1
|
Albajri E, Almasaudi AS, Mosli HH, Hakim NA, Basaqr RO, Naseeb M. Assessing the impact of magnesium-based nutritional education on lipid profiles in individuals with type 2 diabetes mellitus: a quasi-experimental study. Diabetol Metab Syndr 2025; 17:3. [PMID: 39754233 PMCID: PMC11699773 DOI: 10.1186/s13098-024-01566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients. METHODS Thirty participants with T2DM were recruited for this within-subject experimental study. Participants underwent a three-month dietary intervention focused on increasing the intake of Mg-rich foods through nutritional education. Anthropometric measurements and lipids were assessed at baseline and after the intervention period, with the primary outcome variables including changes in lipid parameters. RESULTS The findings showed a significant inverse association between dietary Mg intake and total cholesterol levels (r = - 0.36, p = 0.05). However, other parameters, TG, LDL-C, and HDL-C, were not found to be associated with Mg intake. CONCLUSION The study demonstrated an inverse association between Mg intake and cholesterol level. Providing nutritional education and guidance on incorporating Mg-rich foods into the diet may be a crucial strategy for improving the health and well-being of T2DM patients in Saudi Arabia. The feasibility and practicality of focused nutritional education as an intervention make it a low-cost, scalable, and sustainable approach that can be readily implemented in clinical and community settings. Further studies are needed to explore the long-term impact of dietary Mg interventions on a larger sample with longer education periods.
Collapse
Affiliation(s)
- Eram Albajri
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Obesity and Lifestyle Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Arwa S Almasaudi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala H Mosli
- Obesity and Lifestyle Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Hakim
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem O Basaqr
- Clinical Nutrition Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Manal Naseeb
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Obesity and Lifestyle Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025. [PMID: 39746035 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Suppadungsuk S, Thongprayoon C, Nikravangolsefid N, Singh W, Cheungpasitporn W, Dong Y, Kashani KB. Magnesium Derangement among Critically Ill Patients with Acute Kidney Injury: An Association with Acute Kidney Disease. Nephron Clin Pract 2024; 148:553-562. [PMID: 38861941 DOI: 10.1159/000539674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION The association between magnesium level and progression to acute kidney disease (AKD) in acute kidney injury (AKI) patients was not well studied. With AKI transition to AKD, the burden of the disease on mortality, morbidity, and healthcare costs increases. Serum magnesium disturbances are linked with a decline in renal function and increased risk of death in CKD and hemodialysis patients. This study aims to assess the significance of magnesium derangements as a risk factor for the progression of AKI to AKD in critically ill patients. METHODS This study was conducted among patients with AKI admitted to the intensive care units at Mayo Clinic from 2007 to 2017. Serum magnesium at AKI onset was categorized into five groups of <1.7, 1.7-1.9, 1.9-2.1, 2.1-2.3, and ≥2.3 mg/dL, with 1.9-2.1 mg/dL as the reference group. AKD was defined as AKI that persisted >7 days following the AKI onset. Logistic regression was used to evaluate the association between magnesium and AKD. RESULTS Among 20,198 critically ill patients with AKI, the mean age was 66 ± 16 years, and 57% were male. The mean serum magnesium at AKI onset was 1.9 ± 0.4 mg/dL. The overall incidence of AKD was 31.4%. The association between serum magnesium and AKD followed a U-shaped pattern. In multivariable analysis, serum magnesium levels were associated with increased risk of AKD with the odds ratio of 1.17 (95% CI: 1.07-1.29), 1.13 (95% CI: 1.01-1.26), and 1.65 (95% CI: 1.48-1.84) when magnesium levels were <1.7, 2.1-2.3, and ≥2.3 mg/dL, respectively. CONCLUSION Among patients with AKI, magnesium level derangement was an independent risk for AKD in critically ill AKI patients. Monitoring serum magnesium and proper correction in critically ill patients with AKI should be considered an AKD preventive intervention in future trials.
Collapse
Affiliation(s)
- Supawadee Suppadungsuk
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand,
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nasrin Nikravangolsefid
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Waryaam Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yue Dong
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Stanojević M, Djuricic N, Parezanovic M, Biorac M, Pathak D, Spasic S, Lopicic S, Kovacevic S, Nesovic Ostojic J. The Impact of Chronic Magnesium Deficiency on Excitable Tissues-Translational Aspects. Biol Trace Elem Res 2024:10.1007/s12011-024-04216-2. [PMID: 38709369 DOI: 10.1007/s12011-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Neuromuscular excitability is a vital body function, and Mg2+ is an essential regulatory cation for the function of excitable membranes. Loss of Mg2+ homeostasis disturbs fluxes of other cations across cell membranes, leading to pathophysiological electrogenesis, which can eventually cause vital threat to the patient. Chronic subclinical Mg2+ deficiency is an increasingly prevalent condition in the general population. It is associated with an elevated risk of cardiovascular, respiratory and neurological conditions and an increased mortality. Magnesium favours bronchodilation (by antagonizing Ca2+ channels on airway smooth muscle and inhibiting the release of endogenous bronchoconstrictors). Magnesium exerts antihypertensive effects by reducing peripheral vascular resistance (increasing endothelial NO and PgI2 release and inhibiting Ca2+ influx into vascular smooth muscle). Magnesium deficiency disturbs heart impulse generation and propagation by prolonging cell depolarization (due to Na+/K+ pump and Kir channel dysfunction) and dysregulating cardiac gap junctions, causing arrhythmias, while prolonged diastolic Ca2+ release (through leaky RyRs) disturbs cardiac excitation-contraction coupling, compromising diastolic relaxation and systolic contraction. In the brain, Mg2+ regulates the function of ion channels and neurotransmitters (blocks voltage-gated Ca2+ channel-mediated transmitter release, antagonizes NMDARs, activates GABAARs, suppresses nAChR ion current and modulates gap junction channels) and blocks ACh release at neuromuscular junctions. Magnesium exerts multiple therapeutic neuroactive effects (antiepileptic, antimigraine, analgesic, neuroprotective, antidepressant, anxiolytic, etc.). This review focuses on the effects of Mg2+ on excitable tissues in health and disease. As a natural membrane stabilizer, Mg2+ opposes the development of many conditions of hyperexcitability. Its beneficial recompensation and supplementation help treat hyperexcitability and should therefore be considered wherever needed.
Collapse
Affiliation(s)
- Marija Stanojević
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia.
