1
|
Chow LH, Lin PC, Chen YJ, Chen YH, Huang EYK. Yangonin, one of the kavalactones isolated from Piper methysticum G. Forst, acts through cannabinoid 1 (CB 1) receptors to induce an intrathecal anti-hyperalgesia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118394. [PMID: 38823663 DOI: 10.1016/j.jep.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper methysticum G. Forst (Piperaceae) is traditionally consumed in Polynesian culture. The roots are used to produce an entheogenic drink and traditional medicine with sedative and anxiolytic properties. There is also evidence that it functions as a pain reliever. Kavalactones, its main active ingredients, exhibit psychoactive effects on the central nervous system. However, the active ingredients and pharmacological mechanisms underlying the analgesic effect of kavalactones are unclear. AIM OF THE STUDY This study investigated the effects of kavain and yangonin on nociception, inflammatory hyperalgesia, and neuropathic mechanical allodynia at the spinal level. MATERIALS AND METHODS Male Sprague-Dawley rats were administered kavain and yangonin (27.14 and 19.36 nmol/rat) via intrathecal injection. Tail-flick tests were performed to evaluate the anti-nociceptive properties. The efficacy of kavain and yangonin on inflammatory hyperalgesia was examined using a plantar test in rats with carrageenan-induced paw inflammation. The von Frey test was used to assess mechanical allodynia induced by partial sciatic nerve ligation. RESULTS Intrathecal injection of yangonin demonstrated a relatively potent anti-nociceptive effect and attenuated carrageenan-induced hyperalgesia. These effects were completely reversed by the co-administration of PF 514273, a cannabinoid 1 (CB1) receptor antagonist. However, yangonin did not affect mechanical allodynia at the spinal level. Kavain, another abundant kavalactone, did not affect nociception, hyperalgesia, or mechanical allodynia at the spinal level. CONCLUSIONS Overall, our study demonstrated that yangonin exerts anti-nociception and anti-inflammatory hyperalgesia effects via CB1 receptors at the spinal level. We identified a single kavalactone, yangonin, extracted from kava as a promising treatment for pain.
Collapse
Affiliation(s)
- Lok-Hi Chow
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Anesthesiology, School of Medicine and Institute of Clinical Nursing, School of Nursing, National Yung Ming Chiao Tung University, Taipei, Taiwan; Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Pin-Chen Lin
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Ying-Jie Chen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Elvir Lazo OL, White PF, Lee C, Cruz Eng H, Matin JM, Lin C, Del Cid F, Yumul R. Use of herbal medication in the perioperative period: Potential adverse drug interactions. J Clin Anesth 2024; 95:111473. [PMID: 38613937 DOI: 10.1016/j.jclinane.2024.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Use of herbal medications and supplements has experienced immense growth over the last two decades, with retail sales in the USA exceeding $13 billion in 2021. Since the Dietary Supplement Health and Education Act (DSHEA) of 1994 reduced FDA oversight, these products have become less regulated. Data from 2012 shows 18% of U.S. adults used non-vitamin, non-mineral natural products. Prevalence varies regionally, with higher use in Western states. Among preoperative patients, the most commonly used herbal medications included garlic, ginseng, ginkgo, St. John's wort, and echinacea. However, 50-70% of surgical patients fail to disclose their use of herbal medications to their physicians, and most fail to discontinue them preoperatively. Since herbal medications can interact with anesthetic medications administered during surgery, the American Society of Anesthesiologists (ASA) and the American Association of Nurse Anesthetists (AANA) recommend stopping herbal medications 1-2 weeks before elective surgical procedures. Potential adverse drug effects related to preoperative use of herbal medications involve the coagulation system (e.g., increasing the risk of perioperative bleeding), the cardiovascular system (e.g., arrhythmias, hypotension, hypertension), the central nervous system (e.g., sedation, confusion, seizures), pulmonary (e.g., coughing, bronchospasm), renal (e.g., diuresis) and endocrine-metabolic (e.g., hepatic dysfunction, altered metabolism of anesthetic drugs). During the preoperative evaluation, anesthesiologists should inquire about the use of herbal medications to anticipate potential adverse drug interactions during the perioperative period.
Collapse
Affiliation(s)
| | - Paul F White
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; White Mountain Institute, The Sea Ranch, CA 95497, USA.
| | - Carol Lee
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Hillenn Cruz Eng
- Department of Anesthesiology, Adena Health System, Chillicothe, OH, USA.
| | - Jenna M Matin
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Cory Lin
- Department of Anesthesiology and Perioperative Care, University of California Irvine, CA, USA.
| | - Franklin Del Cid
- Department of Anesthesiology, Hospital Escuela, Tegucigalpa, Honduras.
| | - Roya Yumul
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine-UCLA, Charles R, Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chen X, Qin X, Bai W, Ren J, Yu Y, Nie H, Li X, Liu Z, Huang J, Li J, Yao J, Jiang Q. Kavain Alleviates Choroidal Neovascularization Via Decreasing the Activity of the HIF-1α/VEGF-A/VEGFR2 Signaling Pathway and Inhibiting Inflammation. Adv Pharm Bull 2024; 14:469-482. [PMID: 39206403 PMCID: PMC11347728 DOI: 10.34172/apb.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Neovascular age-related macular degeneration (nAMD) is a prevalent cause of blindness in the elderly. Standard treatment includes anti-vascular endothelial growth factor (anti-VEGF) drugs, such as aflibercept. However, anti-VEGF drugs may have limited efficacy and cause drug resistance. This study explores whether Kavain, an anti-inflammatory molecule from Piper methysticum, can treat choroidal neovascularization (CNV). Methods Various experiments were conducted to assess the Kavain's toxicity. The impact of Kavain on in vitro cultured endothelial cells was examined through 5-ethynyl-20-deoxyuridine (EdU) assays, transwell migration assays, and tube formation assays. The therapeutic effects of Kavain on CNV were investigated using a laser-induced CNV mice model. To elucidate the mechanism of Kavain, network pharmacology analysis, molecular docking, and western blots were performed. Results Kavain exhibited no apparent toxicity both in vitro and in vivo. Kavain significantly decreased endothelial cell viability, proliferation, migration, and tube formation ability in a dose-dependent manner compared to the hypoxia groups (P<0.05). Kavain alleviated CNV in the laser-induced CNV mouse model compared to the control groups (P<0.05). These effects were statistically significantly enhanced in the Kavain plus aflibercept groups (P<0.05). Following Kavain administration, the expression levels of various inflammatory factors were markedly reduced in retinal pigment epithelium (RPE)/choroid complexes (P<0.05). Mechanistically, Kavain decreased the activity of the hypoxia-inducible factor 1α (HIF-1α)/VEGF-A/ VEGF receptor 2 (VEGFR2) signaling pathway. Conclusion Our study is the first to demonstrate Kavain's potential as a promising treatment for nAMD, owing to its dual effects of anti-inflammation and anti-angiogenesis.
