1
|
Chao YW, Tung YT, Yang SC, Shirakawa H, Su LH, Loe PY, Chiu WC. The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose. Nutrients 2024; 16:2980. [PMID: 39275295 PMCID: PMC11397027 DOI: 10.3390/nu16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.
Collapse
Affiliation(s)
- Yu-Wen Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Li-Han Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Yu Loe
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
2
|
Abate G, Pezzotta A, Pucci M, Bortolotto V, Ribaudo G, Bonini SA, Mastinu A, Maccarinelli G, Ongaro A, Tirelli E, Zizioli D, Gianoncelli A, Memo M, Grilli M, Uberti D. The Bioactive Gamma-Oryzanol from Oryza sativa L. Promotes Neuronal Differentiation in Different In Vitro and In Vivo Models. Antioxidants (Basel) 2024; 13:969. [PMID: 39199215 PMCID: PMC11352202 DOI: 10.3390/antiox13080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Gamma-oryzanol (ORY), found in rice (Oryza sativa L.), is a mixture of ferulic acid esters with triterpene alcohols, well-known for its antioxidant and anti-inflammatory properties. Our past research demonstrated its positive impact on cognitive function in adult mice, influencing synaptic plasticity and neuroprotection. In this study, we explored whether ORY can exert neuro-differentiating effects by using different experimental models. For this purpose, chemical characterization identified four components that are most abundant in ORY. In human neuroblastoma cells, we showed ORY's ability to stimulate neurite outgrowth, upregulating the expression of GAP43, BDNF, and TrkB genes. In addition, ORY was found to guide adult mouse hippocampal neural progenitor cells (NPCs) toward a neuronal commitment. Microinjection of ORY in zebrafish Tg (-3.1 neurog1:GFP) amplified neurog1-GFP signal, islet1, and bdnf mRNA levels. Zebrafish nrf2a and nrf2b morphants (MOs) were utilized to assess ORY effects in the presence or absence of Nrf2. Notably, ORY's ability to activate bdnf was nullified in nrf2a-MO and nrf2b-MO. Furthermore, computational analysis suggested ORY's single components have different affinities for the Keap1-Kelch domain. In conclusion, although more in-depth studies are needed, our findings position ORY as a potential source of bioactive molecules with neuro-differentiating potential involving the Nrf2 pathway.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Sara A. Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Emanuela Tirelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| |
Collapse
|
3
|
Lu J, Yan S, Xue Z. Biosynthesis and functions of triterpenoids in cereals. J Adv Res 2024:S2090-1232(24)00211-X. [PMID: 38788922 DOI: 10.1016/j.jare.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Triterpenoids are versatile secondary metabolites with a diverse array of physiological activities, possessing valuable pharmacological effects and influencing the growth and development of plants. As more triterpenoids in cereals are unearthed and characterized, their biological roles in plant growth and development are gaining recognition. AIM OF THE REVIEW This review provides an overview of the structures, biosynthetic pathways, and diverse biological functions of triterpenoids identified in cereals. Our goal is to establish a basis for further exploration of triterpenoids with novel structures and functional activities in cereals, and to facilitate the potential application of triterpenoids in grain breeding, thus accelerating the development of superior grain varieties. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This review consolidates information on various triterpenoid skeletons and derivatives found in cereals, and summarizes the pivotal enzyme genes involved, including oxidosqualene cyclase (OSC) and other triterpenoid modifying enzymes like cytochrome P450, glycosyltransferase, and acyltransferase. Triterpenoid-modifying enzymes exhibit specificity towards catalytic sites within triterpenoid skeletons, generating a diverse array of functional triterpenoid derivatives. Furthermore, triterpenoids have been shown to significantly impact the nutritional value, yield, disease resistance, and stress response of cereals.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Shan Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China; State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
4
|
Chen LC, Lai MC, Hong TY, Liu IM. γ-Oryzanol from Rice Bran Antagonizes Glutamate-Induced Excitotoxicity in an In Vitro Model of Differentiated HT-22 Cells. Nutrients 2024; 16:1237. [PMID: 38674927 PMCID: PMC11053564 DOI: 10.3390/nu16081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The excessive activation of glutamate in the brain is a factor in the development of vascular dementia. γ-Oryzanol is a natural compound that has been shown to enhance brain function, but more research is needed to determine its potential as a treatment for vascular dementia. This study investigated if γ-oryzanol can delay or improve glutamate neurotoxicity in an in vitro model of differentiated HT-22 cells and explored its neuroprotective mechanisms. The differentiated HT-22 cells were treated with 0.1 mmol/L glutamate for 24 h then given γ-oryzanol at appropriate concentrations or memantine (10 µmol/L) for another 24 h. Glutamate produced reactive oxygen species and depleted glutathione in the cells, which reduced their viability. Mitochondrial dysfunction was also observed, including the inhibition of mitochondrial respiratory chain complex I activity, the collapse of mitochondrial transmembrane potential, and the reduction of intracellular ATP levels in the HT-22 cells. Calcium influx triggered by glutamate subsequently activated type II calcium/calmodulin-dependent protein kinase (CaMKII) in the HT-22 cells. The activation of CaMKII-ASK1-JNK MAP kinase cascade, decreased Bcl-2/Bax ratio, and increased Apaf-1-dependent caspase-9 activation were also observed due to glutamate induction, which were associated with increased DNA fragmentation. These events were attenuated when the cells were treated with γ-oryzanol (0.4 mmol/L) or the N-methyl-D-aspartate receptor antagonist memantine. The results suggest that γ-oryzanol has potent neuroprotective properties against glutamate excitotoxicity in differentiated HT-22 cells. Therefore, γ-oryzanol could be a promising candidate for the development of therapies for glutamate excitotoxicity-associated neurodegenerative diseases, including vascular dementia.
