1
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
2
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Parisi E, Adorinni S, Garcia AM, Kralj S, De Zorzi R, Marchesan S. Self-assembling tripeptide forming water-bound channels and hydrogels. J Pept Sci 2023; 29:e3524. [PMID: 37226306 DOI: 10.1002/psc.3524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
D-Ser(tBu)-L-Phe-L-Trp is described as a self-assembling tripeptide that yields nanofibrillar hydrogels at physiological conditions (phosphate buffer at pH 7.4). The peptide is characterized by several spectroscopic methods, such as circular dichroism and fluorescence, oscillatory rheometry, and transmission electron microscopy. Single-crystal X-ray diffraction reveals supramolecular packing into water-bound channels and allows the visualization of the intermolecular interactions holding together peptide stacks.
Collapse
Affiliation(s)
- Evelina Parisi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Simone Adorinni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ana M Garcia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Hajareh Haghighi F, Binaymotlagh R, Chronopoulou L, Cerra S, Marrani AG, Amato F, Palocci C, Fratoddi I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023; 9:621. [PMID: 37623076 PMCID: PMC10454050 DOI: 10.3390/gels9080621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Andrea Giacomo Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Francesco Amato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| |
Collapse
|
5
|
Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv Healthc Mater 2023; 12:e2300105. [PMID: 37052256 PMCID: PMC11468892 DOI: 10.1002/adhm.202300105] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) can leverage therapeutically beneficial outcomes in cancer therapy. In this domain, polyethylene glycol (PEG) has become increasingly popular as a biomedical polymer and has found clinical use. Owing to their excellent biocompatibility, facile modifiability, and high drug encapsulation rate, PEG hydrogels have shown great promise as drug delivery platforms. Here, the progress in emerging novel designs of PEG-hydrogels as DDSs for anti-cancer therapy is reviewed and discussed, focusing on underpinning multiscale release mechanisms categorized under stimuli-responsive and non-responsive drug release. The responsive drug delivery approaches are discussed, and the underpinning release mechanisms are elucidated, covering the systems functioning based on either exogenous stimuli-response, such as photo- and magnetic-sensitive PEG hydrogels, or endogenous stimuli-response, such as enzyme-, pH-, reduction-, and temperature-sensitive PEG hydrogels. Special attention is paid to the commercial potential of PEG-based hydrogels in cancer therapy, highlighting the limitations that need to be addressed in future research for their clinical translation.
Collapse
Affiliation(s)
- Zihan Wang
- College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinzhou Ye
- Sichuan Agricultural UniversitySichuan611130P. R. China
| | - Sheng Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal UniversityNanchong637000P. R. China
| | - Behnam Akhavan
- School of EngineeringUniversity of NewcastleCallaghanNSW2308Australia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNSW2305Australia
- School of PhysicsThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNSW2006Australia
- Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
6
|
Vilaça H, Carvalho A, Castro T, Castanheira EMS, Hilliou L, Hamley I, Melle-Franco M, Ferreira PMT, Martins JA. Unveiling the Role of Capping Groups in Naphthalene N-Capped Dehydrodipeptide Hydrogels. Gels 2023; 9:464. [PMID: 37367135 DOI: 10.3390/gels9060464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Self-assembled peptide-based hydrogels are archetypical nanostructured materials with a plethora of foreseeable applications in nanomedicine and as biomaterials. N-protected di- and tri-peptides are effective minimalist (molecular) hydrogelators. Independent variation of the capping group, peptide sequence and side chain modifications allows a wide chemical space to be explored and hydrogel properties to be tuned. In this work, we report the synthesis of a focused library of dehydrodipeptides N-protected with 1-naphthoyl and 2-naphthylacetyl groups. The 2-naphthylacetyl group was extensively reported for preparation of peptide-based self-assembled hydrogels, whereas the 1-naphthaloyl group was largely overlooked, owing presumably to the lack of a methylene linker between the naphthalene aromatic ring and the peptide backbone. Interestingly, dehydrodipeptides N-capped with the 1-naphthyl moiety afford stronger gels, at lower concentrations, than the 2-naphthylacetyl-capped dehydrodipeptides. Fluorescence and circular dichroism spectroscopy showed that the self-assembly of the dehydrodipeptides is driven by intermolecular aromatic π-π stacking interactions. Molecular dynamics simulations revealed that the 1-naphthoyl group allows higher order aromatic π-π stacking of the peptide molecules than the 2-naphthylacetyl group, together with hydrogen bonding of the peptide scaffold. The nanostructure of the gel networks was studied by TEM and STEM microscopy and was found to correlate well with the elasticity of the gels. This study contributes to understanding the interplay between peptide and capping group structure on the formation of self-assembled low-molecular-weight peptide hydrogels. Moreover, the results presented here add the 1-naphthoyl group to the palette of capping groups available for the preparation of efficacious low-molecular-weight peptide-based hydrogels.
