1
|
Holland-Winkler AM, Hamil BK. Hydration Considerations to Improve the Physical Performance and Health of Firefighters. J Funct Morphol Kinesiol 2024; 9:182. [PMID: 39449476 PMCID: PMC11503342 DOI: 10.3390/jfmk9040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Firefighters are exposed to a high level of stress as they often perform physically challenging work in hazardous environments while responsible for rescuing and keeping those around them safe. To add to this stress, they are also required to work in heavy, unbreathable personal protective equipment which promotes dehydration. These occupational demands paired with dehydration may lead to increased core temperatures, cardiac strain, and overall risk for sudden cardiac events. Thus, it is important to include hydration assessments and determine fluid needs when firefighters are on shift to ensure their personal safety as well as the safety of those around them by optimizing physical performance by maintaining adequate hydration. Therefore, the purpose of this review is to identify markers of hydration, classifications of hydration status, current hydration recommendations, and hydration interventions that may contribute to the overall clarity of hydration protocols that may optimize performance and health of firefighters. In addition, the impact of common medications, exercise training, and health conditions on hydration status related to firefighters will be discussed. Methods: A comprehensive literature search was conducted to discuss the purpose statements. Results: Hydration recommendations for firefighters include (1) assessing hydration status with multiple measurements including body mass, urine specific gravity and thirst sensation, and (2) following general hydration recommendations on rest days and exercise hydration protocols during firefighting activities which may be altered according to hydration status measurements. Conclusion: Randomized controlled trials in firefighters are needed to determine the impact of maintaining adequate hydration on health markers.
Collapse
Affiliation(s)
| | - Blake K. Hamil
- Department of Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA;
| |
Collapse
|
2
|
Peden DL, Derbyshire S, Funnell MP, McLeod CJ, Rumbold P, Hansell E, Clifford T, Mears SA, James LJ. Fluid and electrolyte balance following consumption of skimmed milk and a plant-based soya beverage at rest in euhydrated males. Eur J Appl Physiol 2024; 124:3085-3093. [PMID: 38809478 PMCID: PMC11467101 DOI: 10.1007/s00421-024-05516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE Cow's milk is one of the most hydrating beverages, but many individuals choose not to consume dairy in their diet due to intolerance, allergy, or dietary preference. Milk is commonly replaced with plant-based beverages, including soya which has the most comparable protein content, but little is known about their hydration potential. This study compared fluid and electrolyte balance responses between a soya beverage and skimmed cow's milk. METHODS Ten healthy males [age 27 (6) y; body mass index 24.6 (2.3) kg/m2] completed two randomised counterbalanced trials, involving consuming 1000 mL water from approximately isocaloric amounts of skimmed cow's milk (MILK) or a sweetened soya beverage (SOYA), in four aliquots over 30 min in a euhydrated fasted state. Volume, specific gravity, and electrolyte (sodium, potassium, chloride) concentrations were determined in total-void urine samples collected pre-/post-beverage ingestion, and hourly for 180 min thereafter. Hunger, thirst, nausea and stomach fullness were rated proximal to urine samples. RESULTS Total urine mass (MILK, 986 ± 254 g; SOYA, 950 ± 248 g; P = 0.435) and urine specific gravity (P = 0.156) did not differ between trials. Potassium balance was greater in SOYA 0-180 min post-beverage (P ≤ 0.013), whilst chloride balance was greater in MILK 0-120 min post-beverage (P ≤ 0.036). Sodium balance (P = 0.258), total electrolyte balance (P = 0.258), and subjective measures (P ≥ 0.139) were not different between trials. CONCLUSION Replacing cow's milk with a soya beverage did not negatively impact fluid balance in healthy young males, making it a viable option for those who choose not to consume dairy in their diet.