Collapse
Affiliation(s)
- Li-Chai Chen
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (L.-C.C.); (M.-C.L.)
| | - Mei-Chou Lai
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (L.-C.C.); (M.-C.L.)
| | - Tang-Yao Hong
- Department of Environmental Science and Occupational Safety and Hygiene, Graduate School of Environmental Management, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan;
| | - I-Min Liu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; (L.-C.C.); (M.-C.L.)
| |
Collapse
|
5
|
Zeini S, Davoodian N, Mousavi SA. Gamma-oryzanol attenuates lipopolysaccharide-induced cognitive impairment by modulation of hippocampal inflammatory response and glial activation in mice. J Neuroimmunol 2024; 387:578292. [PMID: 38278081 DOI: 10.1016/j.jneuroim.2024.578292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Systemic inflammation can cause chronic neuroinflammation, which is a significant risk factor for neurodegenerative disorders. Therefore, anti-inflammatory agents that reduce peripheral inflammation are potential targets for the prevention or treatment of these debilitating diseases. In the present study, we investigated whether gamma-oryzanol (ORY) could protect against chronic neuroinflammation induced by lipopolysaccharide (LPS) in adult male mice. Mice were injected with LPS (0.75 mg/kg/day) or saline for 7 consecutive days and orally received ORY (100 mg/kg) or vehicle for 14 days (7 days before LPS injections and 7 days co-treated with LPS). After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, the expression level of several inflammatory mediators was measured in the hippocampus of treated animals. Also, neuronal loss, microglia, and astrocyte densities were evaluated in the CA1 and CA3 hippocampus. We found that ORY treatment significantly improved spatial and working memory in LPS-treated mice. This behavioral improvement was accompanied by a significant reduction in the number of microglia and astrocytes in the CA1 and CA3 hippocampus. Moreover, ORY treatment effectively prevented LPS-induced increases in the expression of inflammatory mediators and enhanced neuronal survival in the CA1 hippocampus. Our findings suggest that ORY treatment can be a therapeutic option to improve cognitive impairments and neuroinflammation induced by endotoxins.
Collapse
Affiliation(s)
- Shiva Zeini
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
6
|
Kim M, Yoon M, Cho S, Lee C, Um MY. γ-Oryzanol Ameliorates Depressive Behavior in Ovariectomized Mice by Regulating Hippocampal Nitric Oxide Synthase: A Potential Therapy for Menopausal Depression. Mol Nutr Food Res 2024; 68:e2300253. [PMID: 38054627 DOI: 10.1002/mnfr.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/18/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Depression is a severe mental condition, common among menopausal women. γ-Oryzanol (ORY) has various biological properties; however, the effect of ORY on menopausal depression and its underlying mechanisms have not been investigated. METHODS AND RESULTS ORY is orally administered to ovariectomized (OVX) mice for 20 weeks. ORY administration results in lower immobility time in the tail suspension and forced swim test and increases locomotor activity in the open field test. In the primary hippocampal neurons and hippocampi of OVX mice, ORY treatment increases nitric oxide (NO) production and neuronal NO synthase (nNOS) expression. Further, the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), and tropomyosin receptor kinase B, along with the expression of brain-derived neurotrophic factior (BDNF), is upregulated. These stimulatory effects of ORY are diminished by treatment with estrogen receptor β (ERβ) antagonist. ORY similarly interacts with ERβ in the molecular docking analysis. Moreover, intracerebroventricular injection of 7-nitroindazole, a nNOS inhibitor, abolishes the antidepressant effects of ORY. CONCLUSIONS The results indicate that ORY attenuates depressive behavior in OVX mice by upregulating ERβ-mediated hippocampal nNOS expression and activating the ERK-CREB-BDNF signaling networks. The findings suggest that ORY is a potential therapeutic agent for attenuating menopausal depression.
