1
|
Savardekar A, Fernandes E, Padhye-Pendse A, Gupta T, Pol J, Phadke M, Desai S, Jadhav S, Rajwade J, Banerjee A. Adipocytes Promote Endometrial Cancer Progression Through Activation of the SIRT1-HMMR Signaling Axis. Mol Carcinog 2024; 63:2363-2381. [PMID: 39254492 DOI: 10.1002/mc.23815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Adipocyte is a predominant component of the omental adipose tissue that influences the tumor microenvironment and increases the risk of endometrial cancer progression (EC), however, little is known about the underlying mechanism. In this study, using a co-culture model, we found that the adipocyte-EC cell interaction promoted SIRT1 signaling in vitro and in vivo xenograft mice models. Furthermore, immunostaining of SIRT1 protein showed significantly higher expression of SIRT1 in endometrial cancer patients than in normal endometria. RNA sequencing analysis revealed HMMR (hyaluronan-mediated motility receptor), an oncogene, as a downstream effector of SIRT1 in adipocyte-associated EC. Transient knockdown and chromatin immunoprecipitation assays showed that SIRT1 inhibition impedes transcription of the HMMR gene via FOXM1, and reduced expression of HMMR in co-cultured EC cells blocks AURKA activation via TPX2, leading to cell cycle arrest. This is the first study to report the positive correlation between SIRT1 and HMMR in EC patient tumors and might be used as a potential biomarker in EC. Notably, SIRT1 regulates HMMR expression in a FOXM1-dependent manner, and interfering with SIRT1 may provide a promising strategy for the management of endometrial cancer.
Collapse
Affiliation(s)
- Akanksha Savardekar
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Ellerhea Fernandes
- Department of Surgery, Wanless Mission Hospital, Miraj, Maharashtra, India
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | | | - Tanish Gupta
- Department of Electrical and Electronics Engineering, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Jaydeep Pol
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Madhura Phadke
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sharad Desai
- Mahatma Gandhi Cancer Hospital, Miraj, Maharashtra, India
| | - Sachin Jadhav
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Jyutika Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
2
|
Liu N, Li J, Dai H, Liang X, Fan H. Involvement of SIRT1-mediated cellular immune response in cancer. Biomed Pharmacother 2024; 180:117482. [PMID: 39321514 DOI: 10.1016/j.biopha.2024.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
The morbidity and mortality of cancer are rising rapidly worldwide and immunotherapy has become an effective means to curb the progress of cancer. Sirtuin-1(SIRT1) is a NAD+ -dependent deacetylase that plays a key role in cancer development and immune regulation through mediating a variety of signaling pathways. Targeting SIRT1 in immunotherapy could enhance or erod immune responses against cancer cells, while SIRT1 activator and inhibitors are being developed as potential antineoplastic agents with important implications in clinic. This review summarizes the impact of SIRT1 in different types of immune cells and mechanism of SIRT1-mediated immune responses in tumor progression as well as its therapeutic perspectives.
Collapse
Affiliation(s)
- Nan Liu
- Department of Anesthesiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jiafang Li
- Department of Dermatology, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Hui Dai
- Department of Tumor and Blood Disease, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Xinyue Liang
- Departments of Hematology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Hongqiong Fan
- Departments of Hematology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Karkon-Shayan S, Aliashrafzadeh H, Dianat-Moghadam H, Rastegar-Pouyani N, Majidi M, Zarei M, Moradi-Vastegani S, Bahramvand Y, Babaniamansour S, Jafarzadeh E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem 2023; 125:152058. [PMID: 37336070 DOI: 10.1016/j.acthis.2023.152058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain and spinal cord tumors. Despite the significant development in application of antitumor drugs, no significant increases have been observed in the survival rates of patients with GBM, as GBM cells acquire resistance to conventional anticancer therapeutic agents. Multiple studies have revealed that PI3K/Akt, MAPK, Nanog, STAT 3, and Wnt signaling pathways are involved in GBM progression and invasion. Besides, biological processes such as anti-apoptosis, autophagy, angiogenesis, and stemness promote GBM malignancy. Resveratrol (RESV) is a non-flavonoid polyphenol with high antitumor activity, the potential of which, regulating signaling pathways involved in cancer malignancy, have been demonstrated by many studies. Herein, we present the potential of RESV in both single and combination therapy- targeting various signaling pathways- which induce apoptotic cell death, re-sensitize cancer cells to radiotherapy, and induce chemo-sensitizing effects to eventually inhibit GBM progression.
