| | - Solmaz Aliyeva
- GPOGC (ASOIU), Azerbaijan State Oil and Industry University, Azadliq Avenue, 20, Baku AZ1010, Azerbaijan; (Z.G.); (S.A.); (G.A.); (H.V.A.)
| | - Gunel Aliyeva
- GPOGC (ASOIU), Azerbaijan State Oil and Industry University, Azadliq Avenue, 20, Baku AZ1010, Azerbaijan; (Z.G.); (S.A.); (G.A.); (H.V.A.)
| | - Fuad Rzayev
- Department of Electron Microscopy of the Scientific Research Center, Azerbaijan Medical University, Nasimi Reg., S. Vurgun Str. 163, Baku AZ1078, Azerbaijan;
| | - Eldar Gasimov
- Embryology and Histology, Azerbaijan Medical University, Nasimi Reg., S. Vurgun Str., 163, Baku AZ1078, Azerbaijan;
| | - Corentin Boulogne
- CRM2 UMR 7036 CNRS, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France (C.B.)
| | - Haji Vahid Akhundzada
- GPOGC (ASOIU), Azerbaijan State Oil and Industry University, Azadliq Avenue, 20, Baku AZ1010, Azerbaijan; (Z.G.); (S.A.); (G.A.); (H.V.A.)
- Institute of Radiation Problems of ANAS, B. Vahabzada Str. 9, Baku AZ1143, Azerbaijan
| |
Collapse
|
9
|
Lam KY, Lee CS, Tan RYH. NIR-induced photothermal-responsive shape memory polyurethane for versatile smart material applications. RSC Adv 2024; 14:24265-24286. [PMID: 39104559 PMCID: PMC11299057 DOI: 10.1039/d4ra04754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
Stimuli responsiveness has been an attractive feature of smart material design, allowing the chemical and physical properties of the materials to change in response to small environmental variations. The versatile shape memory polyurethane (SMPU) has been advanced into thermally-responsive SMPU, enabling its use in neurovascular stents, smart fibers for compression garments, and thermal-responsive components for aircraft and aerospace structures. While thermally-induced SMPU materials exhibit excellent shape recovery and fixity, they encounter limitations such as long response times, energy-intensive heating processes, and potential damage to heat-sensitive components, hindering their wide application. Thus, SMPU has further advanced into a photothermal-responsive material by incorporating photothermal agents into the polymer matrix, offering faster response times, compatibility with heat-sensitive materials, and enhanced mechanical properties, expanding the versatility and applicability of shape memory technology. This review focuses on the classes of NIR-induced photothermal agent used in SMPU systems, their synthesis methods, and photothermal-responsive mechanism under NIR-light, which offers a dual responsiveness to the host SMPU. The advantages and limitations of NIR-induced photothermal SMPU are reviewed, and challenges in their development are discussed.
Collapse
Affiliation(s)
- Ki Yan Lam
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| | - Rachel Yie Hang Tan
- School of Postgraduate Studies, IMU University No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000 Kuala Lumpur Malaysia
| |
Collapse
|
10
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Mansha S, Sajjad A, Zarbab A, Afzal T, Kanwal Z, Iqbal MJ, Raza MA, Ali S. Development of pH-Responsive, Thermosensitive, Antibacterial, and Anticancer CS/PVA/Graphene Blended Hydrogels for Controlled Drug Delivery. Gels 2024; 10:205. [PMID: 38534622 DOI: 10.3390/gels10030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Drug delivery techniques based on polymers have been investigated for their potential to improve drug solubility, reduce systemic side effects, and controlled and targeted administration at infection site. In this study, we developed a co-polymeric hydrogel composed of graphene sheets (GNS), polyvinyl alcohol (PVA), and chitosan (CS) that is loaded with methotrexate (MTX) for in vitro liver cancer treatment. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) was employed to check the structural properties and surface morphology. Moreover, tests were conducted on the cytotoxicity, hemolytic activity, release kinetics, swelling behaviour and degradation of hydrogels. A controlled release of drug from hydrogel in PBS at pH 7.4 was examined using release kinetics. Maximal drug release in six hours was 97.34%. The prepared hydrogels did not encourage the HepG2 growth and were non-hemolytic. The current study highlights the potential of GNS-based hydrogel loaded with MTX as an encouraging therapy for hepatocellular carcinoma. HepG2 cell viability of MTX-loaded CS-PVA-GNS hydrogel was (IC50 5.87 µg/200 mL) in comparison to free MTX (IC50 5.03 µg/200 mL). These outcomes recommend that hydrogels with GNS ensure improved drug delivery in cancer microenvironment while lessening adverse consequences on healthy cells.