Collapse
Affiliation(s)
- Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Minseok Yoon
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
7
|
Lee H, Kang H, Moon C, Youn B. PAK3 downregulation induces cognitive impairment following cranial irradiation. eLife 2023; 12:RP89221. [PMID: 38131292 PMCID: PMC10746143 DOI: 10.7554/elife.89221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National UniversityGwangjuRepublic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National UniversityBusanRepublic of Korea
- Department of Biological Sciences, Pusan National UniversityBusanRepublic of Korea
- Nuclear Science Research Institute, Pusan National UniversityBusanRepublic of Korea
| |
Collapse
|
8
|
Phothi T, Tunsophon S, Tiyaboonchai W, Khongsombat O. Effects of curcumin and γ‑oryzanol solid dispersion on the brain of middle‑aged rats. Biomed Rep 2022; 17:59. [PMID: 35719843 PMCID: PMC9198973 DOI: 10.3892/br.2022.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is one of the major factors that contributes to brain deterioration in the elderly. Oxidation causes molecular alterations, structural damage, and brain dysfunction, which includes cognitive impairment. Memory loss can begin in middle-aged individuals, so prevention of brain deterioration before aging is important. Several studies have reported that curcumin and γ-oryzanol exhibits anti-oxidant and anti-inflammatory properties. However, curcumin and γ-oryzanol exhibit low aqueous solubility. Thus, a solid dispersion technique was used to prepare curcumin and γ-oryzanol to enhance their solubility and stability. This study aims to evaluate the effects and mechanisms of γ-oryzanol solid dispersion (GOSD) and curcumin solid dispersion (CURSD) on learning and memory in six groups of male rats (n=5/group). Group one was the adult control consisting of 6-week old male rats, and the remaining five groups consisted of 42-week (middle-aged) male rats. The groups were labeled as the control group, the GO group (GOSD 10 mg/kg·BW), the Cur group (CURSD 50 mg/kg·BW), the GO-LCur group (GOSD 10 mg/kg·BW plus CURSD 25 mg/kg·BW), and the GO-HCur group (GOSD 10 mg/kg·BW plus CURSD 50 mg/kg·BW). Substances were administrated by oral gavage once daily for 42 consecutive days. The GO-HCur group exhibited significantly increased learning and memory performance in a Morris water maze and in reacting to a spontaneous tendency novel object test. The rats also exhibited decreased levels of lipid peroxidation, increased superoxide dismutase levels, glutathione peroxidase levels, catalase activity, and enhanced c-Fos expression both in the hippocampus and prefrontal cortex. The results indicated that GOSD 10 mg/kg plus CURSD 50 mg/kg was able to enhance learning and memory performance in the middle-aged rats.
Collapse
Affiliation(s)
- Thanyaphon Phothi
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
9
|
Acridine-2,4-Dinitrophenyl Hydrazone Conjugated Silver Nanoparticles as an Efficient Sensor for Quantification of Mercury in Tap Water. J CHEM-NY 2022. [DOI: 10.1155/2022/6823140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excretion of heavy metals especially mercury (Hg2+) from the industries into the environment becomes a major global problem. In this context, mercury is a highly dangerous metal which poses serious impact on human health. In the present study, acridine- (ACR-) based silver nanoparticles (ACR-AgNPs) were prepared and employed as a nanosensor for effective detection and quantification of Hg2+ in tap water. Conjugation between ACR-based coating agent and silver was examined by UV-visible and FT-IR spectroscopy, while morphology and particle size were determined through atomic force microscopy (AFM), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Furthermore, sensing behavior of nanosensor for metal ions was evaluated by mixing different metals such as Mn2+, Ni2+, Ba2+, Mg2+, Cr3+, Pb2+, Pd2+, Al3+, Sn2+, Fe2+, Co2+, Cu2+, Fe3+, Cd2+, and Hg2+with ACR-AgNPs. Among all the added metal ions, only Hg2+resulted in significant quenching in the absorption intensity of ACR-AgNPs. The limit of detection of the ACR-AgNP-based nanosensor was found to be 1.65 μM in a wide pH range (1-14). The proposed mercury sensor worked efficiently in the presence of other interfering agents such as other metal ions. Therefore, the synthesized ACR-AgNPs have proved to be an efficient and robust nanosensor for quantitative detection of Hg2+ in real sample analysis such as tap water. The proposed method does not require expensive instrumentation and trained manpower.
Collapse
|
10
|
Modifiable lifestyle factors and cognitive reserve: A systematic review of current evidence. Ageing Res Rev 2022; 74:101551. [PMID: 34952208 PMCID: PMC8794051 DOI: 10.1016/j.arr.2021.101551] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023]
Abstract
This systematic review aims to summarize cognitive reserve (CR) evaluation approaches and to examine the role of seven selected modifiable lifestyle factors (diet, smoking, alcohol consumption, physical activity, cognitive leisure activity, sleep, and meditation) in mitigating the impacts of age- or disease-related brain changes on cognition. Eighteen population-based English empirical studies were included. We summarize the study designs and identify three CR models that were broadly used in these studies, including a residual model assessing lifestyle factors in relation to unexplained variance in cognition after accounting for brain markers, a moderation model testing whether lifestyle factors moderate the relationship between brain status and cognition, and a controlling model examining the associations between lifestyle factors and cognition when controlling for brain measures. We also present the findings for the impact of each lifestyle factor. No studies examined diet, sleep, or meditation, and only two studies focused on smoking and alcohol consumption each. Overall, the studies suggest lifestyle activity factors (physical and cognitive leisure activities) may contribute to CR and attenuate the damaging impact of brain changes on cognition. Standardized measurements of lifestyle factors and CR are needed, and mechanisms underlying CR need to be further addressed as well.
