1
|
Deshmukh GV, Niaz H, Bai R, Kim DH, Kim JW, Asghar J, Ramzan T, Maqbool M, Abushalha NB, Arif S, Khan S. The Role of Omega-3 Fatty Acid Supplementation in Slowing Cognitive Decline Among Elderly Patients With Alzheimer's Disease: A Systematic Review of Randomized Controlled Trials. Cureus 2024; 16:e73390. [PMID: 39659348 PMCID: PMC11630619 DOI: 10.7759/cureus.73390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 12/12/2024] Open
Abstract
This systematic review explores the impact of omega-3 fatty acid supplementation, particularly docosahexaenoic acid (DHA), on cognitive decline in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Omega-3 fatty acids are widely recognized for their neuroprotective properties, but the evidence regarding their efficacy in mitigating cognitive decline remains mixed. Through a comprehensive analysis of eleven randomized controlled trials, we aimed to assess the role of DHA in improving cognitive functions and slowing brain atrophy. The findings revealed that DHA supplementation demonstrated cognitive benefits, particularly in memory and hippocampal volume preservation, in some studies involving early-stage cognitive decline, while others reported negligible effects, particularly in more advanced Alzheimer's disease. The review identified variations in study design, dosage, intervention duration, and population characteristics as potential factors contributing to the inconsistencies observed across trials. Despite these mixed outcomes, DHA's safety profile and potential for early intervention in at-risk populations offer promise for its use in clinical practice. This review underscores the need for further longitudinal, large-scale studies to refine DHA dosage recommendations, optimize intervention timing, and explore personalized approaches based on genetic factors. The insights gained from this review contribute to a growing understanding of the role omega-3 fatty acids could play in managing cognitive decline and highlight future directions for research.
Collapse
Affiliation(s)
| | - Humaira Niaz
- Internal Medicine, Peshawar Medical College, Peshawar, PAK
| | - Riya Bai
- Internal Medicine, Chandka Medical College, Larkana, PAK
| | - Dong Hwi Kim
- Internal Medicine, Pusan National University, Yangsan, KOR
| | - Ji Woo Kim
- Faculty of Medicine Health and Human Sciences, Macquarie University, Sydney, AUS
| | - Jawaria Asghar
- Internal Medicine, Basic Health Unit Jamal Pur, Gujrat, PAK
| | - Taha Ramzan
- Medical Education, Services Institute of Medical Sciences, Lahore, PAK
| | - Muhammad Maqbool
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, PAK
| | | | - Sidra Arif
- Urology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Safdar Khan
- Surgery, Services Hospital Lahore, Lahore, PAK
| |
Collapse
|
2
|
Maehashi S, Arora K, Fisher AL, Schweitzer DR, Akefe IO. Neurolipidomic insights into anxiety disorders: Uncovering lipid dynamics for potential therapeutic advances. Neurosci Biobehav Rev 2024; 163:105741. [PMID: 38838875 DOI: 10.1016/j.neubiorev.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Anxiety disorders constitute a spectrum of psychological conditions affecting millions of individuals worldwide, imposing a significant health burden. Historically, the development of anxiolytic medications has been largely focused on neurotransmitter function and modulation. However, in recent years, neurolipids emerged as a prime target for understanding psychiatric pathogenesis and developing novel medications. Neurolipids influence various neural activities such as neurotransmission and cellular functioning, as well as maintaining cell membrane integrity. Therefore, this review aims to elucidate the alterations in neurolipids associated with an anxious mental state and explore their potential as targets of novel anxiolytic medications. Existing evidence tentatively associates dysregulated neurolipid levels with the etiopathology of anxiety disorders. Notably, preclinical investigations suggest that several neurolipids, including endocannabinoids and polyunsaturated fatty acids, may hold promise as potential pharmacological targets. Overall, the current literature tentatively suggests the involvement of lipids in the pathogenesis of anxiety disorders, hinting at potential prospects for future pharmacological interventions.
Collapse
Affiliation(s)
- Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- Academy for Medical Education, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
3
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
4
|
Wattanathorn J, Thukham-Mee W. Omega-3-Rich Tuna Oil Derived from By-Products of the Canned Tuna Industry Enhances Memory in an Ovariectomized Rat Model of Menopause. Antioxidants (Basel) 2024; 13:637. [PMID: 38929077 PMCID: PMC11201088 DOI: 10.3390/antiox13060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
To increase the value of the by-products of the canned tuna industry, the memory enhancement effect and the possible mechanisms of omega-3-rich tuna oil in bilateral ovariectomized (OVX) rats were assessed. Female rats were orally given tuna oil at doses of 140, 200, and 250 mg/kg of body weight (BW) for 28 days before OVX and for 21 days continually after OVX. Memory performance was assessed every week, whereas the parameters regarding mechanisms of action were assessed at the end of the study. All doses of tuna oil enhanced memory, docosahexaenoic acid (DHA) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities but decreased cortisol, acetylcholinesterase (AChE), malondialdehyde (MDA), and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Medium and high doses of tuna oil suppressed monoamine oxidase (MAO) but increased eNOS activity. A high dose of tuna oil suppressed gamma-aminotransferase (GABA-T) but increased glutamic acid decarboxylase (GAD) and sirtuin-1. A medium dose of tuna oil decreased homocysteine (Hcys) and C-reactive protein. No change in telomere or estradiol was observed in this study. Our results suggest the memory-enhancing effect of tuna oil in an OVX rat model of menopause. The main mechanisms may involve a reduction in oxidative stress, inflammation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Wang X, Zhu H, Chen B, Zhang Y, Kok A, van Knegsel A, Zhang S, Pang X, Jiang S, Kemp B, Lu J, Lv J. Effects of endogenous DHA milk and exogenous DHA milk on oxidative stress and cognition in SAMP8 mice. Biomed Pharmacother 2024; 174:116467. [PMID: 38531120 DOI: 10.1016/j.biopha.2024.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, Senescence Accelerated Mice (SAMP8) were supplemented with exogenous DHA milk, endogenous DHA milk, normal milk, or 0.9 % saline solution. Enzyme-linked immunosorbent assay (ELISA), gas chromatography (GC), ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI MS/MS), and Morris water maze were used to characterize the effects of diet on oxidative stress and cognition in SAMP8 mice. Supplementation endogenous DHA milk or exogenous DHA milk can enhance the antioxidant capacity of mice organs. Endogenous DHA milk increased the superoxide dismutase (SOD) activity of mice brain and serum than normal milk and 0.9 % saline solution (P ≤ 0.05), as well as increased SOD activity of mice liver and glutathione peroxidase (GSH-Px) activity of mice brain than normal milk (P ≤ 0.05). Exogenous DHA milk increased SOD activity of mice brain than normal milk and 0.9 % saline solution, as well as increased SOD activity of mice serum than 0.9 % saline solution (P ≤ 0.05). Several polar lipid relative content, such as 18:0/18:2 PS, 17:0 Ceramide, and 20:4 LPC in mice brain was affected by dietary supplementation with DHA-containing milk. Lipid oxidation metabolites in mice brain were not affected by DHA-containing milk. Endogenous DHA milk increased the number of platform location crossing times of mice in the Morris water maze test, compared with Exogenous DHA milk, normal milk, and 0.9 % saline solution (P ≤ 0.05).