Collapse
Affiliation(s)
- Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Department of Ophthalmology, Northern Jiangsu People’s Hospital, Yangzhou, 225001, China
| | - Xun Qin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wen Bai
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junsong Ren
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiling Nie
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangyu Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayu Huang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
4
|
Bian T, Lynch A, Ballas K, Mamallapalli J, Freeman B, Scala A, Wang Y, Trabouls H, Chellian RK, Fagan A, Tang Z, Ding H, De U, Fredenburg KM, Huo Z, Baglole CJ, Zhang W, Reznikov LR, Bruijnzeel AW, Xing C. AB-free kava enhances resilience against the adverse health effects of tobacco smoke in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599576. [PMID: 38979295 PMCID: PMC11230230 DOI: 10.1101/2024.06.25.599576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onsets of numerous preventive diseases, and imposing significant financial burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco smoke-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2 - 4 weeks of daily tobacco smoke exposure. Our comprehensive assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal PKA signaling pathway. As expected, Tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering a unique promise to mitigate tobacco smoke-related health damages. Further pre-clinical evaluation and clinical translation are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms.
Collapse
|
5
|
du Plessis Nisbet J, Xie D, Thompson R, Wark K, Lamrock E, Scurry J. Kava-induced dermatitis: A detailed histopathological analysis. Australas J Dermatol 2024. [PMID: 38764392 DOI: 10.1111/ajd.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Kava induced dermatitis has been reported in previous case series, however the histology has rarely been described. This case report details an erythematous eruption associated with Kava ingestion and the associated folliculocentric sebaceous inflammation found on histological analysis.
Collapse
Affiliation(s)
| | - Danica Xie
- Department of Dermatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Russell Thompson
- Department of Dermatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Kirsty Wark
- Department of Dermatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Edwina Lamrock
- Department of Dermatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - James Scurry
- Department of Anatomical Pathology, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
6
|
Dang C, Wang Q, Li Q, Xiong Y, Lu Y. Chinese herbal medicines for the treatment of depression: a systematic review and network meta-analysis. Front Pharmacol 2024; 15:1295564. [PMID: 38633609 PMCID: PMC11021639 DOI: 10.3389/fphar.2024.1295564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives: Amidst rising global burden of depression and the associated challenges with conventional antidepressant therapies, there is a growing interest in exploring the efficacy and safety of alternative treatments. This study uses a Bayesian network meta-analysis to rigorously evaluate the therapeutic potential of Chinese herbal medicines in the treatment of depression, focusing on their comparative efficacy and safety against standard pharmacological interventions. Methods: Five databases (PubMed, Wanfang Data, EMBASE, CNKI, and the Cochrane Library) and grey literature were searched from inception to end of July 2023 to identify studies that assessed the efficacy and safety of Chinese herbal medicines in treating depression. The response rate, Hamilton Depression Scale (HAMD) scores, and rates of adverse events were assessed through both direct and indirect comparisons. Data extraction and risk of bias assessment were meticulously performed. Statistical analysis used Markov chain Monte Carlo methods, with effect size estimates provided as odd ratios and their 95% confidence intervals. Results: A total of 198 RCTs involving 8,923 patients were analyzed, assessing 17 Chinese herbal medicines. Surface Under the Cumulative Ranking results indicated that the top three treatments with the best response rate were possibly Guipiwan, Ease Pill, and Chaihu Jia Longgu Muli Decoction; the top three treatments on the reduction of HAMD scores were Chai Hu Shu Gan San, Xingnao Jieyu Decoction, and Xiaoyao Powder; and the top three treatments with the lowest adverse effects rates were Xiaoyao Powder, Alprazolam, and Xingnao Jieyu Decoction. Interestingly, commonly used synthetic drugs such as Fluoxetine, Escitalopram, Amitriptyline, Sertraline, Flupentixol and Melitracen, and Venlafaxine, not only appeared to be less effective than specific Chinese herbal medicines (Gan Mai Da Zao Decoction, Chaihu Jia Longgu Muli Decoction, Chai Hu Shu Gan San, Danzhi-Xiaoyao-San, and Xingnao Jieyu Decoction), but they were also related to substantially higher risk of adverse events. Conclusion: Our findings elucidate the promising therapeutic potential of Chinese herbal medicines as viable alternatives in the treatment of depression, with certain herbs demonstrating enhanced efficacy and safety profiles. The outcomes of this study advocate for the integration of these alternative modalities into contemporary depression management paradigms. However, it underscores the necessity for larger, methodologically robust trials to further validate and refine these preliminary findings. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023452109.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Qinxuan Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| |
Collapse
|
7
|
Wei Z, Gu X, Zhang J, Chen Y, Jiang T, Hu D, Miao M, Zhou H, Cheng R, Teichmann AT, Yang Y. Beneficial biological effects of Flavokawain A, a chalcone constituent from kava, on surgically induced endometriosis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116896. [PMID: 37437790 DOI: 10.1016/j.jep.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shrub kava has long been grown and utilized, primarily in the South Pacific region, for ceremonial, religious, and social occasions. It has been used as a pain reliever and muscle relaxant in medicinal practices from the eighteenth century. Interestingly, relatively low incidence of lung cancer may attribute to the high consumption of kava products in this region. AIM OF THE STUDY Kava extracts were used to produce the kava chalcones Flavokawain A, B and C, which have a variety of bioactivities. In the present study, we show that Flavokawain A has positive effects on endometriosis. MATERIALS AND METHODS The endometriosis rat model was surgically induced by the autologous transplantation of endometrial tissue. Rats were evaluated for clinical ratings and lesion volume following a 6-week Flavokawain A therapy. Peritoneal fluid and blood samples were taken and ELISA assay was used to measure the cytokines and chemokines levels. Transcriptional and expression levels of Akt, PI3K, NF-kB, iNOS, Bcl-2, Bax and caspase-3 were evaluated by Western blotting and RT-qPCR. Implanted tissue sections of the rats were also analyzed by immunofluorescent and histopathological staining. RESULTS Lesion volumes and adhesion scores were successfully decreased. Blood and peritoneal fluid levels of associated cytokines and chemokines were markedly down-regulated. Besides, Flavokawain A also mediated cell apoptosis of endometrial implants. Additionally, VEGF expression was reduced, which inhibited the angiogenesis process. As for the expression of Akt, p-Akt, PI3K, p-PI3K, and NF-kB in endometriosis lesions, Flavokawain A significantly reduced them. CONCLUSION Flavokawain A has beneficial effects on the surgically induced endometriosis rat model, by reducing inflammation, promoting apoptosis, and decreasing angiogenesis. Our findings suggest that these effects may be mediated through the regulation of PI3K/Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhe Wei
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, Minato City, Tokyo, 105-8512, Japan
| | - Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, PR China
| | - Jinrui Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Yuan Chen
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Tao Jiang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Rui Cheng
- Chengdu Good Doctor Chaoyue Biomedical Co., Ltd., Chengdu, 610041, PR China.