| | - Nadezda Djuricic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Miro Parezanovic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
- Institute for Mother and Child Healthcare of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Marko Biorac
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Dhruba Pathak
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Svetolik Spasic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Srdjan Lopicic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Sanjin Kovacevic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Kemp JA, Britto IK, Ribeiro M, Baptista B, Reis DCMV, Fonseca L, Correa Leite PE, Ribeiro-Alves M, Mafra D. Serum Magnesium Levels in Patients with Chronic Kidney Disease: Is There a Relationship with Inflammation Status? Biol Trace Elem Res 2024; 202:1983-1990. [PMID: 37658221 DOI: 10.1007/s12011-023-03829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Magnesium (Mg2+) is a fundamental mineral that maintains cellular function, and low levels may be linked to inflammation in patients with chronic kidney disease (CKD). This cross-sectional study evaluated the correlation between serum Mg2+ levels and the inflammatory status in patients undergoing dialysis. METHODS Two hundred patients with CKD [150 undergoing hemodialysis (HD), 50 (18) years; BMI 24 (4.8) kg/m²; and 50 patients on peritoneal dialysis (PD), 54 (17.7) years; BMI, 27.5 (7.3) kg/m²] were included. Serum Mg2+ levels were evaluated using a colourimetric test and commercial kit. Inflammatory markers were assessed by ELISA and multiplex bead-based assay. Lipid peroxidation was evaluated using thiobarbituric acid-reactive substances. RESULTS The median serum Mg2+ levels were 2.3 (0.5) mg/dL, and 21% of patients presented Mg2+ deficiency (< 2.07 mg/dL or 0.85 mmol/L). We found no difference in Mg2+ serum levels between the two groups. A significant negative correlation was observed between serum Mg2+ levels and plasma hs-CRP (r =-0.17, p = 0.01), IL-8 (r =-0.35, p = 0.01), and MCP-1 (r =-0.31, p = 0.03) levels. CONCLUSION Mg2+ serum levels were negatively correlated with inflammatory status in patients with CKD on dialysis.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Isadora K Britto
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Beatriz Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Drielly C M V Reis
- Division of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Paulo Emilio Correa Leite
- Graduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
6
|
Shugaa Addin N, Niedermayer F, Thorand B, Linseisen J, Seissler J, Peters A, Rospleszcz S. Association of serum magnesium with metabolic syndrome and the role of chronic kidney disease: A population-based cohort study with Mendelian randomization. Diabetes Obes Metab 2024; 26:1808-1820. [PMID: 38361465 DOI: 10.1111/dom.15497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES To assess the association of serum magnesium with prevalent and incident metabolic syndrome (MetS) and its individual components in the general population and to examine any effect modification by chronic kidney disease (CKD) status. METHODS We analysed longitudinal data from the population-based KORA F4/FF4 study, including 2996 participants (387 with CKD) for cross-sectional analysis and 1446 participants (88 with CKD) for longitudinal analysis. Associations with MetS, as well as single components of MetS, were assessed by adjusted regression models. Nonlinearity was tested by restricted cubic splines and analyses were stratified by CKD. Causality was evaluated by two-sample Mendelian randomization (MR). RESULTS Serum magnesium (1 SD) was inversely associated with prevalent MetS (odds ratio [OR] 0.90, 95% confidence interval [CI] 0.83, 0.98). The association was more pronounced in individuals with CKD (OR 0.75, 95% CI 0.59, 0.94). Among MetS components, serum magnesium was negatively associated with elevated fasting glucose (OR 0.78, 95% CI 0.71, 0.88) and, again, this association was more pronounced in individuals with CKD (OR 0.67, 95% CI 0.53, 0.84). Serum magnesium was not associated with incident MetS or its components. Restricted cubic spline analysis revealed a significant nonlinear inverse relationship of serum magnesium with MetS and elevated fasting glucose. MR analysis suggested an inverse causal effect of serum magnesium on MetS (OR 0.91, 95% CI 0.85, 0.97). CONCLUSION Serum magnesium is associated with prevalent, but not incident MetS, and this effect is stronger in individuals with CKD. MR analysis implies a potential, albeit weak, causal role of magnesium in MetS.
Collapse
Affiliation(s)
- Nuha Shugaa Addin
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Fiona Niedermayer
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
- Partner Site München-Neuherberg, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Jochen Seissler
- Partner Site München-Neuherberg, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Diabetes Research Group, LMU-Klinikum; Medizinische Klinik und Poliklinik IV, München, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
- Partner Site München-Neuherberg, German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Munich Heart Alliance, München, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
- German Centre for Cardiovascular Research (DZHK e.V.), Munich Heart Alliance, München, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Ciocan (Moraru) A, Ciubotariu D, Ghiciuc CM, Hurmuzache ME, Lupușoru CE, Crișan-Dabija R. Differential Protective Effect of Zinc and Magnesium for the Hepatic and Renal Toxicity Induced by Acetaminophen and Potentiated with Ciprofloxacin in Rats. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:611. [PMID: 38674257 PMCID: PMC11052234 DOI: 10.3390/medicina60040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The purpose of this study was to investigate the influence induced by magnesium chloride (MgCl2) and zinc gluconate (ZnG) supplementation on liver and kidney injuries experimentally induced with acetaminophen (AAPh) and potentiated by a ciprofloxacin addition in rats. Material and Methods: The experiment was performed on five animal groups: group 1-control, treated for 6 weeks with normal saline, 1 mL/kg; group 2-AAPh, treated for 6 weeks with AAPh, 100 mg/kg/day; group 3-AAPh + C, treated for 6 weeks with AAPh 100 mg/kg/day and ciprofloxacin 50 mg/kg/day, only in the last 14 days of the experiment; group 4-AAPh + C + Mg, with the same treatment as group 3, but in the last 14 days, MgCl2 10 mg/ kg/day was added; and group 5-AAPh + C + Zn, with the same treatment as group 3, but in the last 14 days, zinc gluconate (ZnG), 10 mg/kg/day was added. All administrations were performed by oral gavage. At the end of the experiment, the animals were sacrificed and blood samples were collected for biochemistry examinations. Results: Treatment with AAPh for 6 weeks determined an alteration of the liver function (increases in alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, and gamma-glutamyl transferase) and of renal function (increases in serum urea and creatinine) (p < 0.001 group 2 vs. group 1 for all mentioned parameters). Furthermore, the antioxidant defense capacity was impaired in group 2 vs. group 1 (superoxide dismutase and glutathione peroxidase activity decreased in group 2 vs. group 1, at 0.001 < p < 0.01 and 0.01 < p < 0.05, respectively). The addition of ciprofloxacin, 50 mg/kg/day during the last 14 days, resulted in further increases in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine (0.01 < p < 0.05, group 3 vs. group 2). MgCl2 provided a slight protection against the increase in liver enzymes, and a more pronounced protection against the increase in serum urea and creatinine (0.001 < p < 0.01 group 4 vs. group 3). MgCl2 provided a slight protection against the decrease in superoxide dismutase (0.01 < p < 0.05 group 4 vs. group 3), but not against decrease of glutathione peroxidase. The improvement of mentioned parameters could also be seen in the case of ZnG, to a higher extent, especially in the case of alanine aminotransferase and lactic dehydrogenase (0.01 < p < 0.05 group 5 vs. group 4). Conclusions: This study presents further proof for the beneficial effect of magnesium and zinc salts against toxicity induced by different agents, including antibacterials added to the analgesic and antipyretic acetaminophen; the protection is proven on the liver and kidney's function, and the antioxidant profile improvement has a key role, especially in the case of zinc gluconate.
Collapse
Affiliation(s)
- Alexandra Ciocan (Moraru)
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
- Clinical Hospital of Pulmonary Diseases, 400012 Iaşi, Romania
| | - Diana Ciubotariu
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
- “St. Maria” Clinical Hospital for Children, 700309 Iaşi, Romania
| | - Cristina Mihaela Ghiciuc
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
- “St. Maria” Clinical Hospital for Children, 700309 Iaşi, Romania
| | - Mihnea Eudoxiu Hurmuzache
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
- “St. Parascheva” Hospital for Infectious Diseases, 700116 Iaşi, Romania
| | - Cătălina Elena Lupușoru
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
| | - Radu Crișan-Dabija
- Faculty of Medicine, Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania; (A.C.); (C.M.G.); (M.E.H.); (C.E.L.); (R.C.-D.)