Collapse
Affiliation(s)
- Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baorong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yumeng Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Akke Kok
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Ariette van Knegsel
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Jing Lu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Chen A, Li Q, Huang Y, Li Y, Chuang YN, Hu X, Guo S, Wu Y, Guo Y, Bian J. Feasibility of Identifying Factors Related to Alzheimer's Disease and Related Dementia in Real-World Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.10.24302621. [PMID: 38405723 PMCID: PMC10889002 DOI: 10.1101/2024.02.10.24302621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A comprehensive view of factors associated with AD/ADRD will significantly aid in studies to develop new treatments for AD/ADRD and identify high-risk populations and patients for prevention efforts. In our study, we summarized the risk factors for AD/ADRD by reviewing existing meta-analyses and review articles on risk and preventive factors for AD/ADRD. In total, we extracted 477 risk factors in 10 categories from 537 studies. We constructed an interactive knowledge map to disseminate our study results. Most of the risk factors are accessible from structured Electronic Health Records (EHRs), and clinical narratives show promise as information sources. However, evaluating genomic risk factors using RWD remains a challenge, as genetic testing for AD/ADRD is still not a common practice and is poorly documented in both structured and unstructured EHRs. Considering the constantly evolving research on AD/ADRD risk factors, literature mining via NLP methods offers a solution to automatically update our knowledge map.
Collapse
Affiliation(s)
- Aokun Chen
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Qian Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu Huang
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yongqiu Li
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yu-neng Chuang
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Xia Hu
- Department of Computer Science, George R. Brown School of Engineering, Rice University, 6100 Main St., Houston, TX 77005
| | - Serena Guo
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, 1225 Center Drive, Gainesville, FL 32610
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Yi Guo
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32610
| |
Collapse
|
7
|
Derbyshire EJ, Birch CS, Bonwick GA, English A, Metcalfe P, Li W. Optimal omegas - barriers and novel methods to narrow omega-3 gaps. A narrative review. Front Nutr 2024; 11:1325099. [PMID: 38371504 PMCID: PMC10869628 DOI: 10.3389/fnut.2024.1325099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Dietary intakes of omega-3 long chain polyunsaturated fatty acids (O3LC-PUFAs) such as eicosapentaenoic and docosahexaenoic acid are central to development and health across the life course. O3LC-PUFAs have been linked to neurological development, maternal and child health and the etiology of certain non-communicable diseases including age-related cognitive decline, cardiovascular disease, and diabetes. However, dietary inadequacies exist in the United Kingdom and on a wider global scale. One predominant dietary source of O3LC-PUFAs is fish and fish oils. However, growing concerns about overfishing, oceanic contaminants such as dioxins and microplastics and the trend towards plant-based diets appear to be acting as cumulative barriers to O3LC-PUFAs from these food sources. Microalgae are an alternative provider of O3LC-PUFA-rich oils. The delivery of these into food systems is gaining interest. The present narrative review aims to discuss the present barriers to obtaining suitable levels of O3LC-PUFAs for health and wellbeing. It then discusses potential ways forward focusing on innovative delivery methods to utilize O3LC-PUFA-rich oils including the use of fortification strategies, bioengineered plants, microencapsulation, and microalgae.
Collapse
Affiliation(s)
| | | | | | | | - Phil Metcalfe
- Efficiency Technologies Limited, Milton Keynes, England, United Kingdom
| | - Weili Li
- University of Chester, Chester, United Kingdom
| |
Collapse
|
8
|
Akefe IO, Saber SH, Matthews B, Venkatesh BG, Gormal RS, Blackmore DG, Alexander S, Sieriecki E, Gambin Y, Bertran-Gonzalez J, Vitale N, Humeau Y, Gaudin A, Ellis SA, Michaels AA, Xue M, Cravatt B, Joensuu M, Wallis TP, Meunier FA. The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids. EMBO J 2024; 43:533-567. [PMID: 38316990 PMCID: PMC10897203 DOI: 10.1038/s44318-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sieriecki
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | - Yann Gambin
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 CNRS - Université de Strasbourg, Strasbourg, France
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Arnaud Gaudin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sevannah A Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alysee A Michaels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia.
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Fekete M, Lehoczki A, Tarantini S, Fazekas-Pongor V, Csípő T, Csizmadia Z, Varga JT. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023; 15:5116. [PMID: 38140375 PMCID: PMC10746024 DOI: 10.3390/nu15245116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment and dementia are burgeoning public health concerns, especially given the increasing longevity of the global population. These conditions not only affect the quality of life of individuals and their families, but also pose significant economic burdens on healthcare systems. In this context, our comprehensive narrative review critically examines the role of nutritional supplements in mitigating cognitive decline. Amidst growing interest in non-pharmacological interventions for cognitive enhancement, this review delves into the efficacy of vitamins, minerals, antioxidants, and other dietary supplements. Through a systematic evaluation of randomized controlled trials, observational studies, and meta-analysis, this review focuses on outcomes such as memory enhancement, attention improvement, executive function support, and neuroprotection. The findings suggest a complex interplay between nutritional supplementation and cognitive health, with some supplements showing promising results and others displaying limited or context-dependent effectiveness. The review highlights the importance of dosage, bioavailability, and individual differences in response to supplementation. Additionally, it addresses safety concerns and potential interactions with conventional treatments. By providing a clear overview of current scientific knowledge, this review aims to guide healthcare professionals and researchers in making informed decisions about the use of nutritional supplements for cognitive health.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Andrea Lehoczki
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary;
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (S.T.)
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
10
|
Lin YK, Lin YH, Chiang CF, Jingling L. Effectiveness of Fish Roe, Snow Fungus, and Yeast Supplementation for Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:4221. [PMID: 37836504 PMCID: PMC10574613 DOI: 10.3390/nu15194221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The brain is one of the most critical organs in the human body, regulating functions such as thinking, memory, learning, and perception. Studies have indicated that fish roe, snow fungus, and yeast may have the potential to modulate cognitive, memory, and emotional functions. However, more relevant clinical research in this area still needs to be conducted. This study explored the cognition-enhancing potential of a formula beverage including fish roe, snow fungus, and yeast. Sixty-four subjects were divided into a placebo group (n = 32) and a formula-drink group (n = 32), who consumed the product for 8 weeks. Cognitive tests were administered and analyzed at weeks 0, 4, and 8. After 4 and 8 weeks, there was a significant increase in the number of memory cards, and the response times among those who consumed the formula beverage were significantly faster than those in the placebo group. The subjects remembered the old items better and were more impressed with similar items based on the week effect. There was a significant increase in the cue effect of happy facial expressions after the subjects consumed the formula beverage for 8 weeks. In addition, there was a significant decrease in anxiety and fatigue, and improved quality of life. This formula beverage is a promising option that could be used to prevent further cognitive decline in adults with subjective cognitive complaints.