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, PR China.
| |
Collapse
|
8
|
Xiao T, Wu A, Wang X, Guo Z, Huang F, Cheng X, Shen X, Tao L. Anti-hypertensive and composition as well as pharmacokinetics and tissues distribution of active ingredients from Alpinia zerumbet. Fitoterapia 2024; 172:105753. [PMID: 37992780 DOI: 10.1016/j.fitote.2023.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Alpinia zerumbet is a food flavor additive and a traditional medicine herb around the world. Several studies have reported that A. zerumbet has excellent effects on a variety of cardiovascular diseases, but its potential hypertensive applications, and pharmacokinetic features of main active substances have not been fully investigated. The mechanism of anti-hypertension with ethyl acetate extracts of A. zerumbet fruits (AZEAE) was evaluated by L-NNA-induced hypertensive rats and L-NAME-injured human umbilical vein endothelial cells (HUVECs). Blood pressure, echocardiographic cardiac index and H&E staining were used to preliminary evaluate the antihypertensive effect of AZEAE, the levels of TNF-α, IL-6, and IL-1β were evaluated by ELISA, and the proteins expression of IL-1β, IL-18, AGTR1, VCAM, iNOS, EDN1 and eNOS were also evaluated. In addition, isolation, identification, and activity screening of bioactive compounds were carried ou. Next, pharmacokinetics and tissues distribution of dihydro-5,6-dehydrokavain (DDK) in vivo were measured, and preliminary absorption mechanism was conducted with Caco-2 cell monolayers. AZEAE remarkably enhanced the state of hypertensive rats. Twelve compounds were isolated and identified, and five compounds were isolated from this plant for the first time. The isolated compounds also exhibited good resistance against injury of HUVECs. Moreover, pharmacokinetics and Caco-2 cell monolayers demonstrated AZEAE had better absorption capacity than DDK, and DDK exhibited differences in tissues distribution and gender difference. This study was the first to assess the potential hypertensive applications of A. zerumbet in vivo and vitro, and the first direct and concise study of the in vivo behavior of DDK and AZEAE.
Collapse
Affiliation(s)
- Ting Xiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Ai Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiaowei Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Zhenghong Guo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Feilong Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xingyan Cheng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, NO. 6 Ankang avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
9
|
Alanazi HH, Elasbali AM, Alanazi MK, El Azab EF. Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules 2023; 28:8045. [PMID: 38138535 PMCID: PMC10745476 DOI: 10.3390/molecules28248045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Humans are constantly at high risk of emerging pandemics caused by viral and bacterial infections. The emergence of new pandemics is mainly caused by evolved viruses and bacteria that are highly resistant to existing medications. The rapid evolution of infectious agents demands the urgent investigation of new therapeutic strategies to prevent and treat these infections at an early stage. One of these therapeutic strategies includes the use of medicinal herbs for their antibacterial and antiviral properties. The use of herbal medicines as remedies is very ancient and has been employed for centuries. Many studies have confirmed the antimicrobial activities of herbs against various pathogens in vitro and in vivo. The therapeutic effect of medicinal herbs is mainly attributed to the natural bioactive molecules present in these plants such as alkaloids, flavonoids, and terpenoids. Different mechanisms have been proposed for how medicinal herbs enhance the immune system and combat pathogens. Such mechanisms include the disruption of bacterial cell membranes, suppression of protein synthesis, and limitation of pathogen replication through the inhibition of nucleic acid synthesis. Medicinal herbs have been shown to treat a number of infectious diseases by modulating the immune system's components. For instance, many medicinal herbs alleviate inflammation by reducing pro-inflammatory cytokines (e.g., tumor necrosis factor-alpha (TNF-α), interleukin-1, IL-6) while promoting the production of anti-inflammatory cytokines (e.g., IL-10). Medicinal herbs also play a role in defense against viral and intracellular infections by enhancing the proliferation and functions of natural killer cells, T-helper-1 cells, and macrophages. In this review, we will explore the use of the most common herbs in preventing and treating infectious and non-infectious diseases. Using current and recently published studies, we focus on the immunomodulatory and therapeutic effects induced by medicinal herbs to enhance immune responses during diseases.
Collapse
Affiliation(s)
- Hamad H. Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al-Qurayyat 77455, Saudi Arabia; (A.M.E.); (E.F.E.A.)
| | | | | | | |
Collapse
|
10
|
Hba S, Ghaddar S, Wahnou H, Pinon A, El Kebbaj R, Pouget C, Sol V, Liagre B, Oudghiri M, Limami Y. Natural Chalcones and Derivatives in Colon Cancer: Pre-Clinical Challenges and the Promise of Chalcone-Based Nanoparticles. Pharmaceutics 2023; 15:2718. [PMID: 38140059 PMCID: PMC10748144 DOI: 10.3390/pharmaceutics15122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer poses a complex and substantial global health challenge, necessitating innovative therapeutic approaches. Chalcones, a versatile class of compounds with diverse pharmacological properties, have emerged as promising candidates for addressing colon cancer. Their ability to modulate pivotal signaling pathways in the development and progression of colon cancer makes them invaluable as targeted therapeutics. Nevertheless, it is crucial to recognize that although chalcones exhibit promise, further pre-clinical studies are required to validate their efficacy and safety. The journey toward effective colon cancer treatment is multifaceted, involving considerations such as optimizing the sequencing of therapeutic agents, comprehending the resistance mechanisms, and exploring combination therapies incorporating chalcones. Furthermore, the integration of nanoparticle-based drug delivery systems presents a novel avenue for enhancing the effectiveness of chalcones in colon cancer treatment. This review delves into the mechanisms of action of natural chalcones and some derivatives. It highlights the challenges associated with their use in pre-clinical studies, while also underscoring the advantages of employing chalcone-based nanoparticles for the treatment of colon cancer.
Collapse
Affiliation(s)
- Soufyane Hba
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Suzan Ghaddar
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Christelle Pouget
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (S.G.); (A.P.); (C.P.); (V.S.)