Collapse
Affiliation(s)
- Sepideh Karkon-Shayan
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hasan Aliashrafzadeh
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nima Rastegar-Pouyani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Majidi
- Student Research Committee, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mahdi Zarei
- Student Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moradi-Vastegani
- Department of physiology, faculty of medicine, physiology research center, Ahvaz jundishapur university of medical sciences, Ahvaz, Iran
| | - Yaser Bahramvand
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Babaniamansour
- Department of Pathology, School of Medicine, Islamic Azad University Tehran Faculty of Medicine, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lu DY, Yeh WL, Lin C. Bradykinin B1 Receptor Affects Tumor-Associated Macrophage Activity and Glioblastoma Progression. Antioxidants (Basel) 2023; 12:1533. [PMID: 37627528 PMCID: PMC10451655 DOI: 10.3390/antiox12081533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bradykinin is a small active peptide and is considered an inflammatory mediator in several pathological conditions. Bradykinin exerts its effects by coupling to its receptors, including bradykinin B1 (B1R) and bradykinin B2. B1R has been implicated in the development of various cancers. Our previous study reported that B1R promoted glioblastoma (GBM) development by supporting the migration and invasion of GBM cells. However, the mechanisms underlying the effects of B1R on tumor-associated macrophages (TAMs) and GBM progression remain unknown. Accordingly, to explore the regulatory effects of B1R overexpression (OE) in GBM on tumor-associated immune cells and tumor progression, we constructed a B1R wild-type plasmid and developed a B1R OE model. The results reveal that B1R OE in GBM promoted the expression of ICAM-1 and VCAM-1-cell adhesion molecules-in GBM. Moreover, B1R OE enhanced GBM cell migration ability and monocyte attachment. B1R also regulated the production of the protumorigenic cytokines and chemokines IL-6, IL-8, CXCL11, and CCL5 in GBM, which contributed to tumor progression. We additionally noted that B1R OE in GBM increased the expression of CD68 in TAMs. Furthermore, B1R OE reduced the level of reactive oxygen species in GBM cells by upregulating heme oxygenase-1, an endogenous antioxidant protein, thereby protecting GBM cells from oxidative stress. Notably, B1R OE upregulated the expression of programmed death-ligand 1 in both GBM cells and macrophages, thus providing resistance against T-cell response. B1R OE in GBM also promoted tumor growth and reduced survival rates in an intracranial xenograft mouse model. These results indicate that B1R expression in GBM promotes TAM activity and modulates GBM progression. Therefore, B1R could be an effective target for therapeutic methods in GBM.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan (D.-Y.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
SESN2 Could Be a Potential Marker for Diagnosis and Prognosis in Glioma. Genes (Basel) 2023; 14:genes14030701. [PMID: 36980973 PMCID: PMC10048065 DOI: 10.3390/genes14030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
(1) Background: Glioma is among the most common brain tumors, and is difficult to eradicate with current therapeutic strategies due to its highly invasive and aggressive characteristics. Sestrin2 (SESN2) is an autophagy inducer. The effect of SESN2 on glioma is controversial and unclear. (2) Methods: We downloaded related RNA-seq data from the TCGA and GTEx databases. Bioinformatic analyses including differential gene expression analysis, KM survival curve analysis, univariate and multivariate Cox regression analyses, nomogram analysis, ROC curve analysis, gene function enrichment analysis, and immune cell infiltration analysis were conducted. In addition, data from the Human Protein Atlas (HPA) database were collected to validate SESN2 expression in glioma. (3) Results: In comparison with normal tissue, expression of SESN2 in glioma tissue was higher, and those with higher expressions had significantly lower overall survival rates. The results of univariate Cox regression analyses showed that SESN2 can be a disadvantageous factor in poor glioma prognosis. Both nomograms and ROC curves confirmed these findings. Meanwhile, according to gene function analysis, SESN2 may be involved in immune responses and the tumor microenvironment (TME). Based on the HPA database results, SESN2 is localized in the cytosol and shows high expression in glioma. (4) Conclusions: The expression of SESN2 in gliomas was positively relevant to a poorer prognosis, suggesting that SESN2 could be used as a prognostic gene.
Collapse
|
6
|
Long Noncoding RNA SNHG4 Attenuates the Injury of Myocardial Infarction via Regulating miR-148b-3p/DUSP1 Axis. Cardiovasc Ther 2022; 2022:1652315. [PMID: 36545243 PMCID: PMC9744614 DOI: 10.1155/2022/1652315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI. Methods Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1β, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships. Results SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia. Conclusions Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.
