1
|
Yu Y, Qiu L. Nanotherapy therapy for acute respiratory distress syndrome: a review. Front Med (Lausanne) 2024; 11:1492007. [PMID: 39712175 PMCID: PMC11658980 DOI: 10.3389/fmed.2024.1492007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex and life-threatening disease characterized by severe respiratory failure. The lethality of ARDS remains alarmingly high, especially with the persistent ravages of coronavirus disease 2019 (COVID-19) in recent years. ARDS is one of the major complications of neocoronavirus pneumonia and the leading cause of death in infected patients. The large-scale outbreak of COVID-19 has greatly increased the incidence and mortality of ARDS. Despite advancements in our understanding of the causes and mechanisms of ARDS, the current clinical practice is still limited to the use of supportive medications to alleviate its progression. However, there remains a pressing need for effective therapeutic drugs to combat this devastating disease. In this comprehensive review, we discuss the commonly used therapeutic drugs for ARDS, including steroids, vitamin C, targeted inhibitors, and heparin. While these medications have shown some promise in managing ARDS, there is still a significant gap in the availability of definitive treatments. Moreover, we highlight the potential of nanocarrier delivery systems, such as liposomes, lipid nanoparticles, polymer nanoparticles, and inorganic nanoparticles, as promising therapeutic approaches for ARDS in the future. These innovative delivery systems have demonstrated encouraging results in early clinical trials and offer the potential for more targeted and effective treatment options. Despite the promising early results, further clinical trials are necessary to fully assess the efficacy and safety of nanotherapies for ARDS. Additionally, more in-depth research should be conducted to focus on the continuous development of precision therapies targeting different stages of ARDS development or different triggers. This will provide more ideas and rationale for the treatment of ARDS and ultimately lead to better patient outcomes.
Collapse
Affiliation(s)
| | - Liping Qiu
- Haining People’s Hospital, Haining Branch, The First Affiliated Hospital, Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
2
|
DONG Y, GUO Q, GAO Y, WANG H, BAI D. Revealing the scientific connotation of compatibility of Chinese medicine medica based on self-assembly technology. J TRADIT CHIN MED 2024; 44:1288-1295. [PMID: 39617714 PMCID: PMC11589565 DOI: 10.19852/j.cnki.jtcm.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2024]
Abstract
Chinese materia medica (CMM) compatibility is one core content in the theory of Traditional Chinese Medicine (TCM), and elaborating the scientific connotation of CMM compatibility is of great significance to promote the modernization of TCM. Self-assembly is the combination of active ingredients into aggregates through non-covalent bonds, such as hydrogen bonding, electrostatic interactions, ionic interactions, and hydrophobic interactions. The complex properties and special structures of CMM components create the basis for self-assembly. The self-assembled materials formed after CMM compatibility is an important part of the material basis for the efficacy of TCM, which can help explain the scientific connotations of CMM compatibility. This review summarizes the self-assembly phenomenon from the perspective of drug pair combinations in recent decades and explains the scientific connotation of CMM compatibility about the material basis, pharmacodynamic changes, and mechanism of action, providing new ideas and methods for the study of TCM.
Collapse
Affiliation(s)
- Yingying DONG
- 1 Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qin GUO
- 1 Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan GAO
- 1 Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan WANG
- 2 Basic Medical School,Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Dong BAI
- 1 Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Sadia H, Qureshi IZ, Naveed M, Aziz T, Alharbi M, Alasmari AF, Albekairi TH. Natural AI-based drug designing by modification of ascorbic acid and curcumin to combat buprofezin toxicity by using molecular dynamics study. Sci Rep 2024; 14:28445. [PMID: 39557884 PMCID: PMC11574189 DOI: 10.1038/s41598-024-79275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Buprofezin, a widely employed insecticide in agricultural practices, has elicited significant apprehension due to its prospective deleterious effects on non-target organisms and ecological systems. Its enduring presence in terrestrial and aquatic environments presents potential hazards to human health and biodiversity, thereby necessitating the investigation of safer alternatives or strategies for mitigation. The research focuses on five principal receptors: CAT (Catalase), IL-1B (Interleukin-1 Beta), IL-6 (Interleukin-6), TNF-alpha (Tumor Necrosis Factor-alpha), and SOD (Superoxide Dismutase). These receptors are integral to the processes of inflammation, oxidative stress, and immune responses, rendering them critical for comprehending the biochemical pathways affected by toxic substances and the potential for protective interventions. The investigation employed WADDAICA (Webserver-Aided Drug Design by Artificial Intelligence) to formulate AI-driven pharmaceuticals, complemented by ADME (Absorption, Distribution, Metabolism, Excretion) evaluations, Molecular Dynamics (MD) simulations, as well as MMGBSA and MMPBSA methodologies to examine the stability and interactions of the compounds with the designated receptors. Docking experiments disclosed that the interaction of CAT with the ascorbic acid AI-derived drug demonstrated a binding energy of -7.1 kcal/mol, signifying a robust interaction, while the complex of IL-1B with the curcumin AI-derived drug exhibited a binding energy of -7.3 kcal/mol. The ADME analysis revealed favorable gastrointestinal absorption and aqueous solubility for both compounds. Furthermore, the drug-likeness metrics were deemed satisfactory, with no breaches of Lipinski's rule of five, suggesting promising potential for subsequent advancement as therapeutic agents.
Collapse
Affiliation(s)
- Haleema Sadia
- Laboratory of Animal and Human Physiology, Department of Zoology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Zoology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, 47132, Greece.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Sami A, Han S, Haider MZ, Khizar R, Ali Q, Shafiq M, Tabassum J, Khalid MN, Javed MA, Sajid M, Manzoor MA, Sabir IA. Genetics aspect of vitamin C (Ascorbic Acid) biosynthesis and signaling pathways in fruits and vegetables crops. Funct Integr Genomics 2024; 24:73. [PMID: 38598147 DOI: 10.1007/s10142-024-01352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.
Collapse
Affiliation(s)
- Adnan Sami
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Rameen Khizar
- Department of Food Sciences, University Of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan.
| | - Muhammad Shafiq
- Department of Horticulture, University Of Punjab, Lahore, P.O BOX 54590, Pakistan.
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Muhammad Nouman Khalid
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Al Ashmawy AZG, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces 2024; 234:113703. [PMID: 38096607 DOI: 10.1016/j.colsurfb.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Collapse
Affiliation(s)
- Al Zahraa G Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Gehan F Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
7
|
Zendejas-Hernandez U, Alcántara-Martínez N, Vivar DT, Valenzuela F, Sosa Espinoza A, Cervera Ceballos EE. Nebulized glycyrrhizin/enoxolone drug modulates IL-17A in COVID-19 patients: a randomized clinical trial. Front Immunol 2024; 14:1282280. [PMID: 38283346 PMCID: PMC10811189 DOI: 10.3389/fimmu.2023.1282280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Glycyrrhizin (GA) and its derivative Enoxolone (18β), isolated from the Glycyrrhiza glabra plant, are two potential molecules for treating viral diseases. Both demonstrate to regulate immune system with antiviral and anti-inflammatory activities, with the latter mainly due to modulation of inflammatory cytokines. The aim of this clinical trial was to evaluate the safety and efficacy of a nebulized GA/18β drug for treating COVID-19 patients. Methods An open label, randomized, placebo-controlled clinical trial was conducted in Mexico City from January-August 2022 (Registration No. PROTAP-CLI-00). Clinical and biochemical parameters were recorded. Blood samples from patients were regularly collected to evaluate interleukins IL-4, IL-2, IL-1b, TNF-α, IL-17A, IL-6, IL-10,IFN-γ, IL-12, IL-8 and TGF-β1, as well as IgM and IgG against SARS-CoV-2. Two doses of the drug were used - 30/2 mg (dose A) and 90/4 mg (dose B). Results and discussion Both GA/18β doses modulated inflammatory response by reducing mainly IL-17A expression, which in turn kept IL-1β, IL-6, IL-8 and TNF-α interleukins unchanged, indicating significant modulation of key interleukin levels to prevent exacerbation of the immune response in COVID-19 patients. Early on, dose A increased IgM, while dose B induced expression of the antiviral IFN-γ. No severe side effects were seen with either dose, indicating nebulized GA/18β is a safe treatment that could be used for COVID-19 and potentially other viral infections involving inflammatory response.