Collapse
Affiliation(s)
- Donald L Peden
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Seamus Derbyshire
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Applied Research Collaboration East Midlands, Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Chris J McLeod
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Penny Rumbold
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Emily Hansell
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
3
|
Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610555. [PMID: 39257733 PMCID: PMC11384013 DOI: 10.1101/2024.08.30.610555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Observations that intestinal microbes can beneficially impact host physiology have prompted investigations into the therapeutic usage of such microbes in a range of diseases. For example, the human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments including colic, infection, and inflammation as well as non-intestinal ailments including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses in the gut, we postulated that L. reuteri may also regulate hormones of the gastrointestinal tract to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as being produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones which are produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promotes the secretion of several enteric hormones including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Micah D. Forshee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Ari Roberts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Carroll HA, Ericson U, Ottosson F, Enhörning S, Melander O. The association between water intake and future cardiometabolic disease outcomes in the Malmö Diet and Cancer cardiovascular cohort. PLoS One 2024; 19:e0296778. [PMID: 38241317 PMCID: PMC10798487 DOI: 10.1371/journal.pone.0296778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
The aim of this study was to explore the longitudinal association between reported baseline water intake and incidence of coronary artery disease (CAD) and type 2 diabetes in the Malmö Diet and Cancer Cohort (n = 25,369). Using cox proportional hazards models, we separately modelled the effect of plain and total (all water, including from food) water on CAD and type 2 diabetes risk, whilst adjusting for age, sex, diet collection method, season, smoking status, alcohol intake, physical activity, education level, energy intake, energy misreporting, body mass index, hypertension, lipid lowering medication, apolipoprotein A, apolipoprotein B, and dietary variables. Sensitivity analyses were run to assess validity. After adjustment, no association was found between tertiles of plain or total water intake and type 2 diabetes risk. For CAD, no association was found comparing moderate to low intake tertiles from plain or total water, however, risk of CAD increased by 12% (95% CI 1.03, 1.21) when comparing high to low intake tertiles of plain water, and by 17% (95% CI 1.07, 1.27) for high versus low tertiles of total water. Sensitivity analyses were largely in agreement. Overall, baseline water intake was not associated with future type 2 diabetes risk, whilst CAD risk was higher with higher water intakes. Our findings are discordant with prevailing literature suggesting higher water intakes should reduce cardiometabolic risk. These findings may be an artefact of limitations within the study, but future research is needed to understand if there is a causal underpinning.
Collapse
Affiliation(s)
- Harriet A. Carroll
- Clinical Research Centre, Cardiovascular Research—Hypertension, Lund University, Malmö, Sweden
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Ulrika Ericson
- Clinical Research Centre, Cardiovascular Research—Hypertension, Lund University, Malmö, Sweden
| | - Filip Ottosson
- Clinical Research Centre, Cardiovascular Research—Hypertension, Lund University, Malmö, Sweden
| | - Sofia Enhörning
- Clinical Research Centre, Cardiovascular Research—Hypertension, Lund University, Malmö, Sweden
| | - Olle Melander
- Clinical Research Centre, Cardiovascular Research—Hypertension, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Bergin-Taylor K, Funnell MP, Ferguson RA, Mears SA, James LJ. Serum osmolality measured in fingertip capillary blood is comparable to serum osmolality measured in venous blood. Appl Physiol Nutr Metab 2024; 49:121-124. [PMID: 37552893 DOI: 10.1139/apnm-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Blood osmolality is considered the gold standard hydration assessment, but has limited application for technical and invasive reasons. Paired antecubital-venous blood and fingertip-capillary blood were collected pre- and 30 min post-drinking 600 mL water in 55 male/female participants. No bias (0.2 mOsmo/kg, limits of agreement = -2.5 to 2.8 mOsmo/kg) was found between sampling methods, with high linear correlation (Spearman's r = 0.95, P < 0.001). Capillary blood sampling offers an accurate less-invasive method for determining serum osmolality than venous blood sampling.