Collapse
Affiliation(s)
- Saira Mansha
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Amna Sajjad
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Aneeqa Zarbab
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Punjab, Pakistan
| | - Tahmina Afzal
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Punjab, Pakistan
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore 44444, Punjab, Pakistan
| | - Muhammad Javaid Iqbal
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Punjab, Pakistan
| | - Mohsin Ali Raza
- Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Punjab, Pakistan
| | - Sharafat Ali
- Department of Built Environment and Energy Technology, Linnæus University, SE-351 95 Växjö, Sweden
| |
Collapse
|
12
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
13
|
Assad H, Lone IA, Kumar A, Kumar A. Unveiling the contemporary progress of graphene-based nanomaterials with a particular focus on the removal of contaminants from water: a comprehensive review. Front Chem 2024; 12:1347129. [PMID: 38420577 PMCID: PMC10899519 DOI: 10.3389/fchem.2024.1347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Water scarcity and pollution pose significant challenges to global environmental sustainability and public health. As these concerns intensify, the quest for innovative and efficient water treatment technologies becomes paramount. In recent years, graphene-based nanomaterials have emerged as frontrunners in this pursuit, showcasing exceptional properties that hold immense promise for addressing water contamination issues. Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, exhibits extraordinary mechanical, electrical, and chemical properties. These inherent characteristics have led to a surge of interest in leveraging graphene derivatives, such as graphene oxide (GO), reduced graphene oxide and functionalized graphene, for water treatment applications. The ability of graphene-based nanomaterials to adsorb, catalyze, and photocatalyze contaminants makes them highly versatile in addressing diverse pollutants present in water sources. This review will delve into the synthesis methods employed for graphene-based nanomaterials and explore the structural modifications and functionalization strategies implemented to increase their pollutant removal performance in water treatment. By offering a critical analysis of existing literature and highlighting recent innovations, it will guide future research toward the rational design and optimization of graphene-based nanomaterials for water decontamination. The exploration of interdisciplinary approaches and cutting-edge technologies underscores the evolving landscape of graphene-based water treatment, fostering a path toward sustainable and scalable solutions. Overall, the authors believe that this review will serve as a valuable resource for researchers, engineers, and policymakers working toward sustainable and effective solutions for water purification.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Imtiyaz Ahmad Lone
- Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| | - Alok Kumar
- Department of Mechanical Engineering, Nalanda College of Engineering, Bihar Engineering University, Department of Science, Technology and Technical Education, Government of Bihar, Patna, India
| | - Ashish Kumar
- Department of Chemistry, Nalanda College of Engineering, Bihar Engineering University, Department of Science, Technology and Technical Education, Government of Bihar, Patna, India
| |
Collapse
|
14
|
SAMANCI M, BAYRAKÇEKEN A. Graphene aerogels: part 1 - derived from graphene oxide and thermally reduced graphene oxide via supercritical carbon dioxide drying. Turk J Chem 2024; 48:251-280. [PMID: 39050499 PMCID: PMC11265928 DOI: 10.55730/1300-0527.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/25/2024] [Accepted: 02/08/2024] [Indexed: 07/27/2024] Open
Abstract
Graphene aerogels have become promising materials in many areas of industry, especially in energy applications due to their superior physical and electrochemical properties. Generally, graphene oxide (GO)-derived aerogels (A) are synthesized by using the hydrothermal method. In this study, both GO and reduced graphene oxide (RGO)-derived aerogels were synthesized by using the sol-gel method coupled with the supercritical carbon dioxide (SCCO2) drying process. It aims to examine the changes in the structure of the final aerogel by changing the amount (0.25-0.5-1% wt.) and type of graphene-based precursor materials used in the synthesis. Physical characterizations of graphene aerogels were conducted using Brunauer-Emmett-Teller (BET) analysis, scanning electron microscope-energy dispersive X-ray (SEM-EDX) analysis, transmission electron microscopy (TEM), micro-Raman spectroscopy, X-ray diffractometer (XRD) to highlight their structural properties. Additionally, X-ray photoelectron spectroscopy (XPS) analyses were performed to determine the oxidation levels on the surface of the RGO-1 aerogel. The cyclic voltammetry (CV) method was used to examine the electrochemical behavior of the graphene aerogels against corrosion. Specific capacitance values of the synthesized materials were calculated before and after corrosion. Furthermore, the surface charge changes that occur after corrosion were examined. GOAs displayed the highest specific capacitance value among graphene aerogels. Notably, the RGOA-1 aerogel exhibited the highest corrosion resistance. The pseudo-capacitive charge ratio of RGOA-1 after corrosion was measured at 0.5 mC cm-2.
Collapse
Affiliation(s)
- Meryem SAMANCI
- Department of Chemical Engineering, Faculty of Engineering, Atatürk University, Erzurum,
Turkiye
| | - Ayşe BAYRAKÇEKEN
- Department of Chemical Engineering, Faculty of Engineering, Atatürk University, Erzurum,
Turkiye
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum,
Turkiye
| |
Collapse
|
15
|
Sánchez-Cepeda A, Cedeño E, Marín E, Pazos MC, Ingrid SC, Muñoz EDJ, Vera-Graziano R. Evaluation of the dispersion properties of graphene oxide/cetyltrimethylammonium bromide for application in nanocomposite materials. RSC Adv 2024; 14:3267-3279. [PMID: 38249673 PMCID: PMC10798003 DOI: 10.1039/d3ra04689c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The properties of thermal diffusivity and Z potential of the GONPs/CTAB nanofluid were studied as a function of GO concentration (in the range between 4 and 12% w/v), temperature (35 and 50 °C) and time (30 and 60 min) under ultrasound. In turn, the structural properties of GONPs/CTAB were measured by XRD, Raman, SEM and TEM. The GO previously modified with CTAB was used to obtain a PLA/GO nanocomposite. It was found that the behavior of thermal diffusivity provides information in situ on the dispersion properties of the nanofluid, finding values from 0.0013 to 0.0024 cm2 s-1. The hydrodynamic diameter of the GONP dispersions was also determined to range from 75.83 to 360.3 nm with an increase in Z potential from 17 to 30 mV. The most stable GONPs/CTAB dispersion conditions were 6% w/v GO, 50 °C and 30 min. Under these conditions, the GONPs/CTAB materials present an increase in the spacing between GO layers, associated with a greater multilayer stacking of the GO and CTAB layers. The Raman spectrum allowed us to demonstrate that the modification with CTAB did not affect the crystallinity of GO, which was verified by the intensity ratio of the D band and the G band (ID/IG) for the GO/CTAB samples, with the exception of the GO 6% sample, where an increase in the ID/IG ratio (0.9) was observed compared to GO (0.82), associated with greater intercalation of CTAB between the GO sheets. Finally, an SEM analysis of the PLA/GO nanocomposite was carried out and the homogeneous distribution of GO in PLA was demonstrated when it is used as a filler in proportions of 0.1%. This treatment, in turn, contributed to improving the mechanical flexural properties of the nanocomposite materials.