Collapse
Affiliation(s)
| | - Nemi Alcántara-Martínez
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
- Science Faculty, National Autonomous University of Mexico, Mexico City, Mexico
| | - Diana Tovar Vivar
- Research and Development Department, Columbia Laboratories, Mexico City, Mexico
| | - Fermín Valenzuela
- Research Department, SPV TIMSER, S.A.P.I. de C.V., Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Wu H, Wang T, Liang Y, Chen L, Li Z. Self-assembled and dynamic bond crosslinked herb-polysaccharide hydrogel with anti-inflammation and pro-angiogenesis effects for burn wound healing. Colloids Surf B Biointerfaces 2024; 233:113639. [PMID: 37951186 DOI: 10.1016/j.colsurfb.2023.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Excessive inflammation and defective angiogenesis can affect burn wound healing. Recently, naturally derived substances with anti-inflammatory and proangiogenic properties have attracted public attention. The design and fabrication of naturally derived substance-based bioactive hydrogels as wound dressings are of interest and important for regulating the complex microenvironment of the wound bed. Herein, we developed a hydrogel by self-assembling a natural herb (glycyrrhizic acid, GA) dynamic Schiff base crosslinking of hyaluronic acid derivatives and integrating deferoxamine (DFO). The naturally derived herbal GA endowed the bioactive hydrogel with a native anti-inflammatory capability. The introduction of dynamic bond crosslinking improved the hydrogel stability. In addition, dynamic crosslinking is conducive for integrating the naturally-derived DFO, delivering it to the wound site, and promoting angiogenesis. Rheological tests, injectability, degradation behavior, and drug release performance demonstrated the enhanced stability of the hydrogel and sustained release of DFO. Cytotoxicity, cell proliferation, and cell migration tests suggested that the hydrogel was biocompatible. Further, the hydrogel exerted anti-inflammatory and angiogenic effects and accelerated burn wound healing in rats. Therefore, the proposed hydrogel has the potential to be a natural, herb-based, bioactive dressing for burn wound management.
Collapse
Affiliation(s)
- Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan 528318, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
9
|
Liu K, Zhu Y, Cao X, Liu Y, Ying R, Huang Q, Gao P, Zhang C. Curcumin as an antiviral agent and immune-inflammatory modulator in COVID-19: A scientometric analysis. Heliyon 2023; 9:e21648. [PMID: 38027776 PMCID: PMC10661356 DOI: 10.1016/j.heliyon.2023.e21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Reports regarding the antiviral activity of curcumin have surfaced. However, to date there has been no scientometric analysis of the relationship between curcumin and Coronavirus Disease 2019 (COVID-19). To comprehensively understand the studies involving curcumin in the context of COVID-19, we conducted a scientometric analysis to provide an exhaustive review of these studies. Methods We systematically searched the Web of Science core collection database for bibliographic data indexed from January 1, 2020, to December 31, 2022, using keywords such as 'curcumin', 'COVID-19', and their synonyms. To clarify the research content and trends related to curcumin in COVID-19, we utilized VOSviewer, Origin 2023, and Charticulator for analysis, supplemented by external data. Results The final count of publications included in this study was 252. These publications originated from 63 countries or territories, with India contributing the highest number of publications. They were published across 170 journals. Notably, the Egyptian Knowledge Bank (EKB) emerged as the most important institution that carried out this study. The most cited publication had been referenced 166 times. The main elements involved in the keyword analysis were reflected in the antiviral activity of curcumin and the immuno-inflammatory modulation of the inflammatory cytokine storm. Furthermore, the pharmacological mechanisms of curcumin for treating COVID-19 emerged as a prominent area of research. Simultaneously, there exists direct evidence of clinical usage of curcumin to enhance COVID-19 outcomes. Conclusions The scientometric analysis underscores the burgeoning professional domain of curcumin-based treatment for COVID-19. Ongoing studies have focused on the antiviral activity of curcumin and its immunomodulatory effects on inflammatory cytokine storms. On the other hand, the pharmacological mechanism of curcumin in the treatment of COVID-19 is a hot spot in the research field at present, which may become the main research trend in this field in the future. While maintaining a focus on foundational research, the clinical application of curcumin in COVID-19 infection is developing in parallel, highlighting its obvious guiding value in clinical practice. These insights offer researchers a snapshot of the present state of curcumin treatment for COVID-19 and guide further mechanistic validation efforts in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
10
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
El-Tanani M, Ahmed KAA, Shakya AK, Ammari WG, Al-Shudifat AE. Phase II, Double-Blinded, Randomized, Placebo-Controlled Clinical Trial Investigating the Efficacy of Mebendazole in the Management of Symptomatic COVID-19 Patients. Pharmaceuticals (Basel) 2023; 16:799. [PMID: 37375747 PMCID: PMC10300804 DOI: 10.3390/ph16060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The outbreak of the COVID-19 pandemic has spread throughout the world, affecting almost all nations and territories. The current double-blind, randomized, placebo-controlled, phase II clinical trial sought to evaluate the clinical efficacy and safety of mebendazole as an adjuvant therapy for outpatients with COVID-19. The patients were recruited and divided into two groups: a Mebendazole-treated group and placebo group. The mebendazole and placebo groups were matched for age, sex, and complete blood count (CBC) with differential and liver and kidney function tests at baseline. On the third day, the C-reactive protein (CRP) levels were lower (2.03 ± 1.45 vs. 5.45 ± 3.95, p < 0.001) and the cycle threshold (CT) levels were higher (27.21 ± 3.81 vs. 24.40 ± 3.09, p = 0.046) significantly in the mebendazole group than in the placebo group on the third day. Furthermore, CRP decreased and CT dramatically increased on day three compared to the baseline day in the mebendazole group (p < 0.001 and p = 0.008, respectively). There was a significant inverse correlation between lymphocytes and CT levels in the mebendazole group (r = -0.491, p = 0.039) but not in the placebo group (r = 0.051, p = 0.888). Mebendazole therapy increased innate immunity and returned inflammation to normal levels in COVID-19 outpatients faster than it did in the placebo group in this clinical trial. Our findings add to the growing body of research on the clinical and microbiological benefits of repurposing antiparasitic therapy, specifically mebendazole, for SARS-CoV-2 infection and other viral infections.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Khaled Abdul-Aziz Ahmed
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Wesam G. Ammari
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Abdel-Elah Al-Shudifat
- Department of Internal and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
12
|
Zuo J, Meng T, Wang Y, Tang W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals (Basel) 2023; 16:ph16050641. [PMID: 37242424 DOI: 10.3390/ph16050641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
13
|
Vitale E, Mea R. Associations between sampling characteristics, nutritional supplemental taking and the SARS-CoV-2 infection onset in a cohort of Italian nurses. ITALIAN JOURNAL OF MEDICINE 2023. [DOI: 10.4081/itjm.2022.1540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of the present study was to analyze any relations existed between sampling characteristics and the onset of the SARS-CoV-2 infection, also by considering the number of times that it occurred in a cohort of Italian nurses interviewed. Additionally, by considering the nutritional supplemental taking, this research wanted to assess any differences both in the onset and in the number of times which the infection occurred among participants.
Method: An observational cohort study was carried out thorough all Italian nurses by advertising the questionnaire through some professional internet pages.
Results: Work typology (p=0.021), ward Covid-19 (p=0.002) and regular meal assumption (p=0.019) significantly associated to the onset of the SARS-CoV-2 infection. Most of nurses who contracted the SARS-CoV-2 infection worked during the night shift (53.7%), 44.3% worked in a no-Covid-19 ward and 53% declared to have a regular meals’ assumption. Ward typology significantly associated to the times of the SARS-CoV-2 onset (p=0.003), as most of nurses who contracted almost one time the SARS-CoV-2 infection were employed in a no-Covid-19 ward (55.5%) and 54.1% of them declared to have a regular meals’ assumption. The onset of the Sars-CoV-2 infection seemed to be more present in the most part of the sample collect.
Conclusion: The present study could be considered as pilot in this sense and also more studies will be performed in order to better relate the function of supplemental food intakes with a better functioning of the immune system.