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P 2693 Maarif, Casablanca 20100, Morocco; (S.H.); (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| |
Collapse
|
11
|
Revathi R, Akash R, Mahadevi R, Sengottuvelu S, Mohanraj P, Vijayakumar N, Krishnamoorthy R, Ahmed MZ, Kazmi S, Kavitha R. Phytochemical characterization, antioxidant and antibacterial activities of crude extracts of Anisomeles malabarica and Coldenia procumbens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:614-631. [PMID: 37395392 DOI: 10.1080/15287394.2023.2231484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The aim of this study was to determine the phytochemical profile, antibacterial and antioxidant activities of crude aqueous leaf extracts of Anisomeles malabarica and Coldenia procumbens. The predominant components present in these crude extracts of test plants identified using gas chromatography-mass spectrometry (GC-MS) analysis in both plant extracts were phytochemicals including flavonoids, tannins, terpenoids, and phenols. The antibacterial activity of crude extracts of these plants against bacterial pathogens including Escherichia coli, Bacillus subtilis, Shigella sp., Salmonella paratyphi A and B, Proteus mirabilis, Proteus vulgaris, Pseudomonas sp. Klebsiella pneumoniae, and Staphylococcus aureus were examined. Data demonstrated that the extracts of A. malabarica and C. procumbens exhibited significant antibacterial activity against B.subtilis and P.vulgaris at the concentration of 50 mg/ml. A. malabarica aqueous extract displayed significant antioxidant activity on 2,2-diphenyl-1-picrylhydrazl (DPPH), fluorescence recovery after photobleaching (FRAP) and hydrogen peroxide (H2O2) free radicals at the concentration of 90 mg/ml. The antioxidant activity was significantly higher with A. malabarica than extract of C. procumbens. Evidence indicates that both plant extracts may possess significant pharmaceutical potential as antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Ramalingam Revathi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - R Akash
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | - Ramasamy Mahadevi
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, Tamil Nadu, India
| | | | - Palanisamy Mohanraj
- Department of Pharmaceutics, Nandha College of Pharmacy, Erode, Tamil Nadu, India
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Kazmi
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
12
|
Meesakul P, Shea T, Wong SX, Kuroki Y, Cao S. Hawaiian Plants with Beneficial Effects on Sleep, Anxiety, and Mood, etc. Pharmaceuticals (Basel) 2023; 16:1228. [PMID: 37765036 PMCID: PMC10538232 DOI: 10.3390/ph16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diverse chemical messengers are responsible for maintaining homeostasis in the human body, for example, hormones and neurotransmitters. Various Hawaiian plant species produce compounds that exert effects on these messengers and the systems of which they are a part. The main purpose of this review article is to evaluate the potential effects of Hawaiian plants on reducing pain and anxiety and improving sleep and mood. A comprehensive literature search was conducted in SciFinder, PubMed, Science Direct, Scopus, Google Scholar, and Scientific Information Database between 2019 and 2023 to identify related articles. Results indicate that several Hawaiian plant species, such as M. citrifolia and P. methysticum, have medicinal properties associated with these effects. These plants have been used in traditional Hawaiian cultural practices for centuries, suggesting their potential to benefit human health and well-being. This review presents a comprehensive analysis of the available evidence concerning the potential impacts of Hawaiian plants on sleep, anxiety, mood, and pain.
Collapse
Affiliation(s)
- Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| | - Tyler Shea
- Chemistry Department, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| | - Shi Xuan Wong
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore; (S.X.W.); (Y.K.)
| | - Yutaka Kuroki
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore; (S.X.W.); (Y.K.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA;
| |
Collapse
|
13
|
Freeman B, Mamallapalli J, Bian T, Ballas K, Lynch A, Scala A, Huo Z, Fredenburg KM, Bruijnzeel AW, Baglole CJ, Lu J, Salloum RG, Malaty J, Xing C. Opportunities and Challenges of Kava in Lung Cancer Prevention. Int J Mol Sci 2023; 24:ijms24119539. [PMID: 37298489 DOI: 10.3390/ijms24119539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.
Collapse
Affiliation(s)
- Breanne Freeman
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jessica Mamallapalli
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tengfei Bian
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Kayleigh Ballas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Allison Lynch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Scala
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kristianna M Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Junxuan Lu
- Department of Pharmacology, PennState Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Malaty
- Department of Community Health & Family Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Dietary Phytochemicals as Potential Chemopreventive Agents against Tobacco-Induced Lung Carcinogenesis. Nutrients 2023; 15:nu15030491. [PMID: 36771198 PMCID: PMC9920588 DOI: 10.3390/nu15030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the second most common cancer in the world. Cigarette smoking is strongly connected with lung cancer. Benzo[a]pyrene (BaP) and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-butanone (NNK) are the main carcinogens in cigarette smoking. Evidence has supported the correlation between these two carcinogens and lung cancer. Epidemiology analysis suggests that lung cancer can be effectively prevented through daily diet adjustments. This review aims to summarize the studies published in the past 20 years exploring dietary phytochemicals using Google Scholar, PubMed, and Web of Science databases. Dietary phytochemicals mainly include medicinal plants, beverages, fruits, vegetables, spices, etc. Moreover, the perspectives on the challenges and future directions of dietary phytochemicals for lung cancer chemoprevention will be provided. Taken together, treatment based on the consumption of dietary phytochemicals for lung cancer chemoprevention will produce more positive outcomes in the future and offer the possibility of reducing cancer risk in society.
Collapse
|
15
|
Pont-Fernandez S, Kheyfets M, Rogers JM, Smith KE, Epstein DH. Kava ( Piper methysticum) in the United States: the quiet rise of a substance with often subtle effects. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:85-96. [PMID: 36410029 DOI: 10.1080/00952990.2022.2140292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Piper methysticum, commonly called kava, has long been consumed in beverage form in the Pacific Islands. Kava use in the US has slowly increased since the 1990s, but is not assessed in major epidemiological surveys.Objectives: To analyze social-media posts about kava from current, past, and prospective users, for motivations, patterns of co-use, and effects.Methods: Text from Reddit posts, and accompanying metadata, were collected and thematically coded by two independent raters.Results: 423 posts were collected, spanning January 2006 through December 2021. Of the 1,211 thematic codes applied, 1,098 (90. 7%) were concordant. Motivations for use bifurcated into self-treatment (for psychiatric or physical health conditions) and recreation; these were not mutually exclusive. Kava was rarely considered strongly euphoriant, but was valued as an anxiolytic. Kava was frequently used with other substances, most commonly kratom. Kava was used at lower doses for self-treatment than for other purposes (pseudo-R2 = 0.11). Undesirable effects (gastrointestinal upset, fatigue) were mentioned, though less often than benefits. Hepatotoxicity, reported elsewhere as a rare, non-dose-related risk, was disputed on the basis of its not having been experienced by those posting.Conclusion: Kava appears to be conceptualized among Reddit posters as an anxiolytic with few risks or adverse effects. As it grows in popularity, especially among people who use other drugs that are more liable to misuse or addiction, it should be assessed in probability samples (i.e. in the major national drug surveys) and clinical practice for its risks, potential benefits, and possible drug-drug interactions.