Collapse
|
11
|
Abstract
Physical exercise can be effective in preventing or ameliorating various diseases, including diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. However, not everyone may be able to participate in exercise due to illnesses, age-related frailty, or difficulty in long-term behavior change. An alternative option is to utilize pharmacological interventions that mimic the positive effects of exercise training. Recent studies have identified signaling pathways associated with the benefits of physical activity and discovered exercise mimetics that can partially simulate the systemic impact of exercise. This review describes the molecular targets for exercise mimetics and their effect on skeletal muscle and other tissues. We will also discuss the potential advantages of using natural products as a multi-targeting agent for mimicking the health-promoting effects of exercise.
Collapse
Affiliation(s)
- Young Jin Jang
- Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Wang Z, Yang Z, Liu J, Hao Y, Sun B, Wang J. Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14065-14074. [PMID: 34775748 DOI: 10.1021/acs.jafc.1c05527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mitochondria play an essential role in maintaining cellular metabolic homeostasis. However, its dysfunction will cause different pathophysiological consequences. A specific mechanism of action has been developed by cells to adapt to changes in physiological conditions or in response to different stimuli, by meditating mitochondrial number, structure, and energy metabolism. Whole grains are considered healthier than refined grains for their higher amounts of bioactive components, with proven multiple health benefits. The modulation of an appropriate mitochondrial function contributes to the bioactive-component-based health improvements. Thus, this review aims to represent current studies that identify the impact of natural bioactive components in whole grains against metabolic disorders by modulating mitochondrial biogenesis and energy metabolism. It seems most attractive to aim nutritional intervention at the prevention or treatment of metabolic abnormalities and hence to target dietary management at improvement of mitochondrial function.
Collapse
Affiliation(s)
- Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
13
|
Noryan M, Hervan IM, Sabouri H, Kojouri FD, Mastinu A. Drought Resistance Loci in Recombinant Lines of Iranian Oryza sativa L. in Germination Stage. BIOTECH 2021; 10:biotech10040026. [PMID: 35822800 PMCID: PMC9245469 DOI: 10.3390/biotech10040026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In order to locate control genes related to Oryza sativa L. traits at the germination stage under normal conditions and at drought stress levels (−4.5 and −9.0 bar), we evaluated 120 F8 generation offspring from the cross between two cultivars Neda × Ahlemitarum in a factorial experiment in a completely randomized block design with three replications in 2013 in the botanical laboratory of Gonbad Kavous University. A linkage map was prepared using 90 Simple Sequence Repeats (SSR) markers and 28 Inter Simple Sequence Repeats (ISSR), and 6 iPBS and 9 IRAP markers (265 polymorphic alleles). The results of the analysis of variance showed that all of the evaluated traits had a significant difference at the probability level of 1%. Hence, it can be noted that the desired genetic diversity can be found between genotypes. The results of the stepwise regression analysis for the germination percentage as a dependent variable and other traits as independent variables in the studied treatments showed that under normal conditions, there was variable coleoptile length, but under drought stress of −4.5 and −9.0 bar, the variable plumule dry weight entered the model. In this study, the markers included in RM1-RM490 and ISSR2-3-RM133 of chromosomes 1 and 6 of Oryza sativa were identified as the main regulators of traits associated with Oryza sativa drought resistance. In particular, they present the quantitative trait loci (QTL) that control the first stages of germination of Oryza sativa in water stress conditions.
Collapse
Affiliation(s)
- Morteza Noryan
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Islam Majidi Hervan
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agricultural Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
- Correspondence: (H.S.); (A.M.)
| | - Faroukh Darvish Kojouri
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
- Correspondence: (H.S.); (A.M.)
| |
Collapse
|
14
|
Sultana A, Zinnah MA, Shozib HB, Howlader ZH, Alauddin M. Functional Profiling and Future Research Direction of Rice Bran Oil in Bangladesh. J Oleo Sci 2021; 70:1551-1563. [PMID: 34732634 DOI: 10.5650/jos.ess21212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rice bran oil (RBO) has been demonstrated to affect complex malfunctioned conditions such as oxidative stress, hyperlipidemia, hyperglycemia, hypertension, inflammation, abnormal cell growth (cancer), ulceration, immune and cognitive modulation. This unique effect of RBO is due to the presence of well-balanced fatty acid composition and several bioactive compounds, γ- oryzanol (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesterol ferulate, and β-sitosteryl ferulate), vitamin E (tocopherol and tocotrienol), phytosterols (β-sitosterol, campesterol and stigmasterol) and other nutrients. The RBO composition of bioactive compounds varied geographically, thus the clear-cut mechanisms of action on complex disease cascades are still required. This review article summarized the RBO compositional profiling and compared it with other edible oils. This article also summarized Bangladesh RBO profiling and their proposed mechanism of action as well as the first line of defense in the prevention, management, and control of complex disease conditions. This review indicates how Bangladesh RBO increase their opportunity to be functional food for 21st century's ailment.