Collapse
Affiliation(s)
- K Bergin-Taylor
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - M P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - R A Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - S A Mears
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - L J James
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| |
Collapse
|
6
|
Wang C, Cao L, Mei W, Fang Y, Ren X, Hu J, Su F, Tavengana G, Jiang M, Wu H, Wen Y. The V-shaped curve relationship between fasting plasma glucose and human serum albumin in a large health checkup population in China. BMC Endocr Disord 2023; 23:192. [PMID: 37697387 PMCID: PMC10494399 DOI: 10.1186/s12902-023-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between fasting plasma glucose (FPG) and human serum albumin (HSA) in a large health checkup population in China. METHODS In this cross-sectional health checkup study, we enrolled a population of 284,635 subjects from Wuhu between 2011 and 2016. All participants completed the physical examination, blood biochemical examination, and blood routine examination. RESULTS The prevalence of diabetes in men and women was 6.11% and 2.98%, respectively. The average level of HSA and FPG was significantly higher in men than in women (48.44 ± 3.25 vs. 47.14 ± 3.22, P < 0.0001; 5.50 ± 1.26 vs. 5.26 ± 0.94, P < 0.0001). There were significant differences in blood biochemistry and blood routine values by gender. After adjusting for confounding factors, the results showed that FPG and HSA were a V-shaped curve, and the threshold value of HSA was 40.7 mmol/L. FPG and HSA still showed a V-shaped curve after stratification by gender and age. In the male group, FPG decreased with HSA when HSA<42.3 mmol/L, and increased when HSA ≥ 42.3 mmol/L. In the female group, FPG decreased with HSA when HSA<35.7 mmol/L, and increased when HSA ≥ 35.7 mmol/L. In the age<65 group, FPG decreased with HSA when HSA<37.5 mmol/L, and increased when HSA ≥ 37.5 mmol/L. In the age ≥ 65 group, FPG decreased with HSA when HSA<43.2 mmol/L, and increased when HSA ≥ 43.2 mmol/L. CONCLUSIONS A V-shape relationship exists between fasting plasma glucose and human serum albumin among the Chinese health checkup population studied.
Collapse
Affiliation(s)
- Chenxu Wang
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Lei Cao
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Wendan Mei
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Yicheng Fang
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Xia Ren
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Jian Hu
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Fan Su
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Grace Tavengana
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Mingfei Jiang
- School of Clinical Medicine, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Huan Wu
- School of Laboratory Medicine, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China
| | - Yufeng Wen
- School of Public Health, Wannan Medical College, 22 West Wenchang Road, Wuhu, 241002, Anhui Province, People's Republic of China.
| |
Collapse
|
7
|
Greenwood MP, Greenwood M, Bárez-López S, Hawkins JW, Short K, Tatovic D, Murphy D. Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release. Mol Metab 2023; 70:101692. [PMID: 36773648 PMCID: PMC9969259 DOI: 10.1016/j.molmet.2023.101692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
OBJECTIVES The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release. METHODS We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland. RESULTS We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis. CONCLUSION In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.
Collapse
Affiliation(s)
- Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Soledad Bárez-López
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Joe W Hawkins
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Katherine Short
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| | - Danijela Tatovic
- Diabetes and Endocrinology Department, North Bristol NHS Trust, Bristol, United Kingdom
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom
| |
Collapse
|
8
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Antidiuretic hormone and the activation of glucose production during high intensity aerobic exercise. Metabol Open 2021; 11:100113. [PMID: 34381988 PMCID: PMC8333141 DOI: 10.1016/j.metop.2021.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to investigate the role that antidiuretic hormone (ADH) may play in the activation of glucose production during high intensity aerobic exercise. Materials/methods This study was part of larger study based on a repeated measures cross-over study design and involved ten adult participants who exercised in the morning at 80 % V̇O2peak for up to 40 min or until exhaustion. During and after exercise, the participants were subjected to a morning euglycaemic/euinsulinaemic clamp while [6,6-2H2]glucose was infused and blood sampled to measure the endogenous rate of glucose appearance (Ra) and ADH levels. Results The levels of plasma ADH were 1.8 ± 0.2 pmol/L (mean ± SEM) at rest and increased to 10.5 ± 2.1 pmol/L at the end of exercise (mean ± SEM), which lasted 8.5–40 min. In response to exercise, glucose Ra also rose significantly (p < 0.05), but there was no significant association between changes in ADH levels and glucose Ra (r = 0.49; p = 0.150). Conclusions Although the significant increase in glucose Ra and ADH levels during high intensity aerobic exercise suggest for the first time that these processes may be causally related, there was no significant association between these variables, maybe because of the small sample size and varying exercise durations. Hence, the importance of the causal role that ADH may play in the exercise-mediated activation of hepatic glucose production warrants further in depth investigations. Intense aerobic exercise in T1D causes a significant increase in plasma ADH level and endogenous glucose production rate. This study raises the possibility of a causal relationship between these variables during intense exercise in humans. The role of ADH in activation of endogenous glucose production during intense exercise warrants further investigations.