Collapse
Affiliation(s)
- Angela Sánchez-Cepeda
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - E Cedeño
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Av. Legaria # 694, Col. Irrigación, Del. Miguel Hidalgo 11500 Ciudad de México Mexico
| | - E Marín
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Av. Legaria # 694, Col. Irrigación, Del. Miguel Hidalgo 11500 Ciudad de México Mexico
| | - M Carolina Pazos
- Escuela de Ciencias Química, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa Tunja Boyacá Colombia
| | - Silva-Cote Ingrid
- Unidad de Terapia Celular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud. IDCBIS Cra 32 #12-81 0571 Bogotá Colombia
| | - Efrén de Jesús Muñoz
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Avda Universidad, C.U., Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
16
|
Fernando KAS, Thakuri R, Barry Schroeder AL, Ruiz ON. Chemical Method for Recovery and Regeneration of Graphene Oxide. ACS APPLIED BIO MATERIALS 2024; 7:315-324. [PMID: 38079526 DOI: 10.1021/acsabm.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Graphene oxide (GO) has been developed as a very effective medium for filtration and removal of microbial contaminants in fuel. GO is capable of filtering out microorganisms without needing micrometer and submicrometer pores for filtration. Our previous studies showed that microorganisms are attracted by GO and bind irreversibly to GO without promoting bacterial growth. Therefore, GO was tested as a filter medium to remove microorganisms in fuel. The characterization results showed that GO removed microbes in diesel fuel with >99% efficiency. However, the synthesis of GO using Hummers' method is labor intensive and a time-consuming. We present in this paper an economical, less labor intensive and a simple chemical approach to recover GO after it has been used as a filtration medium for the removal of microorganisms in fuels. In the GO recovery process, microbial and fuel contaminated GO is washed with hexane to remove any fuel from the GO sample. The hexane-washed GO is further washed with acetone and mixed with ethanol to kill and remove any microorganisms. After washing with ethanol, the GO sample is sonicated in water to remove impurities and re-establish the oxygen functionalities. The final recovered-GO (rec-GO) is obtained after removing water by rotary evaporation. The chemical characterization of rec-GO showed that rec-GO is similar in both chemical and physical properties compared to freshly synthesized-GO (as-syn-GO). Rec-GO was shown to perform similarly to as-syn-GO in filtration of biocontaminated fuel. We estimate that our rec-GO is at least 90% cheaper than high quality commercially available GO.
Collapse
Affiliation(s)
- K A Shiral Fernando
- Polymer and Specialty Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 32542, United States
| | - Rajendr Thakuri
- Energy Technology and Materials Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Amanda L Barry Schroeder
- Fuels and Combustion Division, University of Dayton Research Institute, Dayton, Ohio 45469, United States
| | - Oscar N Ruiz
- Biomaterials Branch, Photonics, Electronic & Soft Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 32542, United States
| |
Collapse
|
17
|
Silva FALS, Timochenco L, Costa-Almeida R, Fernandes JR, Santos SG, Magalhães FD, Pinto AM. UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy. Colloids Surf B Biointerfaces 2024; 233:113594. [PMID: 37979484 DOI: 10.1016/j.colsurfb.2023.113594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/20/2023]
Abstract
The main challenges associated to the application of graphene-based materials (GBM) in phototherapy are obtaining particles with lateral nanoscale dimensions and water stability that present high near-infrared (NIR) absorption. Nanosized graphene oxide (GOn) is stable in aqueous dispersion, due to the oxygen functionalities on its surface, but possesses low photothermal efficiency in NIR region. GOn total reduction originates reduced nanographene oxide (rGOn) that presents high NIR absorption, but poor water stability. In this work, we produced a partially reduced nanographene oxide (p-rGOn) by GOn photoreduction using ultraviolet radiation (UV-C), yielding nanometric particles that preserve the original water stability, but acquire high light-to-heat conversion efficiency. GOn and p-rGOn presented mean particle sizes of 170 ± 81 nm and 188 ± 99 nm, respectively. 8 h of UV-C irradiation allowed to obtain a p-rGOn stable for up 6 months in water, with a zeta potential of -32.3 ± 1.3 mV. p-rGOn water dispersions have shown to absorb NIR radiation, reaching 52.7 °C (250 µg mL-1) after 30 min NIR irradiation. Chemical characterization of p-rGOn showed a decrease in the number of characteristic oxygen functional groups, confirming GOn partial reduction. Furthermore, p-rGOn (250 µg mL-1) didn't cause any cytotoxicity (ISO10993-5:2009(E)) towards human skin fibroblasts (HFF-1) and human skin keratinocytes (HaCat), after 24 and 48 h incubation. An innovative custom-built NIR LED-system has been developed and validated for p-rGOn photothermal effect evaluation. Finally, exposure to p-rGOn+NIR-LEDs has caused no cytotoxicity towards HFF-1 or HaCat cells, revealing its potential to be used as a safe therapy.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Licínia Timochenco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Raquel Costa-Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - José Ramiro Fernandes
- CQVR - Centro de Química Vila Real, Universidade de Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
18
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Irimiciuc SA, Gherasim O, Holban AM, Gălățeanu B, Oprea OC, Ficai A, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Silver/Graphene Oxide Nanostructured Coatings for Modulating the Microbial Susceptibility of Fixation Devices Used in Knee Surgery. Int J Mol Sci 2023; 25:246. [PMID: 38203420 PMCID: PMC10779033 DOI: 10.3390/ijms25010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Stefan Andrei Irimiciuc
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (V.G.); (S.A.I.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, District 5, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.C.B.); (A.F.); (B.Ș.V.)
