1
|
Capetini VC, Quintanilha BJ, Garcia BREV, Rogero MM. Dietary modulation of microRNAs in insulin resistance and type 2 diabetes. J Nutr Biochem 2024; 133:109714. [PMID: 39097171 DOI: 10.1016/j.jnutbio.2024.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The prevalence of type 2 diabetes is increasing worldwide. Various molecular mechanisms have been proposed to interfere with the insulin signaling pathway. Recent advances in proteomics and genomics indicate that one such mechanism involves the post-transcriptional regulation of insulin signaling by microRNA (miRNA). These noncoding RNAs typically induce messenger RNA (mRNA) degradation or translational repression by interacting with the 3' untranslated region (3'UTR) of target mRNA. Dietary components and patterns, which can either enhance or impair the insulin signaling pathway, have been found to regulate miRNA expression in both in vitro and in vivo studies. This review provides an overview of the current knowledge of how dietary components influence the expression of miRNAs related to the control of the insulin signaling pathway and discusses the potential application of these findings in precision nutrition.
Collapse
Affiliation(s)
- Vinícius Cooper Capetini
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil; Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, Institute of Pharmaceutical Science, Department of Pharmacology, King's College London, London, United Kingdom.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | - Bruna Ruschel Ewald Vega Garcia
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory (GENUIN), Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), São Paulo Research Foundation (FAPESP), São Paulo, Brazil
| |
Collapse
|
2
|
Hu T, Liu CH, Zheng Y, Ji J, Zheng Y, He SK, Wu D, Jiang W, Zeng Q, Zhang N, Tang H. miRNAs in patients with alcoholic liver disease: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2024; 18:283-292. [PMID: 38937981 DOI: 10.1080/17474124.2024.2374470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Alcoholic liver disease (ALD) encompasses a spectrum of liver conditions, including liver steatosis, alcoholic hepatitis (AH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). microRNAs (miRNAs) have garnered significant interest as potential biomarkers for ALD. METHODS We searched PubMed, Embase, Web of Science and Cochrane Central Register of Controlled Trials (CENTRAL) systemically from inception to June 2024. All extracted data was stratified according to the stages of ALD. The vote-counting strategy performed a meta-analysis on miRNA expression profiles. RESULTS We included 40 studies. In serum of individuals with alcohol-use vs. no alcohol-use, miRNA-122 and miRNA-155 were upregulated, and miRNA-146a was downregulated. In patients with ALD vs. healthy controls, miRNA-122 and miRNA-155 were also upregulated, and miRNA-146a was downregulated. However, in patients with AH vs. healthy individuals, only the serum miRNA-122 level was upregulated. Due to insufficient data on diagnostic accuracy, we failed to conclude the ability of miRNAs to distinguish between different stages of ALD-related liver fibrosis. The results for ALD-related HCC were also insufficient and controversial. CONCLUSIONS Circulating miRNA-122 was the most promising biomarker to manage individuals with ALD. More studies were needed for the diagnostic accuracy of miRNAs in ALD. REGISTRATION This protocol was registered on the International Prospective Register of Systematic Reviews (PROSPERO) (www.crd.york.ac.uk/prospero/) with registration number CRD42023391931.
