1
|
Deng Q, Lv R, Zou T. The effects of the ketogenic diet on cancer treatment: a narrative review. Eur J Cancer Prev 2024:00008469-990000000-00175. [PMID: 39365252 DOI: 10.1097/cej.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Despite significant advances in therapy, cancer remains the top cause of death in parts of the globe. For many types of cancer, the typical treatment is a combination of surgery, chemotherapy, and radiotherapy. However, this conventional treatment is not successful on its own. As a consequence, innovative approaches that improve treatment efficacy are urgently needed. The ketogenic diet is a high-fat, moderate protein, and low-carbohydrate diet that appears to sensitize most cancers to conventional therapies by exploiting cancer cells' altered metabolism, making it an effective adjuvant cancer treatment alternative. This diet could decrease glucose metabolism while enhancing lipid metabolism, interfering with the Warburg effect, and inhibiting tumor cell proliferation. The anticancer impact of ketogenic diet has been established in numerous animal trials and clinical investigations on a wide range of tumor types, including glioblastoma, pancreatic cancer, head and neck cancer, breast cancer, invasive rectal cancer, ovarian cancer, and endometrial cancer. In this review, we discussed the various types of ketogenic diets, the mechanism of action for ketogenic diet as a cancer therapy, and the data gathered from continuing preclinical and clinical studies, intending to establish a solid theoretical foundation for future research.
Collapse
Affiliation(s)
- Qingxuan Deng
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
| | - Ruyue Lv
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
| | - Tangbin Zou
- Dongguan Key Laboratory of Environmental Medicine, Institute of Medical Systems Biology, School of Public Health
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Da Eira D, Jani S, Stefanovic M, Ceddia RB. Sucrose-Enriched and Carbohydrate-Free High-Fat Diets Distinctly Affect Substrate Metabolism in Oxidative and Glycolytic Muscles of Rats. Nutrients 2024; 16:286. [PMID: 38257179 PMCID: PMC10819568 DOI: 10.3390/nu16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Skeletal muscle substrate preference for fuel is largely influenced by dietary macronutrient availability. The abundance of dietary carbohydrates promotes the utilization of glucose as a substrate for energy production, whereas an abundant dietary fat supply elevates rates of fatty acid (FA) oxidation. The objective of this study was to determine whether an obesogenic, high-fat, sucrose-enriched (HFS) diet or a carbohydrate-free ketogenic diet (KD) exert distinct effects on fat, glucose, and ketone metabolism in oxidative and glycolytic skeletal muscles. Male Wistar rats were fed either a HFS diet or a KD for 16 weeks. Subsequently, the soleus (Sol), extensor digitorum longus (EDL), and epitrochlearis (Epit) muscles were extracted to measure palmitate oxidation, insulin-stimulated glucose metabolism, and markers of mitochondrial biogenesis, ketolytic capacity, and cataplerotic and anaplerotic machinery. Sol, EDL, and Epit muscles from KD-fed rats preserved their ability to elevate glycogen synthesis and lactate production in response to insulin, whereas all muscles from rats fed with the HFS diet displayed blunted responses to insulin. The maintenance of metabolic flexibility with the KD was accompanied by muscle-fiber-type-specific adaptive responses. This was characterized by the Sol muscle in KD-fed rats enhancing mitochondrial biogenesis and ketolytic capacity without elevating its rates of FA oxidation in comparison with that in HFS feeding. Conversely, in the Epit muscle, rates of FA oxidation were increased, whereas the ketolytic capacity was markedly reduced by the KD in comparison with that by HFS feeding. In the EDL muscle, the KD also increased rates of FA oxidation, although it did so without altering its ketolytic capacity when compared to HFS feeding. In conclusion, even though obesogenic and ketogenic diets have elevated contents of fat and alter whole-body substrate partitioning, these two dietary interventions are associated with opposite outcomes with respect to skeletal muscle metabolic flexibility.