Collapse
Affiliation(s)
- Helena Vilaça
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Chemistry and Biotechnology, Technological Centre for the Textile and Clothing Industries of Portugal, 4760-034 Vila Nova de Famalicão, Portugal
| | - André Carvalho
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tarsila Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Ian Hamley
- Department of Chemistry, University of Reading, Whiteknights, P.O. Box 224, Reading RG6 6AD, UK
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula M T Ferreira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José A Martins
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
8
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
9
|
Scialla S, Genicio N, Brito B, Florek-Wojciechowska M, Stasiuk GJ, Kruk D, Bañobre-López M, Gallo J. Insights into the Effect of Magnetic Confinement on the Performance of Magnetic Nanocomposites in Magnetic Hyperthermia and Magnetic Resonance Imaging. ACS APPLIED NANO MATERIALS 2022; 5:16462-16474. [PMID: 36569339 PMCID: PMC9778729 DOI: 10.1021/acsanm.2c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.
Collapse
Affiliation(s)
- Stefania Scialla
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Nuria Genicio
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Beatriz Brito
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
- School
of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HullHU6 7RX, U.K.
| | - Malgorzata Florek-Wojciechowska
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Graeme J. Stasiuk
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, Strand, LondonSE1 7EH, U.K.
| | - Danuta Kruk
- Department
of Physics and Biophysics, Faculty of Food Science, University of Warmia & Mazury in Olsztyn, Oczapowskiego 4, 10-719Olsztyn, Poland
| | - Manuel Bañobre-López
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| | - Juan Gallo
- Advanced
(Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330Braga, Portugal
| |
Collapse
|
10
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Oliveira CBP, Pereira RB, Pereira DM, Hilliou L, Castro TG, Martins JA, Jervis PJ, Ferreira PMT. Aryl-Capped Lysine-Dehydroamino Acid Dipeptide Supergelators as Potential Drug Release Systems. Int J Mol Sci 2022; 23:11811. [PMID: 36233112 PMCID: PMC9569917 DOI: 10.3390/ijms231911811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping group are particularly attractive alternatives for minimalistic low molecular weight hydrogelators. Peptides with low critical gelation concentrations (CGCs) are especially desirable, as the low weight percentage required for gelation makes them more cost-effective and reduces toxicity. In this work, three dehydrodipeptides were studied for their self-assembly properties. The results showed that all three dehydrodipeptides can form self-standing hydrogels with very low critical gelation concentrations (0.05−0.20 wt%) using a pH trigger. Hydrogels of all three dehydrodipeptides were characterised by scanning tunnelling emission microscopy (STEM), rheology, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Molecular modelling was performed to probe the structural patterns and interactions. The cytotoxicity of the new compounds was tested using human keratinocytes (HaCaT cell line). In general, the results suggest that all three compounds are non-cytotoxic, although one of the peptides shows a small impact on cell viability. In sustained release assays, the effect of the charge of the model drug compounds on the rate of cargo release from the hydrogel network was evaluated. The hydrogels provide a sustained release of methyl orange (anionic) and ciprofloxacin (neutral), while methylene blue (cationic) was retained by the network.