Collapse
|
7
|
Soybean-Derived Tripeptide Leu-Ser-Trp (LSW) Protects Human Vascular Endothelial Cells from TNFα-Induced Oxidative Stress and Inflammation via Modulating TNFα Receptors and SIRT1. Foods 2022; 11:foods11213372. [PMID: 36359987 PMCID: PMC9654956 DOI: 10.3390/foods11213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean is a rich source of high-quality proteins and an excellent food source of bioactive peptides. A tripeptide, Leu−Ser−Trp (LSW), was previously identified from soybean as an angiotensin-converting enzyme inhibitory peptide. In the present work, we further studied its antioxidant and anti-inflammatory activities in human vascular endothelial cells (EA.hy926) and elucidated the mechanisms underlying these biological activities. In tumor necrosis factor alpha (TNFα)-stimulated EA.hy926 cells, LSW significantly inhibited oxidative stress, both reduced superoxide and malondialdehyde levels (p < 0.001), owing to its free-radical-scavenging ability. LSW treatment also mitigated the elevated protein expression of vascular adhesion molecule-1 (p < 0.001) and cyclooxygenase 2 (p < 0.01) via inhibition of NF-κB and p38/JNK signaling, respectively. Additionally, LSW also inhibited the endogenous formation of TNFα and attenuated the expression of its two receptors in EA.hy926 cells. Furthermore, LSW upregulated sirtuin-1 level, which partially contributed to its anti-inflammatory activity. These results demonstrate the multiple roles of LSW in ameliorating vascular endothelial oxidative stress and inflammatory responses, which support its uses as a nutraceutical or functional food ingredient for combating endothelial dysfunction and cardiovascular diseases.
Collapse
|
8
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
9
|
Psycho-Neuro-Endocrine-Immunology: A Role for Melatonin in This New Paradigm. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154888. [PMID: 35956837 PMCID: PMC9370109 DOI: 10.3390/molecules27154888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Psychoneuroendocrinoimmunology is the area of study of the intimate relationship between immune, physical, emotional, and psychological aspects. This new way of studying the human body and its diseases was initiated in the last century’s first decades. However, the molecules that participate in the communication between the immune, endocrine, and neurological systems are still being discovered. This paper aims to describe the development of psychoneuroendocrinoimmunology, its scopes, limitations in actual medicine, and the extent of melatonin within it.
Collapse
|
10
|
Fan H, Bhullar KS, Wang Z, Wu J. Chicken muscle protein-derived peptide VVHPKESF reduces TNFα-induced inflammation and oxidative stress by suppressing TNFR1 signaling in human vascular endothelial cells. Mol Nutr Food Res 2022; 66:e2200184. [PMID: 35770889 DOI: 10.1002/mnfr.202200184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Indexed: 11/09/2022]
Abstract
SCOPE This study aimed to investigate the protective effects of four chicken muscle-derived peptides (Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. METHODS AND RESULTS Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10 ng/mL) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) were measured by qRT-PCR or western blotting; soluble TNFR1 level and NADPH oxidase activity were determined by Elisa kits; superoxide was measured by dihydroethidium staining. Only V-F treatment inhibited the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuated both gene and protein expressions of TNFR1. CONCLUSION V-F treatment ameliorated TNFα-induced endothelial inflammation and oxidative stress possibly via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Zihan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
11
|
Yan Z, Zhang X, Hua L, Huang L. Melatonin inhibits the malignant progression of glioblastoma via regulating miR-16-5p/PIM1. Curr Neurovasc Res 2022; 19:92-99. [PMID: 35388757 DOI: 10.2174/1567202619666220406084947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Melatonin (MT) is a pineal hormone with antineoplastic potential. This study aims to explore the therapeutic potential and mechanism of MT on glioblastoma (GBM). METHODS A human GBM cell line, LN229 was used for evaluating the function of MT. Cell viability, apoptosis, and migration were detected by CCK-8, flow cytometry, and transwell assays, respectively. The mRNA and protein expression of specific genes were measured by qRT-PCR and western blot, respectively. The regulatory relationship between miR-16-5p and PIM1 was validated by dual luciferase reporter gene assay. A mouse xenograft model was established to prove the anti-tumor effect and related mechanisms of MT in vivo. RESULTS MT inhibited the viability and migration, and promoted the apoptosis of LN229 cells in a dose-dependent manner. MiR-16-5p was dose-dependently up-regulated by MT in LN229 cells, which negatively regulated its target PIM1. MiR-16-5p inhibitor eliminated the anti-tumor effect of MT in LN229 cells, while si-PIM1 reversed the effect of miR-16-5p inhibitor in MT-treated cells. MT inhibited the tumor growth in vivo and MT-induced PIM1 down-regulation was reversed by miR-16-5p inhibition in tumor tissues. CONCLUSIONS MT inhibits the malignant progression of GBM via regulating miR-16-5p-midiated PIM1.