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari St. 8, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
19
|
Rozhin P, Adorinni S, Iglesias D, Mackiol T, Kralj S, Bisetto M, Abrami M, Grassi M, Bevilacqua M, Fornasiero P, Marchesan S. Nanocomposite Hydrogels with Self-Assembling Peptide-Functionalized Carbon Nanostructures. Chemistry 2023; 29:e202301708. [PMID: 37740618 DOI: 10.1002/chem.202301708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Carbon nanostructures (CNSs) are attractive components to attain nanocomposites, yet their hydrophobic nature and strong tendency to aggregate often limit their use in aqueous conditions and negatively impact their properties. In this work, carbon nanohorns (CNHs), multi-walled carbon nanotubes (CNTs), and graphene (G) are first oxidized, and then reacted to covalently anchor the self-assembling tripeptide L-Leu-D-Phe-D-Phe to improve their dispersibility in phosphate buffer, and favor the formation of hydrogels formed by the self-organizing L-Leu-D-Phe-D-Phe present in solution. The obtained nanocomposites are then characterized by transmission electron microscopy (TEM), oscillatory rheology, and conductivity measurements to gain useful insights as to the key factors that determine self-healing ability for the future design of this type of nanocomposites.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Simone Adorinni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Tino Mackiol
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Department of Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Matteo Bisetto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute for the Chemistry of Organometallic Compounds (ICCOM-CNR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto, Fiorentino (FI), Italy
- Third Parties Research Unit (URT-ICCOM), Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
20
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
Prasad S, Alhandel RH, Asemi NN, AlSalhi MS. Effects of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) on Green-Emitting Conjugated Copolymer's Optical and Laser Properties Using Simulation and Experimental Studies. Polymers (Basel) 2023; 15:4572. [PMID: 38232017 PMCID: PMC10708564 DOI: 10.3390/polym15234572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
The properties of a conjugated copolymer (CP), poly[(9,9-Dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene) (PDVF-co-MEH-PV), were investigated in the presence of graphene oxide (GO) and reduced graphene oxide (rGO) using absorption, fluorescence, laser, and time-resolved spectroscopy. CPs are usually dissolved in low-polar solvents. Although GO does not dissolve well, rGO and PDVF-co-MEH-PV dissolve in chloroform due to their oxygen acceptor sites. Hence, we studied rGO/PDVF-co-MEH-PV (CP/rGO), performing all experiments and simulations in chloroform. We performed simulations on PDVF-co-MEH-PV, approximate GO, and rGO using time-dependent density-functional theory calculations to comprehend the molecular dynamics and interactions at the molecular level. The simulation polymer used a tail-truncated oligomer model with up to three monomer units. The simulation and experimental results were in agreement. Further, the PDVF-co-MEH-PV exhibited fluorescence, laser quenching, rGO-mediated laser blinking, and spectral broadening effects when GO and rGO concentrations increased. The experimental and simulation results were compared to provide a plausible mechanism of interaction between PDVF-co-MEH-PV and rGO. We observed that for lower concentrations of rGO, the interaction did not considerably decrease the amplified spontaneous emissions of PDVF-co-MEH-PV. However, the fluorescence of PDVF-co-MEH-PV was considerably quenched at higher concentrations of rGO. These results could be helpful for future applications, such as in sensors, solar cells, and optoelectronic device design. To demonstrate the sensor capability of these composites, a paper-based sensor was designed to detect ethanol and nitrotoluene. An instrumentation setup was proposed that is cheap, reusable, and multifunctional.
Collapse
Affiliation(s)
- Saradh Prasad
- Research Chair on Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia (N.N.A.); (M.S.A.)
| | | | | | | |
Collapse
|
22
|
Wojciechowska O, Costabile A, Kujawska M. The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. NANOSCALE ADVANCES 2023; 5:6349-6364. [PMID: 38024319 PMCID: PMC10662184 DOI: 10.1039/d3na00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Graphene-based nanoparticles are widely applied in many technology and science sectors, raising concerns about potential health risks. Emerging evidence suggests that graphene-based nanomaterials may interact with microorganisms, both pathogens and commensal bacteria, that dwell in the gut. This review aims to demonstrate the current state of knowledge on the interplay between graphene nanomaterials and the gut microbiome. In this study, we briefly overview nanomaterials, their usage and the characteristics of graphene-based nanoparticles. We present and discuss experimental data from in vitro studies, screening tests on small animals and rodent experiments related to exposure and the effects of graphene nanoparticles on gut microbiota. With this in mind, we highlight the reported crosstalk between graphene nanostructures, the gut microbial community and the host immune system in order to shed light on the perspective to bear on the biological interactions. The studies show that graphene-based material exposure is dosage and time-dependent, and different derivatives present various effects on host bacteria cells. Moreover, the route of graphene exposure might influence a shift in the gut microbiota composition, including the alteration of functions and diversity and abundance of specific phyla or genera. However, the mechanism of graphene-based nanomaterials' influence on gut microbiota is poorly understood. Accordingly, this review emphasises the importance of studies needed to establish the most desirable synthesis methods, types of derivatives, properties, and safety aspects mainly related to the routes of exposure and dosages of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton London SW15 4JD UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| |
Collapse
|
23
|
Nourizad A, Golmohammadi S, Aghanejad A, Tohidkia MR. Recent trends in aptamer-based nanobiosensors for detection of vascular endothelial growth factors (VEGFs) biomarker: A review. ENVIRONMENTAL RESEARCH 2023; 236:116726. [PMID: 37495062 DOI: 10.1016/j.envres.2023.116726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a remarkable cytokine that plays an important role in regulating vascular formation during the angiogenesis process. Therefore, real-time detection and quantification of VEGF is essential for clinical diagnosis and treatment due to its overexpression in various tumors. Among various sensing strategies, the aptamer-based sensors in combination with biological molecules improve the detection ability VEGFs. Aptamers are suitable biological recognition agents for the preparation of sensitive and reproducible aptasensors (Apt-sensors) due to their low immunogenicity, simple and straightforward chemical modification, and high resistance to denaturation. Here, a summary of the strategies for immobilization of aptamers (e.g., direct or self-assembled monolayer (SAM) attachment, etc.) on different types of electrodes was provided. Moreover, we discussed nanoparticle deposition techniques and surface modification methods used for signal amplification in the detection of VEGF. Furthermore, we are investigating various types of optical and electrochemical Apt-sensors used to improve sensor characterization in the detection of VEGF biomarkers.
Collapse
Affiliation(s)
- Abolfazl Nourizad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Saeed Golmohammadi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Litowczenko J, Wychowaniec JK, Załęski K, Marczak Ł, Edwards-Gayle CJC, Tadyszak K, Maciejewska BM. Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing. BIOMATERIALS ADVANCES 2023; 154:213653. [PMID: 37862812 DOI: 10.1016/j.bioadv.2023.213653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Krzysztof Tadyszak
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Barbara M Maciejewska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| |
Collapse
|
25
|
Cui J, Zhang Z, Zhong H, Zhang T. Phosphorylcholine-grafted graphene oxide loaded with irinotecan for potential oncology therapy. RSC Adv 2023; 13:28642-28651. [PMID: 37790105 PMCID: PMC10543201 DOI: 10.1039/d3ra04987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
2-Methacryloyloxyethyl phosphorylcholine (MPC) zwitterions were modified onto self-made graphene oxide (GO) through the atom transfer radical polymerization method. The chemical structures of the products were verified using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nuclear magnetic resonance spectroscopy (NMR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc. It was found that the modified GO (GO-PCn) is well dispersed in water with an average hydrodynamic diameter of about 170 nm. By utilizing the 2D planar structure of this modified graphene, the irinotecan@GO-PCn composite can be loaded with about 20% of irinotecan via π-π stacking interaction and exhibit pH-sensitive drug release performance, releasing faster in the acidic environment. The in vitro cytotoxicity assessments confirmed that GO-PCn composed of phosphorylcholine moiety represented low cytotoxicity and acted as a certain effect on reducing the acute toxicity of irinotecan, which established a foundation for further studies of the system in oncology therapy.
