1
|
Pourmontaseri H, Khanmohammadi S. Demographic risk factors of pro-inflammatory diet: a narrative review. Front Nutr 2024; 11:1448806. [PMID: 39483779 PMCID: PMC11526715 DOI: 10.3389/fnut.2024.1448806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
While inflammation is a known beneficial mechanism, pro-inflammatory nutrients can lead to chronic inflammation. The energy-adjusted dietary inflammatory index (E-DII) has revealed positive associations with chronic inflammatory diseases. However, more evidence about the demographic risk factors for high E-DII is needed. Therefore, the present study reviewed the high-risk groups of people for high E-DII scores. Men had higher E-DII than women worldwide, which could be explained by the craving for energy induced by stress and higher physical activity. However, in some societies, women had higher consumption of a pro-inflammatory diet, which could be induced by compulsive eating and craving for more sweets and carbohydrates during menstruation and also can be seen among women with premenopausal syndrome. The pro-inflammatory diets were more common among elders in southern America, East Asia, and Arab countries, while some other studies had contradictory results. The proliferation of unhealthy foods, such as fast food and Western dietary patterns enriched with a pro-inflammatory diet, increased youth's E-DII and decreased the healthy eating index among older people. Also, smokers and alcoholics tended to consume a diet with a higher E-DII, which should be investigated in further studies. Black people consumed the most pro-inflammatory diets compared with White people, especially in pregnant women. Education had a negative association with E-DII, while socioeconomic status was positively associated with a pro-inflammatory diet. Therefore, E-DII consumption had no association with access to healthy foods but is more associated with knowledge and cultural dietary habits. Moreover, further nutritional interventions are required to educate the vulnerable populations and also provide better availability of healthy food enriched with anti-inflammatory nutrients in the future.
Collapse
Affiliation(s)
- Hossein Pourmontaseri
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Qin J, Zheng X, Huang J, Feng Y, Feng B. Letter to the Editor - "Dietary and lifestyle inflammation scores in relation to colorectal cancer recurrence and all-cause mortality: A longitudinal Analysis". Clin Nutr ESPEN 2024; 64:S2405-4577(24)01334-2. [PMID: 39384088 DOI: 10.1016/j.clnesp.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Jie Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xi 'an Medical College, 48 Fenghao West Road,Lianhu District Xi 'an, Shaanxi Province, China.
| | - Xueli Zheng
- Department of Ophthalmology, The First People's Hospital of Xianyang City, No. 10 Biyuan Road, Qindu District, Xianyang City, Shaanxi Province, China, 712000.
| | - Juanjuan Huang
- Department of Obstetrics, The Affiliated Hospital of Yan 'an University, 43North Street,Baota District, Yan 'an City, Shaanxi Province, China; 716000.
| | - Yan Feng
- Department of Gynecology, The Affiliated Hospital of Yan 'an University, 43North Street, Baota District, Yan 'an City, Shaanxi Province, China, 716000.
| | - Bei Feng
- Department of Oncology, The Affiliated Hospital of Yan 'an University, 43North Street, Baota District, Yan 'an City, Shaanxi Province, China, 716000.
| |
Collapse
|
3
|
Luo M, Li Q, Gu Q, Zhang C. Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer. Am J Cancer Res 2024; 14:3962-3975. [PMID: 39267665 PMCID: PMC11387864 DOI: 10.62347/myza2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various cancers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer (CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open conundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to enhance the intratumoral immune response and render the tumor "immune-reactive". Intestinal microbes, such as the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, inhibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to enhance the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Mengjie Luo
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qi Li
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qingdan Gu
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Chunlei Zhang
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| |
Collapse
|
4
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
6
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Revealing the therapeutic properties of gut microbiota: transforming cancer immunotherapy from basic to clinical approaches. Med Oncol 2024; 41:175. [PMID: 38874788 DOI: 10.1007/s12032-024-02416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, Kolkata-Group of Institutions, NSHM Knowledge Campus, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
7
|
Liu W, Xiao C, Luo J, Liu M, Sun B, Luo Z. Unveiling the role of FTO polymorphisms in predicting response to immune checkpoint inhibitors: A retrospective study. Int Immunopharmacol 2024; 133:112142. [PMID: 38669948 DOI: 10.1016/j.intimp.2024.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Identifying patients who can benefit from immune checkpoint inhibitors (ICIs) is a critical challenge in immunotherapy. This study aimed to investigate the association between fat mass and obesity-associated protein (FTO) polymorphisms and ICIs treatment outcomes. METHOD This retrospective study was conducted on 371 patients with malignant tumors who received ICIs treatment and were followed-up for a minimum duration of 12 months. Seven variants in FTO gene were genotyped using the Sequenome MassARRAY platform, and their associations with ICIs treatment outcomes were analyzed. RESULTS Pharmacogenomic research revealed that individuals carrying the rs11075995AT/TT genotype were more likely to benefit from ICIs treatment compare to TT genotype. Cox regression analysis showed that rs1125338TT carriers exhibited a shorter progression-free survival (PFS, hazard ratio (HR) = 1.72, 95 % confidence interval (CI) = 1.12-2.46), while rs12596638GG carriers experienced extended PFS (HR = 0.71, 95 % CI = 0.50-0.99). Multiple Cox regression analysis indicated that rs12596638GG (HR = 6.81, 95 %CI = 1.20-38.56) and rs1125338CC (HR = 1.78, 95 %CI = 0.07-0.45), rs12600192CC (HR = 0.13, 95 %CI = 0.037-0.44) genotypes were independently associated with overall survival (OS) after adjusting clinical characteristics. Furthermore, patients with rs12600192CC genotype had a lower risk of severe irAEs compared to those with GG/GC genotypes (P < 0.01). CONCLUSION We identified FTO gene polymorphisms associated with treatment outcomes of ICI treatment in patients with multiple solid cancers, which might serve as potential predictive biomarkers.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Chenlin Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Jianquan Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Mouze Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacy, Central South University, Changsha, PR China.