Collapse
Affiliation(s)
- Zhaoxian Yan
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Hua
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lifa Huang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Guo J, Yu L. CircWEE1/miR-138 axis promotes the malignant progression of glioma by regulating SIRT1. Transl Cancer Res 2022; 10:1863-1873. [PMID: 35116508 PMCID: PMC8797346 DOI: 10.21037/tcr-21-251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background This study aims to reveal the potential impact of circWEE1 on the malignant progression of gliomas and its mechanism. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) were used to detect circWEE1 levels in glioma tissues and cell lines. The relationship between circWEE1 expression and glioma metastasis was analyzed. Results After knocking out or over-expressing circWEE1, the effects on glioma cells were examined separately. Subsequently, the regulatory relationship of circWEE1 to miR-138 was detected by a dual luciferase reporter gene. In addition, we evaluated the role of silent information regulator 1 (SIRT1) in the progression of gliomas affected by circWEE1 through a rescue experiment. CircWEE1 was significantly up-regulated in glioma tissues and cell lines. At the same time, its expression level was significantly higher in glioma patients with lymphatic or distant metastasis than in glioma patients with non-metastasis. The down-regulation of circWEE1 reduced the viability, migration, and invasion ability of T98-G cells. The expression of miR-138 is negatively regulated by WEE1, while miR-138 directly targets and regulates the expression of SIRT1. Conclusions The rescue experiment confirmed that SIRT1 is a regulator of circWEE1 in the malignant progression of glioma. In summary, the CircWEE1/miR-138 axis may regulate SIRT1 to promote malignant progression in glioma.
Collapse
Affiliation(s)
- Jinhui Guo
- Department of Neurosurgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Yu
- Department of Neurosurgery, Jin Zhong City Chinese Hospital, Jinzhong, China
| |
Collapse
|
13
|
Wang L, Lan J, Tang J, Luo N. MCP-1 targeting: Shutting off an engine for tumor development. Oncol Lett 2021; 23:26. [PMID: 34868363 PMCID: PMC8630816 DOI: 10.3892/ol.2021.13144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
A large amount of research has proven that monocyte chemotactic protein-1 (MCP-1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP-1 is associated with tumor development. MCP-1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP-1 exerts its effects mainly via the MCP-1/C-C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK-3β/Snail, c-Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP-1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP-1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP-1. The improved understanding into the structure of MCP-1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinxin Lan
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
14
|
Lin C, Lai SW, Shen CK, Chen CW, Tsai CF, Liu YS, Lu DY, Huang BR. Fenofibrate inhibits hypoxia-inducible factor-1 alpha and carbonic anhydrase expression through activation of AMP-activated protein kinase/HO-1/Sirt1 pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:2551-2561. [PMID: 34520103 DOI: 10.1002/tox.23369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer and its associated conditions have significant impacts on public health at many levels worldwide, and cancer is the leading cause of death among adults. Peroxisome proliferator-activated receptor α (PPARα)-specific agonists, fibrates, have been approved by the Food and Drug Administration for managing hyperlipidemia. PPARα-specific agonists exert anti-cancer effects in many human cancer types, including glioblastoma (GBM). Recently, we have reported that the hypoxic state in GBM stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), thus contributing to tumor escape from immune surveillance by activating the expression of the pH-regulating protein carbonic anhydrase IX (CA9). In this study, we aimed to study the regulatory effects of the PPARα agonist fibrate on the regulation of HIF-1α expression and its downstream target protein in GBM. Our findings showed that fenofibrate is the high potency compound among the various fibrates that inhibit hypoxia-induced HIF-1α and CA9 expression in GBM. Moreover, fenofibrate-inhibited HIF-1α expression is mediated by HO-1 activation in GBM cells through the AMP-activated protein kinase (AMPK) pathway. In addition, fenofibrate-enhanced HO-1 upregulation activates SIRT1 and leads to subsequent accumulation of SIRT1 in the nucleus, which further promotes HIF-1α deacetylation and inhibits CA9 expression. Using a protein synthesis inhibitor, cycloheximide, we also observed that fenofibrate inhibited HIF-1α protein synthesis. In addition, the administration of the proteasome inhibitor MG132 showed that fenofibrate promoted HIF-1α protein degradation in GBM. Hence, our results indicate that fenofibrate is a useful anti-GBM agent that modulates hypoxia-induced HIF-1α expression through multiple cellular pathways.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
15
|
Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, Lin Q, Chen X, Deng Y. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol Neurobiol 2021; 58:6552-6576. [PMID: 34585328 PMCID: PMC8639545 DOI: 10.1007/s12035-021-02568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.