Collapse
Affiliation(s)
- Afroza Sultana
- Department of Nutrition and Food Technology, Jashore University of Science and Technology
| | | | | | | | - Md Alauddin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology
| |
Collapse
|
15
|
Pucci M, Aria F, Premoli M, Maccarinelli G, Mastinu A, Bonini S, Memo M, Uberti D, Abate G. Methylglyoxal affects cognitive behaviour and modulates RAGE and Presenilin-1 expression in hippocampus of aged mice. Food Chem Toxicol 2021; 158:112608. [PMID: 34656697 DOI: 10.1016/j.fct.2021.112608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MG), a potent glycotoxin that can be found in the diet, is one of the main precursors of Advanced glycation end products (AGEs). It is well known that modifications in lifestyle such as nutritional interventions can be of great value for preventing brain deterioration. This study aimed to evaluate in vivo how an oral MG treatment, that mimics a high MG dietary intake, could affect brain health. From our results, we demonstrated that MG administration affected working memory, and induced neuroinflammation and oxidative stress by modulating the Receptor for Advanced glycation end products (RAGE). The gene and protein expressions of RAGE were increased in the hippocampus of MG mice, an area where the activity of glyoxalase 1, one of the main enzymes involved in MG detoxification, was found reduced. Furthermore, at hippocampus level, MG mice showed increased expression of proinflammatory cytokines and increased activities of NADPH oxidase and catalase. MG administration also increased the gene and protein expressions of Presenilin-1, a subunit of the gamma-secretase protein complex linked to Alzheimer's disease. These findings suggest that high MG oral intake induces alteration directly in the brain and might establish an environment predisposing to AD-like pathological conditions.
Collapse
Affiliation(s)
- M Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Aria
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Center for Neural Science, New York University, New York, United States
| | - M Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - G Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - S Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
16
|
Competitive Ability Effects of Datura stramonium L. and Xanthium strumarium L. on the Development of Maize ( Zea mays) Seeds. PLANTS 2021; 10:plants10091922. [PMID: 34579455 PMCID: PMC8472135 DOI: 10.3390/plants10091922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
The objective of this study was to explore the physical properties of maize seeds in competition with weeds. The basic and complex geometric characteristics of seeds from maize plants, competing with Datura stramonium L. (DS) or Xanthium strumarium (XS) at different weed densities, were studied. It was found that the basic and complex geometric characteristics of maize seeds, such as dimension, aspect ratio, equivalent diameter, sphericity, surface area and volume, were significantly affected by weed competition. The increase in weed density from 0 to 8 plants m2 resulted in an increase in the angle of repose from 27° to 29°, while increasing weed density from 8 to 16 plants m2 caused a diminution of the angle of repose down to 28°. Increasing the density of XS and DS to 16 plants m2 caused a reduction in the maximum 1000 seed weight of maize by 40.3% and 37.4%, respectively. These weed side effects must be considered in the design of industrial equipment for seed cleaning, grading and separation. To our knowledge, this is the first study to consider the effects of weed competition on maize traits, which are important in industrial processing such as seed aeration, sifting and drying.
Collapse
|
17
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr Pharm Des 2021; 27:2299-2316. [PMID: 33138751 DOI: 10.2174/1381612826666201102101428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gamma-oryzanol (γ-oryzanol) is one of the rice bran oil (RBO) compounds, known as a principal food source throughout the world. In recent numerous experimental studies, γ-oryzanol has been revealed to have several useful pharmacological properties, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, ameliorating unpleasant menopausal symptoms, cholesterol-lowering, improving plasma lipid pattern, etc. Methods: In this study, we reviewed the scientific literature published up until 2020, which has evaluated the biological and pharmacological activity of gamma-oryzanol. This review summarizes the published data found in PubMed, Science Direct, and Scopus. RESULTS AND CONCLUSION The present review attempts to summarize the most related articles about the pharmacological and therapeutic potential from recent studies on γ-oryzanol to gain insights into design further studies to achieve new evidence that confirm the observed effects.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Abate G, Zhang L, Pucci M, Morbini G, Mac Sweeney E, Maccarinelli G, Ribaudo G, Gianoncelli A, Uberti D, Memo M, Lucini L, Mastinu A. Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L. Biomolecules 2021; 11:biom11070975. [PMID: 34356599 PMCID: PMC8301839 DOI: 10.3390/biom11070975] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artemisia annua L. (AA) has shown for many centuries important therapeutic virtues associated with the presence of artemisinin (ART). The aim of this study was to identify and quantify ART and other secondary metabolites in ethanolic extracts of AA and evaluate the biological activity in the presence of an inflammatory stimulus. In this work, after the extraction of the aerial parts of AA with different concentrations of ethanol, ART was quantified by HPLC and HPLC-MS. In addition, anthocyanins, flavanols, flavanones, flavonols, lignans, low-molecular-weight phenolics, phenolic acids, stilbenes, and terpenes were identified and semi-quantitatively determined by UHPLC-QTOF-MS untargeted metabolomics. Finally, the viability of human neuroblastoma cells (SH-SY5Y) was evaluated in the presence of the different ethanolic extracts and in the presence of lipopolysaccharide (LPS). The results show that ART is more concentrated in AA samples extracted with 90% ethanol. Regarding the other metabolites, only the anthocyanins are more concentrated in the samples extracted with 90% ethanol. Finally, ART and all AA samples showed a protective action towards the pro-inflammatory stimulus of LPS. In particular, the anti-inflammatory effect of the leaf extract of AA with 90% ethanol was also confirmed at the molecular level since a reduction in TNF-α mRNA gene expression was observed in SH-SY5Y treated with LPS.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giulia Morbini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Correspondence: (L.L.); (A.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
- Correspondence: (L.L.); (A.M.)