Collapse
Affiliation(s)
| | - Renato B. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal
| | - Tarsila G. Castro
- Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4800-122 Guimarães, Portugal
| | - José A. Martins
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Peter J. Jervis
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | - Paula M. T. Ferreira
- Chemistry Centre, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Self-assembly in magnetic supramolecular hydrogels. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
14
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
15
|
Veloso SRS, Tiryaki E, Spuch C, Hilliou L, Amorim CO, Amaral VS, Coutinho PJG, Ferreira PMT, Salgueiriño V, Correa-Duarte MA, Castanheira EMS. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. NANOSCALE 2022; 14:5488-5500. [PMID: 35332904 DOI: 10.1039/d1nr08158f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels. The composites enable an enhancement of the gelation kinetics in a concentration-dependent manner, mainly through the use of PEGylated liposomes. The effect of the co-assembly of phenylalanine-coated nanoparticles with the hydrogel displays a concentration and size dependence. Finally, the integration of liposomes as doxorubicin storage units and of nanoparticles as composites that co-assemble with the gel matrix enables the tuneability of both passive and active doxorubicin release through a thermal, and a low-frequency alternating magnetic field-based trigger. In addition to the modulation of the gel properties, the functionalization with (di)phenylalanine improves the cytocompatibility of the nanoparticles. Hereby, this work paves a way for the development of peptide-based supramolecular systems for on-demand and controlled release of drugs.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ecem Tiryaki
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain.
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
16
|
Abstract
Although the use of stem cell therapy for central nervous system (CNS) repair has shown considerable promise, it is still limited by the immediate death of a large fraction of transplanted cells owing to cell handling procedures, injection stress and host immune attack leading to poor therapeutic outcomes. Scaffolding cells in hydrogels is known to protect cells from such immediate death by shielding them from mechanical damage and by averting an immune attack after transplantation. Implanted hydrogels must eventually degrade and facilitate a safe integration of the graft with the surrounding host tissue. Hence, serial monitoring of hydrogel degradation in vivo is pivotal to optimize hydrogel compositions and overall therapeutic efficacy of the graft. We present here methods and protocols to use chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) as a non-invasive, label-free imaging paradigm to monitor the degradation of composite hydrogels made up of thiolated gelatin (Gel-SH), thiolated hyaluronic acid (HA-SH), and poly (ethylene glycol) diacrylate (PEGDA), of which the stiffness and CEST contrast can be fine-tuned by simply varying the composite concentrations and mixing ratios. By individually labeling Gel-S and HA-S with two distinct near-infrared (NIR) dyes, multispectral monitoring of the relative degradation of the components can be used for long-term validation of the CEST MRI findings.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhu
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Magnetic Properties of Collagen-Chitosan Hybrid Materials with Immobilized Superparamagnetic Iron Oxide Nanoparticles (SPIONs). MATERIALS 2021; 14:ma14247652. [PMID: 34947248 PMCID: PMC8707952 DOI: 10.3390/ma14247652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The paper presents results of our studies on hybrid materials based on polymers of natural origin containing superparamagnetic iron oxide nanoparticles (SPIONs). Such nanoparticles, coated with the chitosan derivative, were immobilized in a chitosan-collagen hydrogel matrix by crosslinking with genipin. Three types of biopolymer matrices of different collagen-to-chitosan ratios were studied. A thorough magnetic characterization was performed, including magnetic susceptibility, magnetization, and hysteresis loop measurements in a temperature range of 4 K to 300 K and a magnetic field induction up to 8 Tesla. The effect of SPION immobilization and material composition on the magnetic properties of the hybrids was investigated. The results showed that hybrid materials with covalently bounded SPIONs preserved the superparamagnetic character of SPIONs and exhibited promising magnetic properties, which are important for their potential applications.