Collapse
|
14
|
Nugrahani I, Susanti E, Adawiyah T, Santosa S, Laksana AN. Non-Covalent Reactions Supporting Antiviral Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249051. [PMID: 36558183 PMCID: PMC9783875 DOI: 10.3390/molecules27249051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Viruses are the current big enemy of the world's healthcare systems. As the small infector causes various deadly diseases, from influenza and HIV to COVID-19, the virus continues to evolve from one type to its mutants. Therefore, the development of antivirals demands tremendous attention and resources for drug researchers around the world. Active pharmaceutical ingredients (API) development includes discovering new drug compounds and developing existing ones. However, to innovate a new antiviral takes a very long time to test its safety and effectiveness, from structure modeling to synthesis, and then requires various stages of clinical trials. Meanwhile, developing the existing API can be more efficient because it reduces many development stages. One approach in this effort is to modify the solid structures to improve their physicochemical properties and enhance their activity. This review discusses antiviral multicomponent systems under the research phase and has been marketed. The discussion includes the types of antivirals, their counterpart compound, screening, manufacturing methods, multicomponent systems yielded, characterization methods, physicochemical properties, and their effects on their pharmacological activities. It is hoped that the opportunities and challenges of solid antiviral drug modifications can be drawn in this review as important information for further antiviral development.
Collapse
|
15
|
Manica‐Cattani MF, Hoefel AL, Azzolin VF, Montano MAE, da Cruz Jung IE, Ribeiro EE, Azzolin VF, da Cruz IBM. Amazonian fruits with potential effects on COVID-19 by inflammaging modulation: A narrative review. J Food Biochem 2022; 46:e14472. [PMID: 36240164 PMCID: PMC9874877 DOI: 10.1111/jfbc.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023]
Abstract
The COVID-19 pandemic had a great impact on the mortality of older adults and, chronic non- transmissible diseases (CNTDs) patients, likely previous inflammaging condition that is common in these subjects. It is possible that functional foods could attenuate viral infection conditions such as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19 pandemic. Previous evidence suggested that some fruits consumed by Amazonian Diet from Pre-Colombian times could present relevant proprieties to decrease of COVID-19 complications such as oxidative-cytokine storm. In this narrative review we identified five potential Amazonian fruits: açai berry (Euterpe oleracea), camu-camu (Myrciaria dubia), cocoa (Theobroma cacao), Brazil nuts (Bertholletia excelsa), and guaraná (Paullinia cupana). Data showed that these Amazonian fruits present antioxidant, anti-inflammatory and other immunomodulatory activities that could attenuate the impact of inflammaging states that potentially decrease the evolution of COVID-19 complications. The evidence compiled here supports the complementary experimental and clinical studies exploring these fruits as nutritional supplement during COVID-19 infection. PRACTICAL APPLICATIONS: These fruits, in their natural form, are often limited to their region, or exported to other places in the form of frozen pulp or powder. But there are already some companies producing food supplements in the form of capsules, in the form of oils and even functional foods enriched with these fruits. This practice is common in Brazil and tends to expand to the international market.
Collapse
Affiliation(s)
- Maria F. Manica‐Cattani
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil,FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | - Ana L. Hoefel
- FSG University Center (FSG)Nutrition SchoolCaxias do SulRio Grande do SulBrazil
| | | | | | | | - Euler E. Ribeiro
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Vitória F. Azzolin
- Open University Foundation for the Third Age (FUnATI)ManausAmazonasBrazil
| | - Ivana B. M. da Cruz
- Post‐Graduate Program in Pharmacology, Department of Physiology and PharmacologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil,Post‐Graduate Program in GerontologyFederal University of Santa Maria (UFSM)Santa MariaRio Grande do SulBrazil
| |
Collapse
|
16
|
Barazzoni R, Bischoff SC, Busetto L, Cederholm T, Chourdakis M, Cuerda C, Delzenne N, Genton L, Schneider S, Singer P, Boirie Y. Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clin Nutr 2022; 41:2869-2886. [PMID: 34140163 PMCID: PMC8110326 DOI: 10.1016/j.clnu.2021.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The COVID-19 pandemics has created unprecedented challenges and threats to patients and healthcare systems worldwide. Acute respiratory complications that require intensive care unit (ICU) management are a major cause of morbidity and mortality in COVID-19 patients. Among other important risk factors for severe COVID-19 outcomes, obesity has emerged along with undernutrition-malnutrition as a strong predictor of disease risk and severity. Obesity-related excessive body fat may lead to respiratory, metabolic and immune derangements potentially favoring the onset of COVID-19 complications. In addition, patients with obesity may be at risk for loss of skeletal muscle mass, reflecting a state of hidden malnutrition with a strong negative health impact in all clinical settings. Also importantly, obesity is commonly associated with micronutrient deficiencies that directly influence immune function and infection risk. Finally, the pandemic-related lockdown, deleterious lifestyle changes and other numerous psychosocial consequences may worsen eating behaviors, sedentarity, body weight regulation, ultimately leading to further increments of obesity-associated metabolic complications with loss of skeletal muscle mass and higher non-communicable disease risk. Therefore, prevention, diagnosis and treatment of malnutrition and micronutrient deficiencies should be routinely included in the management of COVID-19 patients in the presence of obesity; lockdown-induced health risks should also be specifically monitored and prevented in this population. In the current document, the European Society for Clinical Nutrition and Metabolism (ESPEN) aims at providing clinical practice guidance for nutritional management of COVID-19 patients with obesity in various clinical settings.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy,Azienda sanitaria universitaria Giuliano Isontina (ASUGI), Cattinara Hospital, Trieste, Italy,Corresponding author. Department of Medical, Surgical and Health Sciences and Azienda sanitaria universitaria Giuliano Isontina (ASUGI), Cattinara University Hospital, Strada di Fiume 447, Trieste, Italy
| | - Stephan C. Bischoff
- Department of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Luca Busetto
- Department of Medicine, University of Padova, Italy
| | - Tommy Cederholm
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Michael Chourdakis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Cristina Cuerda
- Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Laurence Genton
- Clinical Nutrition, Geneva University Hospitals, Geneva, Switzerland
| | - Stephane Schneider
- Gastroenterology and Nutrition, Nice University Hospital, Université Côte d’Azur, Nice, France
| | - Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Sackler School of Medicine, Tel Aviv University, Israel
| | - Yves Boirie
- Department of Clinical Nutrition, CHU Clermont-Ferrand, University of Clermont Auvergne, Human Nutrition Unit, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| | | |
Collapse
|
17
|
Banerjee S, Baidya SK, Adhikari N, Ghosh B, Jha T. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. J Mol Struct 2022; 1275:134642. [DOI: 10.1016/j.molstruc.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
|
18
|
Glycyrrhizin through liquorice intake modulates ACE2 and HMGB1 levels-A pilot study in healthy individuals with implications for COVID-19 and ARDS. PLoS One 2022; 17:e0275181. [PMID: 36251689 PMCID: PMC9576069 DOI: 10.1371/journal.pone.0275181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Background Glycyrrhizin, an active component of liquorice root extract, exhibits antiviral and immunomodulatory properties by direct inhibition of the pro-inflammatory alarmin HMGB1 (High-mobility group box 1). Objective The aim of this study was to explore the role of liquorice intake on the viral entry receptor ACE2 (angiotensin-converting enzyme 2) and the immunoregulatory HMGB1 in healthy individuals and to explore HMGB1 expression in coronavirus disease 2019 (COVID-19) or non-COVID-19 in ARDS (acute respiratory distress syndrome patients). Material and methods This study enrolled 43 individuals, including hospitalised patients with i) acute respiratory distress syndrome (ARDS) due to COVID-19 (n = 7) or other underlying causes (n = 12), ii) mild COVID-19 (n = 4) and iii) healthy volunteers (n = 20). Healthy individuals took 50 g of liquorice (containing 3% liquorice root extract) daily for 7 days, while blood samples were collected at baseline and on day 3 and 7. Changes in ACE2 and HMGB1 levels were determined by Western blot analysis and enzyme-linked immunosorbent assay, respectively. Additionally, HMGB1 levels were measured in hospitalised COVID-19 patients with mild disease or COVID-19 associated acute respiratory distress syndrome (ARDS) and compared with a non-COVID-19-ARDS group. Results Liquorice intake significantly reduced after 7 days both cellular membranous ACE2 expression (-51% compared to baseline levels, p = 0.008) and plasma HMGB1 levels (-17% compared to baseline levels, p<0.001) in healthy individuals. Half of the individuals had a reduction in ACE2 levels of at least 30%. HMGB1 levels in patients with mild COVID-19 and ARDS patients with and without COVID-19 were significantly higher compared with those of healthy individuals (+317%, p = 0.002), but they were not different between COVID-19 and non-COVID-19 ARDS. Conclusions Liquorice intake modulates ACE2 and HMGB1 levels in healthy individuals. HMGB1 is enhanced in mild COVID-19 and in ARDS with and without COVID-19, warranting evaluation of HMGB1 as a potential treatment target and glycyrrhizin, which is an active component of liquorice root extract, as a potential treatment in COVID-19 and non-COVID-19 respiratory disease.