- Clinical Hospital of Pulmonary Diseases, 400012 Iaşi, Romania
| |
Collapse
|
8
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
9
|
Mamilla M, Yartha SGR, Tuli R, Konipineni S, Rayaprolu DT, Borgharkar G, Kalluru PKR, Thugu TR. Role of Magnesium in Diabetic Nephropathy for Better Outcomes. Cureus 2023; 15:e43076. [PMID: 37692668 PMCID: PMC10484355 DOI: 10.7759/cureus.43076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease worldwide, resulting from uncontrolled diabetes. Oxidative stress plays a critical role in the pathophysiology of DN, leading to cellular damage and disease progression. Magnesium, an essential mineral, has emerged as a potential therapeutic agent due to its antioxidative, anti-inflammatory, and antifibrotic properties. An extensive literature search was conducted on Medline using the keywords "Diabetic nephropathy," "Magnesium," and "Chronic Kidney Disease," and the results published after 2000 were exclusively studied to build this review. This review aims to summarize the role of magnesium in DN and explore its therapeutic potential. Magnesium acts as a cofactor for antioxidant enzymes, directly scavenges reactive oxygen species, and enhances the expression of antioxidant proteins. Furthermore, magnesium exhibits anti-inflammatory effects by suppressing pro-inflammatory cytokine production and inhibiting inflammatory signaling pathways. Magnesium supplementation has been shown to reduce oxidative stress markers and improve antioxidant enzyme activities in clinical studies. Additionally, magnesium has been found to mitigate renal fibrosis, maintain tubular integrity and function, improve endothelial function, and modulate renal hemodynamics. Although limited clinical trials suggest the renoprotective effects of magnesium in DN, further research is needed to determine the optimal dosage, duration, and long-term effects of magnesium supplementation. Despite existing drawbacks and gaps in the literature, magnesium holds promise as adjunctive therapy for DN by targeting oxidative stress and preserving renal function.
Collapse
Affiliation(s)
- Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | | - Richa Tuli
- Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN
| | - Sunil Konipineni
- Internal Medicine, Zaporizhzhia State Medical University, Zaporizhzhia, UKR
| | | | - Gargi Borgharkar
- Public Health, University of Alabama at Birmingham, Birmingham, USA
| | | | - Thanmai Reddy Thugu
- Internal Medicine, Sri Padmavathi Medical College for Women, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| |
Collapse
|
10
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
11
|
Magnesium Improves Cardiac Function in Experimental Uremia by Altering Cardiac Elastin Protein Content. Nutrients 2023; 15:nu15061303. [PMID: 36986034 PMCID: PMC10056411 DOI: 10.3390/nu15061303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cardiovascular complications are accompanied by life-threatening complications and represent the major cause of death in patients with chronic kidney disease (CKD). Magnesium is important for the physiology of cardiac function, and its deficiency is common in CKD. In the present study, we investigated the impact of oral magnesium carbonate supplementation on cardiac function in an experimental model of CKD induced in Wistar rats by an adenine diet. Echocardiographic analyses revealed restoration of impaired left ventricular cardiac function in animals with CKD. Cardiac histology and real-time PCR confirmed a high amount of elastin protein and increased collagen III expression in CKD rats supplemented with dietary magnesium as compared with CKD controls. Both structural proteins are crucial in maintaining cardiac health and physiology. Aortic calcium content increased in CKD as compared with tissue from control animals. Magnesium supplementation numerically lowered the increases in aortic calcium content as it remained statistically unchanged, compared with controls. In summary, the present study provides evidence for an improvement in cardiovascular function and aortic wall integrity in a rat model of CKD by magnesium, as evidenced by echocardiography and histology.
Collapse
|
12
|
Dominguez LJ, Veronese N, Ciriminna S, Pérez-Albela JL, Vásquez-López VF, Rodas-Regalado S, Di Bella G, Parisi A, Tagliaferri F, Barbagallo M. Association between Serum Magnesium and Fractures: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2023; 15:nu15061304. [PMID: 36986033 PMCID: PMC10053795 DOI: 10.3390/nu15061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Magnesium, an essential cation for numerous cellular processes, is a major component of bone. However, its relationship with the risk of fractures is still uncertain. The present systematic review and meta-analysis aim to investigate the impact of serum Mg on the risk of incident fractures. A systematic search was conducted using several databases including PubMed/Medline and Scopus from inception to 24 May 2022, including observational studies investigating serum Mg and the incidence of fractures considered as outcomes. Abstract and full-text screenings, data extractions, and risk of bias assessments were conducted by two investigators independently. Any inconsistencies were resolved by consensus with a third author. The Newcastle–Ottawa Scale was used to assess the study quality/risk of bias. Among 1332 records initially screened, 16 were retrieved as full-texts; of them, four papers were included in the systematic review with a total of 119,755 participants. We found that lower serum Mg concentrations were associated with a significantly higher risk of incident fractures (RR = 1.579; 95%CI: 1.216–2.051; p = 0.001; I2 = 46.9%). Our systematic review with meta-analysis suggests a strong association of serum Mg concentrations with incident fractures. Further research is needed to confirm our results among other populations and to assess whether serum Mg is potentially relevant in the prevention of fractures, which continue to increase and represent a significant health burden due to the associated disability.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
- Correspondence: or
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Stefano Ciriminna
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | | | | | | | - Giovanna Di Bella
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Angela Parisi
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Federica Tagliaferri
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| | - Mario Barbagallo
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
13
|
Magnesium Administration in Chronic Kidney Disease. Nutrients 2023; 15:nu15030547. [PMID: 36771254 PMCID: PMC9920010 DOI: 10.3390/nu15030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Awareness of the clinical relevance of magnesium in medicine has increased over the last years, especially for people with chronic kidney disease (CKD), due to magnesium's role in vascular calcification and mineral metabolism. The inverse association between serum magnesium and clinically relevant, adverse outcomes is well-established in people with CKD. Subsequent intervention studies have focused on the effect of magnesium administration, mainly in relation to cardiovascular diseases, mineral bone metabolism, and other metabolic parameters. The most commonly used routes of magnesium administration are orally and by increasing dialysate magnesium. Several oral magnesium formulations are available and the daily dosage of elemental magnesium varies highly between studies, causing considerable heterogeneity. Although data are still limited, several clinical studies demonstrated that magnesium administration could improve parameters of vascular function and calcification and mineral metabolism in people with CKD. Current clinical research has shown that magnesium administration in people with CKD is safe, without concerns for severe hypermagnesemia or negative interference with bone metabolism. It should be noted that there are several ongoing magnesium intervention studies that will contribute to the increasing knowledge on the potential of magnesium administration in people with CKD.
Collapse
|
14
|
Leenders NHJ, Douma CE, Hoenderop JGJ, Vervloet MG. Magnesium in chronic haemodialysis (MAGIC-HD): a study protocol for a randomised controlled trial to determine feasibility and safety of using increased dialysate magnesium concentrations to increase plasma magnesium concentrations in people treated with haemodialysis. BMJ Open 2022; 12:e063524. [PMID: 36410806 PMCID: PMC9680141 DOI: 10.1136/bmjopen-2022-063524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION People treated with haemodialysis are at increased risk for all-cause and cardiovascular mortality. Plasma magnesium concentration has been inversely associated with these risks. Therefore, plasma magnesium may be a new modifiable risk factor and an increase of dialysate magnesium concentration may be an easy, safe and effective way to increase plasma magnesium concentrations. Detailed information on modulating dialysate magnesium concentrations is limited in literature. Primary objective of this study is to determine the safety and feasibility to increase plasma magnesium concentrations in people treated with haemodialysis by means of sequentially increasing concentration of magnesium in the dialysate. METHODS AND ANALYSIS In this randomised double-blinded standard of care controlled trial, 53 persons treated with haemodialysis will be randomly allocated 2:1 to either a stepwise individually titrated increase of dialysate magnesium concentration from 0.50 to 0.75 to 1.00 mmol/L during 8 weeks, or a standard dialysate magnesium concentration of 0.50 mmol/L. Other study measurements include dietary records, questionnaires, ECG, Holter registration and pulse wave velocity. The primary endpoint is predialysis plasma magnesium after the long interdialytic interval at the end of week 8. In addition, the predictive effect of dialysate magnesium concentration and other baseline parameters and dialysis characteristics on plasma magnesium concentration will be explored using linear mixed models. Safety endpoint is defined by the occurrence of hypermagnesemia above 1.25 mmol/L, or bradycardia or prolonged QTc interval detected on the ECG. ETHICS AND DISSEMINATION The study is conducted in accordance with the declaration of Helsinki as revised in 2013 and was approved by the Ethical Committee of the VU University Medical Centre. The results of the study will be disseminated by publication in peer-reviewed scientific journals and presentation at national or international conferences in the field of interest. TRIAL REGISTRATION NUMBER NTR6568/NL6393.
