1
|
Ramírez-Guerrero G, Reis T, Segovia-Hernández B, Aranda F, Verdugo C, Pedreros-Rosales C, Marcello M, León J, Rojas A, Galli F, Ronco C. Efficacy of HA130 Hemoadsorption in Removing Advanced Glycation End Products in Maintenance Hemodialysis Patients. Artif Organs 2025. [PMID: 39835591 DOI: 10.1111/aor.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Patients on maintenance hemodialysis (HD) face complications due to the accumulation of protein-bound uremic toxins, such as advanced glycation end products (AGEs), which contribute to inflammation, oxidative stress, and cardiovascular disease. Conventional HD techniques inadequately remove AGEs. This study evaluates the efficacy of the HA130 hemoadsorption cartridge combined with high-flux HD (HF-HD) in enhancing AGE removal. METHODS This prospective, single-center study included 20 maintenance HD patients randomized into two groups: HF-HD alone (n = 10) and HF-HD plus hemoadsorption (n = 10). Blood samples were collected before and after a single session to measure carboxymethyllysine (CML), soluble RAGE (sRAGE), prolactin, and parathyroid hormone (PTH) levels. Reduction ratios (RR) were calculated, including corrected for hemoconcentration (RRc), to ensure accuracy. Statistical analyses included Mann-Whitney U and Chi-square tests. RESULTS The HF-HD plus hemoadsorption group showed significantly enhanced removal of CML compared to HF-HD alone, with RRc of 64.7% [52.6-74.9] versus 39.3% [33.8-49.4], respectively (p = 0.045). Similarly, uncorrected reduction ratios demonstrated a trend favoring hemoadsorption, with values of 57.5% [45.1-70.7] versus 30.3% [19.1-44.5] (p = 0.053). Importantly, sRAGE levels were preserved in both groups (RRc: 23.4% (15.1-30.4) vs. 21.8% (16.6-31.7), p = 0.791), highlighting the safety of hemoadsorption. Other biochemical parameters, including prolactin, PTH, albumin, and electrolytes, showed no significant differences between groups. All sessions were completed without adverse events. CONCLUSION Combining hemoadsorption with HF-HD significantly enhances CML removal, as evidenced by corrected RR, without compromising protective sRAGE levels. This innovative approach offers a promising adjunctive therapy for reducing AGEs-related complications in end-stage renal disease patients. Further longitudinal studies are needed to confirm these findings and evaluate long-term outcomes.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
- International Renal Research Institute of Vicenza, Vicenza, Italy
| | - Thiago Reis
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
- Division of Nephrology, University of São Paulo Medical School, São Paulo, Brazil
- CPQuali Pesquisa Clínica, Clinical Research Center, São Paulo, Brazil
| | | | - Francisca Aranda
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Constanza Verdugo
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Cristian Pedreros-Rosales
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Nephrology Service, Hospital Las Higueras, Talcahuano, Chile
| | - Matteo Marcello
- International Renal Research Institute of Vicenza, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital Vicenza, Vicenza, Italy
| | - Janina León
- Nephrology and Dialysis Unit, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital Vicenza, Vicenza, Italy
- Department of Medicine (DIMED), Università Degli Studi di Padova, Padova, Italy
| |
Collapse
|
2
|
Greaves J, Pula G. Hyperactivity and Pro-inflammatory Functions of Platelets in Diabetes. FRONT BIOSCI-LANDMRK 2025; 30:26190. [PMID: 39862077 DOI: 10.31083/fbl26190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 01/27/2025]
Abstract
Cardiovascular complications claim the lives of up to 70% of patients with diabetes mellitus (DM). The mechanisms increasing cardiovascular risk in DM remain to be fully understood and successfully addressed. Nonetheless, there is increasing evidence in the scientific literature of the participation of platelets in the cardiovascular complications of DM. Multiple reports describe the hyperactivity of platelets in DM and their participation in inflammatory responses. The understanding of the mechanisms underlying the contribution of platelets to cardiovascular pathologies in DM will help the development of targeted therapeutic strategies able to reduce cardiovascular risk in these patients. In this literature review, we summarise our current understanding of the molecular mechanisms leading to the contribution of platelets to cardiovascular risk in DM. Both platelet haemostatic activity leading to thrombus formation and their participation to inflammatory processes are stimulated by the biochemical conditions associated with DM. We also present evidence on how DM affect the efficacy of existing therapeutic treatments for thrombosis and, by converse, how antidiabetic drugs may affect platelet function and the haemostasis/thrombosis balance. Taken together, the growing evidence of the different and unexpected roles of platelets in the progression of DM provides a strong rationale for the design of cardiovascular drugs targeting specifically platelets, their pro-inflammatory activity and their activation mechanisms in this disease. Overall, this article provides an important up-to-date overview of the pathophysiological alterations of platelets in DM, which need to be taken into account for the effective management of cardiovascular health in this disease.