Collapse
|
10
|
The 'Jekyll and Hyde' of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int J Mol Sci 2021; 22:ijms22073344. [PMID: 33805856 PMCID: PMC8037741 DOI: 10.3390/ijms22073344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. Inversely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA), and sympathetic nervous system activation. Glucocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of energy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance, and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, and the most prominent are early life adversity, or exposure to traumatic stress. We hypothesise that when the HPA axis is so disturbed after early life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Collapse
|
11
|
Zaplatosch ME, Adams WM. The Effect of Acute Hypohydration on Indicators of Glycemic Regulation, Appetite, Metabolism and Stress: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092526. [PMID: 32825404 PMCID: PMC7551868 DOI: 10.3390/nu12092526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence synthesizing the effects of acute body water losses on various markers of glycemic regulation, appetite, metabolism, and stress is lacking. Thus, the purpose of this review was to summarize the response of various hormonal changes involved in these physiologic functions to dehydration. A comprehensive literature search for peer-reviewed research in the databases PubMed, Scopus, CINAHL, and SportDiscus was conducted. Studies were included if they contained samples of adults (>18 years) and experimentally induced dehydration as measured by acute body mass loss. Twenty-one articles were eligible for inclusion. Findings suggested cortisol is significantly elevated with hypohydration (standard mean difference [SMD] = 1.12, 95% CI [0.583, 1.67], p < 0.0001). Testosterone was significantly lower in studies where hypohydration was accompanied by caloric restriction (SMD= -1.04, 95% CI [-1.93, -0.14], p = 0.02), however, there were no changes in testosterone in studies examining hypohydration alone (SMD = -0.17, 95% CI [-0.51 0.16], p = 0.30). Insulin and ghrelin were unaffected by acute total body water losses. Acute hypohydration increases markers of catabolism but has a negligible effect on markers of glycemic regulation, appetite, anabolism and stress. Given the brevity of existing research, further research is needed to determine the impact of hydration on glucagon, leptin, peptide YY and the subsequent outcomes relevant to both health and performance.
Collapse
|
12
|
Holuka C, Merz MP, Fernandes SB, Charalambous EG, Seal SV, Grova N, Turner JD. The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity? Int J Mol Sci 2020; 21:E5094. [PMID: 32707661 PMCID: PMC7404093 DOI: 10.3390/ijms21145094] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
A poor socioeconomic environment and social adversity are fundamental determinants of human life span, well-being and health. Previous influenza pandemics showed that socioeconomic factors may determine both disease detection rates and overall outcomes, and preliminary data from the ongoing coronavirus disease (COVID-19) pandemic suggests that this is still true. Over the past years it has become clear that early-life adversity (ELA) plays a critical role biasing the immune system towards a pro-inflammatory and senescent phenotype many years later. Cytotoxic T-lymphocytes (CTL) appear to be particularly sensitive to the early life social environment. As we understand more about the immune response to SARS-CoV-2 it appears that a functional CTL (CD8+) response is required to clear the infection and COVID-19 severity is increased as the CD8+ response becomes somehow diminished or exhausted. This raises the hypothesis that the ELA-induced pro-inflammatory and senescent phenotype may play a role in determining the clinical course of COVID-19, and the convergence of ELA-induced senescence and COVID-19 induced exhaustion represents the worst-case scenario with the least effective T-cell response. If the correct data is collected, it may be possible to separate the early life elements that have made people particularly vulnerable to COVID-19 many years later. This will, naturally, then help us identify those that are most at risk from developing the severest forms of COVID-19. In order to do this, we need to recognize socioeconomic and early-life factors as genuine medically and clinically relevant data that urgently need to be collected. Finally, many biological samples have been collected in the ongoing studies. The mechanisms linking the early life environment with a defined later-life phenotype are starting to be elucidated, and perhaps hold the key to understanding inequalities and differences in the severity of COVID-19.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Myriam P Merz
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Sara B Fernandes
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Eleftheria G Charalambous
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Snehaa V Seal