Collapse
Affiliation(s)
- Tengyue Hu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Chang Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yurong Zheng
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Jialin Ji
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yantong Zheng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Si-Ke He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Qingmin Zeng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Nannan Zhang
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Chodur GM, Steinberg FM. Human MicroRNAs Modulated by Diet: A Scoping Review. Adv Nutr 2024; 15:100241. [PMID: 38734078 PMCID: PMC11150912 DOI: 10.1016/j.advnut.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Because of their role in regulating and fine-tuning gene expression in the posttranscriptional period, microRNA (miRNA) may represent a mediating factor that connects diet and metabolic regulation. Given the vast number of miRNAs and that modulations in miRNA happen in response to a variety of stimuli, a comprehensive registry of miRNAs impacted by diet and the food items that modulate them, would have utility in the identification of miRNA complements for analysis of diet interventions and in helping to establish linkages between the specific impacts of diet components. A scoping literature search of online databases (PubMed, SCOPUS, EMBASE, and Web of Science) was performed. Only studies in human populations, those that used a diet intervention or meal challenge, and those that measured miRNA profiles in the same subject at multiple time points were included. Of the 6167 studies screened, only 25 met the study criteria and were included in the review. Seven studies examined miRNA following a meal challenge, whereas 18 investigated miRNA following a sustained diet intervention. The results demonstrated that miRNA are modulated following a variety of diet interventions and that intensity of miRNA response is greater in metabolically healthy subjects. Heterogeneity in the intensity and length of the diet intervention, the study populations being observed, and the methodology through which target miRNA are identified contribute to a lack of comparability across studies. The findings of this review highlight the need for more study of miRNA responsiveness to intake and provide recommendations for future research.
Collapse
Affiliation(s)
- Gwen M Chodur
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| | - Francene M Steinberg
- Department of Nutrition, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
4
|
Shi M, Lu Q, Zhao Y, Ding Z, Yu S, Li J, Ji M, Fan H, Hou S. miR-223: a key regulator of pulmonary inflammation. Front Med (Lausanne) 2023; 10:1187557. [PMID: 37465640 PMCID: PMC10350674 DOI: 10.3389/fmed.2023.1187557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China
| |
Collapse
|
5
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Perrotta I. Atherosclerosis: From Molecular Biology to Therapeutic Perspective 3.0. Int J Mol Sci 2023; 24:ijms24086897. [PMID: 37108058 PMCID: PMC10138640 DOI: 10.3390/ijms24086897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Atherosclerosis is a multifactorial chronic disease triggered and sustained by different risk factors such as dyslipidemia, hypertension, diabetes mellitus (DM), smoke, elevated homocysteine, and hormones [...].
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
7
|
Lakkisto P, Dalgaard LT, Belmonte T, Pinto-Sietsma SJ, Devaux Y, de Gonzalo-Calvo D. Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done. Crit Rev Clin Lab Sci 2023; 60:141-152. [PMID: 36325621 DOI: 10.1080/10408363.2022.2128030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.
Collapse
Affiliation(s)
- Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Sara-Joan Pinto-Sietsma
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bio-informatics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain.,CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
8
|
Wine, beer and Chinese Baijiu in relation to cardiovascular health: the impact of moderate drinking. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gevaert AB, Wood N, Boen JRA, Davos CH, Hansen D, Hanssen H, Krenning G, Moholdt T, Osto E, Paneni F, Pedretti RFE, Plösch T, Simonenko M, Bowen TS. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol 2022; 29:2183-2199. [PMID: 35989414 DOI: 10.1093/eurjpc/zwac179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dominique Hansen
- Department of Cardiology, Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium.,BIOMED-REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Sports and Exercise Medicine, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.,Department of Women's Health, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland.,University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Roberto F E Pedretti
- Cardiovascular Department, IRCCS MultiMedica, Care and Research Institute, Milan, Italy
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maria Simonenko