Collapse
Affiliation(s)
- Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yung-Hsiang Lin
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Chi-Fu Chiang
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Li Jingling
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Sun H, Ma Y, Huang X, Song L, Guo H, Sun X, Li N, Qiao M. Stabilization of flaxseed oil nanoemulsions based on flaxseed gum: Effects of temperature, pH and NaCl on stability. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Akefe IO, Osborne SL, Matthews B, Wallis TP, Meunier FA. Lipids and Secretory Vesicle Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:357-397. [PMID: 37615874 DOI: 10.1007/978-3-031-34229-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, the number of studies implicating lipids in the regulation of synaptic vesicle exocytosis has risen considerably. It has become increasingly clear that lipids such as phosphoinositides, lysophospholipids, cholesterol, arachidonic acid and myristic acid play critical regulatory roles in the processes leading up to exocytosis. Lipids may affect membrane fusion reactions by altering the physical properties of the membrane, recruiting key regulatory proteins, concentrating proteins into exocytic "hotspots" or by modulating protein functions allosterically. Discrete changes in phosphoinositides concentration are involved in multiple trafficking events including exocytosis and endocytosis. Lipid-modifying enzymes such as the DDHD2 isoform of phospholipase A1 were recently shown to contribute to memory acquisition via dynamic modifications of the brain lipid landscape. Considering the increasing reports on neurodegenerative disorders associated with aberrant intracellular trafficking, an improved understanding of the control of lipid pathways is physiologically and clinically significant and will afford unique insights into mechanisms and therapeutic methods for neurodegenerative diseases. Consequently, this chapter will discuss the different classes of lipids, phospholipase enzymes, the evidence linking them to synaptic neurotransmitter release and how they act to regulate key steps in the multi-step process leading to neuronal communication and memory acquisition.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Shona L Osborne
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
13
|
Maria Jenita Peter, Lalithapriya U, Venkatachalapathy R, Sukumar M. Characterization of an effective drug carrier system for improved oxidative and thermal stability of essential fatty acids: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2105352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Maria Jenita Peter
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | | | | | - Muthusamy Sukumar
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
14
|
Naz F, Sajid S, Yueda L, Yang Z, Naheed S. A comparative study of anti-aging effects of Carica papaya (pulp and seeds) on D-galactose-induced brain aging in albino rats. J Clin Transl Res 2022; 8:434-444. [PMID: 36451797 PMCID: PMC9706316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND AND AIM The brain is one of the most complex and crucial organs of our body. Its health is a matter of concern for all individuals as the number of aged people is increasing gradually in the world. Carica papaya is a ubiquitous plant, and its different parts possess neuroprotective effects against various neurodegenerative diseases. However, its brain anti-aging effects have remained uninvestigated. Therefore, this study has examined the brain anti-aging strength of C. papaya pulp and seeds extracts in D-galactose-induced aging rats. METHODS The rats were intraperitoneally injected with 150 mg/kg of D-galactose for 8 consecutive weeks to induce brain aging. In parallel, the rats of papaya pulp and papaya seed treated groups were injected with 150 mg/kg papaya pulp extract and 150 mg/kg papaya seed extract, respectively. The negative control group was only injected with 0.9% saline, whereas in the rats of the positive control group along with D-galactose 100 mg/kg VC was injected. After the treatment period, different neurobehavioral, neurochemical, and antioxidant analyses were performed to unmask the anti-aging strength of C. papaya pulp and seeds extracts. RESULTS C. papaya pulp and seed extracts significantly improved cognitive learning skills, memory, and muscular strength in aging rats while reducing stress and anxiety levels. Moreover, they enhanced neurotransmitters concentration and reduced oxidative stress. However, the anti-aging effects of C. papaya pulp were more significant than seeds. CONCLUSION These results suggest that both C. papaya pulp and seed extracts possess neuroprotective effects against brain aging or age-related brain deteriorations but the age-protecting capability of C. papaya pulp is higher than C. papaya seeds. Therefore, it could be utilized as a component to design a novel brain anti-aging drug. RELEVANCE FOR PATIENTS Brain aging is a natural process that every individual experiences in his life. The regular consumption of C. papaya can improve the quality of life by protecting neurons from age-related deteriorations.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for Women, Karachi 74600, Pakistan
| | - Lu Yueda
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China
| | - Suad Naheed
- Department of Biotechnology, Jinnah University for Women, Karachi 74600, Pakistan
| |
Collapse
|
15
|
Zhang X, Hou X, Te L, Zhongsheng Z, Jiang J, Wu X. Mesenchymal stem cells and exosomes improve cognitive function in the aging brain by promoting neurogenesis. Front Aging Neurosci 2022; 14:1010562. [PMID: 36329874 PMCID: PMC9623286 DOI: 10.3389/fnagi.2022.1010562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Biologically speaking, normal aging is a spontaneous and inevitable process of organisms over time. It is a complex natural phenomenon that manifests itself in the form of degenerative changes in structures and the decline of functions, with diminished adaptability and resistance. Brain aging is one of the most critical biological processes that affect the physiological balance between health and disease. Age-related brain dysfunction is a severe health problem that contributes to the current aging society, and so far, there is no good way to slow down aging. Mesenchymal stem cells (MSCs) have inflammation-inhibiting and proliferation-promoting functions. At the same time, their secreted exosomes inherit the regulatory and therapeutic procedures of MSCs with small diameters, allowing high-dose injections and improved therapeutic efficiency. This manuscript describes how MSCs and their derived exosomes promote brain neurogenesis and thereby delay aging by improving brain inflammation.
Collapse
|
16
|
Kruchinina MV, Svetlova IO, Osipenko MF, Abaltusova NV, Gromov AA, Shashkov MV, Sokolova AS, Yakovina IN, Borisova AV. Fatty Acids of Erythrocyte Membranes and Blood Serum in Differential Diagnosis of Inflammatory Bowel Diseases. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:50-67. [DOI: 10.22416/1382-4376-2022-32-4-50-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim: to study fatty acid levels in erythrocyte membranes (RBC) and blood serum (BS) in patients with inflammatory bowel diseases (IBDs) to develop differential diagnostic models including fatty acids as biomarkers to distinguish between nosological entities of IBDs (ulcerative colitis — UC, Crohn's disease — CD, unclassified colitis — UCC).Materials and methods. We examined 110 patients (mean age 37,7 ± 12,1 years) with IBDs and 53 healthy patients in control group (43,3 ± 11,7 years). The IBDs group included 50 patients with UC, 41 patients with CD, 19 patients with UCC. An exacerbation of the disease was revealed in 42 patients (84 %) with UC, 34 patients with CD (82.9 %) and 11 people with UCC (57.9 %). The study of fatty acids (FA) composition of RBC membranes and BS was carried out using GC/MS system based on three Agilent 7000B quadrupoles (USA).Results. The most significant for distinguishing active UC from CD exacerbation were serum levels of elaidin (p = 0.0006); docosatetraenoic (n-6) (p = 0.004); docodienic (n-6) (p = 0.009); omega-3/omega-6 ratio (p = 0.02); docosapentaenoic (n-3) (p = 0.03); the sum of eicosapentaenoic and docosahexaenoic (p = 0.03), as well as the content of RBC lauric FA (p = 0.04) (AUC — 0.89, sensitivity — 0.91, specificity — 0.89, diagnostic accuracy — 0.91). To distinguish active UC from the same of UCC, the following serum FA were found to be significant: alpha-linolenic; saturated (pentadecanoic, palmitic, stearic, arachidic); monounsaturated (palmitoleic, oleic); omega-6 (hexadecadienic, arachidonic) (p = 0.00000011—0.03300000) (AUC — 0.995, sensitivity — 0.98, specificity — 0.96, diagnostic accuracy — 0.97). The most significant in distinguishing patients with active CD from UCC exacerbation were levels of the following FA: alpha-linolenic; palmitoleic; oleic; the amount of saturated fatty acids (SFA); total unsaturated fatty acids (UFA); stearic; monounsaturated fatty acids (MUFA) amount; SFA/UFA; SFA/PUFA (polyunsaturated fatty acids); linoleic; total PUFA n6; lauric; arachidic acid (p = 0.0000000017–0.030000000) (AUC — 0.914, sensitivity — 0.90, specificity — 0.87, diagnostic accuracy — 0.91).Conclusion. The study of FA levels in groups with different nosological forms of IBDs using complex statistical analysis, including machine learning methods, made it possible to create diagnostic models that differentiate CD, UC and UCC in the acute stage with high accuracy. The proposed approach is promising for the purposes of differential diagnosis of nosological forms of IBDs.