Collapse
|
18
|
Todea M, Simon V, Muresan-Pop M, Vulpoi A, Rusu M, Simion A, Vasilescu M, Damian G, Petrisor D, Simon S. Silica-based microspheres with aluminum-iron oxide shell for diagnosis and cancer treatment. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS APPLIED BIO MATERIALS 2021; 4:5839-5870. [PMID: 35006927 DOI: 10.1021/acsabm.1c00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precisely engineered magnetic nanoparticles (MNPs) have been widely explored for applications including theragnostic platforms, drug delivery systems, biomaterial/device coatings, tissue engineering scaffolds, performance-enhanced therapeutic alternatives, and even in SARS-CoV-2 detection strips. Such popularity is due to their unique, challenging, and tailorable physicochemical/magnetic properties. Given the wide biomedical-related potential applications of MNPs, significant achievements have been reached and published (exponentially) in the last five years, both in synthesis and application tailoring. Within this review, and in addition to essential works in this field, we have focused on the latest representative reports regarding the biomedical use of MNPs including characteristics related to their oriented synthesis, tailored geometry, and designed multibiofunctionality. Further, actual trends, needs, and limitations of magnetic-based nanostructures for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Pedro M Martins
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal
| | - Ana C Lima
- Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Sylvie Ribeiro
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- 3BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Pedro Martins
- IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
21
|
Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems. Gels 2021; 7:gels7020052. [PMID: 33946932 PMCID: PMC8162347 DOI: 10.3390/gels7020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/23/2022] Open
Abstract
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.3 wt % and 0.4 wt %, using a pH trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy, which revealed a network of entangled fibers. According to rheology, the dehydrodipeptide bolaamphiphilic hydrogelators are viscoelastic materials with an elastic modulus G′ that falls in the range of native tissue (0.37 kPa brain–4.5 kPa cartilage). In viability and proliferation studies, it was found that these compounds were non-toxic toward the human keratinocyte cell line, HaCaT. In sustained release assays, we studied the effects of the charge present on model drug compounds on the rate of cargo release from the hydrogel networks. Methylene blue (MB), methyl orange (MO), and ciprofloxacin were chosen as cationic, anionic, and overall neutral cargo, respectively. These studies have shown that the hydrogels provide a sustained release of methyl orange and ciprofloxacin, while methylene blue is retained by the hydrogel network.
Collapse
|
22
|
Darwish MSA, Kim H, Bui MP, Le TA, Lee H, Ryu C, Lee JY, Yoon J. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1096. [PMID: 33922608 PMCID: PMC8145217 DOI: 10.3390/nano11051096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
Multifunctional magnetic nanomaterials displaying high specific loss power (SLP) and high imaging sensitivity with good spatial resolution are highly desired in image-guided cancer therapy. Currently, commercial nanoparticles do not sufficiently provide such multifunctionality. For example, Resovist® has good image resolution but with a low SLP, whereas BNF® has a high SLP value with very low image resolution. In this study, hydrophilic magnesium iron oxide@tetramethyl ammonium hydroxide nanoparticles were prepared in two steps. First, hydrophobic magnesium iron oxide nanoparticles were fabricated using a thermal decomposition technique, followed by coating with tetramethyl ammonium hydroxide. The synthesized nanoparticles were characterized using XRD, DLS, TEM, zeta potential, UV-Vis spectroscopy, and VSM. The hyperthermia and imaging properties of the prepared nanoparticles were investigated and compared to the commercial nanoparticles. One-dimensional magnetic particle imaging indicated the good imaging resolution of our nanoparticles. Under the application of a magnetic field of frequency 614.4 kHz and strength 9.5 kA/m, nanoparticles generated heat with an SLP of 216.18 W/g, which is much higher than that of BNF (14 W/g). Thus, the prepared nanoparticles show promise as a novel dual-functional magnetic nanomaterial, enabling both high performance for hyperthermia and imaging functionality for diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Mohamed S. A. Darwish
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Minh Phu Bui
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Chiseon Ryu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; (H.L.); (C.R.)
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (M.S.A.D.); (H.K.); (M.P.B.); (T.-A.L.)
| |
Collapse
|
23
|
Nowak BP, Niehues M, Ravoo BJ. Magneto-responsive hydrogels by self-assembly of low molecular weight peptides and crosslinking with iron oxide nanoparticles. SOFT MATTER 2021; 17:2857-2864. [PMID: 33586750 DOI: 10.1039/d0sm02049d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels that respond to non-invasive, external stimuli such as a magnetic field are of exceptional interest for the development of adaptive soft materials. To date magneto tuneable gels are predominantly based on macromolecular building blocks, while comparable low molecular weight systems are rarely found in the literature. Herein, we report a highly efficient peptide-based gelator (Nap GFYE), which can form hydrogels and incorporate Fe3O4 superparamagnetic nanoparticles in the gel matrix. The magnetic nanoparticles act as a physical crosslinker for the self-assembled peptide nanostructures and thus give rise to a fortified hybrid gel with distinctively improved mechanical properties. Furthermore, the particles provide the material with magnetic susceptibility and a gel to sol transition is observed upon application of a weak magnetic field. Magnetization of the inorganic-organic hybrid nanomaterial leads to on-demand release of an incorporated fluorescent dye into the supernatant.
