1
|
van der Rhee M, Oosterman JE, Wopereis S, van der Horst GTJ, Chaves I, Dollé MET, Burdorf A, van Kerkhof LWM, der Holst HMLV. Personalized sleep and nutritional strategies to combat adverse effects of night shift work: a controlled intervention protocol. BMC Public Health 2024; 24:2555. [PMID: 39300419 DOI: 10.1186/s12889-024-20022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Working during the night interferes with the timing of normal daily activities and is associated with an increased risk of chronic diseases. Under controlled experimental conditions, interventions focusing on sleep and nutrition can mitigate the short-term adverse effects of shift work. However, it is unclear how these results translate to real-life, how they can be targeted to individual conditions, and how they relate to long-term health. Therefore, the current study aims to implement a personalized sleep and nutritional intervention among night shift workers in the field. METHODS A non-blinded controlled intervention study is used, consisting of a run-in period, an intervention of 3 months, post-intervention measurements, and a follow-up after 12 months. Three study arms are included: sleep intervention, nutritional intervention, and control group (n = 25 each). Participants are healthy 18-60-year male night shift workers, with at least one year of experience in night shift work. Information from the run-in period will be used to personalize the interventions. The main outcomes are sleep measurements and continuous interstitial glucose levels. Furthermore, general health biomarkers and parameters will be determined to further evaluate effects on long-term health. DISCUSSION This study aims to mitigate negative health consequences associated with night shift work by introducing two personalized preventive interventions. If proven effective, the personalized interventions may serve as practical solutions that can have a meaningful impact on the sustainable health and employability of night shift workers. This study will thereby contribute to the current need for high-quality data on preventative strategies for night shift work in a real-life context. TRIAL REGISTRATION This trial has been registered under ClinicalTrials.gov Identifier NCT06147089. Registered 27 November 2023.
Collapse
Affiliation(s)
- Maaike van der Rhee
- Department of Public Health, Erasmus MC, Rotterdam, 3000 CA, The Netherlands.
| | - Johanneke E Oosterman
- Research Group Microbiology & Systems Biology, TNO, Organization for Applied Scientific Research, Leiden, 2333 BE, The Netherlands
| | - Suzan Wopereis
- Research Group Microbiology & Systems Biology, TNO, Organization for Applied Scientific Research, Leiden, 2333 BE, The Netherlands
| | | | - Inês Chaves
- Department Molecular Genetics, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Alex Burdorf
- Department of Public Health, Erasmus MC, Rotterdam, 3000 CA, The Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | | |
Collapse
|
2
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
3
|
Guess N. Big data and personalized nutrition: the key evidence gaps. Nat Metab 2024; 6:1420-1422. [PMID: 38278944 DOI: 10.1038/s42255-023-00960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Affiliation(s)
- Nicola Guess
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Antwi J. Precision Nutrition to Improve Risk Factors of Obesity and Type 2 Diabetes. Curr Nutr Rep 2023; 12:679-694. [PMID: 37610590 PMCID: PMC10766837 DOI: 10.1007/s13668-023-00491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE OF REVIEW Existing dietary and lifestyle interventions and recommendations, to improve the risk factors of obesity and type 2 diabetes with the target to mitigate this double global epidemic, have produced inconsistent results due to interpersonal variabilities in response to these conventional approaches, and inaccuracies in dietary assessment methods. Precision nutrition, an emerging strategy, tailors an individual's key characteristics such as diet, phenotype, genotype, metabolic biomarkers, and gut microbiome for personalized dietary recommendations to optimize dietary response and health. Precision nutrition is suggested to be an alternative and potentially more effective strategy to improve dietary intake and prevention of obesity and chronic diseases. The purpose of this narrative review is to synthesize the current research and examine the state of the science regarding the effect of precision nutrition in improving the risk factors of obesity and type 2 diabetes. RECENT FINDINGS The results of the research review indicate to a large extent significant evidence supporting the effectiveness of precision nutrition in improving the risk factors of obesity and type 2 diabetes. Deeper insights and further rigorous research into the diet-phenotype-genotype and interactions of other components of precision nutrition may enable this innovative approach to be adapted in health care and public health to the special needs of individuals. Precision nutrition provides the strategy to make individualized dietary recommendations by integrating genetic, phenotypic, nutritional, lifestyle, medical, social, and other pertinent characteristics about individuals, as a means to address the challenges of generalized dietary recommendations. The evidence presented in this review shows that precision nutrition markedly improves risk factors of obesity and type 2 diabetes, particularly behavior change.
