1
|
Matsumura S, Fujisawa M, Fujiwara M, Okayama H, Marutani M, Nousou E, Sasaki T, Harada N. CREB coactivator CRTC1 in melanocortin-4 receptor-expressing cells regulate dietary fat intake. FASEB Bioadv 2024; 6:597-611. [PMID: 39650226 PMCID: PMC11618889 DOI: 10.1096/fba.2024-00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024] Open
Abstract
Cyclic adenosine monophosphate-response element-binding protein-1-regulated transcription coactivator-1 (CRTC1), a cytoplasmic coactivator that translocates to the nucleus in response to cAMP, is associated with obesity. We previously reported that CRTC1 deficiency in melanocortin-4 receptor (MC4R)-expressing neurons, which regulate appetite and energy metabolism in the brain, causes hyperphagia and obesity under a high-fat diet (HFD). HFD is preferred for mice, and the dietary fat in HFD is the main factor contributing to its palatability. These findings, along with our previous results, suggest that CRTC1 regulates the appetite for dietary fat. Therefore, in this study, we aimed to investigate the dietary fat intake behavior and energy metabolism of MC4R neuron-specific CRTC1 knockout mice fed soybean oil or lard. CRTC1 deficiency increased the intake of soybean oil and significantly increased body weight gain. Furthermore, obesity induced by soybean oil intake was partially due to leptin resistance. No significant changes in soybean oil intake were observed between young CRTC1-deficient and wild-type mice; however, soybean oil intake increased with age. Moreover, lard intake did not significantly affect the body weight. Overall, our findings highlighted the crucial role of CRTC1 in the regulation of spontaneous dietary fat intake. Furthermore, the role of CRTC1 becomes increasingly significant with age.
Collapse
Affiliation(s)
| | - Miyu Fujisawa
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Mizuki Fujiwara
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Houko Okayama
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Miona Marutani
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Eri Nousou
- Department of NutritionOsaka Metropolitan UniversityHabikino CityOsakaJapan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversityHabikino CityOsakaJapan
| |
Collapse
|
2
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2024:10.1038/s41380-024-02737-9. [PMID: 39237720 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
3
|
Mirasierra M, Fernández-Pérez A, Lizarbe B, Keiran N, Ruiz-Cañas L, Casarejos MJ, Cerdán S, Vendrell J, Fernández-Veledo S, Vallejo M. Alx3 deficiency disrupts energy homeostasis, alters body composition, and impairs hypothalamic regulation of food intake. Cell Mol Life Sci 2024; 81:343. [PMID: 39129011 PMCID: PMC11335267 DOI: 10.1007/s00018-024-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Centro para el Desarrollo Tecnológico e Industrial (CDTI), Madrid, Spain
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Keiran
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laura Ruiz-Cañas
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Chronic Diseases and Cancer Area 3, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María José Casarejos
- Neuropharmacology Laboratory, Neurobiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Mercante F, Micioni Di Bonaventura E, Pucci M, Botticelli L, Cifani C, D'Addario C, Micioni Di Bonaventura MV. Repeated binge-like eating episodes in female rats alter adenosine A 2A and dopamine D2 receptor genes regulation in the brain reward system. Int J Eat Disord 2024; 57:1433-1446. [PMID: 38650547 DOI: 10.1002/eat.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
5
|
Singh J, Vanlallawmzuali, Singh A, Biswal S, Zomuansangi R, Lalbiaktluangi C, Singh BP, Singh PK, Vellingiri B, Iyer M, Ram H, Udey B, Yadav MK. Microbiota-brain axis: Exploring the role of gut microbiota in psychiatric disorders - A comprehensive review. Asian J Psychiatr 2024; 97:104068. [PMID: 38776563 DOI: 10.1016/j.ajp.2024.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mental illness is a hidden epidemic in modern science that has gradually spread worldwide. According to estimates from the World Health Organization (WHO), approximately 10% of the world's population suffers from various mental diseases each year. Worldwide, financial and health burdens on society are increasing annually. Therefore, understanding the different factors that can influence mental illness is required to formulate novel and effective treatments and interventions to combat mental illness. Gut microbiota, consisting of diverse microbial communities residing in the gastrointestinal tract, exert profound effects on the central nervous system through the gut-brain axis. The gut-brain axis serves as a conduit for bidirectional communication between the two systems, enabling the gut microbiota to affect emotional and cognitive functions. Dysbiosis, or an imbalance in the gut microbiota, is associated with an increased susceptibility to mental health disorders and psychiatric illnesses. Gut microbiota is one of the most diverse and abundant groups of microbes that have been found to interact with the central nervous system and play important physiological functions in the human gut, thus greatly affecting the development of mental illnesses. The interaction between gut microbiota and mental health-related illnesses is a multifaceted and promising field of study. This review explores the mechanisms by which gut microbiota influences mental health, encompassing the modulation of neurotransmitter production, neuroinflammation, and integrity of the gut barrier. In addition, it emphasizes a thorough understanding of how the gut microbiome affects various psychiatric conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Vanlallawmzuali
- Department of Biotechnology, Mizoram Central University, Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Ruth Zomuansangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - C Lalbiaktluangi
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Bhim Pratap Singh
- Department of Agriculture and Environmental Sciences (AES), National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, Haryana, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, Mizoram, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Mahalaxmi Iyer
- Department of Microbiology Central University of Punjab, Bathinda 151401, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan 342001, India
| | - Bharat Udey
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
7
|
Romanova IV, Mikhailova EV, Mikhrina AL, Shpakov AO. Type 1 melanocortin receptors in pro-opiomelanocortin-, vasopressin-, and oxytocin-immunopositive neurons in different areas of mouse brain. Anat Rec (Hoboken) 2023; 306:2388-2399. [PMID: 35475324 DOI: 10.1002/ar.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.