Collapse
Affiliation(s)
- Benedikt P Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Maximilian Niehues
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| |
Collapse
|
24
|
Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. NANOMATERIALS 2021; 11:nano11030704. [PMID: 33799670 PMCID: PMC8001155 DOI: 10.3390/nano11030704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a "caged" dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand "self-delivery", through the uncaging of known biologically active dehydrodipeptides.
Collapse
|
25
|
Jervis PJ, Amorim C, Pereira T, Martins JA, Ferreira PMT. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials. Int J Mol Sci 2021; 22:2528. [PMID: 33802425 PMCID: PMC7959283 DOI: 10.3390/ijms22052528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.
Collapse
Affiliation(s)
- Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.A.); (T.P.); (J.A.M.); (P.M.T.F.)
| | | | | | | | | |
Collapse
|
26
|
Veloso SR, Andrade RG, Castanheira EM. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv Colloid Interface Sci 2021; 288:102351. [PMID: 33387893 DOI: 10.1016/j.cis.2020.102351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Magnetic gels have been gaining great attention in nanomedicine, as they combine features of hydrogels and magnetic nanoparticles into a single system. The incorporation of liposomes in magnetic gels further leads to a more robust multifunctional system enabling more functions and spatiotemporal control required for biomedical applications, which includes on-demand drug release. In this review, magnetic gels components are initially introduced, as well as an overview of advancements on the development, tuneability, manipulation and application of these materials. After a discussion of the advantages of combining hydrogels with liposomes, the properties, fabrication strategies and applications of magnetic liposome-hydrogel composites (magnetic lipogels or magnetolipogels) are reviewed. Overall, the progress of magnetic gels towards smart multifunctional materials are emphasized, considering the contributions for future developments.
Collapse
|
27
|
Veloso SRS, Jervis PJ, Silva JFG, Hilliou L, Moura C, Pereira DM, Coutinho PJG, Martins JA, Castanheira EMS, Ferreira PMT. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111869. [PMID: 33641890 DOI: 10.1016/j.msec.2021.111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana F G Silva
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C Moura
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
28
|
Veloso SRS, Silva JFG, Hilliou L, Moura C, Coutinho PJG, Martins JA, Testa-Anta M, Salgueiriño V, Correa-Duarte MA, Ferreira PMT, Castanheira EMS. Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E16. [PMID: 33374786 PMCID: PMC7824179 DOI: 10.3390/nano11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Joana F. G. Silva
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Cacilda Moura
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - Paulo J. G. Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| | - José A. Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Martín Testa-Anta
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (M.T.-A.); (V.S.)
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain;
| | | | - Paula M. T. Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Elisabete M. S. Castanheira
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (J.F.G.S.); (C.M.); (P.J.G.C.)
| |
Collapse
|
29
|
Rodrigues AFM, Torres PMC, Barros MJS, Presa R, Ribeiro N, Abrantes JCC, Belo JH, Amaral JS, Amaral VS, Bañobre-López M, Bettencourt A, Sousa A, Olhero SM. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. ACTA ACUST UNITED AC 2020; 16:015011. [PMID: 32750692 DOI: 10.1088/1748-605x/abac4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A calcium phosphate (CaP)-based scaffold used as synthetic bone grafts, which smartly combines precise dimensions, controlled porosity and therapeutic functions, presents benefits beyond those offered by conventional practices, although its fabrication is still a challenge. The sintering step normally required to improve the strength of the ceramic scaffolds precludes the addition of any biomolecules or functional particles before this stage. This study presents a proof of concept of multifunctional CaP-based scaffolds, fabricated by additive manufacturing from an innovative ink composition, with potential for bone regeneration, cancer treatment by local magnetic hyperthermia and drug delivery platforms. Highly loaded inks comprising iron-doped hydroxyapatite and β-tricalcium phosphate powders suspended in a chitosan-based solution, in the presence of levofloxacin (LEV) as model drug and magnetic nanoparticles (MNP), were developed. The sintering step was removed from the production process, and the integrity of the printed scaffolds was assured by the polymerization capacity of the ink composite, using genipin as a crosslinking agent. The effects of MNP and LEV on the inks' rheological properties, as well as on the mechanical and structural behaviour of non-doped and iron-doped scaffolds, were evaluated. Magnetic and magneto-thermal response, drug delivery and biological performance, such as cell proliferation in the absence and presence of an applied magnetic field, were also assessed. The addition of a constant amount of MNP in the iron-doped and non-doped CaP-based inks enhances their magnetic response and induction heating, with these effects more pronounced for the iron-doped CaP-based ink. These results suggest a synergistic effect between the iron-doped CaP-based powders and the MNP due to ferro/ferrimagnetic interactions. Furthermore, the iron presence enhances human mesenchymal stem cell metabolic activity and proliferation.