Collapse
Affiliation(s)
- Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfen Lin
- Department of Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peixian Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiongyu Lin
- Department of Critical Care Medicine, Jieyang People's Hospital, Jieyang, 522000, Guangdong, China
| | - Xuan Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College (FCS), Shantou, 515063, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Ye L, Xu Y, Hu P, Wang L, Yang J, Yuan F, Wang Y, Zhang C, Tian D, Chen Q. Development and Verification of Glutamatergic Synapse-Associated Prognosis Signature for Lower-Grade Gliomas. Front Mol Neurosci 2021; 14:720899. [PMID: 34776862 PMCID: PMC8581158 DOI: 10.3389/fnmol.2021.720899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Lower-grade glioma (LGG) is the most common histology identified in gliomas, a heterogeneous tumor that may develop into high-grade malignant glioma that seriously shortens patient survival time. Recent studies reported that glutamatergic synapses might play an essential role in the progress of gliomas. However, the role of glutamatergic synapse-related biomarkers in LGG has not been systemically researched yet. Methods: The mRNA expression data of glioma and normal brain tissue were obtained from The Cancer Genome Atlas database and Genotype-Tissue Expression, respectively, and the Chinese Glioma Genome Atlas database was used as a validation set. Difference analysis was performed to evaluate the expression pattern of glutamatergic synapse-related genes (GSRGs) in LGG. The least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct the glutamatergic synapse-related risk signature (GSRS), and the risk score of each LGG sample was calculated based on the coefficients and expression value of selected GSRGs. Univariate and multivariate Cox regression analyses were used to investigate the prognostic value of risk score. Immunity profile and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the association between risk score and the characters of tumor microenvironment in LGG. Gene set variation analysis (GSVA) was performed to investigate the potential pathways related to GSRS. The HPA database and real-time PCR were used to identify the expression of hub genes identified in GSRS. Results: A total of 22 genes of 39 GSRGs were found differentially expressed among normal and LGG samples. Through the LASSO algorithm, 14-genes GSRS constructed were associated with the prognosis and clinicopathological features of patients with LGG. Furthermore, the risk score level was significantly positively correlated with the infiltrating level of immunosuppressive cells, including M2 macrophages and regulatory T cells. GSVA identified a series of cancer-related pathways related to GSRS, such as P13K-AKT and P53 pathways. Moreover, ATAD1, NLGN2, OXTR, and TNR, hub genes identified in GSRS, were considered as potential prognostic biomarkers in LGG. Conclusion: A 14-genes GSRS was constructed and verified in this study. We provided a novel insight into the role of GSRS in LGG through a series of bioinformatics methods.
Collapse
Affiliation(s)
- Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yixuan Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunyu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daofeng Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Ge X, Wang Z, Jiang R, Ren S, Wang W, Wu B, Zhang Y, Liu Q. SCAMP4 is a novel prognostic marker and correlated with the tumor progression and immune infiltration in glioma. Int J Biochem Cell Biol 2021; 139:106054. [PMID: 34390854 DOI: 10.1016/j.biocel.2021.106054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Glioma is the most prevalent brain tumor with high mortality and morbidity and the prognosis of patients remains very poor. Glioma therapy is largely limited by the extraordinary invasive capability in glioma and the lack of valuable biomarkers of LGG and GBM. So it is urgent and important for us to identify valuable biomarkers to treat glioma patients. SCAMP4 (Secretory Carrier-Associated Membrane Protein 4) has not been reported to be linked to cancer prognostic or any treatments. METHODS We analyzed the role of SCAMP4 in LGG and GBM via the publicly available CGGA (The Chinese Glioma Atlas) and TCGA (The Cancer Genome Atlas) databases. The correlations between SCAMP4 and the immune cells were analyzed by applying CIBERSORT and TIMER, while R was utilized in the analysis of the statistical data. RESULTS Our results indicated that SCAMP4 which is correlated to age, stage, grade and tumor status and may be a promising independent prognostic factor in LGG and GBM. Meanwhile, the expression of SCAMP4 is closely associated with some tumor-infiltrating immune cells such as Monocytes, NK cells activated, Macrophages, Mast cells resting and so on. Furthermore, during the in-depth analysis of the integrated correlations, we also find that isocitrate dehydrogenase 1 (IDH1) and SCAMP4 shared similar prognostic values. CONCLUSIONS Together with all these findings, the identification of SCAMP4 as a new biomarker could elucidate how the immune microenvironment influence the glioma development. With further analysis, SCAMP4 may be a predictor for glioma prognosis.