Collapse
Affiliation(s)
- Janet Antwi
- Department of Agriculture, Nutrition and Human Ecology, Prairie View A&M University, Prairie View, USA.
| |
Collapse
|
5
|
Zoh RS, Yu X, Dawid P, Smith GD, French SJ, Allison DB. Causal models and causal modelling in obesity: foundations, methods and evidence. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220227. [PMID: 37661742 PMCID: PMC10475873 DOI: 10.1098/rstb.2022.0227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/06/2023] [Indexed: 09/05/2023] Open
Abstract
Discussing causes in science, if we are to do so in a way that is sensible, begins at the root. All too often, we jump to discussing specific postulated causes but do not first consider what we mean by, for example, causes of obesity or how we discern whether something is a cause. In this paper, we address what we mean by a cause, discuss what might and might not constitute a reasonable causal model in the abstract, speculate about what the causal structure of obesity might be like overall and the types of things we should be looking for, and finally, delve into methods for evaluating postulated causes and estimating causal effects. We offer the view that different meanings of the concept of causal factors in obesity research are regularly being conflated, leading to confusion, unclear thinking and sometimes nonsense. We emphasize the idea of different kinds of studies for evaluating various aspects of causal effects and discuss experimental methods, assumptions and evaluations. We use analogies from other areas of research to express the plausibility that only inelegant solutions will be truly informative. Finally, we offer comments on some specific postulated causal factors. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Roger S. Zoh
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, 47405-7000, USA
| | - Xiaoxin Yu
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, 47405-7000, USA
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen J. French
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, 47405-7000, USA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, 47405-7000, USA
| |
Collapse
|
6
|
Renner B, Buyken AE, Gedrich K, Lorkowski S, Watzl B, Linseisen J, Daniel H. Perspective: A Conceptual Framework for Adaptive Personalized Nutrition Advice Systems (APNASs). Adv Nutr 2023; 14:983-994. [PMID: 37419418 PMCID: PMC10509404 DOI: 10.1016/j.advnut.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Nearly all approaches to personalized nutrition (PN) use information such as the gene variants of individuals to deliver advice that is more beneficial than a generic "1-size-fits-all" recommendation. Despite great enthusiasm and the increased availability of commercial services, thus far, scientific studies have only revealed small to negligible effects on the efficacy and effectiveness of personalized dietary recommendations, even when using genetic or other individual information. In addition, from a public health perspective, scholars are critical of PN because it primarily targets socially privileged groups rather than the general population, thereby potentially widening health inequality. Therefore, in this perspective, we propose to extend current PN approaches by creating adaptive personalized nutrition advice systems (APNASs) that are tailored to the type and timing of personalized advice for individual needs, capacities, and receptivity in real-life food environments. These systems encompass a broadening of current PN goals (i.e., what should be achieved) to incorporate "individual goal preferences" beyond currently advocated biomedical targets (e.g., making sustainable food choices). Moreover, they cover the "personalization processes of behavior change" by providing in situ, "just-in-time" information in real-life environments (how and when to change), which accounts for individual capacities and constraints (e.g., economic resources). Finally, they are concerned with a "participatory dialog between individuals and experts" (e.g., actual or virtual dieticians, nutritionists, and advisors) when setting goals and deriving measures of adaption. Within this framework, emerging digital nutrition ecosystems enable continuous, real-time monitoring, advice, and support in food environments from exposure to consumption. We present this vision of a novel PN framework along with scenarios and arguments that describe its potential to efficiently address individual and population needs and target groups that would benefit most from its implementation.
Collapse
Affiliation(s)
- Britta Renner
- Department of Psychology and Centre for the Advanced Study of Collective Behavior, Psychological Assessment and Health Psychology, University of Konstanz, Konstanz, Germany.