Collapse
Affiliation(s)
- M. V. Kruchinina
- Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | - I. O. Svetlova
- Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | | | - N. V. Abaltusova
- Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
| | - A. A. Gromov
- Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
| | - M. V. Shashkov
- Boreskov Institute of Catalysis, Siberian branch of Russian Academy of Sciences
| | - A. S. Sokolova
- Novosibirsk Institute of Organic Chemistry, Siberian branch of Russian Academy of Sciences
| | | | - A. V. Borisova
- Research Institute of Internal and Preventive Medicine — Branch of the Institute of Cytology and Genetics, Siberian branch of Russian Academy of Sciences
| |
Collapse
|
17
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Estelle B. Gauda,
| |
Collapse
|
18
|
Siopis G, Porter J. Contribution of Biological Age-Predictive Biomarkers to Nutrition Research: A Systematic Review of the Current Evidence and Implications for Future Research and Clinical Practice. Adv Nutr 2022; 13:1930-1946. [PMID: 35612976 PMCID: PMC9526820 DOI: 10.1093/advances/nmac060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/11/2022] [Accepted: 05/16/2022] [Indexed: 01/28/2023] Open
Abstract
The global population is living longer; however, not everyone ages at the same rate with regard to their physical and cognitive abilities and their vulnerability to certain diseases and death. This review aimed to synthesize the contribution of biological age-predictive biomarkers to nutrition research and highlight the implications for future research and clinical practice. MEDLINE, CINAHL, and Cochrane CENTRAL were systematically searched on 30 September 2021 for randomized controlled trials and cross-sectional studies examining the association between nutrition and biological age in older adults reporting on genetic, clinical, or molecular biomarkers of biological aging. Cochrane's ROB 2 and ROBINS-I were used to assess the quality of included studies. Synthesis was undertaken narratively. Of 1245 records identified from the search, 13 studies from 8 countries and territories, involving 5043 participants, were included. Seven studies assessed associations between nutrient food intake and telomere attrition, reporting protective effects for branched-chain amino acids, calcium and vitamin D, and a diet of a lower inflammatory index; whereas they found shorter telomeres in people consuming more processed foods and arachidonic acid and other proinflammatory compounds. Five studies examined the associations between plasma nutrition biomarkers and cognitive function, and found a protective effect for HDL cholesterol, lycopene, carotenoids, ω-3 and ω-6 fatty acids, and vitamins B, C, D, and E; whereas trans fatty acids and fibrinogen correlated with a decline in cognitive function. One study used Horvath's clock and reported the epigenetic rejuvenation effect of a Mediterranean diet. In conclusion, biological aging was negatively associated with an anti-inflammatory diet. However, a few studies did not control for the confounding effect of other lifestyle factors. Future research should address this and also assess the synergistic effect of different nutrients, their combinations, and evaluate their dose-response relations. Nutrition practice can incorporate updated screening procedures for older people that include relevant biological aging nutrition markers, leading to anti-aging precision nutrition therapy. The methodology of this systematic review was registered in PROSPERO (CRD42021288122).
Collapse
Affiliation(s)
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
19
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
20
|
Gutierrez L, Folch A, Rojas M, Cantero JL, Atienza M, Folch J, Camins A, Ruiz A, Papandreou C, Bulló M. Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2021; 13:nu13113728. [PMID: 34835984 PMCID: PMC8621754 DOI: 10.3390/nu13113728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/06/2023] Open
Abstract
New dietary approaches for the prevention of cognitive impairment are being investigated. However, evidence from dietary interventions is mainly from food and nutrient supplement interventions, with inconsistent results and high heterogeneity between trials. We conducted a comprehensive systematic search of randomized controlled trials (RCTs) published in MEDLINE-PubMed, from January 2018 to July 2021, investigating the impact of dietary counseling, as well as food-based and dietary supplement interventions on cognitive function in adults with or without cognitive impairment. Based on the search strategy, 197 eligible publications were used for data abstraction. Finally, 61 articles were included in the analysis. There was reasonable evidence that dietary patterns, as well as food and dietary supplements improved cognitive domains or measures of brain integrity. The Mediterranean diet showed promising results, whereas the role of the DASH diet was not clear. Healthy food consumption improved cognitive function, although the quality of these studies was relatively low. The role of dietary supplements was mixed, with strong evidence of the benefits of polyphenols and combinations of nutrients, but with low evidence for PUFAs, vitamin D, specific protein, amino acids, and other types of supplements. Further well-designed RCTs are needed to guide the development of dietary approaches for the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Laia Gutierrez
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - Alexandre Folch
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - Melina Rojas
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
| | - José Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (J.L.C.); (M.A.)
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013 Seville, Spain; (J.L.C.); (M.A.)
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Jaume Folch
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
| | - Antoni Camins
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), University of Barcelona, 08035 Barcelona, Spain
| | - Agustín Ruiz
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain; (A.C.); (A.R.)
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Disorders Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, 43201 Reus, Spain; (L.G.); (A.F.); (M.R.); (J.F.)
- Nutrition and Metabolic Disorders Research Group, Institute of Health Pere Virgili—IISPV, 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-97-775-9388
| |
Collapse
|
21
|
Chukaew P, Leow A, Saengsawang W, Rasenick MM. Potential depression and antidepressant-response biomarkers in human lymphoblast cell lines from treatment-responsive and treatment-resistant subjects: roles of SSRIs and omega-3 polyunsaturated fatty acids. Mol Psychiatry 2021; 26:2402-2414. [PMID: 32327735 PMCID: PMC7928235 DOI: 10.1038/s41380-020-0724-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
While several therapeutic strategies exist for depression, most antidepressant drugs require several weeks before reaching full biochemical efficacy and remission is not achieved in many patients. Therefore, biomarkers for depression and drug-response would help tailor treatment strategies. This study made use of banked human lymphoblast cell lines (LCLs) from normal and depressed subjects; the latter divided into remitters and non-remitters. Due to the fact that previous studies have shown effects on growth factors, cytokines, and elements of the cAMP-generating system as potential biomarkers for depression and antidepressant action, these were examined in LCLs. Initial gene and protein expression profiles for signaling cascades related to neuroendocrine and inflammatory functions differ among the three groups. Growth factor genes, including VEGFA and BDNF were significantly down-regulated in cells from depressed subjects. In addition, omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to act as both antidepressants and anti-inflammatories, but the mechanisms for these effects are not established. Here we showed that n-3 PUFAs and escitalopram (selective serotonin reuptake inhibitors, SSRIs) treatment increased adenylyl cyclase (AC) and BDNF gene expression in LCLs. These data are consistent with clinical observations showing that n-3 PUFA and SSRI have antidepressant affects, which may be additive. Contrary to observations made in neuronal and glial cells, n-3 PUFA treatment attenuated cAMP accumulation in LCLs. However, while lymphoblasts show paradoxical responses to neurons and glia, patient-derived lymphoblasts appear to carry potential depression biomarkers making them an important tool for studying precision medicine in depressive patients. Furthermore, these data validate usefulness of n-3 PUFAs in treatment for depression.
Collapse
Affiliation(s)
- Phatcharee Chukaew
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Alex Leow
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA.
- Jesse Brown Westside VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
22
|
Marriott BP, Turner TH, Hibbeln JR, Newman JC, Pregulman M, Malek AM, Malcolm RJ, Burbelo GA, Wismann JW. Impact of Fatty Acid Supplementation on Cognitive Performance among United States (US) Military Officers: The Ranger Resilience and Improved Performance on Phospholipid-Bound Omega-3's (RRIPP-3) Study. Nutrients 2021; 13:nu13061854. [PMID: 34072293 PMCID: PMC8228047 DOI: 10.3390/nu13061854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Studies have assessed omega-3 fatty acids and cognitive decline among older adults and cognitive development among children, although less is known about cognitive or neurological effects among young adults. We examined whether omega-3 supplementation from krill oil could improve cognition and resilience among young military officers compared to a control. This double-blind, placebo-controlled trial enrolled 555 officers (mean age 23.4 ± 2.8, 98.6% male) entering the United States (US) Army Infantry Basic Officer Leaders Course (IBOLC) with the intention to complete the US Ranger Course. Volunteer participants consumed eight dietary supplements daily of krill oil containing 2.3 g omega-3 or control (macadamia nut oil) over an approximate 20-week period. Cognitive functioning, resilience, and mood were assessed during a well-rested period at approximately 14 weeks and after a battlefield simulation at 16 weeks. Blood spot samples were collected to monitor compliance and dietary intake was assessed. All hypotheses were tested using both ‘Intention to Treat’ (ITT) and ‘As Per Protocol’ (APP) approaches. Of the 555 randomized individuals, 245 (44.1%) completed the study. No statistically significant group-by-time interactions indicating treatment effect were found on any outcomes. Poor compliance was indicated by lower than expected omega-3 elevations in the treatment group, and may have contributed to a failure to detect a response.