Collapse
Affiliation(s)
- Nicoline H J Leenders
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Caroline E Douma
- Department of Nephrology, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Leenders NHJ, Bos C, Hoekstra T, Schurgers LJ, Vervloet MG, Hoenderop JGJ. Dietary magnesium supplementation inhibits abdominal vascular calcification in an experimental animal model of chronic kidney disease. Nephrol Dial Transplant 2022; 37:1049-1058. [PMID: 35134986 PMCID: PMC9130027 DOI: 10.1093/ndt/gfac026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Vascular calcification is a key process involved in cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD). Magnesium supplementation may counteract vascular calcification. In this study we aimed to determine whether increased dietary magnesium intake inhibits vascular calcification in CKD in vivo and explore the mechanisms underlying these effects. METHODS Sprague Dawley rats were partially nephrectomized and fed a diet with high phosphate and either high or normal magnesium content for 16 weeks. The primary outcome was the tissue calcium content of the aorta in the high versus normal dietary magnesium group. In addition, we analysed plasma mineral concentrations, aortic vascular calcification identified with von Kossa staining, calcium apposition time and aortic expression of genes related to vascular calcification. RESULTS The number of animals in the highest tissue calcium content tertile was significantly lower in the abdominal aorta [1 (10%) versus 6 (55%); P = .03] in the high versus normal dietary magnesium group, but did not differ in the aortic arch and thoracic aorta. Von Kossa staining and calcium apposition time corresponded to these results. The median tissue calcium content was not significantly different between the groups. Serum phosphate concentrations and expression of osteogenic markers in the aorta did not differ between the groups. CONCLUSIONS This study demonstrates that increased dietary magnesium inhibits abdominal vascular calcification in an experimental animal model of CKD in vivo. These are promising results for CKD patients and further study is needed to identify the mechanisms involved and to determine the clinical relevance in patients.
Collapse
Affiliation(s)
- Nicoline H J Leenders
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tiny Hoekstra
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Vervloet MG. Shedding Light on the Complex Regulation of FGF23. Metabolites 2022; 12:metabo12050401. [PMID: 35629904 PMCID: PMC9147863 DOI: 10.3390/metabo12050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Early research has suggested a rather straightforward relation between phosphate exposure, increased serum FGF23 (Fibroblast Growth Factor 23) concentrations and clinical endpoints. Unsurprisingly, however, subsequent studies have revealed a much more complex interplay between autocrine and paracrine factors locally in bone like PHEX and DMP1, concentrations of minerals in particular calcium and phosphate, calciprotein particles, and endocrine systems like parathyroid hormone PTH and the vitamin D system. In addition to these physiological regulators, an expanding list of disease states are shown to influence FGF23 levels, usually increasing it, and as such increase the burden of disease. While some of these physiological or pathological factors, like inflammatory cytokines, may partially confound the association of FGF23 and clinical endpoints, others are in the same causal path, are targetable and hence hold the promise of future treatment options to alleviate FGF23-driven toxicity, for instance in chronic kidney disease, the FGF23-associated disease with the highest prevalence by far. These factors will be reviewed here and their relative importance described, thereby possibly opening potential means for future therapeutic strategies.
Collapse
Affiliation(s)
- Marc G. Vervloet
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Nephrology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; ; Tel.: +31-20-4442671
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
17
|
Peride I, Tiglis M, Neagu TP, Niculae A, Checherita IA. Magnesium—A More Important Role in CKD–MBD than We Thought. Diagnostics (Basel) 2022; 12:diagnostics12040880. [PMID: 35453928 PMCID: PMC9031465 DOI: 10.3390/diagnostics12040880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with different complications, including chronic kidney disease–mineral and bone disorder (CKD–MBD), which represents a systemic disorder that involves the presence of different mineral or bone structure abnormalities (i.e., modification of bone turnover, strength, volume, etc.), including even vascular calcification development. Even if, over the years, different pathophysiological theories have been developed to explain the onset and progression of CKD–MBD, the influence and importance of serum magnesium level on the evolution of CKD have only recently been highlighted. So far, data are inconclusive and conflicting; therefore, further studies are necessary to validate these findings, which could be useful in developing a better, more adequate, and personalized management of CKD patients.
Collapse
Affiliation(s)
- Ileana Peride
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (I.P.); (A.N.)
| | - Mirela Tiglis
- Clinical Department No. 14, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Tiberiu Paul Neagu
- Clinical Department No. 11, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andrei Niculae
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (I.P.); (A.N.)
| | - Ionel Alexandru Checherita
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
18
|
Zhang H, Cao Y, Man Q, Li Y, Jia S, Wang R, Lu J, Yang L. Magnesium Nutritional Status, Risk Factors, and the Associations with Glucose Parameters of Childbearing Women in the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2022; 14:nu14040847. [PMID: 35215497 PMCID: PMC8879663 DOI: 10.3390/nu14040847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Magnesium is an essential element and participates in many metabolic pathways. Inadequate magnesium levels may lead to various health problems such as type 2 diabetes (T2DM), hypertension, and cancer. But the role of Mg in childbearing women of China is still a relatively narrow researched field. We aimed to assess the Mg nutritional status, explore the risk factors of Mg deficiency, and the associations between Mg and glucose parameters among childbearing women in a nationally representative sample. A total of 1895 18–44 years childbearing women were recruited from the China Adult Chronic Disease and Nutrition Surveillance (2015). Multivariate logistic regression was used to explore the risk factors for Mg deficiency and estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) for the risk of hyperglycemia. The mean value of Mg was 0.87 mmol/L and the prevalence of deficiency was 4.69%. The risk factors of Mg deficiency (Mg < 0.75 mmol/L) was city-type of rural (p = 0.045), while calcium (p = 0.001), LDL-C (p = 0.024), age group of 26–35 years (p = 0.016), 36–44 years (p = 0.006), and CNNM2 rs3740393 genotypes of GC (p = 0.027) were protective factors. It was also found that magnesium deficiency induces an increase in plasma glucose (p = 0.001). Compared with the reference range, Mg < 0.75 mmol/L would have a 6.53 fold risk for T2DM, a 5.31 fold risk for glucose-hyperglycemia, and a 9.60 fold risk for HbA1c-hyperglycemia. Consistently, there was a negative association between plasma Mg and blood glucose parameters in the dose–response study. More attention should be paid to the nutritional status of magnesium and the impact of magnesium deficiency on human health.
Collapse
|
19
|
Watanabe M, Nakamura K, Kato M, Okada T, Iesaki T. Chronic magnesium deficiency causes reversible mitochondrial permeability transition pore opening and impairs hypoxia tolerance in the rat heart. J Pharmacol Sci 2022; 148:238-247. [PMID: 35063139 DOI: 10.1016/j.jphs.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic magnesium (Mg) deficiency induces and exacerbates various cardiovascular diseases. We previously investigated the mechanisms underlying decline in cardiac function caused by chronic Mg deficiency and the effectiveness of Mg supplementation on this decline using the Langendorff-perfused isolated mouse heart model. Herein, we used the Langendorff-perfused isolated rat heart model to demonstrate the chronic Mg-deficient rats (Mg-deficient group) had lower the heart rate (HR) and left ventricular pressure (LVDP) than rats with normal Mg levels (normal group). Furthermore, decline in cardiac function due to hypoxia/reoxygenation injury was significantly greater in the Mg-deficient group than in the normal group. Experiments on mitochondrial permeability transition pore (mPTP) using isolated mitochondria revealed that mitochondrial membrane was fragile in the Mg-deficient group, implying that cardiac function decline through hypoxia/reoxygenation injury is associated with mitochondrial function. Mg supplementation for chronic Mg-deficient rats not only improved hypomagnesemia but also almost completely restored cardiac and mitochondrial functions. Therefore, proactive Mg supplementation in pathological conditions induced by Mg deficiency or for those at risk of developing hypomagnesemia may suppress the development and exacerbation of certain disease states.