| |
Collapse
|
8
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Xu D, Chen X, Wu M, Bi J, Xue H, Chen H. Identification of cellular senescence-associated genes as new biomarkers for predicting the prognosis and immunotherapy response of non-small cell lung cancer and construction of a prognostic model. Heliyon 2024; 10:e28278. [PMID: 38560217 PMCID: PMC10981052 DOI: 10.1016/j.heliyon.2024.e28278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Background Globally, lung carcinoma remains the leading cause of death, with its associated morbidity and mortality rates remaining elevated. Despite the slow advancement of treatment, the outlook remains bleak. Cellular senescence represents a halt in the cell cycle, encompassing a range of physiological and pathological activities, along with diverse phenotypic alterations, including variations in secretory phenotype, macromolecular harm, and metabolic disturbances. Research has revealed its vital function in the formation and growth of tumors. This study aimed to examine cellular senescence-related mRNAs linked to the outlook of non-small cell lung cancer (NSCLC) and to formulate a predictive risk framework for NSCLC. Methods We acquired the NSCLC expression data from The Cancer Genome Atlas (TCGA) to examine mRNAs linked to cellular senescence. Both single-variable and multiple-variable cox proportion risk assessments were utilized to determine the traits of cellular senescence-related mRNAs linked to NSCLC prognosis. Subsequently, the prognostic model for cellular senescence-related mRNAs was integrated with clinical-pathological characteristics to create a prognostic nomogram. Furthermore, the study delved into the risk-oriented predictive model, examining immune infiltration and responses to immunotherapy among both high and low-risk categories. Results Utilizing both univariate and multivariate Cox proportion risk assessments, a risk model comprising 12 mRNAs associated with cellular aging was ultimately developed: IGFBP1, TLR3, WT1, ID1, PTTG1, ERRFI1, HEPACAM, MAP2K3, RAD21, NANOG, PRKCD, SOX5. Univariate analysis and multivariate analysis illustrated that the risk score served as a standalone indicator for prognosis, and the hazard ratio (HR) of the risk score were 1.182 (1.139-1.226) (p < 0.001) and 1.162 (1.119 - 1.206) (p < 0.001), respectively. Individual prognoses were forecasted using nomogram, c-index, and principal component analysis (PCA). Furthermore, the risk-oriented model revealed notable statistical variances in immune infiltration and response to immunotherapy among the high and low risk categories. Conclusions This study shows that mRNAs related to cell senescence associated with prognosis are reliable predictors of NSCLC immunotherapy reaction and prognosis.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiao Chen
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Mingyuan Wu
- Center for Disease Control and Prevention, Songbei District, Harbin, China
| | - Jinfeng Bi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Xue
- Department of Geriatric Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Hoang J, Gilbertson-White S, Cady N, Yadav M, Shahi S, Aguilar L, Mangalam AK, Cherwin C. Preliminary Analysis of Gut Microbiome and Gastrointestinal Symptom Burden in Breast Cancer Patients Receiving Chemotherapy Compared to Healthy Controls. Biol Res Nurs 2024; 26:219-230. [PMID: 37830211 PMCID: PMC11145515 DOI: 10.1177/10998004231205277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Alterations in the naturally occurring bacteria of the gut, known as the gastrointestinal (GI) microbiome, may influence GI symptoms in women with breast cancer. OBJECTIVE This work aims to describe GI symptom occurrence, duration, severity, and distress and measures of the GI microbiome among women with breast cancer receiving chemotherapy compared to age- and sex-matched healthy controls. INTERVENTIONS/METHODS 22 women with breast cancer receiving chemotherapy and 17 healthy control women provided stool specimens and GI symptom data using the modified Memorial Symptom Assessment Scale (MSAS). The fecal microbiome was profiled by metagenomic sequencing of 16S Ribosomal RNA (rRNA). GI microbiome was compared between groups using alpha-diversity (Observed OTU number and Shannon index), beta-diversity (UniFrac distances), and relative abundance of select genera. RESULTS GI symptoms with high symptom reports among breast cancer patients included nausea, diarrhea, flatulence, dry mouth, taste change, and poor appetite. Indices of differential abundance (beta diversity) significantly distinguished between breast cancer patients and healthy controls. Unique bacterial features differentiating the 2 groups were Prevotella_9, Akkermansia, Lachnospira, Lachnospiraceae_NK4A136, Lachnoclostridium, and Oscillibacter. CONCLUSIONS Gut bacteria are associated with GI inflammation and mucus degradation, suggesting the potential role of the GI microbiome in GI symptom burden. Understanding the influence of GI bacteria on gut health and symptoms will help harness the enormous potential of the GI microbiome as a future diagnostic and therapeutic agent to reduce the symptom burden associated with chemotherapy.
Collapse
Affiliation(s)
- Jemmie Hoang
- College of Nursing, University of Iowa, Iowa City, IA, USA
| | | | - Nicole Cady
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Meeta Yadav
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Leeann Aguilar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K. Mangalam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
11
|
Xie J, Liu M, Deng X, Tang Y, Zheng S, Ou X, Tang H, Xie X, Wu M, Zou Y. Gut microbiota reshapes cancer immunotherapy efficacy: Mechanisms and therapeutic strategies. IMETA 2024; 3:e156. [PMID: 38868510 PMCID: PMC10989143 DOI: 10.1002/imt2.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/14/2024]
Abstract
Gut microbiota is essential for maintaining local and systemic immune homeostasis in the presence of bacterial challenges. It has been demonstrated that microbiota play contrasting roles in cancer development as well as anticancer immunity. Cancer immunotherapy, a novel anticancer therapy that relies on the stimulation of host immunity, has suffered from a low responding rate and incidence of severe immune-related adverse events (irAEs). Previous studies have demonstrated that the diversity and composition of gut microbiota were associated with the heterogeneity of therapeutic effects. Therefore, alteration in microbiota taxa can lead to improved clinical outcomes in immunotherapy. In this review, we determine whether microbiota composition or microbiota-derived metabolites are linked to responses to immunotherapy and irAEs. Moreover, we discuss various approaches to improve immunotherapy efficacy or reduce toxicities by modulating microbiota composition.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Manqing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaoquan Zheng
- Department of Breast Surgery, Breast Disease Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Minqing Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
12
|
Lou J, Cui S, Li J, Jin G, Fan Y, Huang N. Causal relationship between the gut microbiome and basal cell carcinoma, melanoma skin cancer, ease of skin tanning: evidence from three two-sample mendelian randomisation studies. Front Immunol 2024; 15:1279680. [PMID: 38304424 PMCID: PMC10830803 DOI: 10.3389/fimmu.2024.1279680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives The present study used publicly available genome-wide association study (GWAS) summary data to perform three two-sample Mendelian randomization (MR) studies, aiming to examine the causal links between gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Methods SNPs associated with exposures to basal cell carcinoma, melanoma skin cancer and ease of skin tanning from the genome-wide association study data of UK Biobank and MRC-IEU (MRC Integrative Epidemiology Unit), and the meta-analysis data from Biobank and MRC-IEU were used as instrumental variables (IVs). The casual estimates were assessed with a two-sample Mendelian randomisation test using the inverse-variance-weighted (IVW) method, Wald ratio, MR-Egger method, maximum likelihood, weighted median, simple mode, and weighted mode. Results After the application of MR analysis, diffirent effects of multiple groups of gut microbiota was observed for BCC, melanoma skin cancer and ease of skin tanning. The relationships between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning were supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Conclusion Our study initially identified potential causal roles between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning, and highlighted the role of gut microbiome in the progression of basal cell carcinoma, melanoma skin cancer, ease of skin tanning.
Collapse
|
13
|
Jiang H, Bu L. Progress in the treatment of lung adenocarcinoma by integrated traditional Chinese and Western medicine. Front Med (Lausanne) 2024; 10:1323344. [PMID: 38259856 PMCID: PMC10802683 DOI: 10.3389/fmed.2023.1323344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) overwhelmingly represents the predominant histological subtype of lung cancer, with lung adenocarcinoma emerging as the most prevalent form. Conventional Western medical treatments encompass a spectrum of modalities, including surgical interventions, cytotoxic chemotherapy, radiotherapy, targeted pharmacotherapy, and immunotherapy. In contrast, Traditional Chinese Medicine (TCM) methodologies encompass traditional Chinese medicine treatments, acupuncture therapies, and tuina treatments. While conventional Western medicine has made remarkable strides in the treatment of lung cancer, it is important to acknowledge the limitations inherent in singular treatment approaches. Consequently, the quest for a more comprehensive and integrative therapeutic paradigm becomes imperative. A deficiency of evaluation criteria specific to lung adenocarcinoma treatment in the realm of TCM represents an outstanding challenge in need of resolution. Nonetheless, in the backdrop of the continuous evolution of lung adenocarcinoma treatment modalities, the amalgamation of Chinese and Western medical approaches for treating this condition has exhibited a promising trajectory. It not only contributes to mitigating toxicity and augmenting efficacy but also serves to reduce a spectrum of postoperative complications, thereby enhancing the quality of patients' survival and extending life expectancy. This article furnishes a comprehensive survey of the research advancements in the integration of Chinese and Western medical approaches for treating lung adenocarcinoma. It elucidates the merits and demerits of individual and combined therapeutic strategies, surmounts current limitations, underscores the virtues of amalgamating Chinese and Western medical paradigms, and offers a more holistic, integrated, and efficacious treatment blueprint.