| |
Collapse
|
19
|
Inchingolo AD, Dipalma G, Inchingolo AM, Malcangi G, Santacroce L, D’Oria MT, Isacco CG, Bordea IR, Candrea S, Scarano A, Morandi B, Del Fabbro M, Farronato M, Tartaglia GM, Balzanelli MG, Ballini A, Nucci L, Lorusso F, Taschieri S, Inchingolo F. The 15-Months Clinical Experience of SARS-CoV-2: A Literature Review of Therapies and Adjuvants. Antioxidants (Basel) 2021; 10:881. [PMID: 34072708 PMCID: PMC8226610 DOI: 10.3390/antiox10060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the coronavirus disease of 2019 (COVID-19) that emerged in December 2019 in Wuhan, China, and rapidly spread worldwide, with a daily increase in confirmed cases and infection-related deaths. The World Health Organization declared a pandemic on the 11th of March 2020. COVID-19 presents flu-like symptoms that become severe in high-risk medically compromised subjects. The aim of this study was to perform an updated overview of the treatments and adjuvant protocols for COVID-19. METHODS A systematic literature search of databases was performed (MEDLINE PubMed, Google Scholar, UpToDate, Embase, and Web of Science) using the keywords: "COVID-19", "2019-nCoV", "coronavirus" and "SARS-CoV-2" (date range: 1 January 2019 to 31st October 2020), focused on clinical features and treatments. RESULTS The main treatments retrieved were antivirals, antimalarials, convalescent plasma, immunomodulators, corticosteroids, anticoagulants, and mesenchymal stem cells. Most of the described treatments may provide benefits to COVID-19 subjects, but no one protocol has definitively proven its efficacy. CONCLUSIONS While many efforts are being spent worldwide in research aimed at identifying early diagnostic methods and evidence-based effective treatments, mass vaccination is thought to be the best option against this disease in the near future.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
- Research at Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology, Pham Chau Trinh University of Medicine Hoi An, Hoi An 70000, Vietnam
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Sebastian Candrea
- Department of Oral Rehabilitation, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
- Department of Pedodontics, County Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Benedetta Morandi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency-San Giuseppe Moscati Hospital, 74100 Taranto, Italy;
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania, 80138 Naples, Italy
| | - Ludovica Nucci
- Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Silvio Taschieri
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
- Department of Oral Surgery, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| |
Collapse
|
20
|
Araujo SM, Bortolotto VC, Poetini MR, Dahleh MMM, Couto SDF, Pinheiro FC, Meichtry LB, Musachio EAS, Ramborger BP, Roehrs R, Guerra GP, Prigol M. γ-Oryzanol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in Drosophila melanogaster. Stress 2021; 24:282-293. [PMID: 32723199 DOI: 10.1080/10253890.2020.1790519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic unpredictable mild stress (CUMS) is a valid model for inducing depression-like symptoms in animal models, causing predictive behavioral, neurochemical, and physiological responses to this condition. This work aims to evaluate the possible antidepressant effect of γ-oryzanol (ORY) in the CUMS-induced depressive model in male Drosophila melanogaster. We will use the CUMS protocol to continue the study previously conducted by our research group, mimicking a depressive state in these insects. Male flies were subjected to various stressors according to a 10-day randomized schedule and concomitantly treated with ORY or fluoxetine (FLX). After the experimental period, in vivo behavioral tests were performed (open field, forced swimming, aggressiveness test, mating test, male virility, sucrose preference index and light/dark test) and ex vivo analyses measuring serotonin (5HT), dopamine (DA), octopamine (OCT) levels and body weight. We report here that ORY-treated flies and concomitant exposure to CUMS did not exhibit obvious behaviors such as prolonged immobility or increased aggressive behavior, reduced male mating and virility behavior, and anxiolytic behavior, in contrast to ORY, not altering sucrose preference and body weight flies exposed to CUMS. ORY effectively prevented 5HT and OCT reduction and partially protected against DA reduction. The data presented here are consistent and provide evidence for the use of ORY as a potential antidepressant compound.Lay SummaryFlies treated with ORY and concomitant exposure to CUMS did not exhibit obvious depressive-like behaviors, such as prolonged immobility in the FST or increased aggressive behavior, or reduced mating behavior, male virility, or anxiolytic behavior. ORY did not change the preference for sucrose and body weight of flies, about the levels of monoamines in the heads of flies, ORY was effective in preventing the reduction of 5HT and OCT, and we had partial protection of ORY for reducing the levels of DA.
Collapse
Affiliation(s)
- Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Shanda de Freitas Couto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Franciane Cabral Pinheiro
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Bruna Piaia Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| |
Collapse
|
21
|
Meccariello R, D’Angelo S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants (Basel) 2021; 10:507. [PMID: 33805092 PMCID: PMC8064059 DOI: 10.3390/antiox10040507] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.