Collapse
Affiliation(s)
- Salma Pont-Fernandez
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Marina Kheyfets
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Jeffrey M Rogers
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Kirsten E Smith
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - David H Epstein
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
16
|
Mamallapalli J, Kanumuri SRR, Corral P, Johnston E, Zhuang C, McCurdy CR, Mathews CA, Sharma A, Xing C. Characterization of Different Forms of Kava (Piper methysticum) Products by UPLC-MS/MS. PLANTA MEDICA 2022; 88:1348-1359. [PMID: 34839465 DOI: 10.1055/a-1708-1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are several forms of kava (Piper methysticum) products available for human consumption, and many factors are known to influence their chemical compositions and therefore their pharmacological properties. Because of the increased popularity of kava intake, a rigorous characterization of their content diversity is prerequisite, particularly due to its known potential to cause hepatotoxicity. To understand the composition diversity of kavalactones and flavokavains in commercial kava products, we developed a UPLC-MS/MS-based analytical method for the quantification of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) and two flavokavains (flavokavains A and B) and analyzed their contents in 28 different kava products in the form of capsules, tinctures, traditional aqueous suspensions and dried powders. Our results demonstrated a great variation in terms of the total and relative abundance of the analyzed kavalactones and flavokavains among the analyzed kava preparations. More importantly, the kavalactone abundance in the product label could differ up to 90% from our experimental measurements. Therefore, more rigorous and comprehensive quality control of kava products is required with respect to the content of individual kavalactones and flavokavains. Accurate content information is essential to understand the pharmacological properties and safety of different kava products.
Collapse
Affiliation(s)
- Jessica Mamallapalli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Liu S, Liu Z, Piao C, Zhang Z, Kong C, Yin L, Liu X. Flavokawain A is a natural inhibitor of PRMT5 in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:293. [PMID: 36199122 PMCID: PMC9533510 DOI: 10.1186/s13046-022-02500-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Protein arginine methyltransferases (PRMTs) regulate protein biological activity by modulating arginine methylation in cancer and are increasingly recognized as potential drug targets. Inhibitors targeting PRMTs are currently in the early phases of clinical trials and more candidate drugs are needed. Flavokawain A (FKA), extracted from kava plant, has been recognized as a potential chemotherapy drug in bladder cancer (BC), but its action mechanism remains unclear. METHODS We first determined the role of a type II PRMT, PRMT5, in BC tissue samples and performed cytological experiments. We then utilized bioinformatics tools, including computational simulation, virtual screening, molecular docking, and energy analysis, to identify the potential use of PRMT5 inhibitors for BC treatment. In vitro and in vivo co-IP and mutation assays were performed to elucidate the molecular mechanism of PRMT5 inhibitor. Pharmacology experiments like bio-layer interferometry, CETSA, and pull-down assays were further used to provide direct evidence of the complex binding process. RESULTS Among PRMTs, PRMT5 was identified as a therapeutic target for BC. PRMT5 expression in BC was correlated with poor prognosis and manipulating its expression could affect cancer cell growth. Through screening and extensive experimental validation, we recognized that a natural product, FKA, was a small new inhibitor molecule for PRMT5. We noticed that the product could inhibit the action of BC, in vitro and in vivo, by inhibiting PRMT5. We further demonstrated that FKA blocks the symmetric arginine dimethylation of histone H2A and H4 by binding to Y304 and F580 of PRMT5. CONCLUSIONS In summary, our research strongly suggests that PRMT5 is a potential epigenetic therapeutic target in bladder cancer, and that FKA can be used as a targeted inhibitor of PRMT5 for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Shuangjie Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhuonan Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chiyuan Piao
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Zhe Zhang
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Chuize Kong
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Lei Yin
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xi Liu
- grid.412636.40000 0004 1757 9485Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
18
|
Gattari TB, Drake K, Scott A. Nip it in the Bud: Botanicals for Anxiety - a Practical Prescriber's Guide. Curr Psychiatry Rep 2022; 24:503-508. [PMID: 36048322 DOI: 10.1007/s11920-022-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW The goal of this paper is to summarize the evidence for the use of botanical medicines for the treatment of anxiety disorders. We sought to make this review practical for psychiatrists and psychiatric prescribers. RECENT FINDINGS In 2018, the Natural Medicines database produced a Clinical Management of Anxiety guide that summarized the conventional and natural treatments of anxiety disorders. Based on this guide, four herbal supplements (also referred to as botanicals) were selected for deeper study including kava, lavender, lemon balm and passionflower. All four were considered possibly safe and possibly effective according to the Natural Medicines database. There is scientific evidence supporting the use of kava, lavender, lemon balm and passionflower in anxiety disorders. Lavender appears to have the best available evidence including comparable efficacy to conventional first line treatments and is available in a patented form that was used in the cited studies (Silexan).
Collapse
Affiliation(s)
- Theresa B Gattari
- University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | | | - Alexander Scott
- University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Cheung C, Baker JD, Byrne JM, Perrault KA. Investigating volatiles as the secondary metabolome of Piper methysticum from root powder and water extracts using comprehensive two-dimensional gas chromatography. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115346. [PMID: 35533912 DOI: 10.1016/j.jep.2022.115346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kava (Piper methysticum G. Forst) is a plant grown in the Pacific that is used in traditional medicines. The roots are macerated and powdered for consumption as a beverage in social settings as well as in ceremonies. Other types of preparations can also be used as traditional medicines. There has been an increase in demand for kava as there is continued traditional use and as it is becoming utilized more both socially and medicinally outside of Oceania. Currently, most research of this plant has focused on bioactive kavalactones and flavokawains, and there are few studies focusing on the other compounds that kava contains, such as volatile and semivolatile components. AIM OF THE STUDY This study investigated the kava volatile organic compound (VOC) profile from nine different commercially available samples of dried, powdered kava root sourced across the Pacific region. MATERIALS AND METHODS The headspace above the kava samples was analyzed, both from the root powder as originally purchased and by performing a scaled-down extraction into water mimicking traditional preparation of the beverage. The headspace of each sample was extracted using solid-phase microextraction arrow (SPME Arrow), followed by analysis using comprehensive two-dimensional gas chromatography - quadrupole mass spectrometry/flame ionization detection (GC×GC-qMS/FID). The superior peak capacity of GC×GC was invaluable in effectively separating the complex mixture of compounds found in all samples, which enabled improved monitoring of minor differences between batches. RESULTS Dry root powder samples contained high levels of β-caryophyllene while water extracted samples showed high levels of camphene. Many alcohols, aldehydes, ketones, terpenes, terpenoids, and aromatics were also characterized from both types of samples. All water extracted samples from the different brands followed similar trends in terms of compounds being detected or not. Additional major compounds found in water extracts included benzaldehyde, hexanal, methoxyphenyloxime, camphor, limonene, 1-hexanol, endoborneol, and copaene. While some samples could be differentiated based on brand, samples did not group by purported geographic origin. CONCLUSIONS This study provides foundational data about a different subset of compounds within kava than previous research has studied, and also informs the community of the compounds that transfer into the consumed beverage during the traditional means of preparing kava.