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
- Calbinotox, Faculty of Science and Technology, Lorraine University, 54506 Nancy, France
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, L-4345 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Perrier ET, Armstrong LE, Bottin JH, Clark WF, Dolci A, Guelinckx I, Iroz A, Kavouras SA, Lang F, Lieberman HR, Melander O, Morin C, Seksek I, Stookey JD, Tack I, Vanhaecke T, Vecchio M, Péronnet F. Hydration for health hypothesis: a narrative review of supporting evidence. Eur J Nutr 2020; 60:1167-1180. [PMID: 32632658 PMCID: PMC7987589 DOI: 10.1007/s00394-020-02296-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE An increasing body of evidence suggests that excreting a generous volume of diluted urine is associated with short- and long-term beneficial health effects, especially for kidney and metabolic function. However, water intake and hydration remain under-investigated and optimal hydration is poorly and inconsistently defined. This review tests the hypothesis that optimal chronic water intake positively impacts various aspects of health and proposes an evidence-based definition of optimal hydration. METHODS Search strategy included PubMed and Google Scholar using relevant keywords for each health outcome, complemented by manual search of article reference lists and the expertise of relevant practitioners for each area studied. RESULTS The available literature suggest the effects of increased water intake on health may be direct, due to increased urine flow or urine dilution, or indirect, mediated by a reduction in osmotically -stimulated vasopressin (AVP). Urine flow affects the formation of kidney stones and recurrence of urinary tract infection, while increased circulating AVP is implicated in metabolic disease, chronic kidney disease, and autosomal dominant polycystic kidney disease. CONCLUSION In order to ensure optimal hydration, it is proposed that optimal total water intake should approach 2.5 to 3.5 L day-1 to allow for the daily excretion of 2 to 3 L of dilute (< 500 mOsm kg-1) urine. Simple urinary markers of hydration such as urine color or void frequency may be used to monitor and adjust intake.
Collapse
Affiliation(s)
- Erica T Perrier
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France.
| | - Lawrence E Armstrong
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.,Hydration & Nutrition, LLC, Newport News, VA, USA
| | - Jeanne H Bottin
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - William F Clark
- London Health Sciences Centre and Western University, London, ON, Canada
| | - Alberto Dolci
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Isabelle Guelinckx
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Alison Iroz
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Stavros A Kavouras
- College of Health Solutions and Hydration Science Lab, Arizona State University, Phoenix, AZ, USA
| | - Florian Lang
- Department of Physiology, Eberhard Karls University, Tübingen, Germany
| | | | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Clementine Morin
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Isabelle Seksek
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Jodi D Stookey
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Ivan Tack
- Explorations Fonctionnelles Physiologiques, Hôpital Rangueil, Toulouse, France
| | - Tiphaine Vanhaecke
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - Mariacristina Vecchio
- Health, Hydration & Nutrition Science, Danone Research, Route Départementale 128, 91767, Palaiseau cedex, France
| | - François Péronnet
- École de Kinésiologie et des Sciences de l'activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Hydration Status and Cardiovascular Function. Nutrients 2019; 11:nu11081866. [PMID: 31405195 PMCID: PMC6723555 DOI: 10.3390/nu11081866] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hypohydration, defined as a state of low body water, increases thirst sensations, arginine vasopressin release, and elicits renin–angiotensin–aldosterone system activation to replenish intra- and extra-cellular fluid stores. Hypohydration impairs mental and physical performance, but new evidence suggests hypohydration may also have deleterious effects on cardiovascular health. This is alarming because cardiovascular disease is the leading cause of death in the United States. Observational studies have linked habitual low water intake with increased future risk for adverse cardiovascular events. While it is currently unclear how chronic reductions in water intake may predispose individuals to greater future risk for adverse cardiovascular events, there is evidence that acute hypohydration impairs vascular function and blood pressure (BP) regulation. Specifically, acute hypohydration may reduce endothelial function, increase sympathetic nervous system activity, and worsen orthostatic tolerance. Therefore, the purpose of this review is to present the currently available evidence linking acute hypohydration with altered vascular function and BP regulation.
Collapse
|