Collapse
Affiliation(s)
- Hongxin Jiang
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Lina Bu
- Department of Respiratory and Critical Care Medicine, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi’an, China
| |
Collapse
|
14
|
David A, Lev-Ari S. Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review. Integr Cancer Ther 2024; 23:15347354241269870. [PMID: 39223798 PMCID: PMC11369881 DOI: 10.1177/15347354241269870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The following narrative review embarks on a comprehensive exploration of the role played by the gut microbiome within the Diet-Microbiota-Immunity (DMI) tripartite, aiming to enhance anti-cancer immunotherapy efficacy. While revolutionizing cancer treatment, resistance to immunotherapy and immune-related adverse events (irAEs) remain challenges. The tumor microenvironment (TME), shaped by cancer cells, influences immunotherapy resistance. The gut microbiome, influenced by genetics, environment, diet, and interventions, emerges as a critical player in TME reshaping, thereby modulating immune responses and treatment outcomes. Dietary patterns like the Mediterranean diet, caloric restriction modifications, and specific nutritional components show promise in influencing the tumor microenvironment and gut microbiome for better treatment outcomes. Antibiotics, disrupting gut microbiota diversity, may compromise immunotherapy efficacy. This review emphasizes the need for tailored nutritional strategies to manipulate microbial communities, enhance immune regulation, and improve immunotherapy accessibility while minimizing side effects. Ongoing studies investigate the impact of dietary interventions on cancer immunotherapy, pointing toward promising developments in personalized cancer care. This narrative review synthesizes existing knowledge and charts a course for future investigations, presenting a holistic perspective on the dynamic interplay between dietary interventions, the gut microbiome, and cancer immunotherapy within the DMI tripartite.
Collapse
Affiliation(s)
- Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Shaked Lev-Ari
- Ella Lemelbaum Institute For Immuno-Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Education Authority, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
15
|
Han Z, Wang N, Qiao Q, He X, Wang N. Association of PD-L1 Expression with Clinicopathologic Characters in Gastric Cancer: A Comprehensive Meta-analysis. Curr Med Chem 2024; 31:3198-3216. [PMID: 37921182 DOI: 10.2174/0109298673263784230922060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE The expression level of programmed death ligand-1(PD-L1) in patients with gastric cancer is the key to determining the use of immune drugs. The relationship between PD-L1 expression level and clinical characteristics is worth exploring. METHODS By setting the search terms correlated to PD-L1 and gastric cancer, a nearly comprehensive search was carried out in four major databases, and the deadline for searching was September 1, 2022. The retrieved documents were further screened by strict inclusion and exclusion criteria after removing the duplication. Next, the quality of the included studies was evaluated with the Newcastle-Ottawa Scale (NOS) scale. Finally, the STATA15.1 software was used to process data and draw plots, and the odds ratios (ORs) were adopted to assess the pooled effect size. RESULTS A total of 85 works of literature were included in this study through screening strictly, and detailed data were extracted after evaluating the quality of the literature. The process of analysis was conducted in the whole population, Asia-Africa population, European and American population, and Asian population with CPS≥1, amd all found that the expression of PD-L1 in gastric cancer was correlated with age, tumor size, EBV infection, Her-2 expression and microsatellite status. However, the subgroup of the region also found some differences in Asian and Western regions, which was interesting and worth studying further. The included research of this study did not have significant publish bias. CONCLUSION After careful analysis, this study found that age (>60 years), tumor size (>5cm), EBV infection (+), Her-2 expression (+), microsatellite status (MSI), and mismatch repair status (dMMR) were risk factors for positive expression of PD-L1 in gastric cancer.
Collapse
Affiliation(s)
- Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Qing Qiao
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
16
|
Zhao Z, Yang Q, Zhou T, Liu C, Sun M, Cui X, Zhang X. Anticancer potential of Bacillus coagulans MZY531 on mouse H22 hepatocellular carcinoma cells via anti-proliferation and apoptosis induction. BMC Complement Med Ther 2023; 23:318. [PMID: 37705007 PMCID: PMC10498517 DOI: 10.1186/s12906-023-04120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Bacillus coagulans have recently revealed its anticancer effects, but few investigations are available on their effects on liver cancer proliferation, and the precise mechanism to mark its impact on apoptosis-related signaling pathways has yet to be elucidated. The aim of this study was to evaluate the anti-proliferative effect of B. coagulans MZY531 and apoptosis induction in the mouse H22 hepatocellular carcinoma cell line. The anti-proliferative activity of B. coagulans MZY531 was evaluated by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis was revealed with Terminal Deoxynucleotidyl Transferase (TDT)-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometric analysis. The expressions of apoptosis-related protein were determined by western blot analysis. The CCK-8 assay revealed that B. coagulans MZY531 inhibited the H22 cells proliferation in a concentration-dependent manner. TUNEL staining revealed an increased apoptosis rate in H22 cells following intervention with B. coagulans MZY531. Furthermore, flow cytometric analysis showed that B. coagulans MZY531 treatment (MOI = 50 and 100) significantly alleviated the H22 cells apoptosis compared with the control group. Western blot analysis found B. coagulans MZY531 significantly decreased level of phospho-PI3K (p-PI3K), phospho-AKT (p-AKT), and phospho-mTOR (p-mTOR) compared with the control group. Furthermore, H22 cells treatment with B. coagulans MZY531 enhanced the expression of caspase-3 and Bax and jeopardized the expression of Bcl-2. Taken together, apoptosis induction and cell proliferation inhibition via PI3K/AKT/mTOR and Bax/Bcl-2/Caspase-3 pathway are promising evidence to support B. coagulans MZY531 as a potential therapeutic agent for cancer.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Qian Yang
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Tingting Zhou
- Innovation Practice Center, The Changchun University of Traditional Chinese Medicine, Changchun, 130000, P.R. China
| | - Chunhong Liu
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Manqing Sun
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xinmu Cui
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xuewu Zhang
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China.
| |
Collapse
|
17
|
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes (Basel) 2023; 14:1736. [PMID: 37761875 PMCID: PMC10530369 DOI: 10.3390/genes14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan; (N.S.); (Y.I.); (S.Y.); (K.T.); (H.S.)