Collapse
Affiliation(s)
- Bernadette P. Marriott
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC 29425, USA;
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, USA;
- Correspondence: ; Tel.: +1-843-696-3208
| | - Travis H. Turner
- Department of Neurology, College of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 301 CSB, Charleston, SC 29425, USA;
| | - Joseph R. Hibbeln
- Psychiatry and Behavioral Health, Barton Health, 2209 Second Avenue, South Lake Tahoe, CA 96150, USA;
| | - Jill C. Newman
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC 29425, USA;
| | - Marcie Pregulman
- Division of Nephrology, Department of Medicine, College of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB, HE814, MSC629, Charleston, SC 29425, USA;
| | - Angela M. Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303C, Charleston, SC 29425, USA;
| | - Robert J. Malcolm
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, USA;
| | - Gregory A. Burbelo
- LTC, Infantry, United States Army, 432 Lee Road.2069, Smiths Station, AL 36877, USA;
| | - Jeffrey W. Wismann
- Major, US Army Battalion Operations Officer, 4-23 Infantry Regiment, Joint Base Lewis-McChord, WA 98433, USA;
| |
Collapse
|
23
|
Chen Y, Demnitz N, Yamamoto S, Yaffe K, Lawlor B, Leroi I. Defining brain health: A concept analysis. Int J Geriatr Psychiatry 2021; 37. [PMID: 34131954 DOI: 10.1002/gps.5564] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Brain health is an important focus for coming decades due to population ageing. Although the term 'brain health' is increasingly used in lay and professional settings, a clear definition of the term is lacking. We conducted an analysis of the concept of brain health to inform policy, practice, and research. METHODS We applied a hybrid concept analysis method involving three stages: (1) a review of the extant literature for definitions of brain health; (2) field work, involving an international survey of 'brain health' researchers and practitioners; and (3) a final analysis, integrating the findings into a working definition and model. RESULTS Our review of the literature identified 13 articles defining brain health, six of which proposed their own definition. Our survey revealed that the term 'brain health' was used in diverse ways based on different theoretical frameworks. From the review and survey, we extracted attributes, antecedents, and consequences of brain health. These were synthesized into a definition of brain health as a life-long, multidimensional, dynamic state consisting of cognitive, emotional and motor domains underpinned by physiological processes and can be objectively measured and subjectively experienced. It is influenced by eco-biopsychosocial determinants. CONCLUSION This working definition of brain health is a foundation for developing policy, practice, research and advocacy. The definition needs to be operationalised through further development of empirical referents, including cross-cultural understanding, adaptation and validation.
Collapse
Affiliation(s)
- Yaohua Chen
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Univ.Lille, Inserm UMR-S1172, Lille Neurosciences & Cognition, Degenerative and Vascular Cognitive Disorders, CHU Lille, LiCEND, Lille, France
- Department of Geriatrics, CHU Lille, Lille, France
| | - Naiara Demnitz
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Stacey Yamamoto
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Kristine Yaffe
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
- Departments of Psychiatry, Neurology and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Brian Lawlor
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Iracema Leroi
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Li S, Chen H, Cheng W, Yang K, Cai L, He L, Du L, Liu Y, Liu A, Zeng Z, Li C. Impact of arabinoxylan on characteristics, stability and lipid oxidation of oil-in-water emulsions: Arabinoxylan from wheat bran, corn bran, rice bran, and rye bran. Food Chem 2021; 358:129813. [PMID: 33940286 DOI: 10.1016/j.foodchem.2021.129813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
To investigate the impact of arabinoxylan (AX) on the physical and oxidative stability of oil-in-water emulsions, AX from wheat bran, corn bran, rice bran, or rye bran was incorporated into the production of whey protein isolate-stabilised emulsions. Decreased interfacial charge and increased mean particle diameters were recorded in all fresh emulsions with 0.1%-0.5% AX, as recorded by the ζ-potential and particle size measurement, indicating the adsorption of AX onto the oil droplets. No phase separation was observed in all emulsions with ≤0.3% AX after 14-day storage in dark. Spectrophotometric analysis demonstrated that all AX lowered the peroxide value and thiobarbituric acid reactive substance concentration in emulsions, with AX from rice bran being slightly more effective. Consequently, AX has the potential to be used as a natural interfacial antioxidant in emulsions, and the antioxidant capacity of AX varies with its source.
Collapse
Affiliation(s)
- Shanshan Li
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Wei Cheng
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Kuan Yang
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Lisha Cai
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Linfeng He
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Lei Du
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China.
| |
Collapse
|
25
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
26
|
Culler MD, Inchingolo R, McClements DJ, Decker EA. Impact of Polyunsaturated Fatty Acid Dilution and Antioxidant Addition on Lipid Oxidation Kinetics in Oil/Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:750-755. [PMID: 33403856 DOI: 10.1021/acs.jafc.0c06209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As consumers increasingly demand "cleaner" labels, one available strategy is diluting oils high in unsaturated fatty acids into more stable, more saturated oils, thus delaying lipid oxidation by decreasing free-radical propagation reactions between oxidized fatty acids and unsaturated lipids. The effect of diluting fish oil into medium-chain triglycerides (MCTs) on oxidative stability was investigated using lipid hydroperoxides and gas chromatography headspace analysis. Dilutions up to 1 in 20 of fish oil in MCT extended propanal formation from 1 to 6 days in Tween-80-stabilized oil-in-water emulsions. This protective effect was not observed in emulsions wherein the two oils were in separate droplets. Fish oil blended with high oleic sunflower oil (HOSO) also demonstrated a protective effect when the oils were in the same emulsion droplets but not in separate emulsion droplets. The present study indicates that dilution can be used to increase the oxidative stability of polyunsaturated fatty acids in oil-in-water emulsions.
Collapse
Affiliation(s)
- Mitchell D Culler
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Raffaella Inchingolo
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - D Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric A Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
27
|
Annurca Apple Polyphenol Extract Affects Acetyl- Cholinesterase and Mono-Amine Oxidase In Vitro Enzyme Activity. Pharmaceuticals (Basel) 2021; 14:ph14010062. [PMID: 33466604 PMCID: PMC7828649 DOI: 10.3390/ph14010062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we explored the ability of Annurca apple flesh polyphenol extract (AFPE) to affect the activity of key enzymes involved in neurodegenerative disorders—in particular, Acetyl- and Butirryl-cholinesterases, and type A and B monoamine oxidase. The effect of AFPE on enzyme activity was analyzed by in vitro enzyme assays, and the results showed concentration-dependent enzyme inhibition, with IC50 values corresponding to 859 ± 18 µM and 966 ± 72 µM for AChE and BuChE respectively, and IC50 corresponding to 145 ± 3 µM and 199 ± 7 µM for MAO-A and MAO-B, respectively, with a preference for MAO-A. Moreover, in this concentration range, AFPE did not affect the viability of human neuroblastoma SH-SY5Y and fibroblast BJ-5ta cell lines, as determined by an MTT assay. In conclusion, our results demonstrate that AFPE shows the new biological properties of inhibiting the activity of enzymes that are involved in brain functions, neurodegenerative disorders, and aging.