Collapse
Affiliation(s)
| | | | | | - Rolando B. Ceddia
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
3
|
Lauwers C, De Bruyn L, Langouche L. Impact of critical illness on cholesterol and fatty acids: insights into pathophysiology and therapeutic targets. Intensive Care Med Exp 2023; 11:84. [PMID: 38015312 PMCID: PMC10684846 DOI: 10.1186/s40635-023-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Critical illness is characterized by a hypercatabolic response encompassing endocrine and metabolic alterations. Not only the uptake, synthesis and metabolism of glucose and amino acids is majorly affected, but also the homeostasis of lipids and cholesterol is altered during acute and prolonged critical illness. Patients who suffer from critically ill conditions such as sepsis, major trauma, surgery or burn wounds display an immediate and sustained reduction in low plasma LDL-, HDL- and total cholesterol concentrations, together with a, less pronounced, increase in plasma free fatty acids. The severity of these alterations is associated with severity of illness, but the underlying pathophysiological mechanisms are multifactorial and only partly clarified. This narrative review aims to provide an overview of the current knowledge of how lipid and cholesterol uptake, synthesis and metabolism is affected during critical illness. Reduced nutritional uptake, increased scavenging of lipoproteins as well as an increased conversion to cortisol or other cholesterol-derived metabolites might all play a role in the decrease in plasma cholesterol. The acute stress response to critical illness creates a lipolytic cocktail, which might explain the increase in plasma free fatty acids, although reduced uptake and oxidation, but also increased lipogenesis, especially in prolonged critical illness, will also affect the circulating levels. Whether a disturbed lipid homeostasis warrants intervention or should primarily be interpreted as a signal of severity of illness requires further research.
Collapse
Affiliation(s)
- Caroline Lauwers
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lauren De Bruyn
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Lares-Gutiérrez DA, Galván-Valencia M, Flores-Baza IJ, Lazalde-Ramos BP. Benefits of Chronic Administration of a Carbohydrate-Free Diet on Biochemical and Morphometric Parameters in a Rat Model of Diet-Induced Metabolic Syndrome. Metabolites 2023; 13:1085. [PMID: 37887410 PMCID: PMC10609360 DOI: 10.3390/metabo13101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Carbohydrate intake restriction positively affects markers related to metabolic syndrome (MS). However, the effects of long-term carbohydrate-free diets (CFD) have yet to be studied. The main objective of this study was to report the effects on biochemical and morphometric parameters in a rat model of MS. Male Wistar rats were initially divided into two groups: the standard diet group (SD, n = 20); and the MS group (n = 30) fed a high-glucose diet. Ten animals from each group were sacrificed after 20 weeks on their respective diets to verify MS development. The remaining MS animals were divided into two subgroups: one continued with the MS diet (n = 10); and the other transitioned to a carbohydrate-free diet (MS + CFD group, n = 10) for 20 more weeks. At week 40, parameters, including glucose, insulin, lipid profile, ketone bodies, C-reactive protein (CRP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, creatinine, liver and muscle glycogen, and serum, hepatic, renal, and pancreatic malondialdehyde (MDA) levels were assessed. Transitioning to CFD resulted in decreased caloric intake and body weight, with normalized parameters including MDA, insulin, lipid profile, ALT, liver glycogen, creatinine, and CRP levels. This shift effectively reversed the MS-induced alterations, except for glycemia and uremia, likely influenced by the diet's high protein content stimulating gluconeogenesis. This research underscores the potential benefits of long-term carbohydrate restriction in mitigating MS-related markers.