Collapse
Affiliation(s)
- Makino Watanabe
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Megumi Kato
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; Department of Internal Medicine, Division of Cardiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takafumi Iesaki
- Department of Internal Medicine, Division of Cardiology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiological Technology, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
20
|
Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Magnesium intake and vascular structure and function: the Hoorn Study. Eur J Nutr 2021; 61:653-664. [PMID: 34491389 PMCID: PMC8854245 DOI: 10.1007/s00394-021-02667-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022]
Abstract
Purpose Circulating and dietary magnesium have been shown to be inversely associated with the prevalence of cardiovascular disease (CVD) and mortality in both high and low-risk populations. We aimed to examine the association between dietary magnesium intake and several measures of vascular structure and function in a prospective cohort. Methods We included 789 participants who participated in the vascular screening sub-cohort of the Hoorn Study, a population-based, prospective cohort study. Baseline dietary magnesium intake was estimated with a validated food frequency questionnaire and categorised in energy-adjusted magnesium intake tertiles. Several measurements of vascular structure and function were performed at baseline and most measurements were repeated after 8 years of follow-up (n = 432). Multivariable linear and logistic regression was performed to study the cross-sectional and longitudinal associations of magnesium intake and intima-media thickness (IMT), augmentation index (Aix), pulse wave velocity (PWV), flow-mediated dilatation (FMD), and peripheral arterial disease (PAD). Results Mean absolute magnesium intake was 328 ± 83 mg/day and prior CVD and DM2 was present in 55 and 41% of the participants, respectively. Multivariable regression analyses did not demonstrate associations between magnesium intake and any of the vascular outcomes. Participants in the highest compared to the lowest magnesium intake tertile demonstrated in fully adjusted cross-sectional analyses a PWV of −0.21 m/s (95% confidence interval −1.95, 1.52), a FMD of −0.03% (−0.89, 0.83) and in longitudinal analyses an IMT of 0.01 mm (−0.03, 0.06), an Aix of 0.70% (−1.69, 3.07) and an odds ratio of 0.84 (0.23, 3.11) for PAD Conclusion We did not find associations between dietary magnesium intake and multiple markers of vascular structure and function, in either cross-sectional or longitudinal analyses. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02667-0.
Collapse
|
22
|
Nenseth HZ, Sahu A, Saatcioglu F, Osguthorpe S. A Nutraceutical Formula Is Effective in Raising the Circulating Vitamin and Mineral Levels in Healthy Subjects: A Randomized Trial. Front Nutr 2021; 8:703394. [PMID: 34540877 PMCID: PMC8440802 DOI: 10.3389/fnut.2021.703394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Low levels of nutrient intake are common in industrialized countries. This has negative implications on health and is associated with chronic diseases. Supplementation of vitamins, minerals, and key nutrients to optimal levels may, therefore, be beneficial for individual health and for the health economy. Although the use of supplements has become very common, due to a lack of monitoring, there is very limited data on the efficacy of supplementation with different formulas. In this study, we present the results of a randomized controlled study on the efficacy of a novel formulated nutraceutical, N247, in 250 healthy volunteers aged 26-75 years and a placebo control group (n = 35). The broad-spectrum formulation of N247 includes essential vitamins, minerals, and trace elements that are adequately balanced in regard to synergies and related metabolic functions. Moreover, tolerance, safety, and nutrient availability is an important aspect of daily, long-term use of N247. After 3 months of regular N247 use, levels of vitamins and minerals in serum were significantly increased in the N247 group compared with the control group and a placebo group, with excellent compliance rates. Coupled with additional natural ingredients that aim to increase the potency of the nutrients, N247 may represent a novel and beneficial supplement for individuals with nutritional deficiencies. Clinical Trial Registration:https://clinicaltrials.gov/, identifier: NCT04054505.
Collapse
Affiliation(s)
| | - Aparna Sahu
- Turiyan Psyneuronics Pvt. Ltd, Bangalore, India
| | | | | |
Collapse
|
23
|
Abstract
Magnesium (Mg2+) is the second most abundant intracellular and fourth extracellular cation found in the body and is involved in a wide range of functions in the human cell and human physiology. Its role in most of the enzyme processes (ATP-ases)-stabilisation of nucleic acids (DNA, RNA), regulation of calcium and potassium ion channels, proliferation, glucose metabolism and apoptosis-make it one of the most important cations in the cell. Three pathogenetic mechanisms are mainly implicated in the development of hypomagnesaemia: reduced food intake, decreased intestinal absorption and increased renal excretion of Mg2+. This review presents the function of Mg2+, how it is handled in the kidney and the drugs that cause hypomagnesaemia. The frequency and the number of drugs like diuretics and proton-pump inhibitors (PPIs) that are used daily in medical practice are discussed in order to prevent and treat adverse effects by providing an insight into Mg2+ homeostasis.
Collapse
Affiliation(s)
- Periklis Katopodis
- Department of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK.
| | - Emmanouil Karteris
- Department of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, London, UB8 3PH, UK
| | | |
Collapse
|
24
|
Bargagli M, Moochhala S, Robertson WG, Gambaro G, Lombardi G, Unwin RJ, Ferraro PM. Urinary metabolic profile and stone composition in kidney stone formers with and without heart disease. J Nephrol 2021; 35:851-857. [PMID: 34152561 PMCID: PMC8995244 DOI: 10.1007/s40620-021-01096-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Objective Kidney stone disease seems to be associated with an increased risk of incident cardiovascular outcomes; the aim of this study is to identify differences in 24-h urine excretory profiles and stone composition among stone formers with and without cardiovascular disease (CVD). Methods Data from patients attending the Department of Renal Medicine’s metabolic stone clinic from 1995 to 2012 were reviewed. The sample was divided according to the presence or absence of CVD (myocardial infarction, angina, coronary revascularization, or surgery for calcified heart valves). Univariable and multivariable regression models, adjusted for age, sex, BMI, hypertension, diabetes, eGFR, plasma bicarbonate and potential renal acid load of foods were used to investigate differences across groups. Results 1826 patients had available data for 24-h urine analysis. Among these, 108 (5.9%) had a history of CVD. Those with CVD were older, have higher prevalence of hypertension and diabetes and lower eGFR. Univariable analysis showed that patients with CVD had significantly lower 24-h urinary excretions for citrate (2.4 vs 2.6 mmol/24 h, p = 0.04), magnesium (3.9 vs 4.2 mmol/24 h, p = 0.03) and urinary pH (6.1 vs 6.2, p = 0.02). After adjustment for confounders, differences in urinary citrate and magnesium excretions remained significant. No differences in the probability of stone formation or stone compositions were found. Conclusions Stone
formers with CVD have lower renal alkali excretion, possibly suggesting higher
acid retention in stone formers with cardiovascular comorbidities. Randomized
clinical trials including medications and a controlled diet design are needed
to confirm the results presented here. Graphic abstract ![]()
Collapse
Affiliation(s)
- Matteo Bargagli
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Shabbir Moochhala
- Department of Renal Medicine, Royal Free Campus Medical School, University College Hospital, London, UK
| | - William G Robertson
- Department of Renal Medicine, Royal Free Campus Medical School, University College Hospital, London, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Giovanni Gambaro
- Renal Unit, Division of Nephrology and Dialysis, Department of Medicine, University of Verona, Verona, Italy
| | - Gianmarco Lombardi
- Renal Unit, Division of Nephrology and Dialysis, Department of Medicine, University of Verona, Verona, Italy
| | - Robert J Unwin
- Department of Renal Medicine, Royal Free Campus Medical School, University College Hospital, London, UK
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, U.O.C. Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy.