Collapse
Affiliation(s)
- Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya L Mikhrina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Saab E, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Quaglia W. Targeting orexin receptors: Recent advances in the development of subtype selective or dual ligands for the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:1607-1667. [PMID: 37036052 DOI: 10.1002/med.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Orexin-A and orexin-B, also named hypocretin-1 and hypocretin-2, are two hypothalamic neuropeptides highly conserved across mammalian species. Their effects are mediated by two distinct G protein-coupled receptors, namely orexin receptor type 1 (OX1-R) and type 2 (OX2-R), which share 64% amino acid identity. Given the wide expression of OX-Rs in different central nervous system and peripheral areas and the several pathophysiological functions in which they are involved, including sleep-wake cycle regulation (mainly mediated by OX2-R), emotion, panic-like behaviors, anxiety/stress, food intake, and energy homeostasis (mainly mediated by OX1-R), both subtypes represent targets of interest for many structure-activity relationship (SAR) campaigns carried out by pharmaceutical companies and academies. However, before 2017 the research was predominantly directed towards dual-orexin ligands, and limited chemotypes were investigated. Analytical characterizations, including resolved structures for both OX1-R and OX2-R in complex with agonists and antagonists, have improved the understanding of the molecular basis of receptor recognition and are assets for medicinal chemists in the design of subtype-selective ligands. This review is focused on the medicinal chemistry aspects of small molecules acting as dual or subtype selective OX1-R/OX2-R agonists and antagonists belonging to different chemotypes and developed in the last years, including radiolabeled OX-R ligands for molecular imaging. Moreover, the pharmacological effects of the most studied ligands in different neuropsychiatric diseases, such as sleep, mood, substance use, and eating disorders, as well as pain, have been discussed. Poly-pharmacology applications and multitarget ligands have also been considered.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | | | | | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
9
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
10
|
Rahmadi M, Nurhan AD, Rahmawati RIA, Damayanti TF, Purwanto DA, Khotib J. Epigallocatechin Gallate Ameliorates Nicotine Withdrawal Conditions-Induced Somatic and Affective Behavior Changes in Mice and Its Molecular Mechanism. Behav Neurol 2023; 2023:5581893. [PMID: 37346971 PMCID: PMC10281828 DOI: 10.1155/2023/5581893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 06/23/2023] Open
Abstract
In nicotine withdrawal (NW) conditions, molecular changes, such as increasing corticotropin-releasing factor (CRF) in the amygdala, and melanocortin signaling in the hypothalamus, can occur in the brain, leading to increased feeding behavior and body weight as somatic changes as well as high anxiety-like behavior as an affective changes. Therefore, this research aimed to investigate the effect of epigallocatechin gallate (EGCG), the largest component in green tea, on CRF, pro-opiomelanocortin (POMC), and melanocortin four receptor gene expression in the brain under NW conditions. The 24 Balb/c male mice used were randomly divided into four groups. The doses used included normal saline 1.0 mL/kg as a control group, and nicotine 3.35 mg/kg that was administered subcutaneously three times a day. After NW conditions, EGCG 50 mg/kg was administered intraperitoneally two times a day. Behavior evaluation was performed to measure somatic and affective changes, and the animal was sacrificed for molecular analysis. The results showed that NW conditions significantly increased food intake, body weight, and anxiety-like behavior compared with the normal group. Meanwhile, EGCG significantly decreased food intake, body weight, and anxiety-like behavior compared with NW conditions in mice without EGCG. The polymerase chain reaction results also showed that EGCG decreased the CRF mRNA expression in the amygdala and increased the POMC. This indicated that EGCG improved somatic and affective behavior in NW conditions by decreasing CRF mRNA expression in the amygdala and increasing POMC mRNA expression in the hypothalamus.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ahmad D. Nurhan
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Retno I. A. Rahmawati
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Theresia F. Damayanti
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Djoko A. Purwanto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Pharmaceutical Analysis Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Biomaterial Translational Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
11
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Rodrigues FDS, Jantsch J, Fraga GDF, Dias VS, Eller S, De Oliveira TF, Giovenardi M, Guedes RP. Cannabidiol treatment improves metabolic profile and decreases hypothalamic inflammation caused by maternal obesity. Front Nutr 2023; 10:1150189. [PMID: 36969815 PMCID: PMC10033544 DOI: 10.3389/fnut.2023.1150189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe implications of maternal overnutrition on offspring metabolic and neuroimmune development are well-known. Increasing evidence now suggests that maternal obesity and poor dietary habits during pregnancy and lactation can increase the risk of central and peripheral metabolic dysregulation in the offspring, but the mechanisms are not sufficiently established. Furthermore, despite many studies addressing preventive measures targeted at the mother, very few propose practical approaches to treat the damages when they are already installed.MethodsHere we investigated the potential of cannabidiol (CBD) treatment to attenuate the effects of maternal obesity induced by a cafeteria diet on hypothalamic inflammation and the peripheral metabolic profile of the offspring in Wistar rats.ResultsWe have observed that maternal obesity induced a range of metabolic imbalances in the offspring in a sex-dependant manner, with higher deposition of visceral white adipose tissue, increased plasma fasting glucose and lipopolysaccharides (LPS) levels in both sexes, but the increase in serum cholesterol and triglycerides only occurred in females, while the increase in plasma insulin and the homeostatic model assessment index (HOMA-IR) was only observed in male offspring. We also found an overexpression of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin (IL) 6, and interleukin (IL) 1β in the hypothalamus, a trademark of neuroinflammation. Interestingly, the expression of GFAP, a marker for astrogliosis, was reduced in the offspring of obese mothers, indicating an adaptive mechanism to in utero neuroinflammation. Treatment with 50 mg/kg CBD oil by oral gavage was able to reduce white adipose tissue and revert insulin resistance in males, reduce plasma triglycerides in females, and attenuate plasma LPS levels and overexpression of TNFα and IL6 in the hypothalamus of both sexes.DiscussionTogether, these results indicate an intricate interplay between peripheral and central counterparts in both the pathogenicity of maternal obesity and the therapeutic effects of CBD. In this context, the impairment of internal hypothalamic circuitry caused by neuroinflammation runs in tandem with the disruptions of important metabolic processes, which can be attenuated by CBD treatment in both ends.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Franco De Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Renata Padilha Guedes,
| |
Collapse
|
13
|
Matsumura S, Miyakita M, Miyamori H, Kyo S, Ishikawa F, Sasaki T, Jinno T, Tanaka J, Fujita K, Yokokawa T, Goto T, Momma K, Takenaka S, Inoue K. CRTC1 deficiency, specifically in melanocortin-4 receptor-expressing cells, induces hyperphagia, obesity, and insulin resistance. FASEB J 2022; 36:e22645. [PMID: 36349991 DOI: 10.1096/fj.202200617r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Melanocortin-4 receptor (MC4R) is a critical regulator of appetite and energy expenditure in rodents and humans. MC4R deficiency causes hyperphagia, reduced energy expenditure, and impaired glucose metabolism. Ligand binding to MC4R activates adenylyl cyclase, resulting in increased levels of intracellular cyclic adenosine monophosphate (cAMP), a secondary messenger that regulates several cellular processes. Cyclic adenosine monophosphate responsive element-binding protein-1-regulated transcription coactivator-1 (CRTC1) is a cytoplasmic coactivator that translocates to the nucleus in response to cAMP and is reportedly involved in obesity. However, the precise mechanism through which CRTC1 regulates energy metabolism remains unknown. Additionally, there are no reports linking CRTC1 and MC4R, although both CRTC1 and MC4R are known to be involved in obesity. Here, we demonstrate that mice lacking CRTC1, specifically in MC4R cells, are sensitive to high-fat diet (HFD)-induced obesity and exhibit hyperphagia and increased body weight gain. Moreover, the loss of CRTC1 in MC4R cells impairs glucose metabolism. MC4R-expressing cell-specific CRTC1 knockout mice did not show changes in body weight gain, food intake, or glucose metabolism when fed a normal-chow diet. Thus, CRTC1 expression in MC4R cells is required for metabolic adaptation to HFD with respect to appetite regulation. Our results revealed an important protective role of CRTC1 in MC4R cells against dietary adaptation.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Department of Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satomi Kyo
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jin Tanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kotomi Fujita
- Department of Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keiko Momma
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Shigeo Takenaka
- Department of Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Dhafar HO, BaHammam AS. Body Weight and Metabolic Rate Changes in Narcolepsy: Current Knowledge and Future Directions. Metabolites 2022; 12:1120. [PMID: 36422261 PMCID: PMC9693066 DOI: 10.3390/metabo12111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/26/2023] Open
Abstract
Narcolepsy is a known auto-immune disease that presents mainly in the teenage years with irresistible sleep attacks. Patients with narcolepsy, especially NT1, have been found to have a high prevalence of obesity and other metabolic derangements. This narrative review aimed to address the relationship between narcolepsy and changes in weight and metabolic rate, and discuss potential mechanisms for weight gain and metabolic changes and future research agendas on this topic. This article will provide a balanced, up-to-date critical review of the current literature, and delineate areas for future research, in order to understand the pathophysiological metabolic changes in narcolepsy. Articles using predefined keywords were searched for in PubMed and Google Scholar databases, with predefined inclusion and exclusion criteria. Compared to controls, patients with narcolepsy are more likely to be obese and have higher BMIs and waist circumferences. According to recent research, weight gain in narcolepsy patients may be higher during the disease's outset. The precise mechanisms causing this weight gain remains unknown. The available information, albeit limited, does not support differences in basal or resting metabolic rates between patients with narcolepsy and controls, other than during the time of disease onset. The evidence supporting the role of orexin in weight gain in humans with narcolepsy is still controversial, in the literature. Furthermore, the available data did not show any appreciable alterations in the levels of CSF melanin-concentrating hormone, plasma and CSF leptin, or serum growth hormone, in relation to weight gain. Other mechanisms have been proposed, including a reduction in sympathetic tone, hormonal changes, changes in eating behavior and physical activity, and genetic predisposition. The association between increased body mass index and narcolepsy is well-recognized; however, the relationship between narcolepsy and other metabolic measures, such as body fat/muscle distribution and metabolic rate independent of BMI, is not well documented, and the available evidence is inconsistent. Future longitudinal studies with larger sample sizes are needed to assess BMR in patients with narcolepsy under a standard protocol at the outset of narcolepsy, with regular follow-up.