Collapse
Affiliation(s)
| | | | | | - Blanca Patricia Lazalde-Ramos
- Maestría en Ciencia y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico; (D.A.L.-G.); (M.G.-V.); (I.J.F.-B.)
| |
Collapse
|
5
|
Karasawa T, Koike A, Terada S. A very high-carbohydrate diet differentially affects whole-body glucose tolerance and hepatic insulin resistance in rats. Nutrition 2023; 114:112113. [PMID: 37441826 DOI: 10.1016/j.nut.2023.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES This study was performed to assess the effects of long-term intake of a very high carbohydrate (VHCHO) diet (76% of total energy from carbohydrate [CHO]) on whole-body glucose tolerance and hepatic insulin resistance. METHODS AND MATERIALS Male Sprague Dawley rats were fed either a control high-CHO diet (59% total energy from CHO; n = 8) or a VHCHO diet (76% total energy from CHO; n = 8) for 17 wk. At 4, 8, 12, and 16 wk of the dietary intervention, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) measurements were taken to assess whole-body glucose tolerance and hepatic insulin resistance, respectively. The triacylglycerol concentration in the liver was measured at the end of the 17-wk intervention period. RESULTS The VHCHO diet group showed significantly higher muscle glucose transporter 4 content and a smaller area under the curve for plasma glucose, but not insulin, in the oral glucose tolerance test compared with the control group. On the other hand, the VHCHO diet group had a significantly higher hepatic triacylglycerol concentration and HOMA-IR measurement compared with the control group. The hepatic triacylglycerol concentration was significantly and positively correlated with HOMA-IR. CONCLUSIONS The results of the present study suggest that long-term intake of a VHCHO diet exerts differential effects on whole-body glucose tolerance and hepatic insulin resistance.
Collapse
Affiliation(s)
- Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Khouri H, Ussher JR, Aguer C. Exogenous Ketone Supplementation and Ketogenic Diets for Exercise: Considering the Effect on Skeletal Muscle Metabolism. Nutrients 2023; 15:4228. [PMID: 37836512 PMCID: PMC10574738 DOI: 10.3390/nu15194228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, ketogenic diets and ketone supplements have increased in popularity, particularly as a mechanism to improve exercise performance by modifying energetics. Since the skeletal muscle is a major metabolic and locomotory organ, it is important to take it into consideration when considering the effect of a dietary intervention, and the impact of physical activity on the body. The goal of this review is to summarize what is currently known and what still needs to be investigated concerning the relationship between ketone body metabolism and exercise, specifically in the skeletal muscle. Overall, it is clear that increased exposure to ketone bodies in combination with exercise can modify skeletal muscle metabolism, but whether this effect is beneficial or detrimental remains unclear and needs to be further interrogated before ketogenic diets or exogenous ketone supplementation can be recommended.
Collapse
Affiliation(s)
- Hannah Khouri
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H5, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University-Campus Outaouais, Gatineau, QC J8V 3T4, Canada
| |
Collapse
|
7
|
Smolensky I, Zajac-Bakri K, Odermatt TS, Brégère C, Cryan JF, Guzman R, Timper K, Inta D. Sex-specific differences in metabolic hormone and adipose tissue dynamics induced by moderate low-carbohydrate and ketogenic diet. Sci Rep 2023; 13:16465. [PMID: 37777528 PMCID: PMC10542803 DOI: 10.1038/s41598-023-43587-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.
Collapse
Affiliation(s)
- Ilya Smolensky
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | | | - Catherine Brégère
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12TP07, Ireland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, 4056, Basel, Switzerland
| | - Katharina Timper
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism Clinic, University Hospital Basel, 4056, Basel, Switzerland
| | - Dragos Inta
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
8
|
Kojima K, Ishikawa H, Watanabe S, Nosaka N, Mutoh T. A Randomized, Double-Blind, Controlled Trial Assessing If Medium-Chain Triglycerides in Combination with Moderate-Intensity Exercise Increase Muscle Strength in Healthy Middle-Aged and Older Adults. Nutrients 2023; 15:3275. [PMID: 37513691 PMCID: PMC10383836 DOI: 10.3390/nu15143275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
An adequate nutritional intake is recommended for the prevention of physical frailty and sarcopenia. In particular, medium-chain fatty acids (MCFAs) are reportedly important for muscle strength in nursing home residents. However, the effects of MCFAs on healthy adults at risk for frailty remain unknown. Hence, a randomized, placebo-controlled study was conducted to investigate the effects of 12 weeks of medium-chain triglycerides (MCTs) intake and walking on muscle mass and function in healthy, sedentary, middle-aged and older adults with a low body mass index. Three MCT intake groups with different amounts of octanoic and decanoic acid intake were compared with a control group. After 12 weeks, knee extension strength increased in all groups, with the increases in all MCT intake groups being significantly higher than those in the control group (p < 0.05). Grip strength significantly increased from baseline in the MCT 6 g/day intake group (p < 0.05). The combination of aerobic exercise and MCT intake may be effective in preventing decline in muscle strength and promoting increase in muscle strength as they can improve muscle energy production, thereby contributing to the maintenance of good health for middle-aged and older adults at high risk for frailty and sarcopenia.