Collapse
Affiliation(s)
| | - Stefania D’Angelo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, 80133 Naples, Italy;
| |
Collapse
|
22
|
Antioxidant and Neuroprotective Activity of Extra Virgin Olive Oil Extracts Obtained from Quercetano Cultivar Trees Grown in Different Areas of the Tuscany Region (Italy). Antioxidants (Basel) 2021; 10:antiox10030421. [PMID: 33801925 PMCID: PMC8000409 DOI: 10.3390/antiox10030421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.
Collapse
|
23
|
Inchingolo AD, Inchingolo AM, Bordea IR, Malcangi G, Xhajanka E, Scarano A, Lorusso F, Farronato M, Tartaglia GM, Isacco CG, Marinelli G, D’Oria MT, Hazballa D, Santacroce L, Ballini A, Contaldo M, Inchingolo F, Dipalma G. SARS-CoV-2 Disease Adjuvant Therapies and Supplements Breakthrough for the Infection Prevention. Microorganisms 2021; 9:525. [PMID: 33806624 PMCID: PMC7999785 DOI: 10.3390/microorganisms9030525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a high-risk viral agent involved in the recent pandemic stated worldwide by the World Health Organization. The infection is correlated to a severe systemic and respiratory disease in many cases, which is clinically treated with a multi-drug pharmacological approach. The purpose of this investigation was to evaluate through a literature overview the effect of adjuvant therapies and supplements for the SARS-CoV-2 infection. The research has analyzed the advantage of the EK1C4, by also assessing the studies on the resveratrol, vitamin D, and melatonin as adjuvant supplements for long hauler patients' prognosis. The evaluated substances reported important benefits for the improvement of the immune system and as a potential inhibitor molecules against SARS-CoV-2, highlighting the use of sartans as therapy. The adjuvant supplements seem to create an advantage for the healing of the long hauler patients affected by chronic symptoms of constant chest and heart pain, intestinal disorders, headache, difficulty concentrating, memory loss, and tachycardia.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Edit Xhajanka
- Dental Prosthesis Department, Medical University of Tirana, UMT, Rruga e Dibrës, Tirana 1001, Albania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Human Stem Cells Research Center HSC of Ho Chi Minh, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology, Pham Chau Trinh University of Medicine Hoi An, Hoi An 70000, Vietnam
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, Via delle Scienze, Università degli Studi di Udine, 206, 33100 Udine, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania, 80138 Naples, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (C.G.I.); (G.M.); (M.T.D.); (D.H.); (L.S.); (F.I.); (G.D.)
| |
Collapse
|
24
|
Detopoulou P, Demopoulos CA, Antonopoulou S. Micronutrients, Phytochemicals and Mediterranean Diet: A Potential Protective Role against COVID-19 through Modulation of PAF Actions and Metabolism. Nutrients 2021; 13:nu13020462. [PMID: 33573169 PMCID: PMC7911163 DOI: 10.3390/nu13020462] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The new coronavirus disease 2019 (COVID-19) pandemic is an emerging situation with high rates of morbidity and mortality, in the pathophysiology of which inflammation and thrombosis are implicated. The disease is directly connected to the nutritional status of patients and a well-balanced diet is recommended by official sources. Recently, the role of platelet activating factor (PAF) was suggested in the pathogenesis of COVID-19. In the present review several micronutrients (vitamin A, vitamin C, vitamin E, vitamin D, selenium, omega-3 fatty acids, and minerals), phytochemicals and Mediterranean diet compounds with potential anti-COVID activity are presented. We further underline that the well-known anti-inflammatory and anti-thrombotic actions of the investigated nutrients and/or holistic dietary schemes, such as the Mediterranean diet, are also mediated through PAF. In conclusion, there is no single food to prevent coronavirus Although the relationship between PAF and COVID-19 is not robust, a healthy diet containing PAF inhibitors may target both inflammation and thrombosis and prevent the deleterious effects of COVID-19. The next step is the experimental confirmation or not of the PAF-COVID-19 hypothesis.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, 11526 Athens, Greece;
| | - Constantinos A. Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Street, 17671 Athens, Greece
- Correspondence: ; Tel.: +30-210-954-9230; Fax: +30-210-957-7050
| |
Collapse
|
25
|
Abd El Fattah MA, Abdelhamid YA, Elyamany MF, Badary OA, Heikal OA. Rice Bran Extract Protected against LPS-Induced Neuroinflammation in Mice through Targeting PPAR-γ Nuclear Receptor. Mol Neurobiol 2020; 58:1504-1516. [PMID: 33205365 DOI: 10.1007/s12035-020-02196-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
PPAR-γ anti-inflammatory functions have received significant attention since its agonists have been shown to exert a wide range of protective effects in many experimental models of neurologic diseases. Rice bran is very rich in polyunsaturated fatty acids, which are reported to act as PPAR-γ partial agonists. Herein, the anti-inflammatory effect of rice bran extract (RBE) through PPAR-γ activation was evaluated in LPS-induced neuroinflammatory mouse model in comparison to pioglitazone (PG) using 80 Swiss albino mice. RBE (100 mg/kg) and PG (30 mg/kg) were given orally for 21 days and LPS (0.25 mg/kg) was injected intraperitoneally for the last 7 days. TNF-α and COX-2 brain contents were evaluated by real-time PCR and immunohistochemical analysis. In addition, NFκB binding to its response element was evaluated alongside with the effect of treatments on IκB gene expression. Furthermore, PPAR-γ sumoylation was also studied. Finally, histopathological examination was performed for different brain areas. RBE administration was found to protect against the LPS-induced inflammatory effects by decreasing the inflammatory mediator expression in mice brains. It also decreased PPAR-γ sumoylation without significant effect on IκB expression or NFκB binding to its response element. The majority of the effects were attenuated in presence of PPAR-γ antagonist (GW9662). Level of significance was set to P < 0.05. Such findings highlight the agonistic effect of RBE component(s) on PPAR-γ and support the hypothesis of involvement of PPAR-γ activation in its neuroprotective effect.