Collapse
|
19
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
20
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
21
|
Al-kuraishy HM, Al-Fakhrany OM, Elekhnawy E, Al-Gareeb AI, Alorabi M, De Waard M, Albogami SM, Batiha GES. Traditional herbs against COVID-19: back to old weapons to combat the new pandemic. Eur J Med Res 2022; 27:186. [PMID: 36154838 PMCID: PMC9510171 DOI: 10.1186/s40001-022-00818-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, the coronavirus (COVID-19) pandemic is a chief public health disaster caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are no established effective preventive or therapeutic anti-COVID-19 drugs available except for some recently approved vaccines. Still, countless recent studies recommend various alternative and complementary approaches against COVID-19, which are medicinal herbs employed as traditional remedies to enhance immunity to struggle with viral infections. In addition, physicians worldwide are highly interested in vitamin and mineral supplements to help them combat COVID-19 either through protection or treatment. Dietary supplements specifically vitamin D, vitamin C, and zinc provide good prophylactic and therapeutic support to the presently available treatment regimens. In the present work, we have focused on plant-based remedies with promising anti-COVID-19 activities. AIM To enable investigators and researchers to identify potential herbal compounds with anti-COVID activity to be used as promising therapies to combat this pandemic. MAIN BODY This review highlights the recently published studies concerning natural traditional herbs, herbal bioactive metabolites, dietary supplements, and functional foods that could help prevent and/or treat COVID-19. Herein, we explored medicinal herbs as potential inhibitors of SARS-CoV-2 and discussed how these studies help form larger discussions of diet and disease. Moreover, by investigating the herbal bioactive components, we have outlined several medicinal herbs that can fight against COVID-19 by hindering SARS-CoV-2 replication and entry to its host cells, deterring the cytokine storm, and several other means. Finally, we have summarized various herbal products, functional foods, and dietary supplements with potent bioactive compounds which can inhibit and/or prevent COVID-19 disease progression. CONCLUSIONS Based on the studies reviewed in this work, it was concluded with no doubt that phytochemical components present in various herbs could have a starring role in the deterrence and cure of coronavirus contagion.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | | | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- Université de Nice Sophia-Antipolis, LabEx «Ion Channels, Science & Therapeutics», 06560 Valbonne, France
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
22
|
Maselli del Giudice A, La Mantia I, Barbara F, Ciccarone S, Ragno MS, de Robertis V, Cariti F, Barbara M, D’Ascanio L, Di Stadio A. Use of Nutraceuticals in Elderly to Fight Inflammation and Immuno-Senescence: A Randomized Case-Control Study. Nutrients 2022; 14:3476. [PMID: 36079732 PMCID: PMC9459752 DOI: 10.3390/nu14173476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Elderly people are at high risk of suffering from infection and being affected by severe forms of disease because their immunosystem suffers from aging. The alteration of normal immune functions causes the increase of pro-inflammatory cytokines which can expose these people to increased risk of developing pathologies as cancer, diabetes, and/or arthritis. Some supplements could be helpful for restoring normal immune functions. We conducted a case-control study to evaluate the efficacy of a supplement containing Sambucus nigra, zinc, tyndallized Lactobacillus acidophilus (HA122), arabinogalactans, vitamin D, vitamin E, and vitamin C to improve the inflammatory levels (IL-6 and CRP) and to modulate the lymphocytes growth. Additionally, we analyzed wellness by self-questionnaire. This study had two control group: a young group and an elderly one. Our study showed that treating elderly patients with the supplement for 30 days improved IL-6, CRP, and lymphocytes levels; the result was independent from the dosage of the supplements used. Elderly patients, despite the improvement, were not able to reach the same conditions of young patients; however, most of the patients (>70%) claimed to “feel better” after the use of the supplement. The use of this supplement should be considered at a low dosage for a prolonged period to reduce inflammation and modulate immune senescence in patients over 60 years old.
Collapse
Affiliation(s)
| | - Ignazio La Mantia
- Department GF Ingrassia, University of Catania, 95123 Catania, Italy
| | - Francesco Barbara
- Department Otorhinolaryngology, University Hospital of Bari, 70126 Bari, Italy
| | - Silvana Ciccarone
- Department Otorhinolaryngology, Hospital of Barletta, 76121 Barletta (BT), Italy
| | - Maria Sterpeta Ragno
- Department Otorhinolaryngology, Hospital of Barletta, 76121 Barletta (BT), Italy
| | | | - Francesco Cariti
- Department Otorhinolaryngology, Hospital of Barletta, 76121 Barletta (BT), Italy
| | - Michele Barbara
- Department Otorhinolaryngology, Hospital of Barletta, 76121 Barletta (BT), Italy
| | - Luca D’Ascanio
- Department Otorhinolaryngology, Azienda Ospeliera Riunita Marche Nord (AORMN), 61032 Fano (PU), Italy
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
23
|
Zhang W, Xiao P, Lin L, Guo F, Wang Q, Piao Y, Diao G. Study of a water-soluble supramolecular complex of curcumin and β-cyclodextrin polymer with electrochemical property and potential anti-cancer activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, Antiviral, and Antibacterial Activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:906-918. [PMID: 35919388 PMCID: PMC9333650 DOI: 10.1134/s1068162022050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Glycyrrhizic acid and its primary metabolite glycyrrhetinic acid, are the main active ingredients in the licorice roots (glycyrrhiza species), which are widely used in several countries of the world, especially in east asian countries (China, Japan). These ingredients and their derivatives play an important role in treating many diseases, especially infectious diseases such as COVID-19 and hepatic infections. This review aims to summarize the different ways of synthesising the amide derivatives of glycyrrhizic acid and the main ways to synthesize the glycyrrhitinic acid derivatives. Also, to determine the main biological and pharmacological activity for these compounds from the previous studies to provide essential data to researchers for future studies. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162022050132.
Collapse
Affiliation(s)
- E. A. H. Mohammed
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Y. Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Z. Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - X. Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| | - Q. Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
25
|
Involvement of MicroRNA-27a-3p in the Licorice-Induced Alteration of Cd28 Expression in Mice. Genes (Basel) 2022; 13:genes13071143. [PMID: 35885926 PMCID: PMC9317804 DOI: 10.3390/genes13071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Licorice has previously been shown to affect gene expression in cells; however, the underlying mechanisms remain to be clarified. We analyzed the microRNA expression profile of serum from mice treated by gavage with licorice decoction, and obtained 11 differentially expressed microRNAs (DEmiRNAs). We also screened differentially expressed genes (DEgenes) based on RNA-Seq data, and 271 common genes were identified by intersection analysis of the predicted target genes of 11 DEmiRNAs and the DEgenes. The miRNA–gene network showed that most of the hub genes were immune-related. KEGG enrichment analysis of the 271 genes identified three significant pathways, and the 21 genes involved in these three pathways, and the 11 DEmiRNAs, were constructed into a miRNA pathway–target gene network, in which mmu-miR-27a-3p stood out. Compared to ImmPort, there were 13 immune genes within the above group of 21 genes, and three intersected with the mmu-miR-27a-3p predicted target genes, Cd28, Grap2 and Cxcl12, of which the expression of Cd28 changed most significantly. We confirmed the regulation of Cd28 by mmu-miR-27a-3p using a dual-luciferase assay, and further confirmed that overexpression of mmu-miR-27a-3p could significantly downregulate the expression of Cd28 in lymphocytes. These results indicate that mmu-miR-27a-3p could be involved in the licorice-mediated regulation of the expression of Cd28 in mice.