Collapse
Affiliation(s)
- Hamza O. Dhafar
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Family Medicine, Prince Mansour Military Hospital, Taif 26526, Saudi Arabia
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, P.O. Box 2454, Riyadh 11324, Saudi Arabia
| |
Collapse
|
15
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 2022; 185:106521. [DOI: 10.1016/j.phrs.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
16
|
Food Reward Alterations during Obesity Are Associated with Inflammation in the Striatum in Mice: Beneficial Effects of Akkermansia muciniphila. Cells 2022; 11:cells11162534. [PMID: 36010611 PMCID: PMC9406832 DOI: 10.3390/cells11162534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
The reward system involved in hedonic food intake presents neuronal and behavioral dysregulations during obesity. Moreover, gut microbiota dysbiosis during obesity promotes low-grade inflammation in peripheral organs and in the brain contributing to metabolic alterations. The mechanisms underlying reward dysregulations during obesity remain unclear. We investigated if inflammation affects the striatum during obesity using a cohort of control-fed or diet-induced obese (DIO) male mice. We tested the potential effects of specific gut bacteria on the reward system during obesity by administrating Akkermansia muciniphila daily or a placebo to DIO male mice. We showed that dysregulations of the food reward are associated with inflammation and alterations in the blood–brain barrier in the striatum of obese mice. We identified Akkermansia muciniphila as a novel actor able to improve the dysregulated reward behaviors associated with obesity, potentially through a decreased activation of inflammatory pathways and lipid-sensing ability in the striatum. These results open a new field of research and suggest that gut microbes can be considered as an innovative therapeutic approach to attenuate reward alterations in obesity. This study provides substance for further investigations of Akkermansia muciniphila-mediated behavioral improvements in other inflammatory neuropsychiatric disorders.
Collapse
|
17
|
Breton E, Fotso Soh J, Booij L. Immunoinflammatory processes: Overlapping mechanisms between obesity and eating disorders? Neurosci Biobehav Rev 2022; 138:104688. [PMID: 35594735 DOI: 10.1016/j.neubiorev.2022.104688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Obesity and eating disorders are conditions that involve eating behaviors and are sometimes comorbid. Current evidence supports alterations in immunoinflammatory processes in both obesity and eating disorders. A plausible hypothesis is that immunoinflammatory processes may be involved in the pathophysiology of obesity and eating disorders. The aim of this review is to highlight the link between obesity and eating disorders, with a particular focus on immunoinflammatory processes. First, the relation between obesity and eating disorders will be presented, followed by a brief review of the literature on their association with immunoinflammatory processes. Second, developmental factors will be discussed to clarify the link between obesity, eating disorders, and immunoinflammatory processes. Genetic and epigenetic risk factors as well as the potential roles of stress pathways and early life development will be presented. Finally, implications of these findings for future research are discussed. This review highlighted biological and developmental aspects that overlap between obesity and EDs, emphasizing the need for biopsychosocial research approaches to advance current knowledge and practice in these fields.