Collapse
Affiliation(s)
- Jordan Greaves
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| | - Giordano Pula
- Biomedical Institute for Multimorbidity (BIM), Hull York Medical School (HYMS), University of Hull, HU6 7RX Hull, UK
| |
Collapse
|
3
|
Zheng Z, Zhou H, Zhang W, Wang T, Swamiappan S, Peng X, Zhou Y. Effects of advanced glycation end products on stem cell. Front Cell Dev Biol 2024; 12:1532614. [PMID: 39777263 PMCID: PMC11703976 DOI: 10.3389/fcell.2024.1532614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
In recent years, stem cell therapy has become a pivotal component of regenerative medicine. Stem cells, characterized by their self-renewal capacity and multidirectional differentiation potential, can be isolated from a variety of biological tissues, including adipose tissue, bone marrow, the umbilical cord, and the placenta. The classic applications of stem cells include human pluripotent stem cells (hPSCs) and mesenchymal stem cells (MSCs). However, numerous factors can influence the normal physiological function of stem cells. For instance, in diabetes mellitus, advanced glycation end products (AGEs) accumulate in the extracellular matrix (ECM), impairing the physiological function of stem cells. These substances are closely associated with aging and the progression of numerous degenerative diseases. AGEs can create an environment that is detrimental to the normal physiological functions of stem cells. By binding to the primary cellular receptor for advanced glycation end products (RAGE), AGEs disrupt the physiological activities of stem cells. The binding of RAGE to various ligands triggers the activation of downstream signaling pathways, contributing to the pathophysiological development of diabetes, aging, neurodegenerative diseases, and cancer. Therefore, there is an urgent need for comprehensive research on the impact of AGEs on stem cells, which could provide new insights into the therapeutic application of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Hui Zhou
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | | | - Xinsheng Peng
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Semchyshyn H. Fructose-mediated AGE-RAGE axis: approaches for mild modulation. Front Nutr 2024; 11:1500375. [PMID: 39698244 PMCID: PMC11652219 DOI: 10.3389/fnut.2024.1500375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose is a valuable and healthy nutrient when consumed at normal levels (≤50 g/day). However, long-term consumption of excessive fructose and elevated endogenous production can have detrimental health impacts. Fructose-initiated nonenzymatic glycation (fructation) is considered as one of the most likely mechanisms leading to the generation of reactive species and the propagation of nonenzymatic processes. In the later stages of glycation, poorly degraded advanced glycation products (AGEs) are irreversibly produced and accumulated in the organism in an age- and disease-dependent manner. Fructose, along with various glycation products-especially AGEs-are present in relatively high concentrations in our daily diet. Both endogenous and exogenous AGEs exhibit a wide range of biological effects, mechanisms of which can be associated with following: (1) AGEs are efficient sources of reactive species in vivo, and therefore can propagate nonenzymatic vicious cycles and amplify glycation; and (2) AGEs contribute to upregulation of the specific receptor for AGEs (RAGE), amplifying RAGE-mediated signaling related to inflammation, metabolic disorders, chronic diseases, and aging. Therefore, downregulation of the AGE-RAGE axis appears to be a promising approach for attenuating disease conditions associated with RAGE-mediated inflammation. Importantly, RAGE is not specific only to AGEs; it can bind multiple ligands, initiating a complex RAGE signaling network that is not fully understood. Maintaining an appropriate balance between various RAGE isoforms with different functions is also crucial. In this context, mild approaches related to lifestyle-such as diet optimization, consuming functional foods, intake of probiotics, and regular moderate physical activity-are valuable due to their beneficial effects and their ability to mildly modulate the fructose-mediated AGE-RAGE axis.
Collapse
Affiliation(s)
- Halyna Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Wang Y, Hu C, Cao L, Liu Q, Li Y, Zhu T, Zhang D. Advanced glycosylation end products promote the progression of CKD-MBD in rats, and its natural inhibitor, quercetin, mitigates disease progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9675-9688. [PMID: 38907848 DOI: 10.1007/s00210-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Chronic kidney disease-mineral and bone metabolism disorder (CKD-MBD) is a common chronic kidney disease (CKD)-associated complication that increases the risk of metabolic bone diseases, fractures, osteoblastic trans-differentiation of vascular smooth muscle cells, and cardiovascular events. SD rats were randomised into five groups with six rats per group: sham, CKD, CKD + advanced glycosylation end products (AGEs), CKD + Quercetin, and CKD + AGEs + Quercetin. The protective effects of AGEs and quercetin on SD rats were assessed by renal function, renal pathology, bone metabolism, osteoblastic trans-differentiation of vascular smooth muscle cells, and the receptor for AGE (RAGE) expression. Compared with the control group, rats in the CKD and CKD + AGEs groups had significantly lower body weight, higher serum AGEs levels, impaired renal function, increased levels of oxidative stress in the kidney and bone marrow tissues, lower femoral bone mineral density (BMD), callus mineralised volume fraction (mineralised bone volume/total volume), abnormal serum bone metabolism levels, and increased renal tissue, bone tissue, and abdominal aorta RAGE expression levels, and the RAGE downstream NF-κB signalling pathway was upregulated. Quercetin significantly improved renal dysfunction, attenuated serum AGE levels, reduced oxidative stress levels in the kidney and bone marrow tissues, and downregulated RAGE expression in the kidney, bone, and abdominal aorta and the RAGE downstream NF-κB signalling pathway in rats with CKD. AGEs are involved in the pathogenesis of CKD-MBD by promoting osteoblastic trans-differentiation of vascular smooth muscle cells and abnormal bone metabolism. Quercetin plays a role in the prevention and treatment of CKD-MBD by reducing the production of AGEs.