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
25
|
Prevention of Vascular Calcification by Magnesium and Selected Polyphenols. Adv Prev Med 2021; 2021:6686597. [PMID: 33927901 PMCID: PMC8053061 DOI: 10.1155/2021/6686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial vascular calcification (VC) represents formation of calcium phosphate deposits on the interior of arteries, which could restrict blood flow leading to heart health problems, including morbidity and mortality. VC is a complex and tightly regulated process that involves transformation of vascular smooth muscle cells (VSMCs) to bone-like cells and subsequent deposition of calcium as hydroxyapatite. Natural bioactives, including quercetin (Q), curcumin (C), resveratrol (R), and magnesium (Mg), have been reported to inhibit VC. Thus, we conducted an in vitro study using rat vascular smooth muscle cells (rVSMCs) to evaluate the protective effect of natural bioactives found in OptiCel, that is, Mg combined with polyphenols (PPs), Q, C, and R. Calcification was induced by culturing rVSMCs in a high phosphate (HP) medium. The addition of Mg and Q + C + R separately decreased the HP-induced calcium deposition by 37.55% and 42.78%, respectively. In contrast, when Mg was combined with Q, C, and R, the inhibition of calcium deposition was decreased by 92.88%, which is greater than their calculated additive inhibition (80.33%). These results demonstrate that the combination of Mg with selected PPs (Q, C, and R) is more effective than when used separately. The findings also suggest the combination has a synergistic effect in inhibiting VC, which is a risk factor for cardiovascular disease. Thus, regular consumption of these natural bioactives could have a beneficial effect in reducing the development of heart diseases.
Collapse
|
26
|
Feng J, Wang H, Jing Z, Wang Y, Wang W, Jiang Y, Sun W. Relationships of the Trace Elements Zinc and Magnesium With Diabetic Nephropathy-Associated Renal Functional Damage in Patients With Type 2 Diabetes Mellitus. Front Med (Lausanne) 2021; 8:626909. [PMID: 33859989 PMCID: PMC8042293 DOI: 10.3389/fmed.2021.626909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Zinc (Zn) and magnesium (Mg) are essential trace elements in humans. Their deficiency may be associated with inflammation and oxidative stress (OS) in patients with diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. We aimed to investigate the relationships between circulating concentrations of Zn and Mg and pro-inflammatory factors with DN-associated renal functional damage in patients with type 2 diabetes mellitus (T2DM). To this end, we studied 20 healthy people, 24 patients with T2DM, and 59 patients with T2DM and T2DN. Serum and urine Zn and Mg concentrations were measured using the 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamine) phenol (nitro-PAPS) chromogenic method and the xylidyl blue method, respectively, and the circulating concentrations of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor-α (TNF-α)] were measured using flow cytometry. The serum concentrations of Zn and Mg were significantly lower in patients with T2DM and DN than in healthy controls. Serum Zn, urine Zn, and urine Mg concentrations decreased, while those of IL-6 and IL-8 increased with the progression of DN-associated renal functional damage. Furthermore, the serum and urine Zn concentrations negatively correlated with the serum IL-6 and IL-8 concentrations. Notably, the serum Zn concentration was found to independently protect against DN in patients with T2DM. Hypozincemia may be associated with the T2DN-associated renal functional damage because it exacerbates inflammation.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.,Department of Blood Purification, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Zhe Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Negrea L, DeLozier SJ, Janes JL, Rahman M, Dobre M. Serum Magnesium and Cardiovascular Outcomes and Mortality in CKD: The Chronic Renal Insufficiency Cohort (CRIC). Kidney Med 2021; 3:183-192.e1. [PMID: 33851114 PMCID: PMC8039411 DOI: 10.1016/j.xkme.2020.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE & OBJECTIVE Low serum magnesium level has been shown to be associated with increased mortality, but its role as a predictor of cardiovascular disease is unclear. This study evaluates the association between serum magnesium level and cardiovascular events and all-cause mortality in a large cohort of individuals with chronic kidney disease (CKD). STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 3,867 participants with CKD, enrolled in the Chronic Renal Insufficiency Cohort (CRIC) Study. EXPOSURES Serum magnesium measured at study baseline. OUTCOMES Composite cardiovascular events (myocardial infarction, cerebrovascular accident, heart failure, and peripheral arterial disease) and all-cause mortality. ANALYTICAL APPROACH Cox proportional hazards models adjusted for demographic, clinical, and laboratory characteristics. RESULTS During the 14.6 (4.4) years (standard deviation) of follow-up, 1,384 participants died (36/1,000 person-years), and 1,227 (40/1,000 person-years) had a composite cardiovascular event. There was a nonlinear association between serum magnesium level and all-cause mortality. Low and high magnesium levels were associated with greater rates of all-cause mortality after adjusting for demographics, comorbid conditions, medications including diuretics, estimated glomerular filtration rate, and proteinuria (P < 0.001). No significant associations were observed between serum magnesium levels and the composite cardiovascular events. Low serum magnesium level was associated with incident atrial fibrillation (HR, 1.36; 95% CI, 1.01-1.82; P = 0.04). LIMITATIONS Single measurement of serum magnesium. CONCLUSIONS In this large CKD cohort, serum magnesium level < 1.9 mg/dL and >2.1 mg/dL was associated with increased risk for all-cause mortality. Low magnesium level was associated with incident atrial fibrillation but not with composite cardiovascular disease events. Further studies are needed to determine the optimal range of serum magnesium in CKD to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Lavinia Negrea
- Division of Nephrology and Hypertension, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, OH
| | | | | | - Mahboob Rahman
- Division of Nephrology and Hypertension, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Mirela Dobre
- Division of Nephrology and Hypertension, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
28
|
Money ME, Hamroun A, Shu Y, Matthews C, Ahmed Eltayeb S, Ciarimboli G, Metz CN. Case Report and Supporting Documentation: Acute Kidney Injury Manifested as Oliguria Is Reduced by Intravenous Magnesium Before Cisplatin. Front Oncol 2021; 11:607574. [PMID: 33718160 PMCID: PMC7952862 DOI: 10.3389/fonc.2021.607574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
After more than four decades of post-approval, cisplatin is still an important treatment for numerous cancers. However, acute kidney injury (AKI), defined as significant impairment of renal filtration as discussed below, is the major limiting side effect of cisplatin, occurring in approximately 30% of patients (25–33% after the first course). Cisplatin also damages the kidneys’ ability to reabsorb magnesium in 40–100% of patients, with collateral health risks due to subsequent hypomagnesemia. Multiple methods and drugs have been proposed for preventing cisplatin-induced AKI, including saline infusion with or without mannitol, which has not always prevented AKI and has been found to activate a cellular stress response in renal tubular cells. While numerous reports and trials, as well as the National Comprehensive Cancer Network (NCCN), support premedication with magnesium and hydration, this practice has not been universally accepted. Many clinics administer intravenous magnesium (IV) only after identification of hypomagnesemia post-cisplatin treatment, thus placing patients at risk for AKI and chronic renal loss of magnesium. We present the following case report and additional supporting evidence identifying the immediate effect of IV magnesium prior to intraperitoneal cisplatin for cycle 4 because of documented hypomagnesemia resulting in normalization of oliguria, which had been experienced for the first three cycles. The patient subsequently requested and received IV magnesium before cisplatin for the next two cycles with continuation of normal urinary output. The effect of pretreatment with IV magnesium on urine output following cisplatin has not been previously reported and further supports pre-cisplatin administration. In addition, two recent meta-analyses of clinical trials and pre-clinical research are reviewed that demonstrate effectiveness of magnesium pretreatment to preventing AKI without reducing its chemotherapeutic efficacy. This case report with additional evidence supports the adoption of administration of 1–3 g IV magnesium before cisplatin as best practice to prevent cisplatin induced AKI and hypomagnesemia regardless of patient baseline serum magnesium levels.