Collapse
Affiliation(s)
- Jia Cui
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Ziyi Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Han Zhong
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
| | - Tao Zhang
- College of Engineering and Applied Sciences, Nanjing University Nanjing 210023 China
- Wuxi Xishan NJU Institute of Applied Biotechnology Wuxi 214105 China
| |
Collapse
|
26
|
Oz T, Kaushik A, Kujawska M. Neural stem cells for Parkinson’s disease management: Challenges, nanobased support, and prospects. World J Stem Cells 2023; 15:687-700. [PMID: 37545757 PMCID: PMC10401423 DOI: 10.4252/wjsc.v15.i7.687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
Parkinson’s disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, United States
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan 60-631, Poland
| |
Collapse
|
27
|
Mulko LE, Cuello EA, Baumann R, Ramuglia AR, Weidinger IM, Acevedo DF, Barbero CA, Molina M, Lasagni AF. On the design and development of foamed GO-hydrogel nanocomposite surfaces by ultra-short laser processing. NANOTECHNOLOGY 2023; 34:245701. [PMID: 36827699 DOI: 10.1088/1361-6528/acbeb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide have outstanding qualities that could be exploited as reinforcement and antibacterial agents in a plethora of biomedical applications. In this contribution, it is reported the deployment of a polyacrylamide GO-hydrogel composite (GO@pAAm) which was photo-converted and structured by ultra-short laser irradiation using a direct laser writing (DLW) approach. The materials were characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and confocal microscopy. The laser structure generates a multi-photo-induced effect: surface foaming and patterning, microdomains with enhanced selective water-swelling and effective GO photo-reduction. A first laser scan seems likely to induce the photo-reduction of GO and subsequent laser pulses trigger the structure/foaming. The photo-reduction of GO is evidenced by Raman spectroscopy by the relatively changing intensities of the D to G signals. Macroscopically by an increase in conductivity (decrease in sheet resistance fromRS-GO@pAAm= 304 ± 20 kΩ sq-1toRS-rGO@pAAm-DLW= 27 ± 8 kΩ sq-1) suggesting a reduction of the material measured by 4-Point-Probe.
Collapse
Affiliation(s)
- Lucinda E Mulko
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, D-01069 Dresden, Germany
| | - Emma A Cuello
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto, Argentina
| | - Robert Baumann
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, D-01069 Dresden, Germany
| | - Anthony R Ramuglia
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Zellescher Weg, D-1901069, Germany
| | - Inez M Weidinger
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Zellescher Weg, D-1901069, Germany
| | - Diego F Acevedo
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto, Argentina
| | - Cesar A Barbero
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto, Argentina
| | - Maria Molina
- Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto, Argentina
| | - Andrés Fabián Lasagni
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, D-01069 Dresden, Germany
- Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, D-01277 Dresden, Germany
| |
Collapse
|
28
|
Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS APPLIED BIO MATERIALS 2023; 6:1323-1338. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Roqya Najafi-Taher
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 11114115, Iran
| | - Zahra Beiram Zadeh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Mohammad Tanhaei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
29
|
Dutta R, Rajendran K, Jana SK, Saleena LM, Ghorai S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. BIOSENSORS 2023; 13:349. [PMID: 36979561 PMCID: PMC10046626 DOI: 10.3390/bios13030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Every year, the dengue virus and its principal mosquito vector, Aedes sp., have caused massive outbreaks, primarily in equatorial countries. The pre-existing techniques available for dengue detection are expensive and require trained personnel. Graphene and its derivatives have remarkable properties of electrical and thermal conductivity, and are flexible, light, and biocompatible, making them ideal platforms for biosensor development. The incorporation of these materials, along with appropriate nanomaterials, improves the quality of detection methods. Graphene can help overcome the difficulties associated with conventional techniques. In this review, we have given comprehensive details on current graphene-based diagnostics for dengue virus detection. We have also discussed state-of-the-art biosensing technologies and evaluated the advantages and disadvantages of the same.
Collapse
Affiliation(s)
- Reshmi Dutta
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Kokilavani Rajendran
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Saikat Kumar Jana
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh 791109, India
| | - Lilly M. Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, College of Engineering and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai 603203, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, Raiganj 733134, India
| |
Collapse
|
30
|
Ahamed M, Lateef R, Khan MAM, Rajanahalli P, Akhtar MJ. Biosynthesis, Characterization, and Augmented Anticancer Activity of ZrO 2 Doped ZnO/rGO Nanocomposite. J Funct Biomater 2023; 14:jfb14010038. [PMID: 36662085 PMCID: PMC9861721 DOI: 10.3390/jfb14010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Fabrication of ZnO nanoparticles (NPs) via green process has received enormous attention for its application in biomedicine. Here, a simple and cost-effective green route is reported for the synthesis of ZrO2-doped ZnO/reduced graphene oxide nanocomposites (ZnO/ZrO2/rGO NCs) exploiting ginger rhizome extract. Our aim was to improve the anticancer performance of ZnO/ZrO2/rGO NCs without toxicity to normal cells. The preparation of pure ZnO NPs, ZnO/ZrO2 NCs, and ZnO/ZrO2/rGO NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS). XRD spectra of ZnO/ZrO2/rGO NCs exhibited two distinct sets of diffraction peaks, ZnO wurtzite structure, and ZrO2 phases (monoclinic + tetragonal). The SEM and TEM data show that ZrO2-doped ZnO particles were uniformly distributed on rGO sheets with the excellent quality of lattice fringes without alterations. PL spectra intensity and particle size of ZnO decreased after ZrO2-doping and rGO addition. DLS data demonstrated that green prepared samples show excellent colloidal stability in aqueous suspension. Biological results showed that ZnO/ZrO2/rGO NCs display around 3.5-fold higher anticancer efficacy in human lung cancer (A549) and breast cancer (MCF7) cells than ZnO NPs. A mechanistic approach suggested that the anticancer response of ZnO/ZrO2/rGO NCs was mediated via oxidative stress evident by the induction of the intracellular reactive oxygen species level and the reduction of the glutathione level. Moreover, green prepared nanostructures display good cytocompatibility in normal cell lines; human lung fibroblasts (IMR90) and breast epithelial (MCF10A) cells. However, the cytocompatibility of ZnO/ZrO2/rGO NCs in normal cells was better than those of pure ZnO NPs and ZnO/ZrO2 NCs. Augmented anticancer potential and improved cytocompatibility of ZnO/ZrO2/rGO NCs was due to ginger extract mediated beneficial synergism between ZnO, ZrO2, and rGO. This novel investigation emphasizes the significance of medicinal herb mediated ZnO-based NCs synthesis for biomedical research.