Collapse
Affiliation(s)
- E Breton
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - J Fotso Soh
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
18
|
Mikhailova EV, Derkach KV, Shpakov AO, Romanova IV. Melanocortin 1 Receptors in the Hypothalamus of Mice within the Norm and in Diet-Induced Obesity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Franzago M, Porreca A, D’Ardes M, Di Nicola M, Di Tizio L, Liberati M, Stuppia L, Vitacolonna E. The Obesogenic Environment: Epigenetic Modifications in Placental Melanocortin 4 Receptor Gene Connected to Gestational Diabetes and Smoking. Front Nutr 2022; 9:879526. [PMID: 35571924 PMCID: PMC9100829 DOI: 10.3389/fnut.2022.879526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Maternal metabolic insults as well as Gestational Diabetes Mellitus (GDM) influence the fetal health and may affect ‘offspring’s susceptibility to chronic diseases via epigenetic modifications. GDM, the most common metabolic disorder in pregnancy, can be considered the result of complex interactions between genetic and environmental factors. A critical point in this view is the identification of genes which are epigenetically modified under the influence of GDM. The melanocortin 4 receptor (MC4R) gene plays a crucial role in nutritional health by suppressing appetite and participating in energy control regulation. The correlations between pregnant ‘women’s metabolic profiles and placental epigenetic modifications of this gene have been poorly investigated. Objective The aim of this study was to evaluate the effect of GDM and maternal clinical parameters at the third trimester of pregnancy to DNA methylation levels in the placenta at CpG sites of MC4R gene. Design and Methods Socio-demographic and clinical characteristics, Mediterranean diet adherence, smoking habits, and physical activity were assessed at the third trimester of pregnancy of 60 Caucasian pregnant women, of which 33 with GDM. Clinical parameters of the newborns were recorded at birth. MC4R DNA methylation on maternal and fetal sides of the placenta was analyzed using bisulfite pyrosequencing. Results MC4R DNA methylation levels at CpG1 and CpG2 were lower on the fetal side of the placenta in GDM-affected women than in non-GDM-affected recruits (p = 0.033). Moreover, DNA methylation levels on the maternal side at CpG1 were positively related to glucose concentration at 2-h oral glucose tolerance test (OGTT). On the other hand, CpG2 DNA methylation was positively related to both 1-h and 2-h during OGTT. Maternal DNA methylation level at CpG2 was also associated with low density lipoprotein cholesterol (LDL-C) at the third trimester of pregnancy (rho = 0.340, p < 0.05), while CpG1 methylation was negatively related to maternal weight variations at delivery (rho = −0.316, p < 0.05). Significant associations between MC4R DNA methylation on the maternal side and lipid profile at third trimester of pregnancy in women smokers were found. Conclusion Our results suggest that MC4R methylation profile in the placenta is related to maternal metabolic and nutritional conditions, potentially affecting fetal programming and the future metabolic health of the newborn.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Mario D’Ardes
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Luciano Di Tizio
- Department of Obstetrics and Gynaecology, SS. Annunziata Hospital, “G. d’Annunzio” University, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, Chieti, Italy
- *Correspondence: Ester Vitacolonna,
| |
Collapse
|
20
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
21
|
Giel KE, Bulik CM, Fernandez-Aranda F, Hay P, Keski-Rahkonen A, Schag K, Schmidt U, Zipfel S. Binge eating disorder. Nat Rev Dis Primers 2022; 8:16. [PMID: 35301358 PMCID: PMC9793802 DOI: 10.1038/s41572-022-00344-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Binge eating disorder (BED) is characterized by regular binge eating episodes during which individuals ingest comparably large amounts of food and experience loss of control over their eating behaviour. The worldwide prevalence of BED for the years 2018-2020 is estimated to be 0.6-1.8% in adult women and 0.3-0.7% in adult men. BED is commonly associated with obesity and with somatic and mental health comorbidities. People with BED experience considerable burden and impairments in quality of life, and, at the same time, BED often goes undetected and untreated. The aetiology of BED is complex, including genetic and environmental factors as well as neuroendocrinological and neurobiological contributions. Neurobiological findings highlight impairments in reward processing, inhibitory control and emotion regulation in people with BED, and these neurobiological domains are targets for emerging treatment approaches. Psychotherapy is the first-line treatment for BED. Recognition and research on BED has increased since its inclusion into DSM-5; however, continuing efforts are needed to understand underlying mechanisms of BED and to improve prevention and treatment outcomes for this disorder. These efforts should also include screening, identification and implementation of evidence-based interventions in routine clinical practice settings such as primary care and mental health outpatient clinics.
Collapse
Affiliation(s)
- Katrin E Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany.
| | - Cynthia M Bulik
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Phillipa Hay
- Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia
- Camden and Campbelltown Hospitals, SWSLHD, Campbelltown, NSW, Australia
| | | | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence for Eating Disorders (KOMET), Tübingen, Germany
| |
Collapse
|
22
|
Is work-family conflict a pathway between job strain components and binge eating? A cross-sectional analysis from the ELSA-Brasil study. J Eat Disord 2022; 10:16. [PMID: 35123594 PMCID: PMC8817540 DOI: 10.1186/s40337-022-00540-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Job strain has been reported as a trigger for binge eating, yet the underlying mechanisms have been unclear. The aim of this study was to evaluate whether work-family conflict is a pathway in the association between job strain and binge eating, considering the possible effect-modifying influence of body mass index (BMI). METHODS This cross-sectional analysis included 12,084 active civil servants from the multicenter Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Job strain was assessed using the Demand-Control-Support Questionnaire. Work-family conflict was considered as a latent variable comprising three items. Binge eating was defined as eating a large amount of food in less than 2 h at least twice a week in the last six months with a sense of lack of control over what and how much was eaten. Structural equation modelling was used to test the role of work-family conflict in the association between job strain and binge eating, stratifying for BMI. RESULTS For individuals of normal weight, positive associations were found between skill discretion and binge eating (standardized coefficient [SC] = 0.209, 95%CI = 0.022-0.396), and between psychological job demands and work-family conflict (SC = 0.571, 95%CI = 0.520-0.622), but no statistically significant indirect effect was found. In overweight individuals, psychological job demands, skill discretion, and work-family conflict were positively associated with binge eating (SC = 0.099, 95%CI = 0.005-0.193; SC = 0.175, 95%CI = 0.062-0.288; and SC = 0.141, 95%CI = 0.077-0.206, respectively). Also, work-family conflict was observed to be a pathway on the associations of psychological job demands and decision authority with binge eating (SC = 0.084, 95%CI = 0.045-0.122; and SC = - 0.008, 95%CI = - 0.015- - 0.001, respectively). CONCLUSIONS Work-family conflict partly explains effects of high levels of psychological job demands and low levels of decision authority on binge eating among overweight individuals. Moreover, skill discretion is positively associated with binge eating, regardless of BMI category.