Collapse
Affiliation(s)
- Keiichi Kojima
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Haruna Ishikawa
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Shinji Watanabe
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Naohisa Nosaka
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Kanagawa, Japan
| | - Tatsushi Mutoh
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8574, Miyagi, Japan
- Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita-City 010-0874, Akita, Japan
| |
Collapse
|
9
|
Corsello A, Trovato CM, Di Profio E, Cardile S, Campoy C, Zuccotti G, Verduci E, Diamanti A. Ketogenic Diet in Children and Adolescents: the Effects on Growth and Nutritional Status. Pharmacol Res 2023; 191:106780. [PMID: 37088260 DOI: 10.1016/j.phrs.2023.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
The ketogenic diet is known to be a possible adjuvant treatment in several medical conditions, such as in patients with severe or drug-resistant forms of epilepsy. Its use has recently been increasing among adolescents and young adults due to its supposed weight-loss effect, mediated by lipolysis and lowered insulin levels. However, there are still no precise indications on the possible use of ketogenic diets in pediatric age for weight loss. This approach has also recently been proposed for other types of disorder such as inherited metabolic disorders, Prader-Willi syndrome, and some specific types of cancers. Due to its unbalanced ratio of lipids, carbohydrates and proteins, a clinical evaluation of possible side effects with a strict evaluation of growth and nutritional status is essential in all patients following a long-term restrictive diet such as the ketogenic one. The prophylactic use of micronutrients supplementation should be considered before starting any ketogenic diet. Lastly, while there is sufficient literature on possible short-term side effects of ketogenic diets, their possible long-term impact on growth and nutritional status is not yet fully understood, especially when started in pediatric age.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Elisabetta Di Profio
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Sabrina Cardile
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Institute of Health Carlos III, Madrid, Spain.
| | - Gianvincenzo Zuccotti
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy; Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy.
| | - Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Sciences, University of Milan, Milan, Italy.
| | - Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, Rome, Italy.
| |
Collapse
|
10
|
Cuerda-Ballester M, Proaño B, Alarcón-Jimenez J, de Bernardo N, Villaron-Casales C, Lajara Romance JM, de la Rubia Ortí JE. Improvements in gait and balance in patients with multiple sclerosis after treatment with coconut oil and epigallocatechin gallate. A pilot study. Food Funct 2023; 14:1062-1071. [PMID: 36594273 DOI: 10.1039/d2fo02207a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease that progressively decreases the muscular and functional capacity. Thus, there is an alteration in the ability to walk that affects balance, speed and resistance. Since MS pathology involves neuroinflammation, cellular oxidation and mitochondrial alterations, the objective of the study was to assess the impact of a nutritional intervention with coconut oil and epigallocatechin gallate (EGCG) on gait and balance. In order to do this, 51 patients with MS were enrolled and randomly distributed into an intervention group and a control group, which received either a daily dose of 800 mg of EGCG and 60 ml of coconut oil, or a placebo, all during a period of 4 months and which followed a Mediterranean isocaloric diet. Initial and final assessments consisted of the evaluation of quantitative balance (Berg scale), perceived balance (ABC scale), gait speed (10MWT) and resistance (2MWT). Besides, muscle strength was measured using a dynamometer and levels of β-hydroxybutyrate (BHB) were measured in serum samples. In the intervention group, there was a significant improvement in the gait speed, quantitative balance and muscle strength of the right quadriceps; an improvement in gait resistance was observed in both groups. There were also significant and positive correlations between balance and gait scales. In conclusion, the administration of EGCG and coconut oil seems to improve gait speed and balance in MS patients, although the latter was not perceived by them. Furthermore, these variables appear to be related and contribute to functionality.