Collapse
Affiliation(s)
- Xinqi Ge
- Medical School of Nantong University, Nantong, China; Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China; Department of Neurosurgery, Nantong University Affiliated Hospital, Nantong, China
| | - Rui Jiang
- Department of Neurosurgery, Nantong University Affiliated Hospital, Nantong, China
| | - Shiqi Ren
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Wei Wang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Bing Wu
- Department of Neurosurgery, Nantong University Affiliated Hospital, Nantong, China
| | - Yu Zhang
- Department of Neurosurgery, Nantong University Affiliated Hospital, Nantong, China.
| | - Qianqian Liu
- Department of Neurosurgery, Nantong University Affiliated Hospital, Nantong, China.
| |
Collapse
|
18
|
Regulatory effects of IL-1β in the interaction of GBM and tumor-associated monocyte through VCAM-1 and ICAM-1. Eur J Pharmacol 2021; 905:174216. [PMID: 34058204 DOI: 10.1016/j.ejphar.2021.174216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and lethal brain tumor with high inflammation. GBM cells infiltrate microglia and macrophages and are surrounded by pro-inflammatory cytokines. Interleukin (IL)-1β, which is abundantly expressed in the tumor microenvironment, is involved in tumor progression. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 mediate cell-cell interactions, and these cell adhesion molecules (CAMs) can be regulated by cytokines in immune cells or cancer cells in the inflammatory tumor microenvironment. In this study, we found that ICAM-1 and VCAM-1 expression was induced when GBM cells were treated with IL-1β, and that adhesive interaction between monocytes and GBM cells increased accordingly. The levels of soluble CAMs (sICAM-1 and sVCAM-1) were also increased in the supernatants induced by IL-1β. Furthermore, the conditioned media contained sICAM-1 and sVCAM-1, which further promoted IL-6 and CCL2 expression in differentiated macrophages. IL-1β downregulated Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1) in GBM. The expression of ICAM-1 and VCAM-1 was regulated by p38, AKT, and NF-κB signaling pathways, which were modulated by SHP-1 signaling. The present study suggests that IL-1β-induced protein expression of ICAM-1 and VCAM-1 in GBM may modulate the adhesive interaction between GBM and monocytes. In addition, IL-1β also induced the soluble form of ICAM-1 and VCAM-1 in GBM, which plays a key role in the regulation of tumor-associated monocyte/macrophage polarization.
Collapse
|
19
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
20
|
Wang C, Zhao Z, Qi Q, Wang J, Kong Y, Feng Z, Chen A, Li W, Zhang Q, Wang J, Huang B, Li X. miR-6858 plays a key role in the process of melatonin inhibition of the malignant biological behavior of glioma. J Clin Neurosci 2021; 87:137-146. [PMID: 33863521 DOI: 10.1016/j.jocn.2021.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules with a length of 18-25 nucleotides, have been shown to be involved in mediating various malignant properties of GBM, including growth, invasion and angiogenesis. Here, we investigated whether miRNAs might be involved in mediating the suppression of malignant properties of GBM by melatonin (MEL), an amine hormone secreted by the pineal gland. Sequencing was performed to screen specifically for miRNAs induced by MEL in U87 and an orthotopically xenografted primary GBM cell line, GBM#P3. MiR-6858-5p was the most significantly up-regulated miR in GBM cell lines in response to MEL (~5 × ). Transfection of a mimic of miR-6858-5p into both cell lines led to a decrease in viability of ~ 50% at 72 h, confirming a suppressive role for miR-6858-5p in GBM. In contrast, an inhibitor of miR-6858-5p rescued GBM cells from MEL suppression of proliferation, migration and invasion. Analysis using Targetscan yielded candidate mRNAs targeted by miR-6858-5p, some of which are involved in the SIRT/AKT signaling pathway. In cells transfected with a mimic or an inhibitor of miR-6858-5p, levels of SIRT3 and downstream components of the AKT signaling pathway were suppressed or up-regulated, respectively, both in vitro and in an in vivo orthotopic xenograft model. Our results elucidated a novel molecular mechanism underlying MEL suppression of GBM, highlighting a role for miRNAs, and provide a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Yang Kong
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China; Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, PR China; Shandong Key Laboratory of Brain Function Remodeling, PR China.