| |
Collapse
|
18
|
Li Y, Huang Y, Liang H, Wang W, Li B, Liu T, Huang Y, Zhang Z, Qin Y, Zhou X, Wang R, Huang T. The roles and applications of short-chain fatty acids derived from microbial fermentation of dietary fibers in human cancer. Front Nutr 2023; 10:1243390. [PMID: 37614742 PMCID: PMC10442828 DOI: 10.3389/fnut.2023.1243390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Dietary fibers (DFs) and their metabolites attract significant attention in research on health and disease, attributing to their effects on regulating metabolism, proliferation, inflammation, and immunity. When fermented by gut microbiota, DFs mainly produce short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid. As the essential nutrients for intestinal epithelial cells, SCFAs maintain intestinal homeostasis and play essential roles in a wide range of biological functions. SCFAs have been found to inhibit histone deacetylase, activate G protein-coupled receptors, and modulate the immune response, which impacts cancer and anti-cancer treatment. Notably, while extensive studies have illuminated the roles of SCFAs in colorectal cancer development, progression, and treatment outcomes, limited evidence is available for other types of cancers. This restricts our understanding of the complex mechanisms and clinical applications of SCFAs in tumors outside the intestinal tract. In this study, we provide a comprehensive summary of the latest evidence on the roles and mechanisms of SCFAs, with a focus on butyric acid and propionic acid, derived from microbial fermentation of DFs in cancer. Additionally, we recapitulate the clinical applications of SCFAs in cancer treatments and offer our perspectives on the challenges, limitations, and prospects of utilizing SCFAs in cancer research and therapy.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yaxuan Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haili Liang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Wen Wang
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection (GXQT), Nanning, China
| | - Bo Li
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Liu
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuqi Huang
- The First School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yutao Qin
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Rensheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Tingting Huang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
19
|
Hui J, Zhou M, An G, Zhang H, Lu Y, Wang X, Zhao X. Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0119. [PMID: 37553810 PMCID: PMC10476469 DOI: 10.20892/j.issn.2095-3941.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC) remains an enormous challenge to human health worldwide. Unfortunately, the mechanism underlying CRC progression is not well understood. Mounting evidence has confirmed that exosomes play a vital role in CRC progression, which has attracted extensive attention among researchers. In addition to acting as messengers between CRC cells, exosomes also participate in the CRC immunomodulatory process and reshape immune function. As stable message carriers and liquid biopsy option under development, exosomes are promising biomarkers in the diagnosis or treatment of CRC. In this review we have described and analyzed the biogenesis and release of exosomes and current research on the role of exosomes in immune regulation and metastasis of CRC. Moreover, we have discussed candidate exosomal molecules as potential biomarkers to diagnose CRC, predict CRC progression, or determine CRC chemoresistance, and described the significance of exosomes in the immunotherapy of CRC. This review provides insight to further understand the role of exosomes in CRC progression and identify valuable biomarkers that facilitate the clinical management of CRC patients.
Collapse
Affiliation(s)
- Juan Hui
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Guangzhou An
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Hui Zhang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
20
|
Pizzutilo EG, Romanò R, Roazzi L, Agostara AG, Oresti S, Zeppellini A, Giannetta L, Cerea G, Signorelli D, Siena S, Sartore-Bianchi A. Immune Checkpoint Inhibitors and the Exposome: Host-Extrinsic Factors Determine Response, Survival, and Toxicity. Cancer Res 2023; 83:2283-2296. [PMID: 37205627 PMCID: PMC10345966 DOI: 10.1158/0008-5472.can-23-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Cancer immunotherapy, largely represented by immune checkpoint inhibitors (ICI), has led to substantial changes in preclinical cancer research and clinical oncology practice over the past decade. However, the efficacy and toxicity profiles of ICIs remain highly variable among patients, with only a fraction achieving a significant benefit. New combination therapeutic strategies are being investigated, and the search for novel predictive biomarkers is ongoing, mainly focusing on tumor- and host-intrinsic components. Less attention has been directed to all the external, potentially modifiable factors that compose the exposome, including diet and lifestyle, infections, vaccinations, and concomitant medications, that could affect the immune system response and its activity against cancer cells. We hereby provide a review of the available clinical evidence elucidating the impact of host-extrinsic factors on ICI response and toxicity.
Collapse
Affiliation(s)
- Elio Gregory Pizzutilo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Rebecca Romanò
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Laura Roazzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Alberto G. Agostara
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Sara Oresti
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Annalisa Zeppellini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Laura Giannetta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Diego Signorelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Università degli Studi di Milano, Department of Oncology and Hemato-Oncology, Milan, Italy
| |
Collapse
|
21
|
Lundstrom K. Alphaviruses in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:143-168. [PMID: 37541722 DOI: 10.1016/bs.ircmb.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Alphaviruses have frequently been engineered for cancer therapy, cancer immunotherapy, and cancer vaccine development. As members of self-replicating RNA viruses, alphaviruses provide high levels of transgene expression through efficient self-amplifying of their RNA genome in host cells. Alphavirus vectors can be used as recombinant viral particles or oncolytic viruses. Alternatively, either naked or nanoparticle-encapsulated RNA and DNA replicons can be utilized. In the context of cancer prevention and treatment, antitumor, cytotoxic and suicide genes have been expressed from alphavirus vectors to provide tumor regression and tumor eradication. Moreover, immunostimulatory genes such as cytokines and chemokines have been used for cancer immunotherapy approaches. Expression of tumor antigens has been applied for cancer vaccine development. Alphavirus vectors has demonstrated tumor regression and even cure in various preclinical animal models. Immunization has elicited strong immune responses and showed protection against challenges with tumor cells in animal models. Several clinical trials have confirmed good safety and tolerability of alphaviruses in cancer patients although therapeutic efficacy will still require optimization.
Collapse
|
22
|
Golčić M, Simetić L, Herceg D, Blažičević K, Kenđel Jovanović G, Dražić I, Belančić A, Skočibušić N, Palčevski D, Rubinić I, Vlahović-Palčevski V, Majnarić T, Dobrila-Dintinjana R, Pleština S. Analysis of the Gut Microbiome and Dietary Habits in Metastatic Melanoma Patients with a Complete and Sustained Response to Immunotherapy. Cancers (Basel) 2023; 15:cancers15113052. [PMID: 37297014 DOI: 10.3390/cancers15113052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy has improved the prognosis of metastatic melanoma patients, although most patients do not achieve a complete response. While specific gut microbiome and dietary habits might influence treatment success, there is a lack of concordance between the studies, potentially due to dichotomizing patients only into responders and non-responders. The aim of this study was to elucidate whether metastatic melanoma patients with complete and sustained response to immunotherapy exhibit differences in gut microbiome composition among themselves, and whether those differences were associated with specific dietary habits. Shotgun metagenomic sequencing revealed that patients who exhibited a complete response after more than 9 months of treatment (late responders) exhibited a significantly higher beta-diversity (p = 0.02), with a higher abundance of Coprococcus comes (LDA 3.548, p = 0.010), Bifidobacterium pseudocatenulatum (LDA 3.392, p = 0.024), and lower abundance of Prevotellaceae (p = 0.04) compared to early responders. Furthermore, late responders exhibited a different diet profile, with a significantly lower intake of proteins and sweets and a higher intake of flavones (p < 0.05). The research showed that metastatic melanoma patients with a complete and sustained response to immunotherapy were a heterogeneous group. Patients with a late complete response exhibited microbiome and dietary habits which were previously associated with an improved response to immunotherapy.