- Physiology Research and Blood Circulation Department, Cardiopulmonary Exercise Test SRL, Federal State Budgetary Institution, 'V.A. Almazov National Medical Research Centre' of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Díez-Ricote L, Ruiz-Valderrey P, Micó V, Blanco R, Tomé-Carneiro J, Dávalos A, Ordovás JM, Daimiel L. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012107. [PMID: 36292963 PMCID: PMC9603323 DOI: 10.3390/ijms232012107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Atherosclerosis is a hallmark of cardiovascular disease, and lifestyle strongly impacts its onset and progression. Nutrients have been shown to regulate the miR-17/92 cluster, with a role in endothelial function and atherosclerosis. Choline, betaine, and L-carnitine, found in animal foods, are metabolized into trimethylamine (TMA) by the gut microbiota. TMA is then oxidized to TMAO, which has been associated with atherosclerosis. Our aim was to investigate whether TMAO modulates the expression of the miR-17/92 cluster, along with the impact of this modulation on the expression of target genes related to atherosclerosis and inflammation. We treated HepG-2 cells, THP-1 cells, murine liver organoids, and human peripheral mononuclear cells with 6 µM of TMAO at different timepoints. TMAO increased the expression of all analyzed members of the cluster, except for miR-20a-5p in murine liver organoids and primary human macrophages. Genes and protein levels of SERPINE1 and IL-12A increased. Both have been associated with atherosclerosis and cardiovascular disease (CDVD) and are indirectly modulated by the miR-17-92 cluster. We concluded that TMAO modulates the expression of the miR-17/92 cluster and that such modulation could promote inflammation through IL-12A and blood clotting through SERPINE1 expression, which could ultimately promote atherosclerosis and CVD.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Paloma Ruiz-Valderrey
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Víctor Micó
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Ruth Blanco
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Research and Development Department, Biosearch Life Company, 28031 Madrid, Spain
| | - Joao Tomé-Carneiro
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Alberto Dávalos
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - José M. Ordovás
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-917278100 (ext. 309)
| |
Collapse
|
11
|
Anderson P, Kokole D, Jané Llopis E, Burton R, Lachenmeier DW. Lower Strength Alcohol Products-A Realist Review-Based Road Map for European Policy Making. Nutrients 2022; 14:3779. [PMID: 36145155 PMCID: PMC9500668 DOI: 10.3390/nu14183779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
This paper reports the result of a realist review based on a theory of change that substitution of higher strength alcohol products with lower strength alcohol products leads to decreases in overall levels of alcohol consumption in populations and consumer groups. The paper summarizes the results of 128 publications across twelve different themes. European consumers are increasingly buying and drinking lower strength alcohol products over time, with some two fifths doing so to drink less alcohol. It tends to be younger more socially advantaged men, and existing heavier buyers and drinkers of alcohol, who take up lower strength alcohol products. Substitution leads to a lower number of grams of alcohol bought and drunk. Although based on limited studies, buying and drinking lower strength products do not appear to act as gateways to buying and drinking higher strength products. Producer companies are increasing the availability of lower strength alcohol products, particularly for beer, with extra costs of production offset by income from sales. Lower strength alcohol products tend to be marketed as compliments to, rather than substitutes of, existing alcohol consumption, with, to date, the impact of such marketing not evaluated. Production of lower strength alcohol products could impair the impact of existing alcohol policy through alibi marketing (using the brand of lower strength products to promote higher strength products), broadened normalization of drinking cultures, and pressure to weaken policies. In addition to increasing the availability of lower strength products and improved labelling, the key policy that favours substitution of higher strength alcohol products with lower strength products is an alcohol tax based on the dose of alcohol across all products.
Collapse
Affiliation(s)
- Peter Anderson
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Daša Kokole
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eva Jané Llopis
- ESADE Business School, Ramon Llull University, 08034 Barcelona, Spain
| | - Robyn Burton
- Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| |
Collapse
|
12
|