Collapse
|
26
|
Grudlewska-Buda K, Wiktorczyk-Kapischke N, Budzyńska A, Kwiecińska-Piróg J, Przekwas J, Kijewska A, Sabiniarz D, Gospodarek-Komkowska E, Skowron K. The Variable Nature of Vitamin C—Does It Help When Dealing with Coronavirus? Antioxidants (Basel) 2022; 11:antiox11071247. [PMID: 35883738 PMCID: PMC9312329 DOI: 10.3390/antiox11071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading worldwide. For this reason, new treatment methods are constantly being researched. Consequently, new and already-known preparations are being investigated to potentially reduce the severe course of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection induces the production of pro-inflammatory cytokines and acute serum biomarkers in the host organism. In addition to antiviral drugs, there are other substances being used in the treatment of COVID-19, e.g., those with antioxidant properties, such as vitamin C (VC). Exciting aspects of the use of VC in antiviral therapy are its antioxidant and pro-oxidative abilities. In this review, we summarized both the positive effects of using VC in treating infections caused by SARS-CoV-2 in the light of the available research. We have tried to answer the question as to whether the use of high doses of VC brings the expected benefits in the treatment of COVID-19 and whether such treatment is the correct therapeutic choice. Each case requires individual assessment to determine whether the positives outweigh the negatives, especially in the light of populational studies concerning the genetic differentiation of genes encoding the solute carriers responsible forVC adsorption. Few data are available on the influence of VC on the course of SARS-CoV-2 infection. Deducing from already-published data, high-dose intravenous vitamin C (HDIVC) does not significantly lower the mortality or length of hospitalization. However, some data prove, among other things, its impact on the serum levels of inflammatory markers. Finally, the non-positive effect of VC administration is mainly neutral, but the negative effect is that it can result in urinary stones or nephropathies.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Jana Przekwas
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Agnieszka Kijewska
- Department of Immunobiology and Environmental Biology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
- Correspondence: ; Tel.: +48-(52)-585-38-38
| |
Collapse
|
27
|
Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:120-137. [PMID: 35352306 PMCID: PMC8963406 DOI: 10.1007/s12560-022-09514-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/09/2022] [Indexed: 05/03/2023]
Abstract
The use of natural resources for the prevention and treatment of diseases considered fatal to humanity has evolved. Several medicinal plants have nutritional and pharmacological potential in the prevention and treatment of viral infections, among them, turmeric, which is recognized for its biological properties associated with curcuminoids, mainly represented by curcumin, and found mostly in rhizomes. The purpose of this review was to compile the pharmacological activities of curcumin and its analogs, aiming at stimulating their use as a therapeutic strategy to treat infections caused by RNA genome viruses. We revisited its historical application as an anti-inflammatory, antioxidant, and antiviral agent that combined with low toxicity, motivated research against viruses affecting the population for decades. Most findings concentrate particularly on arboviruses, HIV, and the recent SARS-CoV-2. As one of the main conclusions, associating curcuminoids with nanomaterials increases solubility, bioavailability, and antiviral effects, characterized by blocking the entry of the virus into the cell or by inhibiting key enzymes in viral replication and transcription.
Collapse
Affiliation(s)
- Leide Lene C Ferreira
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil.
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Marina P Abreu
- Herbal Medicines Department, Vital Brazil Institute, Maestro José Botelho, 64, Santa Rosa, CEP 24.230-340, Niterói, RJ, Brazil
| | - Camila B Costa
- Technological Development and Innovation Laboratory, Vital Brazil Institute, Rio de Janeiro, Brazil
| | - Paulo O Leda
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Dutra Behrens
- Laboratory of Natural Products for Public Health, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Elisabete Pereira Dos Santos
- Galenic Development Laboratory, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Omer AK, Khorshidi S, Mortazavi N, Rahman HS. A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. Int J Gen Med 2022; 15:4817-4835. [PMID: 35592539 PMCID: PMC9112189 DOI: 10.2147/ijgm.s361001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of successful therapy, vaccines for protection are continuously being developed. Since vaccines must be thoroughly tested, viral respiratory tract infections (VRTIs), mainly coronaviruses, have seriously affected human health worldwide in recent years. In this review, we presented the relevant data which originated from trusted publishers regarding the practical benefits of functional foods (FFs) and their dietary sources, in addition to natural plant products, in viral respiratory and COVID-19 prevention and immune-boosting activities. As a result, FFs were confirmed to be functionally active ingredients for preventing COVID-19 and VRTIs. Furthermore, the antiviral activity and immunological effects of FFs against VRTIs and COVID-19 and their potential main mechanisms of action are also being reviewed. Therefore, to prevent COVID-19 and VRTIs, it is critical to identify controlling the activities and immune-enhancing functional food constituents as early as possible. We further aimed to summarize functional food constituents as a dietary supplement that aids in immune system boosting and may effectively reduce VRTIs and COVID-19 and promote therapeutic efficacy.
Collapse
Affiliation(s)
- Abdullah Khalid Omer
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Razga Company, Sulaimaniyah, Kurdistan Region, Iraq
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Negar Mortazavi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| |
Collapse
|
29
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153999. [PMID: 35220130 DOI: 10.1016/j.phymed.2022.153999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.
Collapse
Affiliation(s)
- Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Gamaa St., Giza 12211, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
31
|
Polyphenolic HRMS Characterization, Contents and Antioxidant Activity of Curcuma longa Rhizomes from Costa Rica. Antioxidants (Basel) 2022; 11:antiox11040620. [PMID: 35453305 PMCID: PMC9030737 DOI: 10.3390/antiox11040620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/30/2023] Open
Abstract
Curcuma longa constitutes an important source of secondary metabolites that have been associated with multiple health benefits. For instance, curcumin, demethoxycurcumin and bisdemethoxycurcumin, have been found to perform important biological activities, such as anti-inflammatory, antioxidant, anticancer, antimicrobial, antihypertensive and anticoagulant. These promising results prompted this research to evaluate the polyphenols of C. longa rhizomes in Costa Rica. The present work reports a comprehensive study on the polyphenolic profile and the contents of the three main curcuminoids as well as the antioxidant activity of extracts from C. longa rhizomes (n = 12) produced in Costa Rica. Through UPLC-QTOF-ESI MS, a total of 33 polyphenols were identified, grouped in eight types of structures. In addition, our findings on the main curcuminoids using UPLC-DAD show all rhizomes complying with total curcuminoids (TC) content established by the United States Pharmacopeia (USP). At an individual level, samples NW-3 and NE-1 show the higher contents (118.7 and 125.0 mg/g dry material), representing more than twice the average values of the lowest samples. These samples also exhibit the highest Folin−Ciocalteu (FC) reducing capacity results as well as the best DPPH (IC50 15.21 and 16.07 µg extract/mL) and NO (IC50 between 52.5 and 54.3 µg extract/mL) antioxidant values. Further, Pearson correlation analysis findings indicated positive correlation (p < 0.05) between TC, CUR with FC results (r = 0.833 and r = 0.867 respectively) and negative correlation (p < 0.05) between CUR, TC and FC with DPPH results (r = −0.898, r = −0.911, and r = −0.890, respectively) and between NO results and DPPH (r = −0.805, p < 0.05). Finally, results for Principal Component Analysis (PCA) showed composition variability associated with their region of origin with products from the Northeastern (NE) region exhibiting higher average values for FC, TC and antioxidant activities. Further, PCA confirmed that two samples, namely NE-1 and NW-3, stand out by presenting the highest PC1 due to their particularly high TC, CUR and antioxidant activities. Consequently, our findings agree with previous results indicating the importance of C. longa extracts to elaborate products with potential benefits for health, while delivering extracts with higher levels of curcuminoids than previous reports and exhibiting high antioxidant activity.
Collapse
|
32
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
33
|
Tan R, Xiang X, Chen W, Yang Z, Hu W, Qu H, Liu J. Efficacy of diammonium glycyrrhizinate combined with vitamin C for treating hospitalized COVID-19 patients: a retrospective, observational study. QJM 2022; 115:77-83. [PMID: 34314507 PMCID: PMC8420637 DOI: 10.1093/qjmed/hcab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The current global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown limited responses to medical treatments. AIMS To observe the effect of combination treatment of giammonium glycyrrhizinate and vitamin C (DV) on the prognoses of patients with COVID-19. METHODS This retrospective observational study recruited 207 COVID-19 patients from Tongji Hospital, patients were assigned to DV and non-DV groups on the basis of the DV treatment. To make the results more credible, a propensity score matching (PSM) approach was adopted at a 1:3 ratio to determine the participants. Logistic analysis was used to assess the effect of DV therapy in the progress of COVID-19. RESULTS In the DV group, the new-onset incidence rate of acute respiratory distress syndrome (ARDS) after admission was clearly lower than that in the non-DV group (DV vs. non-DV groups, 15.2% vs. 35.7%; P = 0.002). Compared with the non-DV group, the DV group showed fewer new onset of complications (such as ARDS, acute liver injury and acute myocardial injury) (DV vs. non-DV groups, 19.6% vs. 46.1%; P = 0.000). Moreover, DG+VC may help to recover the count of NK cells and decrease the level of sIL-2R. CONCLUSIONS DG+VC might be a promising candidate for preventing the deterioration of COVID-19 patients, which is worthy to be studied in large and perspective cohort.