Collapse
|
28
|
Kuszewski JC, Howe PRC, Wong RHX. Evaluation of Cognitive Performance following Fish-Oil and Curcumin Supplementation in Middle-Aged and Older Adults with Overweight or Obesity. J Nutr 2020; 150:3190-3199. [PMID: 33097947 DOI: 10.1093/jn/nxaa299] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Obesity accelerates age-related cognitive decline, which is partly mediated by vascular dysfunction. OBJECTIVE The aim was to test the hypothesis that supplementation with fish oil and curcumin can enhance cognitive performance by improving cerebral circulatory function in overweight or obese middle-aged to older adults. METHODS In a 16-wk double-blind, placebo-controlled intervention trial, adults [50-80 y; BMI (kg/m2): 25-40] were randomly assigned to either fish oil (2000 mg/d DHA + 400 mg/d EPA), curcumin (160 mg/d), or a combination. Effects on cerebrovascular function (primary outcome) and cardiovascular risk factors were reported previously. Effects on cognitive performance and cerebrovascular responsiveness (CVR) to cognitive stimuli are reported herein. One-factor ANOVA with post hoc analyses was conducted between groups in the whole cohort and in males and females separately. Two-factor ANOVA was conducted to assess independent effects of fish oil and curcumin and a potential interaction. Correlations between outcomes (those obtained herein and previously reported) were also examined. RESULTS Compared with placebo, fish oil improved CVR to a processing speed test (4.4% ± 1.9% vs. -2.2% ± 2.1%; P = 0.023) and processing speed in males only (Z-score: 0.6 ± 0.2 vs. 0.1 ± 0.2; P = 0.043). Changes in processing speed correlated inversely with changes in blood pressure (R = -0.243, P = 0.006) and C-reactive protein (R = -0.183, P = 0.046). Curcumin improved CVR in a working memory test (3.6% ± 1.2% vs. -0.2% ± 0.2%, P = 0.026) and, in males only, performance of a verbal memory test compared with placebo (Z-score: 0.2 ± 0.1 vs. -0.5 ± 0.2, P = 0.039). Combining fish oil with curcumin did not produce additional benefits. CONCLUSIONS Improvements in processing speed following fish-oil supplementation in middle-aged to older males might be mediated by improvements in circulatory function. Mechanisms underlying the cognitive benefit seen with curcumin are unknown. As cognitive benefits were found in males only, further evaluation of sex differences in responsiveness to supplementation is warranted. This trial was registered at the Australian and New Zealand Clinical Trial Register at https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370788 as ACTRN12616000732482p.
Collapse
Affiliation(s)
- Julia C Kuszewski
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Peter R C Howe
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Australia.,School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Rachel H X Wong
- Clinical Nutrition Research Centre, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,Institute for Resilient Regions, University of Southern Queensland, Springfield Central, Australia
| |
Collapse
|
29
|
Dobri AM, Dudău M, Enciu AM, Hinescu ME. CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience 2020; 453:301-311. [PMID: 33212223 DOI: 10.1016/j.neuroscience.2020.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
CD36 is a membrane protein with wide distribution in the human body, is enriched in the monocyte-macrophage system and endothelial cells, and is involved in the cellular uptake of long chain fatty acids (LCFA) and oxidized low-density lipoproteins. It is also a scavenger receptor, binding hydrophobic amyloid fibrils found in the Alzheimer's disease (AD) brain. In neurobiology research, it has been mostly studied in relationship with chronic ischemia and stroke, but it was also related to amyloid clearance by microglial phagocytosis. In AD animal models, amyloid binding to CD36 has been consistently correlated with a pro-inflammatory response. Therapeutic approaches have two main focuses: CD36 blockade with monoclonal antibodies or small molecules, which is beneficial in terms of the inflammatory milieu, and upregulation of CD36 for increased amyloid clearance. The balance of the two approaches, centered on microglia, is poorly understood. Furthermore, CD36 evaluation in AD clinical studies is still at a very early stage and there is a gap in the knowledge regarding the impact of LCFA on AD progression and CD36 expression and genetic phenotype. This review summarizes the role played by CD36 in the pathogenic amyloid cascade and explore the translatability of preclinical data towards clinical research.
Collapse
Affiliation(s)
- Ana-Maria Dobri
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Maria Dudău
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania.
| | - Mihail Eugen Hinescu
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, 5 Eroilor Sanitari Blvd, 050047 Bucharest, Romania
| |
Collapse
|
30
|
Sustainable Management of Secondary Raw Materials from the Marine Food-Chain: A Case-Study Perspective. SUSTAINABILITY 2020. [DOI: 10.3390/su12218997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The feasibility of exploiting secondary raw materials from marine food-chains as a source of molecules of nutritional interest, to create high-value food products and to meet nutritional challenges, is described in this report. A reduction in food waste is urgent as many sectors of the food industry damage the environment by depleting resources and by generating waste that must be treated. The project herein described, deals with the recovery of natural molecules, omega-3 fatty acids (EPA, DHA) and of α-tocopherol, from fish processing by-products. This would promote the sustainable development of new food products for human nutrition, as well as nutraceuticals. The growing awareness of increasing omega-3 fatty acids intake, has focused attention on the importance of fish as a natural source of these molecules in the diet. Therefore, a study on the concentration of these bioactive compounds in such matrices, as well as new green methodologies for their recovery, are necessary. This would represent an example of a circular economy process applied to the seafood value chain. Fish processing by-products, so far considered as waste, can hopefully be reutilized as active ingredients into food products of high added-value, thus maximizing the sustainability of fish production.
Collapse
|
31
|
van Vliet S, Kronberg SL, Provenza FD. Plant-Based Meats, Human Health, and Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00128] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Ferreira I, Gomes-Bispo A, Lourenço H, Matos J, Afonso C, Cardoso C, Castanheira I, Motta C, Prates JAM, Bandarra NM. The chemical composition and lipid profile of the chub mackerel (Scomber colias) show a strong seasonal dependence: Contribution to a nutritional evaluation. Biochimie 2020; 178:181-189. [PMID: 32980464 DOI: 10.1016/j.biochi.2020.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
The seasonal variation in chemical and lipid composition of chub mackerel (Scomber colias) was evaluated monthly over one year (proximate chemical composition and lipid profile: fatty acid (FA) and lipid classes distribution). Significant seasonal changes regarding fat content were noticed (1.3-10.3 g/100 g), with the lowest fat content obtained in February (during spawning period), and the highest in September. Regarding the FA profile, the main fluctuations were recorded in saturated (SFA) and polyunsaturated fatty acids (PUFA). The highest SFA content was registered between March and August (25.3-32.3%). PUFA (the most abundant group) reached its maximum percentual content between December and February (60.9 and 66.9%, respectively). In absolute terms, PUFA attained 5352.6 mg/100 g edible part in September, where 2473.8 mg/100 g of docosahexaenoic acid (DHA, C22:6n-3), representing 46.2% of total PUFA. DHA lowest level was 519.8 mg/100 g, registered in low-fat chub mackerel. Together DHA and EPA (eicosapentaenoic acid, C20:5n-3) represented 75% of the total PUFA and 84% of n-3 PUFA. Triacylglycerols (TAG) with 82.2-92.1% of total lipid content) and phospholipids (4.4-8.4%) were the main lipid classes. Polar lipid fraction (phospholipids), was predominantly constituted by PUFA (68.6-74.5%), mainly DHA (45.2-55.1%), with the highest percentage recorded in low-fat chub mackerel. High relative contents of PUFA (36.6-49.1%) were also found in TAG. Having into account the data obtained, chub mackerel is a privileged source of DHA even in a lean species whereby its consumption should be recommended as part a healthy dietary regime.