Collapse
Affiliation(s)
- Marin Golčić
- Department of Radiotherapy and Oncology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Luka Simetić
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Davorin Herceg
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Krešimir Blažičević
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Gordana Kenđel Jovanović
- Department of Health Ecology, Teaching Institute of Public Health of Primorsko-Goranska County, 51000 Rijeka, Croatia
| | - Ivan Dražić
- Department of Mathematics, Physics and Foreign Languages, Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
| | - Andrej Belančić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Nataša Skočibušić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Dora Palčevski
- Department of Internal Medicine, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Igor Rubinić
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Vera Vlahović-Palčevski
- Department of Clinical Pharmacology, University Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Tea Majnarić
- Community Health Center of Primorsko-Goranska County, 51000 Rijeka, Croatia
| | | | - Stjepko Pleština
- Department of Oncology, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
24
|
Crowder SL, Jim HSL, Hogue S, Carson TL, Byrd DA. Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochim Biophys Acta Rev Cancer 2023; 1878:188897. [PMID: 37086870 DOI: 10.1016/j.bbcan.2023.188897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephanie Hogue
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
25
|
Lundstrom K. Application of DNA Replicons in Gene Therapy and Vaccine Development. Pharmaceutics 2023; 15:pharmaceutics15030947. [PMID: 36986808 PMCID: PMC10054396 DOI: 10.3390/pharmaceutics15030947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
DNA-based gene therapy and vaccine development has received plenty of attention lately. DNA replicons based on self-replicating RNA viruses such as alphaviruses and flaviviruses have been of particular interest due to the amplification of RNA transcripts leading to enhanced transgene expression in transfected host cells. Moreover, significantly reduced doses of DNA replicons compared to conventional DNA plasmids can elicit equivalent immune responses. DNA replicons have been evaluated in preclinical animal models for cancer immunotherapy and for vaccines against infectious diseases and various cancers. Strong immune responses and tumor regression have been obtained in rodent tumor models. Immunization with DNA replicons has provided robust immune responses and protection against challenges with pathogens and tumor cells. DNA replicon-based COVID-19 vaccines have shown positive results in preclinical animal models.
Collapse
|
26
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
27
|
Kato I, Sun J. Microbiome and Diet in Colon Cancer Development and Treatment. Cancer J 2023; 29:89-97. [PMID: 36957979 PMCID: PMC10037538 DOI: 10.1097/ppo.0000000000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Diet plays critical roles in defining our immune responses, microbiome, and progression of human diseases. With recent progress in sequencing and bioinformatic techniques, increasing evidence indicates the importance of diet-microbial interactions in cancer development and therapeutic outcome. Here, we focus on the epidemiological studies on diet-bacterial interactions in the colon cancer. We also review the progress of mechanistic studies using the experimental models. Finally, we discuss the limits and future directions in the research of microbiome and diet in cancer development and therapeutic outcome. Now, it is clear that microbes can influence the efficacy of cancer therapies. These research results open new possibilities for the diagnosis, prevention, and treatment of cancer. However, there are still big gaps to apply these new findings to the clinical practice.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology, Wayne State University, Detroit Michigan, USA
- Department of Pathology, Wayne State University, Detroit Michigan, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, 840 S Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA
- Department of Microbiology/Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, 818 S Wolcott Avenue, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Gholami H, Chmiel JA, Burton JP, Maleki Vareki S. The Role of Microbiota-Derived Vitamins in Immune Homeostasis and Enhancing Cancer Immunotherapy. Cancers (Basel) 2023; 15:1300. [PMID: 36831641 PMCID: PMC9954268 DOI: 10.3390/cancers15041300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Not all cancer patients who receive immunotherapy respond positively and emerging evidence suggests that the gut microbiota may be linked to treatment efficacy. Though mechanisms of microbial contributions to the immune response have been postulated, one likely function is the supply of basic co-factors to the host including selected vitamins. Bacteria, fungi, and plants can produce their own vitamins, whereas humans primarily obtain vitamins from exogenous sources, yet despite the significance of microbial-derived vitamins as crucial immune system modulators, the microbiota is an overlooked source of these nutrients in humans. Microbial-derived vitamins are often shared by gut bacteria, stabilizing bioenergetic pathways amongst microbial communities. Compositional changes in gut microbiota can affect metabolic pathways that alter immune function. Similarly, the immune system plays a pivotal role in maintaining the gut microbiota, which parenthetically affects vitamin biosynthesis. Here we elucidate the immune-interactive mechanisms underlying the effects of these microbially derived vitamins and how they can potentially enhance the activity of immunotherapies in cancer.
Collapse
Affiliation(s)
- Hasti Gholami
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - John A. Chmiel
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Canadian Research and Development Centre for Probiotics, Lawson Research Health Research Institute, London, ON N6A 5W9, Canada
- Division of Urology, Department of Surgery, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
29
|
The Geriatric Nutritional Risk Index (GNRI) as a Prognostic Biomarker for Immune Checkpoint Inhibitor Response in Recurrent and/or Metastatic Head and Neck Cancer. Nutrients 2023; 15:nu15040880. [PMID: 36839241 PMCID: PMC9961934 DOI: 10.3390/nu15040880] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Malnutrition is a frequent comorbidity in head and neck cancer patients and has been shown to impair immunotherapy response in other cancer types. The geriatric nutritional risk index (GNRI) assesses malnutrition using the patient's ideal weight, actual weight, and serum albumin. The aim of this study was to evaluate the prognostic relevance of malnutrition as determined by the GNRI for the response to immunotherapy in recurrent and/or metastatic head and neck squamous cell carcinoma (R/M HNSCC). A total of 162 patients with R/M HNSCC who received immune checkpoint inhibitors were included. The associations between the GNRI and progression-free survival (PFS), overall survival (OS), and the disease control rate (DCR) were computed. Univariable analysis showed worse PFS for GNRI ≤ 98 (p < 0.001), ECOG performance status (PS) ≥ 2 (p = 0.012), and enteral (p = 0.009) and parenteral (p = 0.015) nutritional supplementation, and worse OS for GNRI < 92 (p < 0.001), ECOG PS ≥ 2 (p < 0.001), and enteral (p = 0.008) and parenteral (p = 0.023) nutritional supplementation. In our multivariable model, GNRI ≤ 98 (p = 0.012) and ECOG PS ≥ 2 (p = 0.025) were independent prognostic factors for PFS. For OS, GNRI < 92 (p < 0.001) and ECOG PS ≥ 2 (p < 0.001) were independent prognostic factors. A GNRI ≤ 98 was significantly associated with a lower DCR compared to a GNRI > 98 (p = 0.001). In conclusion, our findings suggest that the GNRI may be an effective predictor for response to immunotherapy in R/M HNSCC.
Collapse
|
30
|
Liu Y, Lu J. A bibliometric analysis of Mediterranean diet on cancer from 2012 to 2021. Front Nutr 2023; 10:1128432. [PMID: 36845049 PMCID: PMC9944434 DOI: 10.3389/fnut.2023.1128432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Background Numerous studies have demonstrated the value of the Mediterranean diet (MD) as a nutritious eating regimen for lowering the risk of cancer. This study aims to discuss the research patterns, existing state, and possible hotspots in implementing the MD for the prevention and treatment of cancer using bibliometrics. Methods The Web of Science Core Collection (WoSCC) was searched for articles on cancer that were related to the MD. CiteSpace, VOSviewer, Microsoft Excel 2019, and R software were utilized for bibliometric analysis and data visualization. Results There were 1,415 articles and reviews published from 2012 to 2021. Annual publication volume showed a continuous upward trend. Italy and Harvard University were the country and institution, respectively, with the highest number of publications on this topic. Nutrients ranked first in the number of documents, number of citations, and the H-index. James R. Hebert was the most productive writer, and Antonia Trichopoulou was the most co-cited author. "Alcohol consumption," "oleic acid," and "low density lipoprotein" were keywords used in earlier publications, while more recent hotspots focused on "gut microbiota," "older adult," and "polyphenol." Conclusion Over the past decade, research on the MD in the field of cancer has received increasing attention. To improve the level of evidence for the beneficial effects of the MD on a range of cancers, more research on molecular mechanisms and better clinical studies are required.