Collapse
Affiliation(s)
- Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Chen
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiguo Hu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Correspondence: Jialin Liu, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China, Phone: +86 21 53305091, Fax: +86 21 54500671. Hongping Qu, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China,
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Correspondence: Jialin Liu, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China, Phone: +86 21 53305091, Fax: +86 21 54500671. Hongping Qu, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China,
| |
Collapse
|
34
|
Bisht D, Rashid M, Arya RKK, Kumar D, Chaudhary SK, Rana VS, Sethiya NK. Revisiting liquorice ( Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100206. [PMID: 35403088 PMCID: PMC8683220 DOI: 10.1016/j.phyplu.2021.100206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 04/27/2023]
Abstract
BACKGROUND Glycyrrhiza glabra L. (G. glabra) commonly known as liquorice is one of the highly exploited and utilized medicinal plant of the world. Since ancient times liquorice is considered as an auspicious and valuable traditional medicine across the world for treatment of various ailments. METHOD Several electronic online scientific databases such as Science Direct, PubMed, Scopus, Scifinder, Google Scholar, online books and reports were assessed for collecting information. All the collected information was classified into different sections to meet the objective of the paper. RESULTS The electronic database search yielded 3908 articles from different countries. Out of them one ninety-eight articles published between 1956 and 2021 were included, corresponding to all detailed review on G. glabra and research on anti-inflammatories, antivirals and immunomodulatory through pre-clinical and clinical models. From all selective area of studies on G. glabra and its bioactive components it was established (including molecular mechanisms) as a suitable remedy as per the current requirement of pandemic situation arise through respiratory tract infection. CONCLUSION Different relevant studies have been thoroughly reviewed to gain an insight on utility of liquorice and its bioactive constituents for anti-inflammatories, antivirals and immunomodulatory effects with special emphasized for prevention and treatment of COVID-19 infection with possible mechanism of action at molecular level. Proposed directions for future research are also outlined to encourage researchers to find out various mechanistic targets and useful value added products of liquorice in future investigations.
Collapse
Affiliation(s)
- Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Mohmmad Rashid
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, 31717, Saudi Arabia
| | - Rajeshwar Kamal Kant Arya
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | | | - Vijay Singh Rana
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
35
|
Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH. Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. CELLULOSE (LONDON, ENGLAND) 2022; 29:1821-1840. [PMID: 35002106 PMCID: PMC8725427 DOI: 10.1007/s10570-021-04391-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/20/2021] [Indexed: 05/10/2023]
Abstract
Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl alcohol aqueous medium. Due to the physical and chemical nature of sulphuric acid hydrolyzed nanocellulose and the antiviral properties of curcumin, the possibility of using these nanoparticles as an inhalable nanotherapeutic for the treatment of coronavirus disease 2019 (COVID-19) is discussed. The adsorption of curcumin and PVA into nanocellulose, and the presence of anionic sulphate groups, which is important for the interaction with viral glycoproteins were confirmed by Fourier transform infrared (FTIR) spectroscopy. FESEM images showed that the diameter of nanocellulose ranged from 50 to 100 nm, which is closer to the diameter (60-140 nm) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The solubility of poorly water-soluble curcumin was increased from 40.58 ± 1.42 to 313.61 ± 1.05 mg/L with increasing the PVA concentration from 0.05 to 0.8% (w/v) in aqueous medium. This is a significant increase in the solubility compared to curcumin's solubility in carboxymethyl cellulose medium in our previous study. The drug loading capacity increased by 22-fold with the addition of 0.8% PVA to the nanocellulose dispersed curcumin solution. The highest drug release increased from 1.25 ± 0.15 mg/L to 17.11 ± 0.22 mg/L with increasing the PVA concentration from 0 to 0.8% in the drug-loaded medium. Future studies of this material will be based on the antiviral efficacy against SARS-CoV-2 and cell cytotoxicity studies. Due to the particulate nature, morphology and size of SARS-CoV-2, nanoparticle-based strategies offer a strong approach to tackling this virus. Hence, we believe that the enhanced loading of curcumin in nanocellulose will provide a promising nano-based solution for the treatment of COVID-19.
Collapse
Affiliation(s)
- Thennakoon M. Sampath U. Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala, Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Nguyen Dai Hai
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, 01 TL29, District 12, Ho Chi Minh City, 700000 Vietnam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Mahdavinezhad F, Farmani AR, Pakniat H, Taghavi S, Gharaei R, Valipour J, Amidi F. COVID-19 and varicocele: the possible overlap factors and the common therapeutic approaches. Am J Reprod Immunol 2021; 87:e13518. [PMID: 34967487 DOI: 10.1111/aji.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Varicocele is recognized as one of the main attributable causes of male infertility which can affect spermatogenesis by various pathophysiological mechanisms. Recent studies have identified oxidative stress and reduction in antioxidant, hyperthermia, hypoxia, hormonal dysfunction, and inflammatory conditions as major factors in the pathophysiology of varicocele, all of which have known direct associations with the coronavirus disease 2019 (COVID-19) and can significantly increase the risk of detrimental COVID-19-related outcomes. Emerging data have shown an association between COVID-19 and inflammation, overproduction of cytokine, and other pathophysiological processes. The present review, summarizes the current understanding of the pathophysiology of varicocele and investigates the potential correlation between the severity of COVID-19 and the varicocele disease. In addition, various possible treatments which can be effective in both diseases were examined. Despite numerous challenges associated with the prevalence of COVID-19 in healthcare systems in infected countries, special attention should be given to maintaining a high level of care for complex patients with a pre-existing disease such as varicocele and providing appropriate practical advice for optimal control of the COVID-19 disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, Faculty of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamideh Pakniat
- Department of Obstetrics and Gynecology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeed Taghavi
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Valipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Wang Y, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo Z, Du G. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr Res 2021; 65:5623. [PMID: 34908920 PMCID: PMC8634376 DOI: 10.29219/fnr.v65.5623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) outbreak is progressing rapidly, and poses significant threats to public health. A number of clinical practice results showed that traditional Chinese medicine (TCM) plays a significant role for COVID-19 treatment. Objective To explore the active components and molecular mechanism of semen armeniacae amarum treating COVID-19 by network pharmacology and molecular docking technology. Methods The active components and potential targets of semen armeniacae amarum were retrieved from traditional Chinese medicine systems pharmacology (TCMSP) database. Coronavirus disease 2019-associated targets were collected in the GeneCards, TTD, OMIM and PubChem database. Compound target, compound-target pathway and medicine-ingredient-target disease networks were constructed by Cytoscape 3.8.0. Protein-protein interaction (PPI) networks were drawn using the STRING database and Cytoscape 3.8.0 software. David database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The main active components were verified by AutoDock Vina 1.1.2 software. A lipopolysaccharide (LPS)-induced lung inflammation model in Institute of Cancer Research (ICR) mice was constructed and treated with amygdalin to confirm effects of amygdalin on lung inflammation and its underlying mechanisms by western blot analyses and immunofluorescence. Results The network analysis revealed that nine key, active components regulated eight targets (Proto-oncogene tyrosine-protein kinase SRC (SRC), interleukin 6 (IL6), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 3 (MAPK3), vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR), HRAS proto-oncogene (HRAS), caspase-3 (CASP3)). Gene ontology and KEGG enrichment analysis suggested that semen armeniacae amarum plays a role in COVID-19 by modulating 94 biological processes, 13 molecular functions, 15 cellular components and 80 potential pathways. Molecular docking indicated that amygdalin had better binding activity to key targets such as IL6, SRC, MAPK3, SARS coronavirus-2 3C-like protease (SARS-CoV-2 3CLpro) and SARS-CoV-2 angiotensin converting enzyme II (ACE2). Experimental validation revealed that the lung pathological injury and inflammatory injury were significantly increased in the model group and were improved in the amygdalin group. Conclusion Amygdalin is a candidate compound for COVID-19 treatment by regulating IL6, SRC, MAPK1 EGFR and VEGFA to involve in PI3K-Akt signalling pathway, VEGF signalling pathway and MAPK signalling pathway. Meanwhile, amygdalin has a strong affinity for SARS-CoV-2 3CLpro and SARS-CoV-2 ACE2 and therefore prevents the virus transcription and dissemination.