Collapse
|
23
|
Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. Gen Comp Endocrinol 2022; 315:113930. [PMID: 34673032 DOI: 10.1016/j.ygcen.2021.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Animal research indicates the neuropeptide Y (NPY), corticotrophin and melanocortin systems have a mediatory role in reward, however, how these substances interact with phenytoin-14 (PNX-14) induced food intake in birds remains to be identified. Accordingly, in this research eight tests were carried out to investigate the potential interactions of the NPY, melanocortin, as well as corticotrophin systems with PNX-14 on food consumption in neonatal chickens. In the first experiment, chickens were intracerebroventricular (ICV) injected with phosphate-buffered saline (PBS) and PNX-14 (0.8, 0.16, and 3.2 nmol). In second experiment, PBS, the antagonist of CRF1/CRF2 receptors (astressin-B, 30 μg) and PNX-14 + astressin-B were injected. In the rest of the experiments chicken received astressin2-B (CRF2 receptor antagonist; 30 µg), SHU9119 (MCR3/MCR4 receptor antagonist, 0.5nomol), MCL0020 (MCR4 receptor agonist, 0.5 nmol), B5063 (NPY1 receptor antagonist, 1.25 μg), SF22 (NPY2 receptor antagonist, 1.25 μg) and SML0891 (NPY5 receptor antagonist, 1.25 μg) rather than astressin-B. Then, cumulative intake of food was recorded for 2 h. Based on the findings, PNX-14 (0.16 and 3.2 nmol) led to increment in food consumption compared with the control (P < 0.05). Co-administration of the PNX-14 and astressin-B promoted PNX-14-induced hyperphagia (P < 0.05). Co-injection of the PNX-14 + astressin2-B potentiated hyperphagia PNX-14 (P < 0.05). Co-injection of PNX-14 + B5063 inhibited the effects of the PNX-14 (P < 0.05). The co-administration of the PNX-14 and SML0891 potentiated hypophagic effects of the PNX-14 (P < 0.05). The results showed that PNX-14-induced hyperphagia mediates via NPY1, NPY5, and CRF1/CRF2 receptors in neonatal chickens.
Collapse
Affiliation(s)
- Sahar Rajaei
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
24
|
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int J Mol Sci 2021; 22:12956. [PMID: 34884757 PMCID: PMC8657682 DOI: 10.3390/ijms222312956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Nazzareno Cannella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Anna Maria Borruto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Michele Petrella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Laura Soverchia
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Serena Stopponi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| |
Collapse
|
25
|
Micioni Di Bonaventura MV, Coman MM, Tomassoni D, Micioni Di Bonaventura E, Botticelli L, Gabrielli MG, Rossolini GM, Di Pilato V, Cecchini C, Amedei A, Silvi S, Verdenelli MC, Cifani C. Supplementation with Lactiplantibacillus plantarum IMC 510 Modifies Microbiota Composition and Prevents Body Weight Gain Induced by Cafeteria Diet in Rats. Int J Mol Sci 2021; 22:ijms222011171. [PMID: 34681831 PMCID: PMC8540549 DOI: 10.3390/ijms222011171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.