Collapse
Affiliation(s)
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Paden H, Kurbatfinski N, Poelstra JW, Ormiston K, Orchard T, Ilic S. Dietary Impacts on Changes in Diversity and Abundance of the Murine Microbiome during Progression and Treatment of Cancer. Nutrients 2023; 15:724. [PMID: 36771430 PMCID: PMC9920799 DOI: 10.3390/nu15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The intestinal microbial population is recognized for its impact on cancer treatment outcomes. Little research has reported microbiome changes during cancer progression or the interplay of disease progression, dietary sugar/fat intake, and the microbiome through surgery and chemotherapy. In this study, the murine gut microbiome was used as a model system, and changes in microbiome diversity, richness, and evenness over the progression of the cancer and treatment were analyzed. Mice were categorized into four diet cohorts, combinations of either high or low sucrose and high or low omega-3 fatty acids, and two treatment cohorts, saline vehicle or chemotherapy, for a total of eight groups. Fecal samples were collected at specific timepoints to assess changes due to diet implementation, onset of cancer, lumpectomy, and chemotherapy. Akkermansia muciniphila abundance was very high in some samples and negatively correlated with overall Amplicon Sequence Variant (ASV) richness (r(64) = -0.55, p = 3 × 10-8). Throughout the disease progression, ASV richness significantly decreased and was impacted by diet and treatment. Alpha-diversity and differential microbial abundance were significantly affected by disease progression, diet, treatment, and their interactions. These findings help establish a baseline for understanding how cancer progression, dietary macronutrients, and specific treatments impact the murine microbiome, which may influence outcomes.
Collapse
Affiliation(s)
- Holly Paden
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Nikola Kurbatfinski
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center (MCIC), Ohio State University, Wooster, OH 44691, USA
| | - Kate Ormiston
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Tonya Orchard
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Sanja Ilic
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Wang X, Geng S. Diet-gut microbial interactions influence cancer immunotherapy. Front Oncol 2023; 13:1138362. [PMID: 37035188 PMCID: PMC10081683 DOI: 10.3389/fonc.2023.1138362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The gut microbiome is involved in the absorption and metabolism of host nutrients and modulates the immune response, affecting the efficacy of immunotherapy for cancer. In patients receiving immunotherapy, appropriate modifications of gut microbiota are thought to improve therapeutic response. Of all the factors that influence the gut microbiota, diet is the most influential and modifiable. Healthy dietary patterns as well as some specific dietary components can help the growth of beneficial microbiota in the gut, thereby protecting against cancers and promoting human health. A growing number of researches have confirmed the positive effects of a diet-gut microbiota approach as an adjuvant therapy for cancer, but controversy remains. Here, we summarize the interactions between diet and gut microbes based on previous studies, and discuss the role of gut microbiota-based dietary strategies in tumor immunotherapy, with the potential mechanisms of actions also intensively discussed.
Collapse
Affiliation(s)
- Xue Wang
- Department of Oncology, First People's Hospital of Guangyuan, Guangyuan, China
| | - Shitao Geng
- Department of Emergency, First Naval Hospital of Southern Theater Command, Zhanjiang, China
| |
Collapse
|
33
|
Zhang J, Yin X, Wang H, Fang T, Gao J, Zhu Z, Li C, Wang Y, Wang X, Lu Z, Wu J, Wang Y, Zhang Y, Xue Y. Development and Validation of Tumor Marker Indices in Advanced Gastric Cancer Patients. Cancer Control 2023; 30:10732748231202466. [PMID: 37728233 PMCID: PMC10515535 DOI: 10.1177/10732748231202466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Tumor markers (TMs) are important for the prognosis of gastric cancer (GC). However, the prognostic importance of the tumor marker index (TMI) based on GC-specific TMs for advanced gastric cancer (AGC) still needs to be further explored. METHODS We retrospectively examined patients who underwent radical gastric cancer surgery between February 2014 and June 2016 at the Department of Gastroenterological Surgery, Affiliated Cancer Hospital, Harbin Medical University. The patients were divided into training and validation groups. TMI was determined as the geometric mean of the standard cancer antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) levels. Patient overall survival was assessed using the Kaplan-Meier method. Independent prognosis-associated risk factors were identified using Cox hazard regression models. A nomogram model incorporating TMI and clinicopathological factors was developed, and its performance was evaluated using a decision curve analysis, concordance index, and calibration plots. RESULTS In the TMI training cohort, the cutoff value was set at .439, categorizing patients into TMI-High and TMI-Low groups. The 5-year survival rate in the TMI-Low group significantly surpassed that in the TMI-High group (78.2% vs 58.1% and 49.7 vs 41.6, P < .001). TMI emerged as an independent prognostic factor. The nomogram accurately predicted patient prognosis by using TMI and clinicopathological characteristics. Validation of the TMI in the independent cohort yielded satisfactory results. CONCLUSION The TMI constructed based on specific TMs associated with gastric cancer can offer a precise prognostic prediction for patients.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jialiang Gao
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ziyu Zhu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunfeng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xibo Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhanfei Lu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junpeng Wu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yimin Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yao Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
34
|
Akkermansia muciniphila and Faecalibacterium prausnitzii in Immune-Related Diseases. Microorganisms 2022; 10:microorganisms10122382. [PMID: 36557635 PMCID: PMC9782003 DOI: 10.3390/microorganisms10122382] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Probiotics and synbiotics are used to treat chronic illnesses due to their roles in immune system modulation and anti-inflammatory response. They have been shown to reduce inflammation in a number of immune-related disorders, including systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD). Akkermansia muciniphila (A. muciniphila) and Faecalibacterium prausnitzii (F. prausnitzii) are two different types of bacteria that play a significant part in this function. It has been established that Akkermansia and Faecalibacterium are abundant in normal populations and have protective benefits on digestive health while also enhancing the immune system, metabolism, and gut barrier of the host. They have the potential to be a therapeutic target in diseases connected to the microbiota, such as immunological disorders and cancer immunotherapy. There has not been a review of the anti-inflammatory effects of Akkermansia and Faecalibacterium, particularly in immunological diseases. In this review, we highlight the most recent scientific findings regarding A. muciniphila and F. prausnitzii as two significant gut microbiota for microbiome alterations and seek to provide cutting-edge insight in terms of microbiome-targeted therapies as promising preventive and therapeutic tools in immune-related diseases and cancer immunotherapy.