Collapse
Affiliation(s)
- Mary Elizabeth Money
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Medicine, Meritus Medical Center, Hagerstown, MD, United States
| | - Aghiles Hamroun
- Lille University, Lille University Hospital Center, Nephrology Department, Lille, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Epidemiology Team, CESP, Villejuif, France
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | | | | | | | - Christine Noel Metz
- Institute of Molecular Medicine, Feinstein Institutes, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| |
Collapse
|
29
|
Moreb NA, Albandary A, Jaiswal S, Jaiswal AK. Fruits and Vegetables in the Management of Underlying Conditions for COVID-19 High-Risk Groups. Foods 2021; 10:389. [PMID: 33578926 PMCID: PMC7916708 DOI: 10.3390/foods10020389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 or COVID-19 is a novel coronavirus, which is the cause of the current pandemic with 107,411,561 infections and 2,351,195 death worldwide so far. There are multiple symptoms that are linked with the infection of COVID-19 such as coughing, shortness of breath, congestion together with fatigue, fever, loss of taste or smell, headaches, diarrhea, vomiting, and loss of appetite. The lack of or early stage of development of a cure for COVID-19 illness, there is need for insuring the best possible position of health to be able to fight the virus naturally through a robust immune system to limit severe complication. In this article, we have discussed the role of fruits and vegetables consumption to boost the immune system and major emphasis has been given to high risk group. We have taken into consideration a number of underlying conditions such as people with cardiovascular diseases, obesity, diabetes, chronic obstructive pulmonary disease, chronic kidney disease, hemoglobin disorder such as sickle cell disease, weakened immune system due to organ transplant. Furthermore, factors to improve the immune system, risks associated with quarantine and lifestyle and food handling during COVID-19 has been discussed.
Collapse
Affiliation(s)
- Nora A. Moreb
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland; (N.A.M.); (A.A.); (S.J.)
| | - Ahmed Albandary
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland; (N.A.M.); (A.A.); (S.J.)
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland; (N.A.M.); (A.A.); (S.J.)
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland; (N.A.M.); (A.A.); (S.J.)
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, 7 Dublin, Ireland
| |
Collapse
|
30
|
Dharmarajan TS, Gunturu SG. Magnesium. GERIATRIC GASTROENTEROLOGY 2021:717-734. [DOI: 10.1007/978-3-030-30192-7_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel) 2020; 12:toxins12120812. [PMID: 33371477 PMCID: PMC7767516 DOI: 10.3390/toxins12120812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23, cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials for their potential vascular benefits. Further advanced studies are still warranted to validate the beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
32
|
Dietary Habits, Vitamin and Mineral Supplements in Patients with Chronic Kidney Disease (CKD). Nutrients 2020; 12:nu12123817. [PMID: 33327372 PMCID: PMC7764889 DOI: 10.3390/nu12123817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
|
33
|
Rodelo-Haad C, Pendón-Ruiz de Mier MV, Díaz-Tocados JM, Martin-Malo A, Santamaria R, Muñoz-Castañeda JR, Rodríguez M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front Cell Dev Biol 2020; 8:543099. [PMID: 33282857 PMCID: PMC7688914 DOI: 10.3389/fcell.2020.543099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Some of the critical mechanisms that mediate chronic kidney disease (CKD) progression are associated with vascular calcifications, disbalance of mineral metabolism, increased oxidative and metabolic stress, inflammation, coagulation abnormalities, endothelial dysfunction, or accumulation of uremic toxins. Also, it is widely accepted that pathologies with a strong influence in CKD progression are diabetes, hypertension, and cardiovascular disease (CVD). A disbalance in magnesium (Mg) homeostasis, more specifically hypomagnesemia, is associated with the development and progression of the comorbidities mentioned above, and some mechanisms might explain why low serum Mg is associated with negative clinical outcomes such as major adverse cardiovascular and renal events. Furthermore, it is likely that hypomagnesemia causes the release of inflammatory cytokines and C-reactive protein and promotes insulin resistance. Animal models have shown that Mg supplementation reverses vascular calcifications; thus, clinicians have focused on the potential benefits that Mg supplementation may have in humans. Recent evidence suggests that Mg reduces coronary artery calcifications and facilitates peripheral vasodilation. Mg may reduce vascular calcification by direct inhibition of the Wnt/β-catenin signaling pathway. Furthermore, Mg deficiency worsens kidney injury induced by an increased tubular load of phosphate. One important consequence of excessive tubular load of phosphate is the reduction of renal tubule expression of α-Klotho in moderate CKD. Low Mg levels worsen the reduction of Klotho induced by the tubular load of phosphate. Evidence to support clinical translation is yet insufficient, and more clinical studies are required to claim enough evidence for decision-making in daily practice. Meanwhile, it seems reasonable to prevent and treat Mg deficiency. This review aims to summarize the current understanding of Mg homeostasis, the potential mechanisms that may mediate the effect of Mg deficiency on CKD progression, CVD, and mortality.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - M Victoria Pendón-Ruiz de Mier
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Miguel Díaz-Tocados
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain
| | - Alejandro Martin-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Santamaria
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Laflamme D, Backus R, Brown S, Butterwick R, Czarnecki-Maulden G, Elliott J, Fascetti A, Polzin D. A review of phosphorus homeostasis and the impact of different types and amounts of dietary phosphate on metabolism and renal health in cats. J Vet Intern Med 2020; 34:2187-2196. [PMID: 33159358 PMCID: PMC7694857 DOI: 10.1111/jvim.15961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated concentrations of serum phosphate are linked with progression and increased case fatality rate in animals and humans with chronic kidney disease. Elevated concentrations of serum phosphate can be a risk factor for development of renal and cardiovascular diseases or osteoporosis in previously healthy people. In rodents, an excess intake of dietary phosphorus combined with an inverse dietary calcium : phosphorus ratio (<1 : 1) contributes to renal calcification. Renal injury also has occured in cats fed experimental diets supplemented with highly soluble phosphate salts, especially in diets with inverse calcium : phosphorus ratios. However, not all phosphorus sources contribute similarly to this effect. This review, which focuses on cats, summarizes the published evidence regarding phosphorus metabolism and homeostasis, including the relative impact of different dietary phosphorus sources, and their impact on the kidneys. No data currently shows that commercial cat foods induce renal injury. However, some diets contain high amounts of phosphorus relative to recommendations and some have inverse Ca : P ratios and so could increase the risk for development of kidney disease. While limiting the use of highly soluble phosphates appears to be important, there are insufficient data to support a specific upper limit for phosphate intake. This review also proposes areas where additional research is needed in order to strengthen conclusions and recommendations regarding dietary phosphorus for cats.