Collapse
Affiliation(s)
- Cynthia Cheung
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Jonathan D Baker
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Julianne M Byrne
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Katelynn A Perrault
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| |
Collapse
|
20
|
An Updated Review on the Psychoactive, Toxic and Anticancer Properties of Kava. J Clin Med 2022; 11:jcm11144039. [PMID: 35887801 PMCID: PMC9315573 DOI: 10.3390/jcm11144039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Kava (Piper methysticum) has been widely consumed for many years in the South Pacific Islands and displays psychoactive properties, especially soothing and calming effects. This plant has been used in Western countries as a natural anxiolytic in recent decades. Kava has also been used to treat symptoms associated with depression, menopause, insomnia, and convulsions, among others. Along with its putative beneficial health effects, kava has been associated with liver injury and other toxic effects, including skin toxicity in heavy consumers, possibly related to its metabolic profile or interference in the metabolism of other xenobiotics. Kava extracts and kavalactones generally displayed negative results in genetic toxicology assays although there is sufficient evidence for carcinogenicity in experimental animals, most likely through a non-genotoxic mode of action. Nevertheless, the chemotherapeutic/chemopreventive potential of kava against cancer has also been suggested. Both in vitro and in vivo studies have evaluated the effects of flavokavains, kavalactones and/or kava extracts in different cancer models, showing the induction of apoptosis, cell cycle arrest and other antiproliferative effects in several types of cancer, including breast, prostate, bladder, and lung. Overall, in this scoping review, several aspects of kava efficacy and safety are discussed and some pertinent issues related to kava consumption are identified.
Collapse
|
21
|
Goldin D, Salani D. Kalm Down With Kava: What Clinicians Need to Know. J Psychosoc Nurs Ment Health Serv 2022; 60:17-24. [DOI: 10.3928/02793695-20220523-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Aporosa S'A, Ballard H, Pandey R, McCarthy MJ. The impact of traditional kava (Piper methysticum) use on cognition: Implications for driver fitness. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115080. [PMID: 35151837 DOI: 10.1016/j.jep.2022.115080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Few studies have examined the impact of kava (Piper methysticum G. Forst. f.) on cognition when consumed at traditionally influenced volumes; most have used modified tablet-form kava, with the results erroneously overlaid on naturalistic kava consumption. Kava is a culturally significant Pacific drink with similar effects to Benzodiazepine. Traditionally influenced kava use sessions last, on average, 6 h in which attendees consume 3.6 L (7.6 pints) each of beverage kava, with some then driving home. AIM OF THE STUDY This study evaluated the impact of traditionally influenced kava consumption on participants' neurological functioning. Testing occurred before, throughout and immediately following a typical faikava (kava-drinking) session, with the data then used to assess kava's potential impacts on driver functionality and safety. METHODS Kava using participants (n = 20) were assessed with the Brain Gauge following and during a traditionally influenced kava session and compared against control (n = 19). Brain Gauge measures slight changes to six cognitive faculties: Speed, Accuracy, Temporal Order Judgement (TOJ), Timing Perception, Plasticity, and Focus. RESULTS AND CONCLUSIONS Comparisons of the within-cohort data showed a positive change in the Focus for the active group at the final testing point following 6-h of kava consumption. Between-cohort data showed a significant level of regression in the active participants' TOJ at the final testing point. No statistically significant level of impairment for the other five cognitive domains was detected. Although the results suggest that kava when consumed at traditional levels may have a slight positive effect on Focus, this result needs to be treated with caution, given the significant level of impairment noted at the final testing point for participants' TOJ. Temporal Order Judgement is associated with executive function, including decision making, behavioral control and information processing, all crucial aspects of driver safety. This is a new finding and suggests kava effects following traditional use differ from those caused by other substances commonly used for social or recreational purposes, such as cannabis, alcohol and other euphoric substances, and may impair driver safety, although again, in a different way to other commonly consumed recreational substances. The findings also add quantitative understanding to ethnographic data on kava effects, suggesting the often-used term 'kava intoxication' is misleading and incorrect.
Collapse
Affiliation(s)
- S 'Apo' Aporosa
- Te Huataki Waiora School of Health and Te Kura Whatu Oho Mauri School of Psychology, University of Waikato, Aotearoa New Zealand.
| | - Hakau Ballard
- School of Computing & Mathematical Sciences, University of Waikato, Aotearoa New Zealand
| | - Rishi Pandey
- Forensic Specialised Analytical Services, Institute of Environmental Science and Research Limited (ESR), Aotearoa New Zealand
| | - Mary Jane McCarthy
- Forensic Specialised Analytical Services, Institute of Environmental Science and Research Limited (ESR), Aotearoa New Zealand
| |
Collapse
|
23
|
Effects of Diazepam on Hematological and Histological Parameters in Rats / in Vivo and Unbiased Stereological Investigation. ACTA VET-BEOGRAD 2022. [DOI: 10.2478/acve-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Diazepam-based drugs are widely used today in human treatment. Diazepam may be a primary drug aimed at treating neurological diseases or an associated drug in the treatment of other diseases in the purpose of symptomatic therapy. The sedative effect of diazepam characterizes it as a drug that people usually use on their own and without a doctor’s supervision. Directly, but also through influencing the nervous system, diazepam disrupts proper functioning of all body organs. The purpose of this paper was to examine the effects of diazepam on blood and cytohistological parameters of rats in an in vivo experiment. Mallory-Azan and immunochistochemical staining methods BLX-CX and Survivin tissues of liver, kidney and spleen of rats were used to achieve the set goal. Cytometric analysis of rats detected cells in apoptosis and measurements of stereological parameters were made using a system according to Cavalier’s principle. Results of analysis of hematological and histological parameters indicate a detrimental effect of diazepam on blood parameters, as well as on structure and functioning of the liver, kidneys and spleen of rats. This paper is a foundation for further detailed scientific research with the aim of elucidating all harmful effects that diazepam has on all organs in the body of rats. This data could serve as a starting point for future studies in clinical pharmacology on therapeutic protocols for usage of diazepam-based sedatives.