Collapse
|
35
|
Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:cancers14225577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
|
36
|
Mishra S, Amatya SB, Salmi S, Koivukangas V, Karihtala P, Reunanen J. Microbiota and Extracellular Vesicles in Anti-PD-1/PD-L1 Therapy. Cancers (Basel) 2022; 14:cancers14205121. [PMID: 36291904 PMCID: PMC9600290 DOI: 10.3390/cancers14205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Immune checkpoint inhibitors (ICI) targeting PD-1/PD-L1 have emerged as contemporary treatments for a variety of cancers. However, the efficacy of antibody-based ICIs could be further enhanced. Microbiota have been demonstrated to be among the vital factors governing cancer progression and response to therapy in patients. Bacteria secrete extracellular vesicles carrying bioactive metabolites within their cargo that can cross physiological barriers, selectively accumulate near tumor cells, and alter the tumor microenvironment. Extracellular vesicles, particularly those derived from bacteria, could thus be of promising assistance in refining the treatment outcomes for anti-PD-1/PD-L1 therapy. The potentiality of microbiota-derived extracellular vesicles in improving the currently used treatments and presenting new therapeutic avenues for cancer has been featured in this review. Abstract Cancer is a deadly disease worldwide. In light of the requisite of convincing therapeutic methods for cancer, immune checkpoint inhibition methods such as anti-PD-1/PD-L1 therapy appear promising. Human microbiota have been exhibited to regulate susceptibility to cancer as well as the response to anti-PD-1/PD-L1 therapy. However, the probable contribution of bacterial extracellular vesicles (bEVs) in cancer pathophysiology and treatment has not been investigated much. bEVs illustrate the ability to cross physiological barriers, assemble around the tumor cells, and likely modify the tumor microenvironment (EVs). This systematic review emphasizes the correlation between cancer-associated extracellular vesicles, particularly bEVs and the efficacy of anti-PD-1/PD-L1 therapy. The clinical and pharmacological prospective of bEVs in revamping the contemporary treatments for cancer has been further discussed.
Collapse
Affiliation(s)
- Surbhi Mishra
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Vesa Koivukangas
- Department of Surgery, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, 90014 Oulu, Finland
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00029 Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
37
|
Deluce J, Maleki Vareki S, Fernandes R. The role of gut microbiome in immune modulation in metastatic renal cell carcinoma. Ther Adv Med Oncol 2022; 14:17588359221122714. [PMID: 36105887 PMCID: PMC9465582 DOI: 10.1177/17588359221122714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment of metastatic renal cell carcinomas (mRCC) has drastically improved
since the advent of immunotherapy with immune checkpoint inhibitors (ICIs), with
a significant proportion of patients achieving durable responses. While this has
revolutionized treatment and improved outcomes for mRCC patients, a large subset
of patients still does not respond to treatment with ICIs. Moreover, ICIs can
induce various immune-related adverse events, limiting their use in many
patients. Therefore, there is a need to identify the predictive biomarkers of
both efficacy and toxicity associated with ICIs, which would allow for a more
personalized approach and help with clinical decision-making. This review aims
to explore the role of the gut microbiome in RCC to overcome primary resistance
and predict response to treatment with ICIs. First, current therapeutic
strategies and mechanisms of action of ICI therapies for RCC treatment will be
reviewed. With the technological development of shotgun whole-genome sequencing,
the gut microbiome has emerged as an exciting field of research within oncology.
Thus, the role of the microbiome and its bidirectional interaction with ICIs and
other drugs will be explored, with a particular focus on the microbiome profile
in RCC. Lastly, the rationale for future clinical interventions to overcome
resistance to ICIs using fecal microbiota transplantation in patients with RCC
will be presented.
Collapse
Affiliation(s)
- Jasna Deluce
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Saman Maleki Vareki
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, CanadaDepartment of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London Regional Cancer Program, Room A4-130A, Cancer Research Laboratory Program, London, ON N6A 3K7, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| | - Ricardo Fernandes
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 800 Commissioners Road East, Room A3-940, London ON N6A 5W9, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
38
|
The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers (Basel) 2022; 14:cancers14153563. [PMID: 35892821 PMCID: PMC9330582 DOI: 10.3390/cancers14153563] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota can have opposing functions from pro-tumorigenic to anti-tumorigenic effects. Increasing preclinical and clinical evidence suggests that the intestinal microbiota affects cancer patients’ response to immune checkpoint inhibitors (ICIs) immunotherapy, such as anti-programmed cell death protein 1 (PD-1) and its ligand (PD-L1) and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Microbiota-induced inflammation possibly contributes to tumor growth and cancer development. Microbiota-derived metabolites can also be converted to carcinogenic agents related to genetic mutations and DNA damage in organs such as the colon. However, other attributes of microbiota, such as greater diversity and specific bacterial species and their metabolites, are linked to better clinical outcomes and potentially improved anti-tumor immunity. In addition, the intratumoral microbial composition strongly affects T-cell-mediated cytotoxicity and anti-tumor immune surveillance, adding more complexity to the cancer-microbiome-immune axis. Despite the emerging clinical evidence for the activity of the gut microbiota in immuno-oncology, the fundamental mechanisms of such activity are not well understood. This review provides an overview of underlying mechanisms by which the gut microbiota and its metabolites enhance or suppress anti-tumor immune responses. Understanding such mechanisms allows for better design of microbiome-specific treatment strategies to improve the clinical outcome in cancer patients undergoing systemic therapy.
Collapse
|
39
|
Takada K, Buti S, Bersanelli M, Shimokawa M, Takamori S, Matsubara T, Takenaka T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Nakanishi Y, Okamoto I, Pinato DJ, Cortellini A, Yoshizumi T. Antibiotic-dependent effect of probiotics in patients with non-small cell lung cancer treated with PD-1 checkpoint blockade. Eur J Cancer 2022; 172:199-208. [PMID: 35780526 DOI: 10.1016/j.ejca.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND We previously validated in European patients with NSCLC treated with programmed death-1 (PD-1) checkpoint inhibitors the cumulative detrimental effect of concomitant medications. MATERIALS AND METHODS We evaluated the prognostic ability of a "drug score" computed on the basis of baseline corticosteroids, proton pump inhibitors, and antibiotics, in an independent cohort of Japanese patients with advanced NSCLC treated with PD-1 monotherapy. Subsequently, we assessed the impact of baseline probiotics on the score's diagnostic ability and their interaction with antibiotics in influencing survival. RESULTS Among the 293 eligible patients, good (19.5 months), intermediate (13.4 months), and poor (3.7 months) risk groups displayed a significantly different overall survival (OS) (log-rank test for trend: p = 0.016), but with a limited diagnostic ability (C-index: 0.57, 95%CI: 0.53-0.61), while no significant impact on progression-free survival (PFS) was reported (log-rank test for trend: p = 0.080; C-index: 0.55, 95%CI: 0.52-0.58). Considering the impact of the probiotics∗antibiotics interaction (p-value 0.0510) on OS, we implemented the drug score by assigning 0 points to concomitant antibiotics and probiotics. With the adapted drug score good, intermediate, and poor risk patients achieved a median OS of 19.6 months, 13.1 months, and 3.7 months, respectively, with a similar diagnostic ability (log-rank test for trend: p = 0.006; C-index: 0.58, 95%CI: 0.54-0.61). However, the diagnostic ability for PFS of the adapted score was improved (log-rank test for trend: p = 0.034; C-index: 0.62, 95%CI: 0.54-0.69). CONCLUSIONS Although we failed to validate the drug score in this independent Japanese cohort, we showed that probiotics may have an antibiotic-dependent impact on its prognostic value. Further investigation looking at the effect of concomitant medications and probiotics across cohorts of different ethnicities is warranted.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan; Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Motoharu Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yoichi Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - David J Pinato