| | - Anette E Buyken
- Public Health Nutrition, Paderborn University, Paderborn, Germany
| | - Kurt Gedrich
- ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences Friedrich Schiller University Jena, Jena, Germany, and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Bernhard Watzl
- Ex. Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Jakob Linseisen
- University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannelore Daniel
- Ex. School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Wopereis S. Phenotypic flexibility in nutrition research to quantify human variability: building the bridge to personalised nutrition. Proc Nutr Soc 2023; 82:346-358. [PMID: 36503652 DOI: 10.1017/s0029665122002853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenotypic flexibility is a methodology that accurately assesses health in terms of mechanistic understanding of the interrelationship of multiple metabolic and physiological processes. This starts from the perspective that a healthy person is better able to cope with changes in environmental stressors that affect homeostasis compared to people with a compromised health state. The term 'phenotypic flexibility' expresses the cumulative ability of overarching physiological processes to return to homeostatic levels after short-term perturbations. The concept of phenotypic flexibility to define biomarkers for nutrition-related health was introduced in 2009 in the area of health optimisation and prevention and delay of non-communicable disease. The core approach consists of the combination of imposing a challenge test to the body followed by time-resolved analysis of multiple biomarkers. This new approach may better facilitate nutritional health research in intervention studies since it may show effects on early derailed physiological markers and the biomarker response can be extended by perturbing the system, thereby making them more sensitive in detecting health effects from food and nutrition. At the same time, interindividual variation can also be extended and compressed by challenge tests, facilitating the bridge to personalised nutrition. This review will overview where the science is in this research arena and what the phenotypic flexibility potential is for the nutrition field.
Collapse
Affiliation(s)
- Suzan Wopereis
- Research Group Microbiology & Systems Biology, TNO, Netherlands Organisation for Applied Scientific Research, 2333 BE Leiden, the Netherlands
| |
Collapse
|
8
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
9
|
van den Brink WJ, van den Broek TJ, Palmisano S, Wopereis S, de Hoogh IM. Digital Biomarkers for Personalized Nutrition: Predicting Meal Moments and Interstitial Glucose with Non-Invasive, Wearable Technologies. Nutrients 2022; 14:4465. [PMID: 36364728 PMCID: PMC9654068 DOI: 10.3390/nu14214465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
Digital health technologies may support the management and prevention of disease through personalized lifestyle interventions. Wearables and smartphones are increasingly used to continuously monitor health and disease in everyday life, targeting health maintenance. Here, we aim to demonstrate the potential of wearables and smartphones to (1) detect eating moments and (2) predict and explain individual glucose levels in healthy individuals, ultimately supporting health self-management. Twenty-four individuals collected continuous data from interstitial glucose monitoring, food logging, activity, and sleep tracking over 14 days. We demonstrated the use of continuous glucose monitoring and activity tracking in detecting eating moments with a prediction model showing an accuracy of 92.3% (87.2-96%) and 76.8% (74.3-81.2%) in the training and test datasets, respectively. Additionally, we showed the prediction of glucose peaks from food logging, activity tracking, and sleep monitoring with an overall mean absolute error of 0.32 (+/-0.04) mmol/L for the training data and 0.62 (+/-0.15) mmol/L for the test data. With Shapley additive explanations, the personal lifestyle elements important for predicting individual glucose peaks were identified, providing a basis for personalized lifestyle advice. Pending further validation of these digital biomarkers, they show promise in supporting the prevention and management of type 2 diabetes through personalized lifestyle recommendations.
Collapse
Affiliation(s)
- Willem J. van den Brink
- Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Chen S, Dai Y, Ma X, Peng H, Wang D, Wang Y. Personalized optimal nutrition lifestyle for self obesity management using metaalgorithms. Sci Rep 2022; 12:12387. [PMID: 35858966 PMCID: PMC9297061 DOI: 10.1038/s41598-022-16260-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Precision medicine applies machine learning methods to estimate the personalized optimal treatment decision based on individual information, such as genetic data and medical history. The main purpose of self obesity management is to develop a personalized optimal life plan that is easy to implement and adhere to, thereby reducing the incidence of obesity and obesity-related diseases. The methodology comprises three components. First, we apply catboost, random forest and lasso covariance test to evaluate the importance of individual features in forecasting body mass index. Second, we apply metaalgorithms to estimate the personalized optimal decision on alcohol, vegetable, high caloric food and daily water intake respectively for each individual. Third, we propose new metaalgorithms named SX and SXwint learners to compute the personalized optimal decision and compare their performances with other prevailing metalearners. We find that people who receive individualized optimal treatment options not only have lower obesity levels than others, but also have lower obesity levels than those who receive ’one-for-all’ treatment options. In conclusion, all metaalgorithms are effective at estimating the personalized optimal decision, where SXwint learner shows the best performance on daily water intake.
Collapse
Affiliation(s)
- Shizhao Chen
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiran Dai
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoman Ma
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Peng
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Donghui Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yili Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|