Collapse
|
24
|
Hati S, Hu Q, Huo Z, Lu J, Xing C. In vivo Structure-Activity Relationship of Dihydromethysticin in Reducing Nicotine-Derived Nitrosamine Ketone (NNK)-Induced Lung DNA Damage against Lung Carcinogenesis in A/J Mice. ChemMedChem 2022; 17:e202100727. [PMID: 35064644 PMCID: PMC9399735 DOI: 10.1002/cmdc.202100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Indexed: 02/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths and chemoprevention should be developed. We recently identified dihydromethysticin (DHM) as a promising candidate to prevent NNK-induced lung tumorigenesis. To probe its mechanisms and facilitate its future translation, we investigated the structure-activity relationship of DHM on NNK-induced DNA damage in A/J mice. Twenty DHM analogs were designed and synthesized. Their activity in reducing NNK-induced DNA damage in the target lung tissues was evaluated. The unnatural enantiomer of DHM was identified to be more potent than the natural enantiomer. The methylenedioxy functional moiety did not tolerate modifications while the other functional groups (the lactone ring and the ethyl linker) accommodated various modifications. Importantly, analogs of high structural similarity to DHM with distinct efficacy in reducing NNK-induced DNA damage have been identified. They will serve as chemical probes to elucidate the mechanisms of DHM in blocking NNK-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Santanu Hati
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Qi Hu
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL 32610, USA
| | - Junxuan Lu
- Department of Pharmacology, Pennsylvania State University, Hershey, PA 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
25
|
Zhang W, Yan Y, Wu Y, Yang H, Zhu P, Yan F, Zhao R, Tian P, Wang T, Fan Q, Su Z. Medicinal herbs for the treatment of anxiety: a systematic review and network meta-analysis. Pharmacol Res 2022; 179:106204. [DOI: 10.1016/j.phrs.2022.106204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
|
26
|
De novo biosynthesis of diverse plant-derived styrylpyrones in Saccharomyces cerevisiae. Metab Eng Commun 2022; 14:e00195. [PMID: 35287355 PMCID: PMC8917298 DOI: 10.1016/j.mec.2022.e00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Plant styrylpyrones exerting well-established neuroprotective properties have attracted increasing attention in recent years. The ability to synthesize each individual styrylpyrone in engineered microorganisms is important to understanding the biological activity of medicinal plants and the complex mixtures they produce. Microbial biomanufacturing of diverse plant-derived styrylpyrones also provides a sustainable and efficient approach for the production of valuable plant styrylpyrones as daily supplements or potential drugs complementary to the prevalent agriculture-based approach. In this study, we firstly demonstrated the heterogenous biosynthesis of two 7,8-saturated styrylpyrones (7,8-dihydro-5,6-dehydrokavain (DDK) and 7,8-dihydroyangonin (DHY)) and two 7,8-unsaturated styrylpyrones (desmethoxyyangonin (DMY) and yangonin (Y)), in Saccharomyces cerevisiae. Although plant styrylpyrone biosynthetic pathways have not been fully elucidated, we functionally reconstructed the recently discovered kava styrylpyrone biosynthetic pathway that has high substrate promiscuity in yeast, and combined it with upstream hydroxycinnamic acid biosynthetic pathways to produce diverse plant-derived styrylpyrones without the native plant enzymes. We optimized the de novo pathways by engineering yeast endogenous aromatic amino acid metabolism and endogenous double bond reductases and by CRISPR-mediated δ-integration to overexpress the rate-limiting pathway genes. These combinatorial engineering efforts led to the first three yeast strains that can produce diverse plant-derived styrylpyrones de novo, with the titers of DDK, DMY and Y at 4.40 μM, 1.28 μM and 0.10 μM, respectively. This work has laid the foundation for larger-scale styrylpyrone biomanufacturing and the complete biosynthesis of more complicated plant styrylpyrones. Complete biosynthesis of plant styrylpyrones was firstly achieved in yeast. Yeast enzyme replaces unknown plant enzymes to produce 7,8-saturated styrylpyrones. CRISPR-based δ-integration led to stable styrylpyrone overproduction in rich medium.
Collapse
|
27
|
Bian T, Ding H, Wang Y, Hu Q, Chen S, Fujioka N, Aly FZ, Lu J, Huo Z, Xing C. OUP accepted manuscript. Carcinogenesis 2022; 43:659-670. [PMID: 35353881 PMCID: PMC9653071 DOI: 10.1093/carcin/bgac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Our earlier work demonstrated varying potency of dihydromethysticin (DHM) as the active kava phytochemical for prophylaxis of tobacco carcinogen nicotine-derived nitrosamine ketone (NNK)-induced mouse lung carcinogenesis. Efficacy was dependent on timing of DHM gavage ahead of NNK insult. In addition to DNA adducts in the lung tissues mitigated by DHM in a time-dependent manner, our in vivo data strongly implicated the existence of DNA damage-independent mechanism(s) in NNK-induced lung carcinogenesis targeted by DHM to fully exert its anti-initiation efficacy. In the present work, RNA seq transcriptomic profiling of NNK-exposed (2 h) lung tissues with/without a DHM (8 h) pretreatment revealed a snap shot of canonical acute phase tissue damage and stress response signaling pathways as well as an activation of protein kinase A (PKA) pathway induced by NNK and the restraining effects of DHM. The activation of the PKA pathway by NNK active metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) at a concentration incapable of promoting DNA adduct was confirmed in a lung cancer cell culture model, potentially through NNAL binding to and activation of the β-adrenergic receptor. Our in vitro and in vivo data overall support the hypothesis that DHM suppresses PKA activation as a key DNA damage-independent mechanistic lead, contributing to its effective prophylaxis of NNK-induced lung carcinogenesis. Systems biology approaches with a detailed temporal dissection of timing of DHM intake versus NNK exposure are warranted to fill the knowledge gaps concerning the DNA damage-driven mechanisms and DNA damage-independent mechanisms to optimize the implementation strategy for DHM to achieve maximal lung cancer chemoprevention.
Collapse
Affiliation(s)
| | | | - Yuzhi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Qi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Naomi Fujioka
- Department of Medicine, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - F Zahra Aly
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 1345 Center Drive, Gainesville, FL, USA
| | - Junxuan Lu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Zhiguang Huo
- To whom correspondence should be addressed. Tel: 352-295-8511; Fax: 352-273-9724;
| | - Chengguo Xing
- Correspondence may also be addressed to Zhiguang Huo. Tel: 352-294-5929; Fax: 352-294-5931;
| |
Collapse
|
28
|
Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem Biol Interact 2021; 351:109745. [PMID: 34774839 DOI: 10.1016/j.cbi.2021.109745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Cancer is the leading cause of human disease and death worldwide, accounting for 7.6 million deaths per year and projected to reach 13.1 million by 2030. Many phytochemicals included in traditional medicine have been utilized in the management of cancer. Conventional chemotherapy is generally known to be the most effective treatment of metastatic cancer but these cancerous cells might grow resistant to numerous anticancer drugs over time that resulting in treatment failure. This review tried to portray the advancement in the anticancer and chemopreventive effects of several phytochemicals and some of its members encapsulated in the nano-based delivery system of the drug. It comprises the issue associated with limited use of each phytoconstituents in human cancer treatment are discussed, and the benefits of entrapment into nanocarriers are evaluated in terms of drug loading efficiency, nanocarrier size, release profile of the drug, and in vitro and/or in vivo research and treatment testing, such as cytotoxicity assays and cell inhibition/viability.