Collapse
Affiliation(s)
- Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jinming District, Kaifeng, Henan Province, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, Henan Province, China
| |
Collapse
|
38
|
Pouresmaieli M, Ekrami E, Akbari A, Noorbakhsh N, Moghadam NB, Mamoudifard M. A comprehensive review on efficient approaches for combating coronaviruses. Biomed Pharmacother 2021; 144:112353. [PMID: 34794240 PMCID: PMC8531103 DOI: 10.1016/j.biopha.2021.112353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Almost 80% of people confronting COVID-19 recover from COVID-19 disease without any particular treatments. They experience heterogeneous symptoms; a wide range of respiratory symptoms, cough, dyspnea, fever, and viral pneumonia. However, some others need urgent intervention and special treatment to get rid of this widespread disease. So far, there isn't any unique drug for the potential treatment of COVID 19. However, some available therapeutic drugs used for other diseases seem beneficial for the COVID-19 treatment. On the other hand, there is a robust global concern for developing an efficient COVID-19 vaccine to control the COVID-19 pandemic sustainably. According to the WHO report, since 8 October 2021, 320 vaccines have been in progress. 194 vaccines are in the pre-clinical development stage that 126 of them are in clinical progression. Here, in this paper, we have comprehensively reviewed the most recent and updated information about coronavirus and its mutations, all the potential therapeutic approaches for treating COVID-19, developed diagnostic systems for COVID- 19 and the available COVID-19 vaccines and their mechanism of action.
Collapse
Affiliation(s)
- Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Negin Noorbakhsh
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Faculty of Medical Science and Technologies, Islamic Azad University Science and Research, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
39
|
Rath S, Perikala V, Jena AB, Dandapat J. Factors regulating dynamics of angiotensin-converting enzyme-2 (ACE2), the gateway of SARS-CoV-2: Epigenetic modifications and therapeutic interventions by epidrugs. Biomed Pharmacother 2021; 143:112095. [PMID: 34479017 PMCID: PMC8403698 DOI: 10.1016/j.biopha.2021.112095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) is one of the major components of the renin-angiotensin system (RAS) and participates in the physiological functions of the cardiovascular system and lungs. Recent studies identified ACE2 as the receptor for the S-protein of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and thus acts as the gateway for viral entry into the human body. Virus infection causes an imbalance in the RAS axis and induces acute lungs injury and fibrosis. Various factors regulate ACE2 expression patterns as well as control its epigenetic status at both transcription and translational levels. This review is mainly focused on the impact of environmental toxicants, drugs, endocrine disruptors, and hypoxia as controlling parameters for ACE2 expression and its possible modulation by epigenetic changes which are marked by DNA methylation, histone modifications, and micro-RNAs (miRNAs) profile. Furthermore, we have emphasized on interventions of various phytochemicals and bioactive compounds as epidrugs that regulate ACE2-S-protein interaction and thereby curb viral infection. Since ACE2 is an important component of the RAAS axis and a crucial entry point of SARS-CoV-2, the dynamics of ACE2 expression in response to various extrinsic and intrinsic factors are of contemporary relevance. We have collated updated information on ACE2 expression modulated by epidrugs, and urge to take over further studies on these important physiological regulators to unravel many more systemic linkages related to both metabolic and infectious diseases, in general and SARS-CoV-2 in particular for further development of targeted interventions.
Collapse
Affiliation(s)
- Suvasmita Rath
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Venkateswarlu Perikala
- Centre of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Atala Bihari Jena
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jagneshwar Dandapat
- Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India; Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
40
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
41
|
Quispe C, Cruz-Martins N, Manca ML, Manconi M, Sytar O, Hudz N, Shanaida M, Kumar M, Taheri Y, Martorell M, Sharifi-Rad J, Pintus G, Cho WC. Nano-Derived Therapeutic Formulations with Curcumin in Inflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3149223. [PMID: 34584616 PMCID: PMC8470924 DOI: 10.1155/2021/3149223] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Kiev National University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Voli 1, Ternopil, Ukraine
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, UAE
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
42
|
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Diet, Probiotics and Their Impact on the Gut Microbiota during the COVID-19 Pandemic. Nutrients 2021; 13:3172. [PMID: 34579048 PMCID: PMC8465654 DOI: 10.3390/nu13093172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 infection is associated with diverse clinical manifestations, immune dysfunction, and gut microbiota alterations. The nutritional and biochemical quality of one's diet can influence the intestinal microbiota, which may play a role in the defense mechanisms against potential pathogens, by promoting a wide variety of immune-host interactions. In the COVID-19 pandemic, besides the development of pharmacological therapies, a healthy balanced diet, rich with food-derived antioxidants, may be a useful strategy. Many studies demonstrated that vitamins and probiotic therapies have positive effects on the treatment and prevention of oxidative stress and inflammation in COVID-19. The ecology of the gut microbiota in the digestive tract has been linked to the transport function of the host receptor known as angiotensin converting enzyme 2 (ACE2), suggesting that COVID-19 may be related to the gut microbiota. The angiotensin converting enzyme (ACE), and its receptor (ACE2), play central roles in modulating the renin-angiotensin system (RAS). In addition, ACE2 has functions that act independently of the RAS. ACE2 is the receptor for the SARS coronavirus, and ACE2 is essential for the expression of neutral amino acid transporters in the gut. In this context, ACE2 modulates innate immunity and influences the composition of the gut microbiota. Malnutrition is one of the leading underlying causes of morbidity and mortality worldwide and, including comorbidities, may be a major cause of worse outcomes and higher mortality among COVID-19 patients. This paper reviews the research on dietary components, with particular emphasis on vitamins, antioxidants, and probiotic therapies, and their impacts on the intestinal microbiota's diversity during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Marzena Jabczyk
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland; (M.J.); (B.Z.-S.)
| | - Justyna Nowak
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland;
| | - Bartosz Hudzik
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland;
- Silesian Center for Heart Diseases, Third Department of Cardiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Barbara Zubelewicz-Szkodzińska
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland; (M.J.); (B.Z.-S.)
| |
Collapse
|
43
|
Huang K, Zhang P, Zhang Z, Youn JY, Wang C, Zhang H, Cai H. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol Ther 2021; 225:107843. [PMID: 33811957 PMCID: PMC8011334 DOI: 10.1016/j.pharmthera.2021.107843] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
COVID-19 has remained an uncontained, worldwide pandemic. While battling for the disease in China, six Traditional Chinese Medicine (TCM) recipes have been shown to be remarkably effective for treating patients with COVID-19. The present review discusses principles of TCM in curing infectious disease, and clinical evidence and mechanisms of the 6 most effective TCM recipes used in treating COVID-19 in 92% of all of the confirmed cases in China. Applications of TCM and specific recipes in the treatment of other viral infections, such as those caused by SARS-CoV, MERS-CoV, hepatitis B virus, hepatitis C virus, influenza A virus (including H1N1 and H7N9), influenza B, dengue virus as well as Ebola virus, are also discussed. Among the 6 TCM recipes, Jinhua Qinggan (JHQG) granules and Lianhua Qingwen (LHQW) capsules are recommended during medical observation; Lung Cleansing and Detoxifying Decoction (LCDD) is recommended for the treatment of both severe and non-severe patients; Xuanfeibaidu (XFBD) granules are recommended for treating moderate cases; while Huashibaidu (HSBD) and Xuebijing (XBJ) have been used in managing severe cases effectively. The common components and the active ingredients of the six TCM recipes have been summarized to reveal most promising drug candidates. The potential molecular mechanisms of the active ingredients in the six TCM recipes that target ACE2, 3CLpro and IL-6, revealed by molecular biological studies and/or network pharmacology prediction/molecular docking analysis/visualization analysis, are fully discussed. Therefore, further investigation of these TCM recipes may be of high translational value in enabling novel targeted therapies for COVID-19, potentially via purification and characterization of the active ingredients in the effective TCM recipes.
Collapse
Affiliation(s)
- Kai Huang
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Pan Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenghao Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ji Youn Youn
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Chen Wang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Hongchun Zhang
- Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
44
|
Huan C, Xu Y, Zhang W, Guo T, Pan H, Gao S. Research Progress on the Antiviral Activity of Glycyrrhizin and its Derivatives in Liquorice. Front Pharmacol 2021; 12:680674. [PMID: 34295250 PMCID: PMC8290359 DOI: 10.3389/fphar.2021.680674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of β-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.