Collapse
Affiliation(s)
- María Cuerda-Ballester
- Doctoral Degree School, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, C/Espartero, 7, 46007 Valencia, Spain.
| | - Jorge Alarcón-Jimenez
- Department of Physiotherapy, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Nieves de Bernardo
- Department of Physiotherapy, Catholic University of Valencia San Vicente Mártir, C/Quevedo, 2, 46001 Valencia, Spain.
| | - Carlos Villaron-Casales
- Department of Physiotherapy, European University of Valencia, Avda/Alameda, 7, 46010, Valencia, Spain.
| | - José María Lajara Romance
- Department of Law, Economical and Social Sciences, Multimedia Area, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro, 94, 46001 Valencia, Spain.
| | | |
Collapse
|
11
|
Yakupova EI, Bocharnikov AD, Plotnikov EY. Effects of Ketogenic Diet on Muscle Metabolism in Health and Disease. Nutrients 2022; 14:nu14183842. [PMID: 36145218 PMCID: PMC9505561 DOI: 10.3390/nu14183842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary intervention is widely used as a therapeutic approach ranging from the treatment of neurological disorders to attempts to extend lifespan. The most important effect of various diets is a change in energy metabolism. Since muscles constitute 40% of total body mass and are one of the major sites of glucose and energy uptake, various diets primarily affect their metabolism, causing both positive and negative changes in physiology and signaling pathways. In this review, we discuss changes in the energy metabolism of muscles under conditions of the low-carbohydrate, high-fat diet/ketogenic diet (KD), fasting, or administration of exogenous ketone bodies, which are all promising approaches to the treatment of various diseases. KD's main influence on the muscle is expressed through energy metabolism changes, particularly decreased carbohydrate and increased fat oxidation. This affects mitochondrial quantity, oxidative metabolism, antioxidant capacity, and activity of enzymes. The benefits of KD for muscles stay controversial, which could be explained by its different effects on various fiber types, including on muscle fiber-type ratio. The impacts of KD or of its mimetics are largely beneficial but could sometimes induce adverse effects such as cardiac fibrosis.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| | - Alexey D. Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.I.Y.); (E.Y.P.)
| |
Collapse
|
12
|
Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9:802805. [PMID: 35719157 PMCID: PMC9203050 DOI: 10.3389/fnut.2022.802805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the 1950s, the production of processed fats and oils from coconut oil was popular in the United States. It became necessary to find uses for the medium-chain fatty acids (MCFAs) that were byproducts of the process, and a production method for medium-chain triglycerides (MCTs) was established. At the time of this development, its use as a non-fattening fat was being studied. In the early days MCFAs included fatty acids ranging from hexanoic acid (C6:0) to dodecanoic acid (C12:0), but today their compositions vary among manufacturers and there seems to be no clear definition. MCFAs are more polar than long-chain fatty acids (LCFAs) because of their shorter chain length, and their hydrolysis and absorption properties differ greatly. These differences in physical properties have led, since the 1960s, to the use of MCTs to improve various lipid absorption disorders and malnutrition. More than half a century has passed since MCTs were first used in the medical field. It has been reported that they not only have properties as an energy source, but also have various physiological effects, such as effects on fat and protein metabolism. The enhancement of fat oxidation through ingestion of MCTs has led to interest in the study of body fat reduction and improvement of endurance during exercise. Recently, MCTs have also been shown to promote protein anabolism and inhibit catabolism, and applied research has been conducted into the prevention of frailty in the elderly. In addition, a relatively large ingestion of MCTs can be partially converted into ketone bodies, which can be used as a component of "ketone diets" in the dietary treatment of patients with intractable epilepsy, or in the nutritional support of terminally ill cancer patients. The possibility of improving cognitive function in dementia patients and mild cognitive impairment is also being studied. Obesity due to over-nutrition and lack of exercise, and frailty due to under-nutrition and aging, are major health issues in today's society. MCTs have been studied in relation to these concerns. In this paper we will introduce the results of applied research into the use of MCTs by healthy subjects.