Collapse
Affiliation(s)
- Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Rashid Lateef
- Department of Biochemistry, Faculty of Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - M. A. Majeed Khan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
Tan AYS, Lo NW, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. 2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens. Biosens Bioelectron 2023; 219:114811. [PMID: 36308836 DOI: 10.1016/j.bios.2022.114811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a leading cause of death globally and early diagnosis is of paramount importance for identifying appropriate treatment pathways to improve cancer patient survival. However, conventional methods for cancer detection such as biopsy, CT scan, magnetic resonance imaging, endoscopy, X-ray and ultrasound are limited and not efficient for early cancer detection. Advancements in molecular technology have enabled the identification of various cancer biomarkers for diagnosis and prognosis of the deadly disease. The detection of these biomarkers can be done by biosensors. Biosensors are less time consuming compared to conventional methods and has the potential to detect cancer at an earlier stage. Compared to conventional biosensors, photoelectrochemical (PEC) biosensors have improved selectivity and sensitivity and is a suitable tool for detecting cancer agents. Recently, 2D carbon materials have gained interest as a PEC sensing platform due to their high surface area and ease of surface modifications for improved electrical transfer and attachment of biorecognition elements. This review will focus on the development of 2D carbon nanomaterials as electrode platform in PEC biosensors for the detection of cancer biomarkers. The working principles, biorecognition strategies and key parameters that influence the performance of the biosensors will be critically discussed. In addition, the potential application of PEC biosensor in clinical settings will also be explored, providing insights into the future perspective and challenges of exploiting PEC biosensors for cancer diagnosis.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Newton Well Lo
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Centre for Nanotechnology and Advanced Materials (CENTAM), Faculty of Science and Engineering, University of Nottingham Malaysia (UNM), 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
32
|
Vijayakanth V, Vinodhini V, Chintagumpala K. Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2023:955-986. [DOI: 10.1007/978-981-19-7188-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Recent Advances in Nanomaterials of Group XIV Elements of Periodic Table in Breast Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14122640. [PMID: 36559135 PMCID: PMC9781757 DOI: 10.3390/pharmaceutics14122640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is one of the most common malignancies and a leading cause of cancer-related mortality among women worldwide. The elements of group XIV in the periodic table exhibit a wide range of chemical manners. Recently, there have been remarkable developments in the field of nanobiomedical research, especially in the application of engineered nanomaterials in biomedical applications. In this review, we concentrate on the recent investigations on the antiproliferative effects of nanomaterials of the elements of group XIV in the periodic table on breast cancer cells. In this review, the data available on nanomaterials of group XIV for breast cancer treatment has been documented, providing a useful insight into tumor biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
Collapse
|
34
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
35
|
Park S, Kim YK, Kim S, Son B, Jang J, Park TH. Enhanced osteogenic differentiation of human mesenchymal stem cells using size-controlled graphene oxide flakes. BIOMATERIALS ADVANCES 2022; 144:213221. [PMID: 36459949 DOI: 10.1016/j.bioadv.2022.213221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Recently, it has been revealed that the physical microenvironment can be translated into cellular mechanosensing to direct human mesenchymal stem cell (hMSC) differentiation. Graphene oxide (GO), a major derivative of graphene, has been regarded as a promising material for stem cell lineage specification due to its biocompatibility and unique physical properties to interact with stem cells. Especially, the lateral size of GO flakes is regarded as the key factor regulating cellular response caused by GO. In this work, GO that had been mechanically created and had an average diameter of 0.9, 1.1, and 1.7 m was produced using a ball-mill process. When size-controlled GO flakes were applied to hMSCs, osteogenic differentiation was enhanced by GO with a specific average diameter of 1.7 μm. It was confirmed that osteogenic differentiation was increased due to the enhanced expression of focal adhesion and the development of focal adhesion subordinate signals via extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MEK) pathway. These results suggest that size-controlled GO flakes could be efficient materials for promoting osteogenesis of hMSCs. Results of this study could also improve our understanding of the correlation between hMSCs and cellular responses to GO.
Collapse
Affiliation(s)
- Sora Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yun Ki Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Boram Son
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7804. [PMID: 36363396 PMCID: PMC9658785 DOI: 10.3390/ma15217804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.