Collapse
Affiliation(s)
| | - Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Emanuela Micioni Di Bonaventura
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genova, Italy;
| | - Cinzia Cecchini
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
- Correspondence:
| | - Maria Cristina Verdenelli
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| |
Collapse
|
26
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
27
|
Repetitive Transcranial Magnetic Stimulation: A Potential Treatment for Obesity in Patients with Schizophrenia. Behav Sci (Basel) 2021; 11:bs11060086. [PMID: 34208079 PMCID: PMC8230713 DOI: 10.3390/bs11060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Obesity is highly prevalent in patients with schizophrenia and, in association with metabolic syndrome, contributes to premature deaths of patients due to cardiovascular disease complications. Moreover, pharmacologic, and behavioral interventions have not stemmed the tide of obesity in schizophrenia. Therefore, novel effective interventions are urgently needed. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for inducing weight loss in obese non-psychiatric samples but this promising intervention has not been evaluated as a weight loss intervention in patients with schizophrenia. In this narrative review, we describe three brain mechanisms (hypothalamic inflammation, dysregulated mesocorticolimbic reward system, and impaired prefrontal cortex function) implicated in the pathogenesis and pathophysiology of obesity and emphasize how the three mechanisms have also been implicated in the neurobiology of schizophrenia. We then argue that, based on the three overlapping brain mechanisms in obesity and schizophrenia, rTMS would be effective as a weight loss intervention in patients with schizophrenia and comorbid obesity. We end this review by describing how deep TMS, relative to conventional TMS, could potentially result in larger effect size for weight loss. While this review is mainly conceptual and based on an extrapolation of findings from non-schizophrenia samples, our aim is to stimulate research in the use of rTMS for weight loss in patients with schizophrenia.
Collapse
|
28
|
The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021; 14:ph14040293. [PMID: 33810221 PMCID: PMC8065993 DOI: 10.3390/ph14040293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The Neuropeptide S (NPS), a 20 amino acids peptide, is recognized as the endogenous ligand of a previously orphan G protein-coupled receptor, now termed NPS receptor (NPSR). The limited distribution of the NPS-expressing neurons in few regions of the brainstem is in contrast with the extensive expression of NPSR in the rodent central nervous system, suggesting the involvement of this receptor in several brain functions. In particular, NPS promotes locomotor activity, behavioral arousal, wakefulness, and unexpectedly, at the same time, it exerts anxiolytic-like properties. Intriguingly, the NPS system is implicated in the rewarding properties of drugs of abuse and in the regulation of food intake. Here, we focus on the anorexigenic effect of NPS, centrally injected in different brain areas, in both sated and fasted animals, fed with standard or palatable food, and, in addition, on its influence in the gastrointestinal tract. Further investigations, regarding the role of the NPS/NPSR system and its potential interaction with other neurotransmitters could be useful to understand the mechanisms underlying its action and to develop novel pharmacological tools for the treatment of aberrant feeding patterns and obesity.
Collapse
|
29
|
Brunault P, Ballon N. Inter-Individual Differences in Food Addiction and Other Forms of Addictive-Like Eating Behavior. Nutrients 2021; 13:nu13020325. [PMID: 33498612 PMCID: PMC7912266 DOI: 10.3390/nu13020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paul Brunault
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France;
- CHRU de Tours, Service d’Addictologie Universitaire, Équipe de Liaison et de Soins en Addictologie, 37000 Tours, France
- Qualipsy EE 1901, Université de Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-247-478043; Fax: +33-247-478402
| | - Nicolas Ballon
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France;
- CHRU de Tours, Service d’Addictologie Universitaire, Équipe de Liaison et de Soins en Addictologie, 37000 Tours, France
| |
Collapse
|
30
|
Cocci P, Moruzzi M, Martinelli I, Maggi F, Micioni Di Bonaventura MV, Cifani C, Mosconi G, Tayebati SK, Damiano S, Lupidi G, Amantini C, Tomassoni D, Palermo FA. Tart cherry (Prunus cerasus L.) dietary supplement modulates visceral adipose tissue CB1 mRNA levels along with other adipogenesis-related genes in rat models of diet-induced obesity. Eur J Nutr 2021; 60:2695-2707. [PMID: 33386893 DOI: 10.1007/s00394-020-02459-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE There is increasing evidence for the involvement of dietary bioactive compounds in the cross-talk modulation of endocannabinoid system and some of the key regulators of transcriptional control for adipogenesis. METHODS We aimed to characterize the expression of cannabinoid CB1/CB2 receptors and fatty acid amide hydrolase (FAAH) along with selected adipogenesis-related genes (PPARγ, SREBP-1c and PREF-1), adipocyte-secreted factors (leptin and adiponectin), mitochondrial bioenergetic modulators (PGC-1A and UCP-2), and transient receptor potential vanilloid subtype 1 (TRPV1) and 2 (TRPV2) channels in visceral adipose tissue of rats fed with a high-fat diet (HFD) containing either tart cherry seeds alone or tart cherry seeds and juice for 17 weeks. The visceral adipose tissue was weighed and checked the expression of different markers by qRT-PCR, Western blot and immunohistochemistry. RESULTS Tart cherry supplements were able to downregulate the HFD-induced mRNA expression of CB1 receptor, SREBP-1c, PPARγ, leptin, TRPV1 and TRPV2 resulting in potential anti-adipogenic effects. CONCLUSION The present study points out that the intake of bioactive constituents of tart cherry may attenuate the effect of adipogenesis by acting directly on the adipose tissue and modulating the interplay between CB1, PPARγ and TRPV channel gene transcription.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Michele Moruzzi