Collapse
|
29
|
Teixeira da Silva T, Braga Martins J, Do Socorro de Brito Lopes M, de Almeida PM, Silva Sá JL, Alline Martins F. Modulating effect of DL-kavain on the mutagenicity and carcinogenicity induced by doxorubicin in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:769-782. [PMID: 34176449 DOI: 10.1080/15287394.2021.1942354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Kavain, kavalactone, present in Piper methysticum exhibits anticonvulsive, analgesic, anxiolytic, antiepileptic, antithrombotic, anti-inflammatory and antioxidant properties. Given its importance, the aim of the present study was to assess (1) the mutagenic and carcinogenicity of kavain administered alone and (2) the antimutagenic and anticarcinogenic potential when administered simultaneously with the chemotherapeutic drug doxorubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) and Epithelial Tumor Test (ETT) using Drosophila melanogaster as a model system. Third-stage larvae from a standard (ST) and high metabolic bioactivation (HB) crosses were treated with different kavain concentrations (32, 64 or 128 μg/ml), alone or in conjunction with DXR (0.125 mg/ml). In ST descendants, kavain produced no significant mutagenic or recombinogenic effects. In the HB cross, mutagenic activity was observed at kavain concentrations of 64 and 128 μg/ml. In the DXR and kavain co-treatment, a modulating effect of the DXR-mediated mutagenic response dependent upon the concentration was detected in both crosses. In ETT, no marked carcinogenic or anticarcinogenic activity was noted for kavain. However, when kavain was combined with DXR synergistic induction of tumors by the chemotherapeutic drug occurred indicating that kavain enhanced the carcinogenic action of DXR.
Collapse
Affiliation(s)
- Thaís Teixeira da Silva
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| | - Júlia Braga Martins
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| | | | - Pedro Marcos de Almeida
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
- Department of Genetics, Health Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | - José Luiz Silva Sá
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
| | - Francielle Alline Martins
- Department of Chemistry, State Post-Graduation Program in Chemistry, University of Piauí, Teresina, Piauí, Brazil
- Laboratory of Genetics, Center for Natural Sciences, State University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
30
|
Ferreira JV, Pierotte IC, Rodrigues FF, Souza LCRD, Bastos RW, Carmo PHF, Cassali GD, Tagliati CA, Machado RR, Santos DA, Pianetti GA, César IC. Acute oral toxicity, antinociceptive and antimicrobial activities of kava dried extracts and synthetic kavain. Nat Prod Res 2021; 36:4221-4226. [PMID: 34491148 DOI: 10.1080/14786419.2021.1973459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Piper methysticum G. Forst, popularly known as kava, is a traditional medicinal plant widely used for the treatment of anxiety and insomnia. The aim of this study was to investigate new therapeutic applications of this plant. Nociceptive response induced by heat (hot-plate) was used as pain model. Susceptibility of different strains to kava ethanolic dried extracts was evaluated by broth microdilution method. Acute oral toxicity was performed according to Organisation for Economic Cooperation and Development (OECD) guideline. Administration of kava dried extracts and kavain inhibited the nociceptive response in the hot-plate model and did not affect the time mice spent in the rota-rod apparatus. The samples showed no significant antibacterial activity, however slight antifungal activity was verified. The extracts may be considered of low oral acute toxicity. Kava extracts exhibited promising antinociceptive activity in model of nociceptive pain, which should be deeper explored as a new therapeutic application of kava.
Collapse
Affiliation(s)
- Juliana Veloso Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Isabella Campolina Pierotte
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Felipe Fernandes Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Larissa Camila Ribeiro de Souza
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, ToxLab, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Carlos Alberto Tagliati
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, ToxLab, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Renes Resende Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Gerson Antônio Pianetti
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Isabela Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
31
|
Biological Activity, Hepatotoxicity, and Structure-Activity Relationship of Kavalactones and Flavokavins, the Two Main Bioactive Components in Kava ( Piper methysticum). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6851798. [PMID: 34471418 PMCID: PMC8405297 DOI: 10.1155/2021/6851798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Kava (Piper methysticum Forst) is a popular and favorable edible medicinal herb which was traditionally used to prepare a nonfermented beverage with relaxant beneficial for both social and recreational purposes. Numerous studies conducted on kava have confirmed the presence of kavalactones and flavokawains, two major groups of bioactive ingredients, in this miraculous natural plant. Expectedly, both kavalactone and flavokawain components exhibited potent antianxiety and anticancer activities, and their structure-activity relationships were also revealed. However, dozens of clinical data revealed the hepatotoxicity effect which is indirectly or directly associated with kava consumption, and most of the evidence currently seems to point the compounds of flavokawains in kava were responsible. Therefore, our aim is to conduct a systematic review of kavalactones and flavokawains in kava including their biological activities, structure-activity relationships, and toxicities, and as a result of our systematic investigations, suggestions on kava and its compounds are supplied for future research.
Collapse
|
32
|
Complementary and alternative medicine. SIDE EFFECTS OF DRUGS ANNUAL 2021. [PMCID: PMC8488687 DOI: 10.1016/bs.seda.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complementary and alternative medicine is used worldwide. The use of plant-based medicines for the prevention or treatment of disease is prevalent but not regulated or studied. Multiple countries are implementing pharmacovigilance systems to monitor the use and safety of dietary supplements. Reporting mechanisms continue to be sporadic and inconsistent, based mainly on consumer or healthcare provider reports outlining individual adverse effects (AEs) from dietary supplements. Supplement product ingredient lists may be inaccurate, claims biased, and Evidence-Based information regarding risks and benefits lacking. Healthcare providers should familiarize themselves with complementary medicine practices, the benefits and associated risks to best care for their patient populations. A global pandemic marked 2020 with the emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A short review of vitamin and plant-based prevention, treatment, and associated ramifications with use of these products for coronavirus disease 2019 (COVID-19) is provided. Another world-wide dilemma is food security. Nutrieconomics and the socioeconomic ramifications of food are reviewed from a wider timeframe. Reports and reviews from 2020 describe AEs of complementary and alternative medicine and herbal dietary supplements. These are listed alphabetically by plant or supplement name.
Collapse
|