Collapse
Affiliation(s)
- Qaisar Abbas
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Pragati A. Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Chemical Engineering Department, Minia University, Minya 61519, Egypt
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mojtaba Mirzaeian
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050012, Kazakhstan
| | - Arti Yadav
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
37
|
Armaković S, Mirjanić Đ, Pelemiš SS, Armaković SJ. Understanding interactions between graphene and local anesthetic molecules applied in dentistry – Towards the prolonged effects of local anesthesia. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Sharma A, Hosseini-Bandegharaei A, Kumar N, Kumar S, Kumari K. Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Reagen S, Wu Y, Shahni R, Sun W, Zhang J, Chu QR, Hou X, Combs C, Zhao JX. Development of Red-Emissive Porphyrin Graphene Quantum Dots (PGQDs) for Biological Cell-Labeling Applications. ACS OMEGA 2022; 7:38902-38911. [PMID: 36340159 PMCID: PMC9631800 DOI: 10.1021/acsomega.2c04623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Red and near-infrared emission is a highly desirable feature for fluorescent nanoparticles in biological applications mainly due to longer wavelengths more easily being able to deeply penetrate tissues, organs, skin, and other organic components, while less autofluorescence interference would be produced. Additionally, graphene quantum dots (GQDs) that contain unique optical and electrical features have been targeted for their use in cell labeling applications as well as environmental analysis. Their most desirable features come in the form of low toxicity and biocompatibility; however, GQDs are frequently reported to have blue or green emission light and not the more advantageous red/NIR emission light. Furthermore, porphyrins are a subgroup of heterocyclic macrocycle organic compounds that are also naturally occurring pigments in nature that already contain the desired red-emission fluorescence. Therefore, porphyrins have been used previously to synthesize nanomaterials and for nanoparticle doping in order to incorporate the red/NIR emission light property into particles that otherwise do not contain the desired emission light. Meso-tetra(4-carboxyphenyl)porphine (TCPP) is one type of porphyrin with a large conjugated π-electron system and four carboxyl groups on its exterior benzene rings. These two key characteristics of TCPP make it ideal for incorporation into GQDs, as it would design and synthesize red-emissive material as well as give rise to excellent water solubility. In this work, TCPP is used in tangent with cis-cyclobutane-1,2-dicarboxylic acid (CBDA-2), a biomass derived organic molecule, to synthesize "green" porphyrin-based graphene quantum dots (PGQDs) with red-emission. The obtained PGQDs were characterized by various analytical methods. Utilizing TEM, HRTEM, and DLS the size distribution of the particles was determined to be 7.9 ± 4.1, well within the quantum dot range of 2-10 nm. FT-IR, XPS, and XRD depicted carbon, nitrogen, and oxygen as the main elemental components with carbon being in the form of graphene and the main porphyrin ring of TCPP remaining present in the final PGQDs product. Lastly, absorption and fluorescence spectroscopy determined the excitation wavelength at 420 nm and the emission at 650 nm which was successfully utilized in the imaging of HeLa cells using confocal microscopy.
Collapse
Affiliation(s)
- Sarah Reagen
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Yingfen Wu
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Rahul Shahni
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Wen Sun
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Jin Zhang
- Institute
for Energy Studies, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Qianli R. Chu
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| | - Xiaodong Hou
- Institute
for Energy Studies, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Colin Combs
- Department
of Biomedical Sciences, University of North
Dakota, Grand Forks, North Dakota58202, United States
| | - Julia Xiaojun Zhao
- Department
of Chemistry, University of North Dakota, Grand Forks, North Dakota58202, United States
| |
Collapse
|
40
|
Electron Spin Relaxation in Carbon Materials. MATERIALS 2022; 15:ma15144964. [PMID: 35888431 PMCID: PMC9318273 DOI: 10.3390/ma15144964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
This article focuses on EPR relaxation measurements in various carbon samples, e.g., natural carbons-anthracite, coal, higher anthraxolites, graphite; synthetically obtained carbons-glassy carbons, fullerenes, graphene, graphene oxide, reduced graphene oxide, graphite monocrystals, HOPG, nanoribbons, diamonds. The short introduction presents the basics of resonant electron spin relaxation techniques, briefly describing the obtained parameters. This review presents gathered results showing the processes leading to electron spin relaxation and typical ranges of electron spin relaxation rates for many different carbon types.
Collapse
|
41
|
Al-Azzam N, Alazzam A. Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. PLoS One 2022; 17:e0269914. [PMID: 35709175 PMCID: PMC9202894 DOI: 10.1371/journal.pone.0269914] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
The wettability of a polymer surface plays a critical role in cell-cell interaction and behavior. The degree to which a surface is hydrophobic or hydrophilic affects the adhesion and behavior of cells. Two distinct techniques for patterning the surface wettability of a Cyclic Olefin Copolymer (COC) substrate were developed and investigated in this article for the purpose of patterning cell growth. These include oxygen plasma treatment and graphene oxide (GO) coating to alter the wettability of the COC substrate and create hydrophilic patterned regions on a hydrophobic surface. When the two techniques are compared, patterning the surface of COC using GO film results in a more stable wettability over time and increases the roughness of the patterned area. Interestingly, both developed techniques were effective at patterning the COC surface’s wettability, which modulated cell adhesion and resulted in micropatterning of cell growth. The novel methods described herein can be used in the fields of cell and tissue culture as well as in the development of new biological assays.
Collapse
Affiliation(s)
- Nosayba Al-Azzam
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas Alazzam
- System on Chip Lab, Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
42
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8050045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lithium–sulfur battery (LSB) technology has tremendous prospects to substitute lithium-ion battery (LIB) technology due to its high energy density. However, the escaping of polysulfide intermediates (produced during the redox reaction process) from the cathode structure is the primary reason for rapid capacity fading. Suppressing the polysulfide shuttle (PSS) is a viable solution for this technology to move closer to commercialization and supersede the established LIB technology. In this review, we have analyzed the challenges faced by LSBs and outlined current methods and materials used to address these problems. We conclude that in order to further pioneer LSBs, it is necessary to address these essential features of the sulfur cathode: superior electrical conductivity to ensure faster redox reaction kinetics and high discharge capacity, high pore volume of the cathode host to maximize sulfur loading/utilization, and polar PSS-resistive materials to anchor and suppress the migration of polysulfides, which can be developed with the use of nanofabrication and combinations of the PSS-suppressive qualities of each component. With these factors addressed, our world will be able to forge ahead with the development of LSBs on a larger scale—for the efficiency of energy systems in technology advancement and potential benefits to outweigh the costs and performance decay.