Díez-Ricote L, Ruiz-Valderrey P, Micó V, Blanco-Rojo R, Tomé-Carneiro J, Dávalos A, Ordovás JM, Daimiel L. Trimethylamine n-Oxide (TMAO) Modulates the Expression of Cardiovascular Disease-Related microRNAs and Their Targets. Int J Mol Sci 2021; 22:ijms222011145. [PMID: 34681805 PMCID: PMC8539082 DOI: 10.3390/ijms222011145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Diet is a well-known risk factor of cardiovascular diseases (CVDs). Some microRNAs (miRNAs) have been described to regulate molecular pathways related to CVDs. Diet can modulate miRNAs and their target genes. Choline, betaine, and l-carnitine, nutrients found in animal products, are metabolized into trimethylamine n-oxide (TMAO), which has been associated with CVD risk. The aim of this study was to investigate TMAO regulation of CVD-related miRNAs and their target genes in cellular models of liver and macrophages. We treated HEPG-2, THP-1, mouse liver organoids, and primary human macrophages with 6 µM TMAO at different timepoints (4, 8, and 24 h for HEPG-2 and mouse liver organoids, 12 and 24 h for THP-1, and 12 h for primary human macrophages) and analyzed the expression of a selected panel of CVD-related miRNAs and their target genes and proteins by real-time PCR and Western blot, respectively. HEPG-2 cells were transfected with anti-miR-30c and syn-miR-30c. TMAO increased the expression of miR-21-5p and miR-30c-5p. PER2, a target gene of both, decreased its expression with TMAO in HEPG-2 and mice liver organoids but increased its mRNA expression with syn-miR-30c. We concluded that TMAO modulates the expression of miRNAs related to CVDs, and that such modulation affects their target genes.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Paloma Ruiz-Valderrey
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Víctor Micó
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Ruth Blanco-Rojo
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Research and Development Department, Biosearch Life, 18004 Granada, Spain
| | - João Tomé-Carneiro
- Bioactive Food Ingredients Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain;
| | - José M. Ordovás
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Correspondence: ; Tel.: +34-(91)-7278100 (ext. 309)
| |
Collapse
|
13
|
Anderson P, Kokole D, Llopis EJ. Production, Consumption, and Potential Public Health Impact of Low- and No-Alcohol Products: Results of a Scoping Review. Nutrients 2021; 13:3153. [PMID: 34579030 PMCID: PMC8466998 DOI: 10.3390/nu13093153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Switching from higher strength to low- and no-alcohol products could result in consumers buying and drinking fewer grams of ethanol. We undertook a scoping review with systematic searches of English language publications between 1 January 2010 and 17 January 2021 using PubMed and Web of Science, covering production, consumption, and policy drivers related to low- and no-alcohol products. Seventy publications were included in our review. We found no publications comparing a life cycle assessment of health and environmental impacts between alcohol-free and regular-strength products. Three publications of low- and no-alcohol beers found only limited penetration of sales compared with higher strength beers. Two publications from only one jurisdiction (Great Britain) suggested that sales of no- and low-alcohol beers replaced rather than added to sales of higher strength beers. Eight publications indicated that taste, prior experiences, brand, health and wellbeing issues, price differentials, and overall decreases in the social stigma associated with drinking alcohol-free beverages were drivers of the purchase and consumption of low- and no-alcohol beers and wines. Three papers indicated confusion amongst consumers with respect to the labelling of low- and no-alcohol products. One paper indicated that the introduction of a minimum unit price in both Scotland and Wales favoured shifts in purchases from higher- to lower-strength beers. The evidence base for the potential beneficial health impact of low- and no-alcohol products is very limited and needs considerable expansion. At present, the evidence base could be considered inadequate to inform policy.
Collapse
Affiliation(s)
- Peter Anderson
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Daša Kokole
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
| | - Eva Jané Llopis
- Department of Health Promotion, CAPHRI Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands; (D.K.); (E.J.L.)
- ESADE Business School, University Ramon Llull, 08034 Barcelona, Spain
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5S 2S1, Canada
| |
Collapse
|
14
|
Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients 2021; 13:nu13062000. [PMID: 34200665 PMCID: PMC8226943 DOI: 10.3390/nu13062000] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Beer is a fermented beverage widely consumed worldwide with high nutritional and biological value due to its bioactive components. It has been described that both alcoholic and non-alcoholic beer have several nutrients derived from their ingredients including vitamins, minerals, proteins, carbohydrates, and antioxidants that make beer a potential functional supplement. Some of these compounds possess redox, anti-inflammatory and anticarcinogenic properties making the benefits of moderate beer consumption an attractive way to improve human health. Specifically, the hop cones used for beer brewing provide essential oils, bitter acids and flavonoids that are potent antioxidants and immune response modulators. This review focuses on the redox and anti-inflammatory properties of hop derivatives and summarizes the current knowledge of their neuroprotective effects.
Collapse
|