Collapse
Affiliation(s)
- Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Yao Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| |
Collapse
|
45
|
Iqbal Yatoo M, Hamid Z, Rather I, Nazir QUA, Bhat RA, Ul Haq A, Magray SN, Haq Z, Sah R, Tiwari R, Natesan S, Bilal M, Harapan H, Dhama K. Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Hum Vaccin Immunother 2021; 17:1897-1909. [PMID: 33577374 PMCID: PMC7885722 DOI: 10.1080/21645515.2020.1871295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.
Collapse
Affiliation(s)
- Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Jammu and Kashmir, India
| | - Izhar Rather
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Abrar Ul Haq
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Suhail Nabi Magray
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Zulfqar Haq
- ICAR-Centre for Research on Poultry, Division of Livestock Production and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - SenthilKumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Gandhinagar, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
46
|
James PT, Ali Z, Armitage AE, Bonell A, Cerami C, Drakesmith H, Jobe M, Jones KS, Liew Z, Moore SE, Morales-Berstein F, Nabwera HM, Nadjm B, Pasricha SR, Scheelbeek P, Silver MJ, Teh MR, Prentice AM. The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. J Nutr 2021; 151:1854-1878. [PMID: 33982105 PMCID: PMC8194602 DOI: 10.1093/jn/nxab059] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Many nutrients have powerful immunomodulatory actions with the potential to alter susceptibility to coronavirus disease 2019 (COVID-19) infection, progression to symptoms, likelihood of severe disease, and survival. OBJECTIVE The aim was to review the latest evidence on how malnutrition across all its forms (under- and overnutrition and micronutrient status) may influence both susceptibility to, and progression of, COVID-19. METHODS We synthesized information on 13 nutrition-related components and their potential interactions with COVID-19: overweight, obesity, and diabetes; protein-energy malnutrition; anemia; vitamins A, C, D, and E; PUFAs; iron; selenium; zinc; antioxidants; and nutritional support. For each section we provide: 1) a landscape review of pertinent material; 2) a systematic search of the literature in PubMed and EMBASE databases, including a wide range of preprint servers; and 3) a screen of 6 clinical trial registries. All original research was considered, without restriction to study design, and included if it covered: 1) severe acute respiratory syndrome coronavirus (CoV) 2 (SARS-CoV-2), Middle East respiratory syndrome CoV (MERS-CoV), or SARS-CoV viruses and 2) disease susceptibility or 3) disease progression, and 4) the nutritional component of interest. Searches took place between 16 May and 11 August 2020. RESULTS Across the 13 searches, 2732 articles from PubMed and EMBASE, 4164 articles from the preprint servers, and 433 trials were returned. In the final narrative synthesis, we include 22 published articles, 38 preprint articles, and 79 trials. CONCLUSIONS Currently there is limited evidence that high-dose supplements of micronutrients will either prevent severe disease or speed up recovery. However, results of clinical trials are eagerly awaited. Given the known impacts of all forms of malnutrition on the immune system, public health strategies to reduce micronutrient deficiencies and undernutrition remain of critical importance. Furthermore, there is strong evidence that prevention of obesity and type 2 diabetes will reduce the risk of serious COVID-19 outcomes. This review is registered at PROSPERO as CRD42020186194.
Collapse
Affiliation(s)
- Philip T James
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Zakari Ali
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Bonell
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Carla Cerami
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Modou Jobe
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Kerry S Jones
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC) Nutritional Biomarker Laboratory, MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Zara Liew
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sophie E Moore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Department of Women and Children's Health, King's College London, London, United Kingdom
| | - Fernanda Morales-Berstein
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen M Nabwera
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Behzad Nadjm
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Pauline Scheelbeek
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Matt J Silver
- MRC Unit The Gambia at the London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Megan R Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew M Prentice
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
47
|
Zheng W, Huang X, Lai Y, Liu X, Jiang Y, Zhan S. Glycyrrhizic Acid for COVID-19: Findings of Targeting Pivotal Inflammatory Pathways Triggered by SARS-CoV-2. Front Pharmacol 2021; 12:631206. [PMID: 34177566 PMCID: PMC8223069 DOI: 10.3389/fphar.2021.631206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is now a worldwide public health crisis. The causative pathogen is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Novel therapeutic agents are desperately needed. Because of the frequent mutations in the virus and its ability to cause cytokine storms, targeting the viral proteins has some drawbacks. Targeting cellular factors or pivotal inflammatory pathways triggered by SARS-CoV-2 may produce a broader range of therapies. Glycyrrhizic acid (GA) might be beneficial against SARS-CoV-2 because of its anti-inflammatory and antiviral characteristics and possible ability to regulate crucial host factors. However, the mechanism underlying how GA regulates host factors remains to be determined. Methods: In our report, we conducted a bioinformatics analysis to identify possible GA targets, biological functions, protein-protein interactions, transcription-factor-gene interactions, transcription-factor-miRNA coregulatory networks, and the signaling pathways of GA against COVID-19. Results: Protein-protein interactions and network analysis showed that ICAM1, MMP9, TLR2, and SOCS3 had higher degree values, which may be key targets of GA for COVID-19. GO analysis indicated that the response to reactive oxygen species was significantly enriched. Pathway enrichment analysis showed that the IL-17, IL-6, TNF-α, IFN signals, complement system, and growth factor receptor signaling are the main pathways. The interactions of TF genes and miRNA with common targets and the activity of TFs were also recognized. Conclusions: GA may inhibit COVID-19 through its anti-oxidant, anti-viral, and anti-inflammatory effects, and its ability to activate the immune system, and targeted therapy for those pathways is a predominant strategy to inhibit the cytokine storms triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiufang Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanni Lai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shaofeng Zhan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Cámara M, Sánchez-Mata MC, Fernández-Ruiz V, Cámara RM, Cebadera E, Domínguez L. A Review of the Role of Micronutrients and Bioactive Compounds on Immune System Supporting to Fight against the COVID-19 Disease. Foods 2021; 10:1088. [PMID: 34068930 PMCID: PMC8155867 DOI: 10.3390/foods10051088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Micronutrients are critical for an adequate function of the immune system and play a vital role in promoting health and nutritional well-being. The present work is aimed at reviewing (1) the role of micronutrients in helping the immune system to fight against the COVID-19 disease through the diet with food or food supplements and (2) the potential use of food health claims regarding immune function according to the European Food Safety Authority (EFSA) requirements. Till date, there are some health claims authorized by the European Commission that refer to the role of certain essential nutrients (vitamins B6, B9, B12, A, D, C, and Cu, Fe, Se) to contribute to the proper functioning of the immune system. Vitamins D, C, Zn, and Se, have been thoroughly studied as a strategy to improve the immune system to fight against COVID-19 disease. From all the micronutrients, Vitamin D is the one with more scientific evidence suggesting positive effects against COVID-19 disease as it is linked to a reduction of infection rates, as well as an improved outcomes in patients. To validate scientific evidence, different clinical trials are ongoing currently, with promising preliminary results although inconclusive yet.
Collapse
Affiliation(s)
- Montaña Cámara
- Nutrition and Food Science Department, Pharmacy Faculty, Complutense University of Madrid (UCM), Plaza Ramón y Cajal, s/n, E-28040 Madrid, Spain; (M.C.S.-M.); (V.F.-R.); (R.M.C.); (E.C.); (L.D.)
| | | | | | | | | | | |
Collapse
|
49
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
50
|
Moallemian Isfahani M, Emam-Djomeh Z, Rao IM, Rezaei N. Nutrition and Immunity in COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:485-497. [PMID: 33973196 DOI: 10.1007/978-3-030-63761-3_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition can strongly influence infection trajectories by either boosting or suppressing the immune system. During the recently emerged pandemic of coronavirus disease 2019 (COVID-19), individuals who possess diets high in fat, refined carbohydrates, and sugars have shown to be highly prone to the disease and associated adverse outcomes. Both micronutrients and macronutrients provide benefits at different stages of the infection. Thus, using appropriate nutritional recommendations and interventions is necessary to combat the infection in patients with COVID-19 in both outpatient and inpatient settings.
Collapse
Affiliation(s)
- Marjan Moallemian Isfahani
- Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Emam-Djomeh
- Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Idupulapati M Rao
- Centro Internacional de Agricultura Tropical, Santiago de Cali, Colombia
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|