Collapse
|
44
|
Rossa V, Monteiro Ferreira LE, da Costa Vasconcelos S, Tai Shimabukuro ET, Gomes da Costa Madriaga V, Carvalho AP, Castellã Pergher SB, de Carvalho da Silva F, Ferreira VF, Conte Junior CA, de Melo Lima T. Nanocomposites based on the graphene family for food packaging: historical perspective, preparation methods, and properties. RSC Adv 2022; 12:14084-14111. [PMID: 35558848 PMCID: PMC9094098 DOI: 10.1039/d2ra00912a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Nanotechnology experienced a great technological advance after the discovery of the graphene family (graphene - Gr, graphene oxide - GO, and reduced graphene oxide-rGO). Based on the excellent properties of these materials, it is possible to develop novel polymeric nanocomposites for several applications in our daily routine. One of the most prominent applications is for food packaging, offering nanocomposites with improved thermal, mechanical, anti-microbial, and barrier properties against gas and water vapor. This paper reviewed food packaging from its inception to the present day, with the development of more resistant and intelligent packaging. Herein, the most common combinations of polymeric matrices (derived from non-renewable and renewable sources) with Gr, GO, and rGO and their typical preparation methods are presented. Besides, the interactions present in these nanocomposites will be discussed in detail, and their final properties will be thoroughly analyzed as a function of the preparation technique and graphene family-matrix combinations.
Collapse
Affiliation(s)
- Vinicius Rossa
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Luanne Ester Monteiro Ferreira
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Sancler da Costa Vasconcelos
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Eric Thomas Tai Shimabukuro
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Vinicius Gomes da Costa Madriaga
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| | - Anna Paula Carvalho
- Food Science Program, Instituto de Química, Universidade Federal Do Rio de Janeiro 21941-909 Rio de Janeiro Brazil
| | - Sibele Berenice Castellã Pergher
- Laboratory Molecular Sieves - LABPEMOL, Chemistry Institute - Federal University of Rio Grande do Norte - IQ-UFRN Natal RN Brazil
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense 24020-150 Niterói RJ Brazil
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense 24241-000 Niterói RJ Brazil
| | - Carlos Adam Conte Junior
- Food Science Program, Instituto de Química, Universidade Federal Do Rio de Janeiro 21941-909 Rio de Janeiro Brazil
| | - Thiago de Melo Lima
- Departamento de Química Inorgânica, Campus Do Valonguinho, Instituto de Química, Universidade Federal Fluminense - IQ-UFF 24020-150 Niterói RJ Brazil
| |
Collapse
|
45
|
Oliveira AML, Machado M, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Oxide Thin Films with Drug Delivery Function. NANOMATERIALS 2022; 12:nano12071149. [PMID: 35407267 PMCID: PMC9000550 DOI: 10.3390/nano12071149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that oxide graphene layers are able to work as drug delivery or just to delay consecutive drug dosage, allowing the operation of time-controlled systems. This review presents the latest research developments of biomedical applications using graphene oxide as the main component of a drug delivery system, with focus on the production and characterization of films, in vitro and in vivo assays, main applications of graphene oxide biomedical devices, and its biocompatibility properties.
Collapse
Affiliation(s)
- Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: (A.M.L.O.); (Q.F.)
| | - Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Correspondence: (A.M.L.O.); (Q.F.)
| |
Collapse
|
46
|
Zhang H, Wang Z, Wang Z, He B, Chen M, Qi M, Liu Y, Xin J, Wei L. Recent progress of fiber-based transistors: materials, structures and applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:2. [PMID: 36637572 PMCID: PMC9756263 DOI: 10.1007/s12200-022-00002-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/24/2021] [Indexed: 06/17/2023]
Abstract
Wearable electronics on fibers or fabrics assembled with electronic functions provide a platform for sensors, displays, circuitry, and computation. These new conceptual devices are human-friendly and programmable, which makes them indispensable for modern electronics. Their unique properties such as being adaptable in daily life, as well as being lightweight and flexible, have enabled many promising applications in robotics, healthcare, and the Internet of Things (IoT). Transistors, one of the fundamental blocks in electronic systems, allow for signal processing and computing. Therefore, study leading to integration of transistors with fabrics has become intensive. Here, several aspects of fiber-based transistors are addressed, including materials, system structures, and their functional devices such as sensory, logical circuitry, memory devices as well as neuromorphic computation. Recently reported advances in development and challenges to realizing fully integrated electronic textile (e-textile) systems are also discussed.
Collapse
Affiliation(s)
- Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mengxiao Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Miao Qi
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
47
|
Naskar A, Shin J, Kim KS. A MoS 2 based silver-doped ZnO nanocomposite and its antibacterial activity against β-lactamase expressing Escherichia coli. RSC Adv 2022; 12:7268-7275. [PMID: 35424650 PMCID: PMC8982128 DOI: 10.1039/d2ra00163b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria including Escherichia coli are increasingly resistant to current antibiotics. Among the strategies implemented to eradicate such MDR pathogens, approaches based on two-dimensional (2D) nanomaterials have received considerable attention. In particular, the excellent physicochemical properties of 2D molybdenum disulfide (MoS2) nanosheets, including a high surface area, good conductivity, and good surface retention, are advantageous for their use as bactericidal agents. Herein, we report the fabrication of a MoS2-based nanocomposite conjugated with silver-doped zinc oxide (AZM) as an effective antibacterial agent against E. coli species. The properties of AZM were characterized, and its antibacterial activity against MDR E. coli strains with different resistance types was evaluated. MoS2 was found to activate the antibacterial activity of AZM and provide enhanced selectivity against MDR E. coli strains expressing β-lactamases. We proposed that membrane disruption of bacterial cell walls was the major cell death mechanism for MDR E. coli. Furthermore, surface charge perturbation could explain the differences in AZM activity against MDR E. coli strains expressing a β-lactamase and a mobilized colistin resistance (mcr-1) gene product. Thus, a MoS2-based nanocomposite with a functional conjugation strategy could be a selective nano-antibacterial platform against infections caused by MDR E. coli with resistance against β-lactam antibiotics.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| | - Joonho Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University Busan 46241 South Korea +82-51-516-7421 +82-51-510-2241
| |
Collapse
|
48
|
Abdelhalim AO, Semenov KN, Nerukh DA, Murin IV, Maistrenko DN, Molchanov OE, Sharoyko VV. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
50
|
Tewari M, Pareek P, Kumar S. Correlating Amino Acid Interaction with Graphene-Based Materials Regulating Cell Function. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|