Collapse
|
13
|
de la Rubia Ortí JE, Platero JL, Benlloch M, Franco-Martinez L, Tvarijonaviciute A, Escribá-Alepuz J, Sancho-Castillo S. Role of Haptoglobin as a Marker of Muscular Improvement in Patients with Multiple Sclerosis after Administration of Epigallocatechin Gallate and Increase of Beta-Hydroxybutyrate in the Blood: A Pilot Study. Biomolecules 2021; 11:biom11050617. [PMID: 33919169 PMCID: PMC8143085 DOI: 10.3390/biom11050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Here, we report on the role of haptoglobin (Hp), whose expression depends on the synthesis of interleukin 6 (IL-6), related to the pathogenesis of multiple sclerosis (MS), as a possible marker of muscle improvement achieved after treatment with the polyphenol epigallocatechin gallate (EGCG) and an increase in the ketone body beta-hydroxybutyrate (BHB) in the blood. After 4 months of intervention with 27 MS patients, we observed that Hp does not significantly increase, alongside a significant decrease in IL-6 and a significant increase in muscle percentage. At the same time, Hp synthesis is considerably and positively correlated with IL-6 both before and after treatment; while this correlation occurs significantly reversed with muscle percentage before treatment, no correlation is evident after the intervention. These results seem to indicate that Hp could be a marker of muscle status and could be a diagnosis tool after therapeutic intervention in MS patients.
Collapse
Affiliation(s)
- Jose Enrique de la Rubia Ortí
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
| | - Jose Luis Platero
- Doctoral Degree School, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain;
| | - María Benlloch
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
- Correspondence: ; Tel.: +34-963637412
| | - Lorena Franco-Martinez
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (A.T.)
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (L.F.-M.); (A.T.)
| | - Jesús Escribá-Alepuz
- Neurophysiology Department, Sagunto University Hospital, 46520 Valencia, Spain;
- Institute of Sleep Medicine, 46021 Valencia, Spain
| | - Sandra Sancho-Castillo
- Department of Nursing, Catholic University of Valencia San Vicente Martir, 46001 Valencia, Spain; (J.E.d.l.R.O.); (S.S.-C.)
| |
Collapse
|
14
|
Xia J, Yu P, Zeng Z, Ma M, Zhang G, Wan D, Gong D, Deng S, Wang J. High Dietary Intervention of Lauric Triglyceride Might be Harmful to Its Improvement of Cholesterol Metabolism in Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4453-4463. [PMID: 33844520 DOI: 10.1021/acs.jafc.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypercholesterolemia is often considered to be a major risk factor for atherosclerosis, and medium-chain fatty acids have been found to reduce the total cholesterol (TC) level and maintain low-density lipoprotein cholesterol (LDL-c) stability. However, we unexpectedly found that the levels of TC and LDL-c were increased in obese rats treated with high-dose lauric triglycerides (LT). The study aimed to investigate the effect and mechanism of LT on cholesterol metabolism in obese rats. Our results showed that LT intervention could reduce cholesterol biosynthesis by downregulating the expression of HMG-CoA reductase in obese rats. LT increased the expression levels of PPARγ1, LXRα, ABCA1, and ABCG8 in the liver. These results indicated that LT could improve the lipid transfer and bile acid efflux. However, LT significantly increased the expression of PCSK 9, resulting in accelerated degradation of LDLR, thus reducing the transport of very LDL (VLDL) and LDL to the liver. Together with the increased expression of NPC1L1 protein, LT impaired the uptake of VLDL/LDL by the liver and increased the reabsorption of sterols, leading to an increase in the levels of TC and LDL-c in obese rats.