| |
Collapse
|
21
|
Wu LH, Huang BR, Lai SW, Lin C, Lin HY, Yang LY, Lu DY. SIRT1 activation by minocycline on regulation of microglial polarization homeostasis. Aging (Albany NY) 2020; 12:17990-18007. [PMID: 33021962 PMCID: PMC7585093 DOI: 10.18632/aging.103542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023]
Abstract
Sirtuin 1 (SIRT1) has been reported to be involved in the mechanisms underlying longevity and has also been indicated as a valuable regulator of age-related neurological disorders. Some natural products increase SIRT1 activity and stimulate deacetylation of various proteins. In the present study, SIRT1 overexpression by genetic modification or treatment with SIRT1 activators significantly inhibited the secretion of nitric oxide and expression of inducible nitric oxide synthase, cyclooxygenase 2, and proinflammatory mediator-interleukin 1β-in microglia. SIRT1 activation also decreased the levels of K379 acetyl-p53 and the protein inhibitor of activated Stat 1 expression in microglial cells. In addition, it dramatically promoted M2 polarization of microglia, which enhanced cell motility and altered phagocytic ability. We also used minocycline, a well-known inhibitor of microglial activation, to study the mechanism of SIRT1 signaling. Minocycline treatment decreased neuroinflammatory responses and promoted M2 polarization of microglia. It also reduced the acetyl-p53 level in the brain tissues in an inflammatory mouse model. Our findings demonstrated that SIRT1 participates in the maintenance of microglial polarization homeostasis and that minocycline exerts regulatory effects on SIRT1 activation. Therefore, our results indicate that SIRT1 activation may be a useful therapeutic target for the treatment of neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Ling-Hsuan Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan,Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan,Biomedical Technology R&D Center, China Medical University Hospital, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Abstract
Purpose of review This review focuses on the development and progression of glioblastoma through the brain and glioma microenvironment. Specifically we highlight how the tumor microenvironment contributes to the hallmarks of cancer in hopes of offering novel therapeutic options and tools to target this microenvironment. Recent findings The hallmarks of cancer, which represent elements of cancers that contribute to the disease's malignancy, yet elements within the brain tumor microenvironment, such as other cellular types as well as biochemical and biophysical cues that can each uniquely affect tumor cells, have not been well-described in this context and serve as potential targets for modulation. Summary Here, we highlight how the brain tumor microenvironment contributes to the progression and therapeutic response of tumor cells. Specifically, we examine these contributions through the lens of Hanahan & Weinberg's Hallmarks of Cancer in order to identify potential novel targets within the brain that may offer a means to treat brain cancers, including the deadliest brain cancer, glioblastoma.
Collapse
|
23
|
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:334-355. [PMID: 35582450 PMCID: PMC8992488 DOI: 10.20517/cdr.2020.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment-resistance is common in glioblastoma (GBM) and the glioblastoma stem-like cells (GSC) from which they arise. Current treatment options are generally regarded as very poor and this arises from a poor conceptualization of the biological underpinnings of GBM/GSC and of the plasticity that these cells are capable of utilizing in response to different treatments. A number of studies indicate melatonin to have utility in the management of GBM/GSC, both per se and when adjunctive to chemotherapy. Recent work shows melatonin to be produced in mitochondria, with the mitochondrial melatonergic pathway proposed to be a crucial factor in driving the wide array of changes in intra- and inter-cellular processes, as well as receptors that can be evident in the cells of the GBM/GSC microenvironment. Variations in the enzymatic conversion of N-acetylserotonin (NAS) to melatonin may be especially important in GSC, as NAS can activate the tyrosine receptor kinase B to increase GSC survival and proliferation. Consequently, variations in the NAS/melatonin ratio may have contrasting effects on GBM/GSC survival. It is proposed that mitochondrial communication across cell types in the tumour microenvironment is strongly driven by the need to carefully control the mitochondrial melatonergic pathways across cell types, with a number of intra- and inter-cellular processes occurring as a consequence of the need to carefully regulate the NAS/melatonin ratio. This better integrates previously disparate data on GBM/GSC as well as providing clear future research and treatment options.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
24
|
Galland S, Martin P, Fregni G, Letovanec I, Stamenkovic I. Attenuation of the pro-inflammatory signature of lung cancer-derived mesenchymal stromal cells by statins. Cancer Lett 2020; 484:50-64. [PMID: 32418888 DOI: 10.1016/j.canlet.2020.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Solid tumor growth triggers a dynamic host response, which recapitulates wound healing and defines the tumor microenvironment (TME). In addition to the action of the tumor cells themselves, the TME is maintained by a myriad of immune and stromal cell-derived soluble mediators and extracellular matrix components whose combined action supports tumor progression. However, therapeutic targeting of the TME has proven challenging because of incomplete understanding of the tumor-host crosstalk at the molecular level. Here, we investigated the crosstalk between mesenchymal stromal cells (MSCs) and primary cancer cells (PCCs) from human squamous cell lung carcinoma (SCC). We discovered that PCCs secrete CCL3 and stimulate IL-6, CCL2, ICAM-1 and VCAM-1 expression in MSCs and that the MSC-PCC crosstalk can be disrupted by the lipid-lowering drug simvastatin, which displays pleiotropic effects on cell metabolism and suppresses IL-6 and CCL2 production by MSCs and CCL3 secretion by PCCs. In addition, simvastatin inhibited spheroid formation by PCCs and negatively affected PCC survival. Our observations demonstrate that commonly used statins may be repurposed to target the TME in lung carcinoma.