Collapse
Affiliation(s)
- A F M Rodrigues
- Department of Materials Engineering and Ceramics (DEMaC), CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jervis PJ, Amorim C, Pereira T, Martins JA, Ferreira PMT. Exploring the properties and potential biomedical applications of NSAID-capped peptide hydrogels. SOFT MATTER 2020; 16:10001-10012. [PMID: 32789370 DOI: 10.1039/d0sm01198c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of strategies to minimise the adverse side-effects of non-steroidal anti-inflammatory drugs (NSAIDs) remains a challenge for medicinal chemists. One such strategy is the development of NSAID-peptide prodrug conjugates and this conjugation to a peptide often confers the additional property of hydrogelation. This review summarises the work published by our research group, alongside other research groups, on supramolecular hydrogels consisting of short peptides conjugated to NSAIDs. Generally, supramolecular low molecular weight hydrogels (LMWHs) are composed of amphiteric molecules, usually consisting of short peptides attached to an aromatic capping group. When the aromatic capping group is switched for an NSAID to afford hybrid gelators, some conjugates exhibit retained or improved anti-inflammatory properties of the parent drug, and sometimes new and unexpected biological activities are observed. Conjugation to peptides often provides selective COX-2 inhibition over COX-1 inhibtion, which is key to retaining the anti-inflammatory benefits of NSAIDs whilst minimising gastric side-effects. Naproxen is the most commonly employed NSAID capping group, partly due to its similarity in structure to commonly employed naphthalene capping groups. Biomimetic approaches, where canonical amino acids are switched for non-natural amino acids such as d-amino acids or dehydroamino acids, are often employed, to tune the stability. The future direction for this area of research is discussed.
Collapse
Affiliation(s)
- Peter J Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
31
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
32
|
Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic Nanomaterials as Contrast Agents for MRI. MATERIALS 2020; 13:ma13112586. [PMID: 32517085 PMCID: PMC7321635 DOI: 10.3390/ma13112586] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful, noninvasive and nondestructive technique, capable of providing three-dimensional (3D) images of living organisms. The use of magnetic contrast agents has allowed clinical researchers and analysts to significantly increase the sensitivity and specificity of MRI, since these agents change the intrinsic properties of the tissues within a living organism, increasing the information present in the images. Advances in nanotechnology and materials science, as well as the research of new magnetic effects, have been the driving forces that are propelling forward the use of magnetic nanostructures as promising alternatives to commercial contrast agents used in MRI. This review discusses the principles associated with the use of contrast agents in MRI, as well as the most recent reports focused on nanostructured contrast agents. The potential applications of gadolinium- (Gd) and manganese- (Mn) based nanomaterials and iron oxide nanoparticles in this imaging technique are discussed as well, from their magnetic behavior to the commonly used materials and nanoarchitectures. Additionally, recent efforts to develop new types of contrast agents based on synthetic antiferromagnetic and high aspect ratio nanostructures are also addressed. Furthermore, the application of these materials in theragnosis, either as contrast agents and controlled drug release systems, contrast agents and thermal therapy materials or contrast agents and radiosensitizers, is also presented.
Collapse
|
33
|
Chen B, Xing J, Li M, Liu Y, Ji M. DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro. Colloids Surf B Biointerfaces 2020; 190:110896. [DOI: 10.1016/j.colsurfb.2020.110896] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/26/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022]
|
34
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
35
|
Moreira R, Jervis PJ, Carvalho A, Ferreira PMT, Martins JA, Valentão P, Andrade PB, Pereira DM. Biological Evaluation of Naproxen-Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics 2020; 12:E122. [PMID: 32028608 PMCID: PMC7076388 DOI: 10.3390/pharmaceutics12020122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The use of peptide-drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen-dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen-dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing N-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) N-capped with naproxen and linked to a C-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds 4 was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions.