Collapse
Affiliation(s)
| | - Robert Backus
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Scott Brown
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | | | | | - Jonathan Elliott
- Royal Veterinary College, University of London, London, United Kingdom
| | - Andrea Fascetti
- Department of Molecular Biosciences, University of California, Davis, California, USA
| | - David Polzin
- Veterinary Clinical Sciences Department, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
35
|
Yuan Q, Xie Y, Peng Z, Wang J, Zhou Q, Xiao X, Wang W, Huang L, Tang W, Li X, Zhang L, Wang F, Zhao MH, Tao L, He K, Wanggou S, Xu H. Urinary magnesium predicts risk of cardiovascular disease in Chronic Kidney Disease stage 1-4 patients. Clin Nutr 2020; 40:2394-2400. [PMID: 33160701 DOI: 10.1016/j.clnu.2020.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Observational studies on dietary or circulating magnesium and risk of cardiovascular disease (CVD) in Chronic Kidney Disease (CKD) stage 1-4 have reported no-to-modest inverse associations. 24 h Urinary magnesium concentration (24 h UMg), an indicator of intestinal magnesium absorption, may provide better insight into the connection of CKD progression. We examined 3179 participants aged 18-74 years with CKD stage 1-4 in the Chinese Cohort Study of Chronic Kidney Disease (C-STRIDE) study, a prospective population-based cohort study. Data were analysed using Spearman rank-order correlation coefficients for all comparisons. We also performed a time-to-event analysis of the data using the Kaplan-Meier survival model, Cox proportional hazard model and competing risk Fine and Gray subdistribution hazard model. During a median follow-up of 4.19 years (interquartile range, 3.43-5.09 years), when modelling end-stage renal disease (ESRD), CVD and death, 24 h UMg was associated with risk of CVD (HR, 1.612 (95% CI, 1.056-2.460)), while no significant association with ESRD and death endpoints could be detected. 24 h UMg risk variants display a modest association with CVD in CKD stage 1-4 patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03041987. Registered January 1, 2012. (retrospectively registered) (https://www.clinicaltrials.gov/ct2/show/NCT03041987?term=Chinese+Cohort+Study+of+Chronic+Kidney+Disease+%28C-STRIDE%29&rank=1).
Collapse
Affiliation(s)
- Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, China; Institute of Nephrology, Peking University, China; Key Laboratory of Renal Disease, Ministry of Health of China, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Wenbin Tang
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, China; Institute of Nephrology, Peking University, China; Key Laboratory of Renal Disease, Ministry of Health of China, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China; Center for Data Science in Health and Medicine, Peking University, Beijing, China
| | - Fang Wang
- Renal Division, Department of Medicine, Peking University First Hospital, China; Institute of Nephrology, Peking University, China; Key Laboratory of Renal Disease, Ministry of Health of China, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, China; Institute of Nephrology, Peking University, China; Key Laboratory of Renal Disease, Ministry of Health of China, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Kevin He
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | | |
Collapse
|
36
|
Extracellular Nucleotides Regulate Arterial Calcification by Activating Both Independent and Dependent Purinergic Receptor Signaling Pathways. Int J Mol Sci 2020; 21:ijms21207636. [PMID: 33076470 PMCID: PMC7589647 DOI: 10.3390/ijms21207636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5′-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor—pyrophosphate and the calcification stimulator—inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.
Collapse
|
37
|
Cambray S, Ibarz M, Bermudez-Lopez M, Marti-Antonio M, Bozic M, Fernandez E, Valdivielso JM. Magnesium Levels Modify the Effect of Lipid Parameters on Carotid Intima Media Thickness. Nutrients 2020; 12:nu12092631. [PMID: 32872319 PMCID: PMC7551902 DOI: 10.3390/nu12092631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Classical risk factors of atherosclerosis in the general population show paradoxical effects in chronic kidney disease (CKD) patients. Thus, low low-density lipoprotein (LDL) cholesterol levels have been associated with worse cardiovascular outcomes. Magnesium (Mg) is a divalent cation whose homeostasis is altered in CKD. Furthermore, Mg levels have been associated with cardiovascular health. The present study aims to understand the relationships of Mg and lipid parameters with atherosclerosis in CKD. In this analysis, 1754 participants from the Observatorio Nacional de Atherosclerosis en Nefrologia (NEFRONA) cohort were included. Carotid intima media thickness (cIMT) was determined in six arterial territories, and associated factors were investigated by linear regression. cIMT correlated positively with being male, Caucasian, a smoker, diabetic, hypertensive, dyslipidemic and with increased age, BMI, and triglyceride levels, and negatively with levels of HDL cholesterol. First-order interactions in linear regression analysis showed that Mg was an effect modifier on the influence of lipidic parameters. Thus, cIMT predicted values were higher when triglycerides or LDL levels were high and Mg levels were low. On the contrary, when Mg levels were high, this effect disappeared. In conclusion, Mg acts as an effect modifier between lipidic parameters and atherosclerotic cardiovascular disease. Therefore, Mg levels, together with lipidic parameters, should be taken into account when assessing atherosclerotic risk.
Collapse
Affiliation(s)
- Serafi Cambray
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
- Correspondence: (S.C.); (J.M.V.)
| | - Merce Ibarz
- Indicators and Specifications of the Quality in the Clinical Laboratory Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida, 25198 Lleida, Spain;
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
| | - Manuel Marti-Antonio
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
| | - Elvira Fernandez
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
| | - Jose M. Valdivielso
- Vascular and Renal Translational Research Group, Institute for Biomedical Research Pifarré Foundation, IRBLleida Av. Rovira Roure 80, 25198 Lleida, Spain; (M.B.-L.); (M.M.-A.); (M.B.); (E.F.)
- Correspondence: (S.C.); (J.M.V.)
| |
Collapse
|
38
|
Increasing the Magnesium Concentration in Various Dialysate Solutions Differentially Modulates Oxidative Stress in a Human Monocyte Cell Line. Antioxidants (Basel) 2020; 9:antiox9040319. [PMID: 32326605 PMCID: PMC7222382 DOI: 10.3390/antiox9040319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is exacerbated in hemodialysis patients by several factors, including the uremic environment and the use of dialysis fluids (DFs). Since magnesium (Mg) plays a key role in modulating immune function and in reducing oxidative stress, we aimed to evaluate whether increasing the Mg concentration in different DFs could protect against oxidative stress in immunocompetent cells in vitro. Effect of ADF (acetate 3 mM), CDF (citrate 1 mM), and ACDF (citrate 0.8 mM + acetate 0.3 mM) dialysates with Mg at standard (0.5 mM) or higher (1, 1.25, and 2 mM) concentrations were assessed in THP-1 monocyte cultures. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were quantified under basal and uremic conditions (indoxyl sulfate (IS) treatment). Under uremic conditions, the three DFs with 0.5 mM Mg promoted higher ROS production and lipid damage than the control solution. However, CDF and ACDF induced lower levels of ROS and MDA, compared to that induced by ADF. High Mg concentration (1.25 and/or 2 mM) in CDF and ACDF protected against oxidative stress, indicated by reduced ROS and MDA levels compared to respective DFs with standard concentration of Mg. Increasing Mg concentrations in ADF promoted high ROS production and MDA content. Thus, an increase in Mg content in DFs has differential effects on the oxidative stress in IS-treated THP-1 cells depending on the dialysate used.
Collapse
|
39
|
Vervloet M. Modifying Phosphate Toxicity in Chronic Kidney Disease. Toxins (Basel) 2019; 11:E522. [PMID: 31505780 PMCID: PMC6784221 DOI: 10.3390/toxins11090522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Phosphate toxicity is a well-established phenomenon, especially in chronic kidney disease (CKD), where hyperphosphatemia is a frequent occurrence when CKD is advanced. Many therapeutic efforts are targeted at phosphate, and comprise dietary intervention, modifying dialysis schemes, treating uncontrolled hyperparathyroidism and importantly, phosphate binder therapy. Despite all these interventions, hyperphosphatemia persists in many, and its pathological influence is ongoing. In nephrological care, a somewhat neglected aspect of treatment-when attempts fail to lower exposure to a toxin like phosphate-is to explore the possibility of "anti-dotes". Indeed, quite a long list of factors modify, or are mediators of phosphate toxicity. Addressing these, especially when phosphate itself cannot be sufficiently controlled, may provide additional protection. In this narrative overview, several factors are discussed that may qualify as either such a modifier or mediator, that can be influenced by other means than simply lowering phosphate exposure. A wider scope when targeting phosphate-induced comorbidity in CKD, in particular cardiovascular disease, may alleviate the burden of disease that is the consequence of this potentially toxic mineral in CKD.
Collapse
Affiliation(s)
- Marc Vervloet
- Department of Nephrology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|