Collapse
Affiliation(s)
- Inês Ferreira
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; University of Lisbon, Faculty of Sciences, Campo Grande, 16, 1749-016 Lisbon, Portugal
| | - Ana Gomes-Bispo
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Helena Lourenço
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Joana Matos
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; University of Lisbon, Faculty of Sciences, Campo Grande, 16, 1749-016 Lisbon, Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - Isabel Castanheira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1600-560 Lisbon, Portugal
| | - Carla Motta
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1600-560 Lisbon, Portugal
| | - José A M Prates
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
33
|
Wang C, Sun C, Lu W, Gul K, Mata A, Fang Y. Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Compr Rev Food Sci Food Saf 2020; 19:2955-2971. [DOI: 10.1111/1541-4337.12621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/28/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Chenxi Wang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
34
|
The Association between Omega-3 Fatty Acid Intake and Human Brain Connectivity in Middle-Aged Depressed Women. Nutrients 2020; 12:nu12082191. [PMID: 32717913 PMCID: PMC7468955 DOI: 10.3390/nu12082191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Omega-3 fatty acid (n-3 FA) intake is known to have a preventive effect on depressive symptoms in a general population. This study assessed the effects of n-3 FA intake on depressive symptoms and brain function in middle-aged women. Depressive symptoms were screened using the Beck Depression Inventory-II (BDI-II) and Center for Epidemiologic Studies-Depression scale (CES-D) assessment questionnaires, and n-3 FA intakes were assessed using semiquantitative food frequency questionnaire. We found that n-3 FA intakes were negatively associated with depressive symptoms in middle-aged women. Psychiatrists diagnosed the presence of depressive disorders using the 5th edition of the Mental Disorder Diagnosis and Statistics Manual (DSM-5). Resting-state functional magnetic resonance imaging (rs-fMRI) was performed to investigate the association between n-3 FA intake and brain functional connectivity. Functional connectivity of the right middle frontal cortex (default mode network) and the right middle temporal pole (frontoparietal network) was positively associated with depressive symptom scores and negatively associated with n-3 FA intakes. In conclusion, high n-3 FA intake decreases the risk of depressive symptoms and modifies the brain functional connectivity in middle-aged women.
Collapse
|
35
|
Rosario D, Boren J, Uhlen M, Proctor G, Aarsland D, Mardinoglu A, Shoaie S. Systems Biology Approaches to Understand the Host-Microbiome Interactions in Neurodegenerative Diseases. Front Neurosci 2020; 14:716. [PMID: 32733199 PMCID: PMC7360858 DOI: 10.3389/fnins.2020.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases (NDDs) comprise a broad range of progressive neurological disorders with multifactorial etiology contributing to disease pathophysiology. Evidence of the microbiome involvement in the gut-brain axis urges the interest in understanding metabolic interactions between the microbiota and host physiology in NDDs. Systems Biology offers a holistic integrative approach to study the interplay between the different biologic systems as part of a whole, and may elucidate the host–microbiome interactions in NDDs. We reviewed direct and indirect pathways through which the microbiota can modulate the bidirectional communication of the gut-brain axis, and explored the evidence of microbial dysbiosis in Alzheimer’s and Parkinson’s diseases. As the gut microbiota being strongly affected by diet, the potential approaches to targeting the human microbiota through diet for the stimulation of neuroprotective microbial-metabolites secretion were described. We explored the potential of Genome-scale metabolic models (GEMs) to infer microbe-microbe and host-microbe interactions and to identify the microbiome contribution to disease development or prevention. Finally, a systemic approach based on GEMs and ‘omics integration, that would allow the design of sustainable personalized anti-inflammatory diets in NDDs prevention, through the modulation of gut microbiota was described.
Collapse
Affiliation(s)
- Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Dag Aarsland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
36
|
Giudici KV, de Souto Barreto P, Beard J, Cantet C, Araujo de Carvalho I, Rolland Y, Vellas B. Effect of long-term omega-3 supplementation and a lifestyle multidomain intervention on intrinsic capacity among community-dwelling older adults: Secondary analysis of a randomized, placebo-controlled trial (MAPT study). Maturitas 2020; 141:39-45. [PMID: 33036701 DOI: 10.1016/j.maturitas.2020.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the effect of omega-3 (ω-3) polyunsaturated fatty acid supplementation and a multidomain intervention (MI) (physical activity counselling, cognitive training and nutritional advice) among community-dwelling older adults on levels of intrinsic capacity (IC), a construct recently proposed by the World Health Organization. STUDY DESIGN Secondary analysis from the factorial-design 3-year Multidomain Alzheimer Preventive Trial (MAPT) with 1445 subjects (64.2 % female, mean age 75.3 years, SD = 4.4) randomized to one group of MI plus ω-3 (800 mg docosahexaenoic acid and 225 mg eicosapentaenoic acid/day); MI plus placebo; ω-3 supplementation alone; or placebo alone. Data collection was held between 2008 and 2014. MAIN OUTCOME MEASURES IC domains were examined with the Geriatric Depression Scale (psychological); Short Physical Performance Battery (mobility); Z-score combining four tests (cognitive function); and handgrip strength (vitality). All domains were combined into a composite IC Z-score. RESULTS After 3 years, IC Z-score decreased among all groups when time was considered continuous (MI plus ω-3: -0.16, 95 %CI: -0.22 to -0.10; MI alone: -0.13, 95 %CI: -0.19 to -0.07; ω-3 alone: -0.19, 95 %CI: -0.25 to -0.10; placebo: -0.20, 95 %CI: -0.26 to -0.14; all p < 0.0001). There were no significant differences between groups. In a sensitivity analysis with categorical time, significant within-group declines were first identified at 24 months for all groups. CONCLUSIONS This trial designed to improve cognitive function was unable to find effects of the intervention on the composite IC Z-score. Further investigations are needed, especially trials providing stronger interventions (such as exercise training and a controlled diet) and also embracing the sensorial domain of IC.
Collapse
Affiliation(s)
- K V Giudici
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France.
| | - P de Souto Barreto
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - J Beard
- University of Sydney, Sydney, Australia
| | - C Cantet
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - I Araujo de Carvalho
- Department of Ageing and Life Course, World Health Organization, Geneva, Switzerland
| | - Y Rolland
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - B Vellas
- Gerontopole of Toulouse, Institute of Ageing, Toulouse University Hospital (CHU Toulouse), Toulouse, France; UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | | |
Collapse
|
37
|
Fast capillary electrophoresis method for determination of docosahexaenoic and eicosapentaenoic acids in marine oils omega-3 supplements. J Chromatogr A 2020; 1613:460641. [DOI: 10.1016/j.chroma.2019.460641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/24/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
|
38
|
Abstract
Context Depression is one of the most commonly diagnosed psychiatric disorders, but antidepressant pharmacotherapy often fails to achieve remission, leading health care professionals and researchers to consider various augmentation strategies to improve clinical outcomes. Objective To assess the safety, tolerability, and efficacy of nutraceutical augmentation for depression. Methods Nutraceutical-focused systematic reviews and clinical practice guidelines identified the more commonly studied augmentation strategies for depression. Results S-adenosylmethionine, l-methylfolate, omega-3 fatty acids, and hydroxyvitamin D have sufficient scientific evidence to support their clinical consideration in the stepped care approach to the management of depression. Conclusions Clinical remission is the goal in the management of depression, and nutraceuticals may be part of an overall treatment approach to achieve that outcome.