Collapse
Affiliation(s)
- Rute Moreira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - André Carvalho
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - Paula M. T. Ferreira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - José A. Martins
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (A.C.); (P.M.T.F.); (J.A.M.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n 228, 4050-313 Porto, Portugal; (R.M.); (P.V.); (P.B.A.)
| |
Collapse
|
36
|
Llenas M, Sandoval S, Costa PM, Oró-Solé J, Lope-Piedrafita S, Ballesteros B, Al-Jamal KT, Tobias G. Microwave-Assisted Synthesis of SPION-Reduced Graphene Oxide Hybrids for Magnetic Resonance Imaging (MRI). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1364. [PMID: 31554159 PMCID: PMC6835838 DOI: 10.3390/nano9101364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a useful tool for disease diagnosis and treatment monitoring. Superparamagnetic iron oxide nanoparticles (SPION) show good performance as transverse relaxation (T2) contrast agents, thus facilitating the interpretation of the acquired images. Attachment of SPION onto nanocarriers prevents their agglomeration, improving the circulation time and efficiency. Graphene derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), are appealing nanocarriers since they have both high surface area and functional moieties that make them ideal substrates for the attachment of nanoparticles. We have employed a fast, simple and environmentally friendly microwave-assisted approach for the synthesis of SPION-RGO hybrids. Different iron precursor/GO ratios were used leading to SPION, with a median diameter of 7.1 nm, homogeneously distributed along the RGO surface. Good relaxivity (r2*) values were obtained in MRI studies and no significant toxicity was detected within in vitro tests following GL261 glioma and J774 macrophage-like cells for 24 h with SPION-RGO, demonstrating the applicability of the hybrids as T2-weighted MRI contrast agents.
Collapse
Affiliation(s)
- Marina Llenas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Stefania Sandoval
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Pedro M Costa
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| | - Judith Oró-Solé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK.
| | - Gerard Tobias
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
37
|
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method. NANOMATERIALS 2019; 9:nano9081176. [PMID: 31426427 PMCID: PMC6724091 DOI: 10.3390/nano9081176] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (MNPs) that exhibit high specific loss power (SLP) at lower metal content are highly desirable for hyperthermia applications. The conventional co-precipitation process has been widely employed for the synthesis of magnetic nanoparticles. However, their hyperthermia performance is often insufficient, which is considered as the main challenge to the development of practicable cancer treatments. In particular, ferrite MNPs have unique properties, such as a strong magnetocrystalline anisotropy, high coercivity, and moderate saturation magnetization, however their hyperthermia performance needs to be further improved. In this study, cobalt ferrite (CoFe2O4) and zinc cobalt ferrite nanoparticles (ZnCoFe2O4) were prepared to achieve high SLP values by modifying the conventional co-precipitation method. Our modified method, which allows for precursor material compositions (molar ratio of Fe+3:Fe+2:Co+2/Zn+2 of 3:2:1), is a simple, environmentally friendly, and low temperature process carried out in air at a maximum temperature of 60 °C, without the need for oxidizing or coating agents. The particles produced were characterized using multiple techniques, such as X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV–Vis spectroscopy), and a vibrating sample magnetometer (VSM). SLP values of the prepared nanoparticles were carefully evaluated as a function of time, magnetic field strength (30, 40, and 50 kA m−1), and the viscosity of the medium (water and glycerol), and compared to commercial magnetic nanoparticle materials under the same conditions. The cytotoxicity of the prepared nanoparticles by in vitro culture with NIH-3T3 fibroblasts exhibited good cytocompatibility up to 0.5 mg/mL. The safety limit of magnetic field parameters for SLP was tested. It did not exceed the 5 × 109 Am−1 s−1 threshold. A saturation temperature of 45 °C could be achieved. These nanoparticles, with minimal metal content, can ideally be used for in vivo hyperthermia applications, such as cancer treatments.
Collapse
|