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Translational Medicine, Università Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210106. [PMID: 37323702 PMCID: PMC10190958 DOI: 10.1002/exp.20210106] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction. In this review, we present an overview of the design principles of cell-based delivery systems in cancer immunotherapy to maximize the therapeutic impact, along with anatomical, metabolic, and immunological impediments in using cell-based immunotherapy to treat cancer. Following that, a summary of novel delivery strategies that have been created to overcome these obstacles to cell-based immunotherapeutic delivery systems is provided. Also, the obstacles and prospects of next-step development of cell-based delivery systems for cancer immunotherapy are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yixin Wang
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Quanyin Hu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| |
Collapse
|
41
|
Emerging Blood-Based Biomarkers for Predicting Immunotherapy Response in NSCLC. Cancers (Basel) 2022; 14:cancers14112626. [PMID: 35681606 PMCID: PMC9179588 DOI: 10.3390/cancers14112626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Treatment with immunotherapy has been established as a standard treatment for lung cancer in recent years. Unfortunately, still, only a small proportion of patients benefit from the treatment, being the first leading cause of cancer death worldwide. Therefore, there is an urgent need for predictive biomarkers to help clinicians to discern whose patients are more likely to respond to immunotherapy. Since liquid biopsy opens the door to select patients and monitor the response during the treatment in a non-invasive way, in this review, we focus on the most relevant and recent results based on blood soluble biomarkers. Abstract Immunotherapy with Immune Checkpoint Inhibitors (ICIs) has demonstrated a profitable performance for Non-Small Cell Lung Cancer (NSCLC) cancer treatment in some patients; however, there is still a percentage of patients in whom immunotherapy does not provide the desired results regarding beneficial outcomes. Therefore, obtaining predictive biomarkers for ICI response will improve the treatment management in clinical practice. In this sense, liquid biopsy appears as a promising method to obtain samples in a minimally invasive and non-biased way. In spite of its evident potential, the use of these circulating biomarkers is still very limited in the real clinical practice, mainly due to the huge heterogeneity among the techniques, the lack of consensus, and the limited number of patients included in these previous studies. In this work, we review the pros and cons of the different proposed biomarkers, such as soluble PD-L1, circulating non-coding RNA, circulating immune cells, peripheral blood cytokines, and ctDNA, obtained from liquid biopsy to predict response to ICI treatment at baseline and to monitor changes in tumor and tumor microenvironment during the course of the treatment in NSCLC patients.
Collapse
|
42
|
Deboever N, Mitchell KG, Feldman HA, Cascone T, Sepesi B. Current Surgical Indications for Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:1263. [PMID: 35267572 PMCID: PMC8909782 DOI: 10.3390/cancers14051263] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/05/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
With recent strides made within the field of thoracic oncology, the management of NSCLC is evolving rapidly. Careful patient selection and timing of multi-modality therapy to permit the optimization of therapeutic benefit must be pursued. While chemotherapy and radiotherapy continue to have a role in the management of lung cancer, surgical therapy remains an essential component of lung cancer treatment in early, locally and regionally advanced, as well as in selected, cases of metastatic disease. Recent and most impactful advances in the treatment of lung cancer relate to the advent of immunotherapy and targeted therapy, molecular profiling, and predictive biomarker discovery. Many of these systemic therapies are a part of the standard of care in metastatic NSCLC, and their indications are expanding towards surgically operable lung cancer to improve survival outcomes. Numerous completed and ongoing clinical trials in the surgically operable NSCLC speak to the interest and importance of the multi-modality therapy even in earlier stages of NSCLC. In this review, we focus on the current standard of care indications for surgical therapy in stage I-IV NSCLC as well as on the anticipated future direction of multi-disciplinary lung cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.D.); (K.G.M.); (H.A.F.)
| | - Kyle G. Mitchell
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.D.); (K.G.M.); (H.A.F.)
| | - Hope A. Feldman
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.D.); (K.G.M.); (H.A.F.)
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.D.); (K.G.M.); (H.A.F.)
| |
Collapse
|
43
|
Rutz J, Maxeiner S, Juengel E, Chun FKH, Tsaur I, Blaheta RA. Olive Mill Wastewater Inhibits Growth and Proliferation of Cisplatin- and Gemcitabine-Resistant Bladder Cancer Cells In Vitro by Down-Regulating the Akt/mTOR-Signaling Pathway. Nutrients 2022; 14:nu14020369. [PMID: 35057550 PMCID: PMC8778865 DOI: 10.3390/nu14020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer patients whose tumors develop resistance to cisplatin-based chemotherapy often turn to natural, plant-derived products. Beneficial effects have been particularly ascribed to polyphenols, although their therapeutic relevance when resistance has developed is not clear. The present study evaluated the anti-tumor potential of polyphenol-rich olive mill wastewater (OMWW) on chemo-sensitive and cisplatin- and gemcitabine-resistant T24, RT112, and TCCSUP bladder cancer cells in vitro. The cells were treated with different dilutions of OMWW, and tumor growth and clone formation were evaluated. Possible mechanisms of action were investigated by evaluating cell cycle phases and cell cycle-regulating proteins. OMWW profoundly inhibited the growth and proliferation of chemo-sensitive as well as gemcitabine- and cisplatin-resistant bladder cancer cells. Depending on the cell line and on gemcitabine- or cisplatin-resistance, OMWW induced cell cycle arrest at different phases. These differing phase arrests were accompanied by differing alterations in the CDK-cyclin axis. Considerable suppression of the Akt-mTOR pathway by OMWW was observed in all three cell lines. Since OMWW blocks the cell cycle through the manipulation of the cyclin-CDK axis and the deactivation of Akt-mTOR signaling, OMWW could become relevant in supporting bladder cancer therapy.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (J.R.); (S.M.); (F.K.-H.C.)
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (J.R.); (S.M.); (F.K.-H.C.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55131 Mainz, Germany; (E.J.); (I.T.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (J.R.); (S.M.); (F.K.-H.C.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55131 Mainz, Germany; (E.J.); (I.T.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (J.R.); (S.M.); (F.K.-H.C.)
- Department of Urology and Pediatric Urology, University Medicine Mainz, 55131 Mainz, Germany; (E.J.); (I.T.)
- Correspondence:
| |
Collapse
|
44
|
Pancreatic Cancer and Gut Microbiome-Related Aspects: A Comprehensive Review and Dietary Recommendations. Nutrients 2021; 13:nu13124425. [PMID: 34959977 PMCID: PMC8709322 DOI: 10.3390/nu13124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota plays a significant role in the human body providing many beneficial effects on the host. However, its dysbiotic alterations may affect the tumorigenic pathway and then trigger the development of pancreatic cancer. This dysbiosis can also modulate the aggressiveness of the tumor, influencing the microenvironment. Because pancreatic cancer is still one of the most lethal cancers worldwide with surgery as the only method that influences prognosis and has curative potential, there is a need to search for other strategies which will enhance the efficiency of standard therapy and improve patients' quality of life. The administration of prebiotics, probiotics, next-generation probiotics (Faecalibacterium prausnitzii, Akkermansia muciniphila), synbiotics, postbiotics, and fecal microbiota transplantation through multiple mechanisms affects the composition of the gut microbiota and may restore its balance. Despite limited data, some studies indicate that the aforementioned methods may allow to achieve better effect of pancreatic cancer treatment and improve therapeutic strategies for pancreatic cancer patients.
Collapse
|
45
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
46
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|