Collapse
Affiliation(s)
- May A Abd El Fattah
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | - Mohammed F Elyamany
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ola A Heikal
- Narcotics, Ergogenics & Toxins Department, National Research Center, Giza, Egypt
| |
Collapse
|
26
|
Oo EM, Ruamyod K, Khowawisetsut L, Turbpaiboon C, Chaisuksunt V, Uawithya P, Pholphana N, Rangkadilok N, Chompoopong S. Germinated Brown Rice Attenuates Cell Death in Vascular Cognitive Impaired Mice and Glutamate-Induced Toxicity In HT22 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5093-5106. [PMID: 32275827 DOI: 10.1021/acs.jafc.9b07957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Germinated brown rice (GBR) with unpolishing, soaking, and germinating processes can improve the texture, flavor, and nutritional value, including GABA and phenolic contents. The effect of GBR was first investigated in vascular cognitive impaired mice and glutamate-induced toxicity in HT22 cells with respect to standard pure GABA. Feeding mice with GBR for 5 weeks showed neuroprotection. In this study, the modified bilateral common carotid artery occlusion mice model was mild but a significant difference in cognitive impairment was still shown. Like pure GABA, GBR decreased cognitive deficits in memory behavioral tests and significantly attenuated hippocampal neuronal cell death at P < 0.001. Similarly to 0.125 μM of GABA, 100 μg/mL of GBR increased HT22 cell viability after glutamate toxicity. GBR affected less apoptotic cell death and less blocking by the GABAA antangonist bicuculline in comparison to GABA. When the results are taken together, the underlying mechanism of GBR protection may mediate though the GABAA receptor and its phenolic contents.
Collapse
Affiliation(s)
- Eve Mon Oo
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Katesirin Ruamyod
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chairat Turbpaiboon
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vipavadee Chaisuksunt
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panapat Uawithya
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nanthanit Pholphana
- Laboratory of Pharmacology, Chulabhorn Research Institute (CRI), Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nuchanart Rangkadilok
- Laboratory of Pharmacology, Chulabhorn Research Institute (CRI), Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
27
|
Mann S, Sharma A, Sarkar A, Kharb R, Malhotra R, Datta B, Gupta RK, Biswas S. Evaluation of Anti-inflammatory Effects of Choerospondias axillaris Fruit's Methanolic Extract in Synoviocytes and CIA Rat Model. Curr Pharm Biotechnol 2019; 21:596-604. [PMID: 31820687 DOI: 10.2174/1389201021666191210114127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is an autoimmune, systemic disease mainly affecting joints. Presently, there is no specific treatment/ drug available for curing RA except few supportive medicines. Therefore, the focus has been shifted to medicinal plants for the treatment of such diseases. Choerospondias axillaris commonly known as Lupsi/Lapsi and has been reported to have several properties for the treatment of various diseases. OBJECTIVE The present study has been conducted to explore the anti-inflammatory effects of Choerospondias axillaris fruit extract on Synoviocytes (FLS) and Collagen-Induced Arthritis (CIA) rat model. METHODS Methanolic extract of the Choerospondias axillaris fruit was used for determining phytochemical, antioxidant and anti-inflammatory properties. Antioxidant activity of Choerospondias axillaris fruit was determined by free radicals scavenging assays and bioactive compounds were identified via LC-MS/MS analysis. Anti-inflammatory effect was investigated in RA and Osteo Arthritis (OA) primary cells and also in Collagen Induced Arthritis (CIA) rat models. Further, the medicinal properties of anti-inflammatory bioactive compounds were supported by docking studies. RESULTS In-vitro and in-vivo studies showed significant decrease in the levels of inflammatory cytokines. Docking analysis revealed that quercetin inhibits TNF-α having -9.1 kcal/mol binding energy and 10.13 μM inhibitory constant. Quercetin also inhibits IL-6 having -6.6 kcal/mol binding energy and 21.9 μM inhibitory constant. CONCLUSION Observed results suggest that the underutilized fruit Choerospondias axillaris can be used to reduce the inflammation of inflammatory diseases like RA.
Collapse
Affiliation(s)
- Sonia Mann
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Ankita Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Ashish Sarkar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Rupsi Kharb
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| | - Rajesh Malhotra
- All India Institute of Medical Sciences (AIIMS), New Delhi-110029, India
| | - Barun Datta
- Army Hospital Research and Referral, Dhaula Kuan, New Delhi-110010, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi-110042, India
| | - Sagarika Biswas
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110007, India
| |
Collapse
|