Collapse
|
39
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
40
|
Cook RL, Parker HM, Donges CE, O'Dwyer NJ, Cheng HL, Steinbeck KS, Cox EP, Franklin JL, Garg ML, O'Connor HT. Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis 2019; 18:194. [PMID: 31694658 PMCID: PMC6836340 DOI: 10.1186/s12944-019-1143-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Research indicates that low omega-3 polyunsaturated fatty acid (n-3 PUFA) may be associated with decreased cognitive function. This study examined the association between n-3 PUFA status and cognitive function in young Australian women. Methods This was a secondary outcome analysis of a cross-sectional study that recruited 300 healthy women (18–35 y) of normal weight (NW: BMI 18.5–24.9 kg/m2) or obese weight (OB: BMI ≥30.0 kg/m2). Participants completed a computer-based cognition testing battery (IntegNeuro™) evaluating the domains of impulsivity, attention, information processing, memory and executive function. The Omega-3 Index (O3I) was used to determine n-3 PUFA status (percentage of EPA (20:5n-3) plus DHA (22:6n3) in the red cell membrane) and the participants were divided into O3I tertile groups: T1 < 5.47%, T2 = 5.47–6.75%, T3 > 6.75%. Potential confounding factors of BMI, inflammatory status (C-reactive Protein), physical activity (total MET-min/wk), alpha1-acid glycoprotein, serum ferritin and hemoglobin, were assessed. Data reported as z-scores (mean ± SD), analyses via ANOVA and ANCOVA. Results Two hundred ninety-nine women (26.9 ± 5.4 y) completed the study (O3I data, n = 288). The ANOVA showed no overall group differences but a significant group × cognition domain interaction (p < 0.01). Post hoc tests showed that participants in the low O3I tertile group scored significantly lower on attention than the middle group (p = 0.01; ES = 0.45 [0.15–0.74]), while the difference with the high group was borderline significant (p = 0.052; ES = 0.38 [0.09–0.68]). After confounder adjustments, the low group had lower attention scores than both the middle (p = 0.01) and high (p = 0.048) groups. These findings were supported by univariate analyses which found significant group differences for the attention domain only (p = 0.004). Conclusions Cognitive function in the attention domain was lower in women with lower O3I, but still within normal range. This reduced but normal level of cognition potentially provides a lower baseline from which cognition would decline with age. Further investigation of individuals with low n-3 PUFA status is warranted.
Collapse
Affiliation(s)
- Rebecca L Cook
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Helen M Parker
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Cheyne E Donges
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Nicholas J O'Dwyer
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia.,School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - Hoi Lun Cheng
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Katharine S Steinbeck
- Academic Department of Adolescent Medicine, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | - Eka P Cox
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia
| | - Janet L Franklin
- Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Helen T O'Connor
- Faculty of Health Sciences, Discipline of Exercise and Sport Science, The University of Sydney, PO Box 170, Lidcombe, NSW, 1825, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
41
|
Jirout J, LoCasale-Crouch J, Turnbull K, Gu Y, Cubides M, Garzione S, Evans TM, Weltman AL, Kranz S. How Lifestyle Factors Affect Cognitive and Executive Function and the Ability to Learn in Children. Nutrients 2019; 11:E1953. [PMID: 31434251 PMCID: PMC6723730 DOI: 10.3390/nu11081953] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
In today's research environment, children's diet, physical activity, and other lifestyle factors are commonly studied in the context of health, independent of their effect on cognition and learning. Moreover, there is little overlap between the two literatures, although it is reasonable to expect that the lifestyle factors explored in the health-focused research are intertwined with cognition and learning processes. This thematic review provides an overview of knowledge connecting the selected lifestyle factors of diet, physical activity, and sleep hygiene to children's cognition and learning. Research from studies of diet and nutrition, physical activity and fitness, sleep, and broader influences of cultural and socioeconomic factors related to health and learning, were summarized to offer examples of research that integrate lifestyle factors and cognition with learning. The literature review demonstrates that the associations and causal relationships between these factors are vastly understudied. As a result, current knowledge on predictors of optimal cognition and learning is incomplete, and likely lacks understanding of many critical facts and relationships, their interactions, and the nature of their relationships, such as there being mediating or confounding factors that could provide important knowledge to increase the efficacy of learning-focused interventions. This review provides information focused on studies in children. Although basic research in cells or animal studies are available and indicate a number of possible physiological pathways, inclusion of those data would distract from the fact that there is a significant gap in knowledge on lifestyle factors and optimal learning in children. In a climate where childcare and school feeding policies are continuously discussed, this thematic review aims to provide an impulse for discussion and a call for more holistic approaches to support child development.
Collapse
Affiliation(s)
- Jamie Jirout
- Center for Advanced Study of Teaching and Learning, Charlottesville, VA 22903, USA
| | | | - Khara Turnbull
- Center for Advanced Study of Teaching and Learning, Charlottesville, VA 22903, USA
| | - Yin Gu
- Center for Advanced Study of Teaching and Learning, Charlottesville, VA 22903, USA
| | - Mayaris Cubides
- Center for Advanced Study of Teaching and Learning, Charlottesville, VA 22903, USA
| | - Sarah Garzione
- Department of Kinesiology, Curry School of Education and Human Development, University of Virginia, Charlottesville, VA 22903, USA
| | - Tanya M Evans
- Center for Advanced Study of Teaching and Learning, Charlottesville, VA 22903, USA
| | - Arthur L Weltman
- Department of Kinesiology, Curry School of Education and Human Development, University of Virginia, Charlottesville, VA 22903, USA
| | - Sibylle Kranz
- Department of Kinesiology, Curry School of Education and Human Development, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
42
|
Mierau SB, Neumeyer AM. Metabolic interventions in Autism Spectrum Disorder. Neurobiol Dis 2019; 132:104544. [PMID: 31351171 DOI: 10.1016/j.nbd.2019.104544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/08/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022] Open
Abstract
Metabolic interventions including special diets and supplements are commonly used in Autism Spectrum Disorder (ASD). Yet little is known about how these interventions, typically initiated by caregivers, may affect metabolic function or the core symptoms of ASD. This review examines possible direct and indirect roles for metabolism in the core symptoms of ASD as well as evidence for metabolic dysfunction and nutritional deficiencies. We also discuss some of the most popular diets and supplements used in our patient population and suggest strategies for discussing the utility of these interventions with patients, families, and caregivers.
Collapse
Affiliation(s)
- Susanna B Mierau
- Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Ann M Neumeyer
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA; Harvard Medical School, Boston, MA USA.
| |
Collapse
|
43
|
Moran CA, Currie D, Keegan JD, Knox A. Tolerance of Broilers to Dietary Supplementation with High Levels of the DHA-Rich Microalga, Aurantiochytrium Limacinum: Effects on Health and Productivity. Animals (Basel) 2018; 8:E180. [PMID: 30332814 PMCID: PMC6211075 DOI: 10.3390/ani8100180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 11/24/2022] Open
Abstract
It is well established that the docosahexaenoic acid (DHA) content of commonly consumed meats, such as chicken, can be increased through dietary supplementation with DHA-rich ingredients. The purpose of this study was to investigate the tolerance of broilers to dietary supplementation with the unextracted biomass of a DHA-rich microalgae Aurantiochytrium limacinum, so as to ensure its safety, since it is accumulated in broiler meat. Healthy day-old male Ross 308 chicks (n = 1120) were evenly distributed to 32 pens (35 chicks per pen), with pens randomly allocated to one of four dietary treatments, each having eight replicates. The dietary groups included one untreated control and three treatments corresponding to three inclusion levels (0.5, 2.5, and 5.0%) of All-G-Rich®, with the birds receiving the experimental diets ad libitum during the study (day 0⁻42). Bird survival, blood parameters, productivity, and breast and thigh DHA content were determined after 42 days of feeding. Supplementation at up to 10 times the intended use level had no negative effects on the mortality, blood parameters or productivity of the birds, while significant increases in the meat DHA content were observed. These results indicate that supplementation with Aurantiochytrium limacinum is a safe and effective way to increase broiler tissue DHA content.
Collapse
Affiliation(s)
- Colm A Moran
- Regulatory Affairs Department, Alltech SARL, Vire, Rue Charles Amand, 14500 Vire, France.
| | - Douglas Currie
- Roslin Nutrition Ltd., Gosford Estate, Aberlady EH32 0PX, UK.
| | - Jason D Keegan
- Regulatory Affairs Department, Alltech European Bioscience Centre, A86 X006 Meath, Ireland.
| | - Anne Knox
- Roslin Nutrition Ltd., Gosford Estate, Aberlady EH32 0PX, UK.
| |
Collapse
|