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Federica Maggi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | | | - Silvia Damiano
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
31
|
Wu R, Guo L, Rong H, Shi J, Li W, Zhu M, He Y, Wang W, Lu C. The Role of Problematic Smartphone Uses and Psychological Distress in the Relationship Between Sleep Quality and Disordered Eating Behaviors Among Chinese College Students. Front Psychiatry 2021; 12:793506. [PMID: 34966312 PMCID: PMC8710586 DOI: 10.3389/fpsyt.2021.793506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Sleep problems and eating disorders (EDs) are both serious public health concerns often seen in young adults. Yet, the underlying mechanisms for such associations are largely unknown. This study aims to examine potential serial multiple mediation effects of problematic smartphone use (PSU) and psychological distress (i.e., depressive and anxiety symptoms) in the relationship between sleep quality and disordered eating behaviors/attitudes (DEBs). Methods: A total of 4,325 students from two Tibet universities in China (2,657 females and 1,668 males) completed an online survey that included the following measurements: Eating Attitude Test-26 for disordered eating behaviors/attitudes, the Chinese Version of Pittsburgh Sleep Quality Index (CPSQI), Smartphone Addiction Scale-Short Version (SAS-SV) for problematic smartphone use, Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7) for psychological distress. Results: While the direct path linking sleep quality and DEBs was not found to be significant (Standardized β = 0.006, 95% CI = -0.0667~0.0970), both PSU (Standardized β = 0.016, 95% CI = 0.0256~0.0591) and anxiety symptoms (Standardized β = 0.014, 95% CI = 0.0203~0.0526) may mediate a link between sleep quality and DEBs; serial multiple mediation analysis revealed that a serial indirect pathway of "sleep quality -> PSU -> anxiety symptoms -> DEBs" existed(Standardized β = 0.001, 95% CI = 0.0002~0.0012). Similarly, while the direct path linking sleep quality and DEBs was not found to be significant (Standardized β = 0.006, 95% CI = -0.0667~0.0970), both PSU (Standardized β = 0.020, 95% CI = 0.0337~0.0692) and depressive symptoms (Standardized β = 0.015, 95% CI = 0.0139~0.0652) may mediate a link between sleep quality and DEBs; serial multiple mediation analysis revealed that a serial indirect pathway of "sleep quality -> PSU -> depressive symptoms -> DEBs" existed (Standardized β = 0.001, 95% CI = 0.0006~0.0038). Conclusions: Psychological and behavioral factors may comprehensively work together, leading to flow-on effects from sleep problems to disordered eating behaviors among university students. Appropriate interventions that target problematic smartphone use could thus potentially reduce anxiety and depression levels, which in turn will provide a buffer against the negative impact of poor sleep quality on eating disorder symptoms.
Collapse
Affiliation(s)
- Ruipeng Wu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Hao Rong
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jingming Shi
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Wenyan Li
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Minxia Zhu
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Yongjun He
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Wanxin Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Fojas EGF, Radha SK, Ali T, Nadler EP, Lessan N. Weight and Glycemic Control Outcomes of Bariatric Surgery and Pharmacotherapy in Patients With Melanocortin-4 Receptor Deficiency. Front Endocrinol (Lausanne) 2021; 12:792354. [PMID: 35095762 PMCID: PMC8793826 DOI: 10.3389/fendo.2021.792354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Melanocortin-4 receptor (MC4R) mutations are the most common of the rare monogenic forms of obesity. However, the efficacy of bariatric surgery (BS) and pharmacotherapy on weight and glycemic control in individuals with MC4R deficiency (MC4R-d) is not well-established. We investigated and compared the outcomes of BS and pharmacotherapy in patients with and without MC4R-d. METHODS Pertinent details were derived from the electronic database among identified patients who had BS with MC4R-d (study group, SG) and wild-type controls (age- and sex-matched control group, CG). Short- and long-term outcomes were reported for the SG. Short-term outcomes were compared between the two groups. RESULTS Seventy patients were screened for MC4R-d. The SG [six individuals (four females, two males); 18 (10-27) years old at BS; 50.3 (41.8-61.9) kg/m2 at BS, three patients with homozygous T162I mutations, two patients with heterozygous T162I mutations, and one patient with heterozygous I170V mutation] had a follow-up duration of up to 10 years. Weight loss, which varied depending on mutation type [17.99 (6.10-22.54) %] was stable for 6 months; heterogeneity of results was observed thereafter. BS was found superior to liraglutide on weight and glycemic control outcomes. At a median follow-up of 6 months, no significant difference was observed on weight loss (20.8% vs. 23.0%, p = 0.65) between the SG and the CG [eight individuals (four females, four males); 19.0 (17.8-36.8) years old at BS, 46.2 (42.0-48.3) kg/m2 at BS or phamacotherapeutic intervention]. Glycemic control in patients with MC4R-d and Type 2 diabetes improved post-BS. CONCLUSION Our data indicate efficacious short-term but varied long-term weight loss and glycemic control outcomes of BS on patients with MC4R-d, suggesting the importance of ongoing monitoring and complementary therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Tomader Ali
- Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Evan P. Nadler
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC, United States
| | - Nader Lessan
- Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
- *Correspondence: Nader Lessan,
| |
Collapse
|