Collapse
Affiliation(s)
- Jiaheng Xia
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ping Yu
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zheling Zeng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Guohua Zhang
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Dongman Wan
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Shuguang Deng
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85284, United States
| | - Jun Wang
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
15
|
Karasawa T, Kondo S, Fukazawa A, Koike A, Tsutsui M, Terada S. Effects of Dietary Fat Restriction on Endurance Training-induced Metabolic Adaptations in Rat Skeletal Muscle. J Oleo Sci 2021; 70:253-262. [PMID: 33456007 DOI: 10.5650/jos.ess20248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endurance exercise training enhances muscle fat oxidation while concomitantly reducing carbohydrate (glycogen) utilization during exercise, thereby delaying the onset of fatigue. This study examined the effects of dietary fat restriction on endurance training-induced metabolic adaptations in rat skeletal muscle. Male Sprague-Dawley rats were placed on either a control diet (CON: 19.2% protein, 21.6% fat, and 59.2% carbohydrate as a percentage of total energy) or a fat-restricted diet (FR: 21.5% protein, 2.4% fat, and 76.1% carbohydrate as a percentage of total energy) for 4 wks. Half the rats in each dietary group performed daily 6-h swimming exercise (two 3-h sessions separated by 45 min of rest) on 5 days each wk. Endurance training significantly increased the expression of β-hydroxyacyl CoA dehydrogenase (βHAD), a key enzyme of fat oxidation, and pyruvate dehydrogenase kinase 4 (PDK4), an inhibitory regulator of glycolytic flux, in the skeletal muscle of rats fed the CON diet. However, such endurance training-induced increases in muscle βHAD and PDK4 were partially suppressed by the FR diet, suggesting that a FR diet may diminish the endurance training-induced enhancement of fat oxidation and reduction in glycogen utilization during exercise. We then assessed the muscle glycogen utilization rate during an acute bout of swimming exercise in the trained rats fed either the CON or the FR diet and consequently found that rats fed the FR diet had a significantly higher muscle glycogen utilization rate during exercise compared with rats fed the CON diet. In conclusion, dietary fat restriction may attenuate the endurance training-induced metabolic adaptations in skeletal muscle.
Collapse
Affiliation(s)
- Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Saki Kondo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
- Research Fellow of Japan Society for the Promotion of Science
| | - Ayumi Fukazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Momoko Tsutsui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
16
|
Fukazawa A, Karasawa T, Yokota Y, Kondo S, Aoyama T, Terada S. The Safety of Very-long-term Intake of a Ketogenic Diet Containing Medium-chain Triacylglycerols. J Oleo Sci 2021; 70:989-993. [PMID: 34193672 DOI: 10.5650/jos.ess21080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that consuming a ketogenic diet containing medium-chain triacylglycerols (MCTs) might be a valuable dietary strategy for endurance athletes. However, the long-term safety of the diet has not been established, and there is a concern that a higher intake of MCTs increases the liver triacylglycerol content. In this study, we found that consuming an MCT-containing ketogenic diet for 24 weeks decreased, rather than increased, the liver triacylglycerol concentration and did not aggravate safety-related blood biomarkers in male Wistar rats. Our results may therefore suggest that the long-term intake of a ketogenic diet containing MCTs may have no deleterious effects on physiological functions.