Collapse
Affiliation(s)
- Sabine Galland
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland.
| | - Patricia Martin
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Giulia Fregni
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Igor Letovanec
- Clinical Pathology Service, Institute of Pathology, CHUV, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| |
Collapse
|
25
|
Zhang Y, Liu Y, Liu H, Zhao Z, Wu F, Zeng F. Clinical and Biological Significances of a Methyltransferase-Related Signature in Diffuse Glioma. Front Oncol 2020; 10:508. [PMID: 32373523 PMCID: PMC7185060 DOI: 10.3389/fonc.2020.00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA, RNA or protein is a reversible modification. The proteins and genes that regulate this modification can be a candidate target for tumor therapy. However, the characteristics of methyltransferase related genes in glioma remain obscure. In this study, we systematically analyzed the relationship between methyltransferase-related genes expression profiles and outcomes in glioma patients based on The Cancer Genome Atlas and Chinese Glioma Genome Atlas RNA sequencing datasets. Consensus clustering identified two robust groups with significantly different pathological features and prognosis. Then a methyltransferase-related risk signature was built by a Cox proportional hazards model with elastic net penalty. Moreover, the risk score is associated with patients' clinical and molecular features and can be used as an independent prognostic indicator for patients with glioma. Furthermore, genes associated with the high-risk group were involved in various aspects of the malignant progression of glioma via Gene Ontology analysis and Gene Set Enrichment Analysis. In summary, our study identified a methyltransferase-related risk signature for predicting the prognosis of gliomas.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Hanjie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
26
|
Melatonin's Antineoplastic Potential Against Glioblastoma. Cells 2020; 9:cells9030599. [PMID: 32138190 PMCID: PMC7140435 DOI: 10.3390/cells9030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most intransigent and aggressive brain tumors, and its treatment is extremely challenging and ineffective. To improve patients’ expectancy and quality of life, new therapeutic approaches were investigated. Melatonin is an endogenous indoleamine with an incredible variety of properties. Due to evidence demonstrating melatonin’s activity against several cancer hallmarks, there is growing interest in its use for preventing and treating cancer. In this review, we report on the potential effects of melatonin, alone or in combination with anticancer drugs, against GBM. We also summarize melatonin targets and/or the intracellular pathways involved. Moreover, we describe melatonin’s epigenetic activity responsible for its antineoplastic effects. To date, there are too few clinical studies (involving a small number of patients) investigating the antineoplastic effects of melatonin against GBM. Nevertheless, these studies described improvement of GBM patients’ quality of life and did not show significant adverse effects. In this review, we also report on studies regarding melatonin-like molecules with the tumor-suppressive properties of melatonin together with implemented pharmacokinetics. Melatonin effects and mechanisms of action against GBM require more research attention due to the unquestionably high potential of this multitasking indoleamine in clinical practice.
Collapse
|
27
|
Lai SW, Lin HJ, Liu YS, Yang LY, Lu DY. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel) 2020; 12:cancers12020380. [PMID: 32045997 PMCID: PMC7073205 DOI: 10.3390/cancers12020380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is characterized by severe hypoxic and acidic stress in an abnormal microenvironment. Monocarboxylate transporter (MCT)4, a pH-regulating protein, plays an important role in pH homeostasis of the glycolytic metabolic pathways in cancer cells. The present study showed that GBM exposure to hypoxic conditions increased MCT4 expression. We further analyzed the glioma patient database and found that MCT4 was significantly overexpressed in patients with GBM, and the MCT4 levels positively correlated with the clinico-pathological grades of gliomas. We further found that MCT4 knockdown abolished the hypoxia-enhanced of GBM cell motility and monocyte adhesion. However, the overexpression of MCT4 promoted GBM cell migration and monocyte adhesion activity. Our results also revealed that MCT4-regulated GBM cell motility and monocyte adhesion are mediated by activation of the serine/threonine-specific protein kinase (AKT), focal adhesion kinase (FAK), and epidermal growth factor receptor (EGFR) signaling pathways. Moreover, hypoxia mediated the acetylated signal transducer and activator of transcription (STAT)3 expression and regulated the transcriptional activity of hypoxia inducible factor (HIF)-1α in GBM cell lines. In a GBM mouse model, MCT4 was significantly increased in the tumor necrotic tissues. These findings raise the possibility for the development of novel therapeutic strategies targeting MCT4.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan;
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair and Research Center for Biotechnology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| |
Collapse
|