Collapse
Affiliation(s)
- Ayumi Fukazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Yuma Yokota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Saki Kondo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | - Toshiaki Aoyama
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe) at Tohoku University
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
17
|
Effect of Ingestion of Medium-Chain Triglycerides on Substrate Oxidation during Aerobic Exercise Could Depend on Sex Difference in Middle-Aged Sedentary Persons. Nutrients 2020; 13:nu13010036. [PMID: 33374218 PMCID: PMC7823668 DOI: 10.3390/nu13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fat oxidation (FAO) during aerobic exercise and whole-body FAO via lipid intake are thought to be important for the maintenance of health, such as the prevention of type 2 diabetes and obesity in sedentary persons in their 40s and 50s. Medium-chain triglycerides (MCTs) ingestion has been attracting attention. However, the effects of difference of sex and the composition of medium-chain fatty acids (MCFAs) are unclear, so we examined the effects of these factors on FAO during aerobic exercise. We conducted a randomized, double-blind, placebo-controlled, 3-arm, within-participants crossover trial. FAO during low- to moderate-intensity exercise was compared when octanoate-rich MCTs (C8R), decanoate-rich MCTs (C10R), or carbohydrate (control) was ingested. Three 2-week interventions were separated by two 2-week washout periods. An increase of FAO during exercise after the C8R diet was found in males, but not in females. An increase of carbohydrate oxidation (CAO) and oxygen uptake during exercise after the C10R diet was found in females, but not in males. In a pooled estimate of the effect of MCTs (C8R and C10R) in women and men, FAO increased during exercise. In conclusion, short-term ingestion of MCTs by middle-aged sedentary persons could increase FAO during aerobic exercise compared to carbohydrate ingestion, but the enhancing effect of MCTs on substrate utilization and oxygen uptake might vary, depending on sex and the composition of MCFAs.
Collapse
|
18
|
Ludwig DS, Dickinson SL, Henschel B, Ebbeling CB, Allison DB. Do Lower-Carbohydrate Diets Increase Total Energy Expenditure? An Updated and Reanalyzed Meta-Analysis of 29 Controlled-Feeding Studies. J Nutr 2020; 151:482-490. [PMID: 33274750 PMCID: PMC7948201 DOI: 10.1093/jn/nxaa350] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The effect of macronutrient composition on total energy expenditure (TEE) remains controversial, with divergent findings among studies. One source of heterogeneity may be study duration, as physiological adaptation to lower carbohydrate intake may require 2 to 3 wk. OBJECTIVE We tested the hypothesis that the effects of carbohydrate [expressed as % of energy intake (EI)] on TEE vary with time. METHODS The sample included trials from a previous meta-analysis and new trials identified in a PubMed search through 9 March 2020 comparing lower- and higher-carbohydrate diets, controlled for EI or body weight. Three reviewers independently extracted data and reconciled discrepancies. Effects on TEE were pooled using inverse-variance-weighted meta-analysis, with between-study heterogeneity assessed using the I2 statistic. Meta-regression was used to quantify the influence of study duration, dichotomized at 2.5 wk. RESULTS The 29 trials ranged in duration from 1 to 140 d (median: 4 d) and included 617 participants. Difference in carbohydrate between intervention arms ranged from 8% to 77% EI (median: 30%). Compared with reported findings in the prior analysis (I2 = 32.2%), we found greater heterogeneity (I2 = 90.9% in the reanalysis, 81.6% in the updated analysis). Study duration modified the diet effect on TEE (P < 0.001). Among 23 shorter trials, TEE was reduced on lower-carbohydrate diets (-50.0 kcal/d; 95% CI: -77.4, -22.6 kcal/d) with substantial heterogeneity (I2 = 69.8). Among 6 longer trials, TEE was increased on low-carbohydrate diets (135.4 kcal/d; 95% CI: 72.0, 198.7 kcal/d) with low heterogeneity (I2 = 26.4). Expressed per 10% decrease in carbohydrate as %EI, the TEE effects in shorter and longer trials were -14.5 kcal/d and 50.4 kcal/d, respectively. Findings were materially unchanged in sensitivity analyses. CONCLUSIONS Lower-carbohydrate diets transiently reduce TEE, with a larger increase after ∼2.5 wk. These findings highlight the importance of longer trials to understand chronic macronutrient effects and suggest a mechanism whereby lower-carbohydrate diets may facilitate weight loss.
Collapse
Affiliation(s)
| | | | - Beate Henschel
- Indiana University School of Public Health–Bloomington, Bloomington, IN, USA
| | - Cara B Ebbeling
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David B Allison
- Indiana University School of Public Health–Bloomington, Bloomington, IN, USA
| |
Collapse
|