Collapse
MESH Headings
- Animals
- Quercetin/pharmacology
- Quercetin/therapeutic use
- Glycation End Products, Advanced/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Chronic Kidney Disease-Mineral and Bone Disorder/drug therapy
- Chronic Kidney Disease-Mineral and Bone Disorder/etiology
- Chronic Kidney Disease-Mineral and Bone Disorder/metabolism
- Male
- Disease Progression
- Bone Density/drug effects
- Rats
- Oxidative Stress/drug effects
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
Collapse
Affiliation(s)
- Yujie Wang
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| | - Chenggang Hu
- The Affiliated TCM Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ling Cao
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Qi Liu
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ying Li
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Tingting Zhu
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Dongmei Zhang
- Department of Nephropathy, The Affiliated Hospital Of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| |
Collapse
|
6
|
Ram Mohan SD, Kurpad Nagaraj S. Protein glycation index and pro‑atherogenic indices from laboratory to bedside: Markers of prognostic significance in diabetes mellitus. WORLD ACADEMY OF SCIENCES JOURNAL 2024; 7:5. [DOI: 10.3892/wasj.2024.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Sai Deepika Ram Mohan
- Department of Biochemistry, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India
| | - Shashidhar Kurpad Nagaraj
- Department of Biochemistry, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka 563103, India
| |
Collapse
|
7
|
Dong C, Cheng Y, Zhang M, Chen M, Yan Z, Zhou S, BenxuYang, Guo Q, Wang C, Wu S. Monascus pigments suppress fructose-mediated BSA glycation by trapping methylglyoxal and covalent binding to proteins. Int J Biol Macromol 2024; 280:135961. [PMID: 39322168 DOI: 10.1016/j.ijbiomac.2024.135961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
In this study, four Monascus pigments (ankaflavin, AK; monascin MS; rubropunctatin, O1; monascorubrin, O2) were proved to exhibit considerable anti-glycation properties in bovine serum albumin (BSA)-fructose model. AK (40.62 %) and MS (48.38 %) were found to exert lower inhibitory effects on the formation of fluorescent advanced glycation end products (AGEs) than aminoguanidine (59.4 %), while O1 (90.64 %) and O2 (93.82 %) displayed much stronger abilities. AK and MS could trap methylglyoxal (MGO) with maximum capture rates of 85.67 % and 84.90 %, respectively, and only mono-MGO adducts of them were detected. LC-Orbitrap MS/MS analysis revealed that four pigments significantly altered the type and reduced the number of the glycated sites and they all covalently bound to BSA, with O1 and O2 possessing high reactivity. Altogether, AK and MS suppressed fluorescent AGEs formation mainly via trapping MGO and covalently interacting with BSA, and blocking free amino groups was the dominant mechanism for O1 and O2. These findings presented new insights into Monascus pigments as dietary supplement for inhibiting protein glycation.
Collapse
Affiliation(s)
- Changyan Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Yi Cheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Meihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Mianhua Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Zhongli Yan
- Tianjin University of Science and Technology, 300457 Tianjin, China
| | - Sumei Zhou
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 100048 Beijing, China.
| | - BenxuYang
- Tianjin Lida Food Technology Co., Ltd., 300393 Tianjin, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China
| | - Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, 300457, Tianjin, China.
| |
Collapse
|
8
|
Zhao L, Zhang X, He L, Li Y, Yu Y, Lu Q, Liu R. Diet with high content of advanced glycation end products induces oxidative stress damage and systemic inflammation in experimental mice: protective effect of peanut skin procyanidins. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3570-3581. [DOI: 10.26599/fshw.2023.9250039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Begum F, Lakshmanan K. Mechanism of metabolic memory: progression in diabetic nephropathy—a descriptive review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:125. [DOI: 10.1186/s43042-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractDiabetes mellitus and its complications exploit significantly impact global human well-being and economic burden. Previous studies and clinical trials have provided insights into the concept of metabolic memory, which sustains even after hyperglycemia has been resolved, causing diabetic complications completely. The term “metabolic memory” refers to the body’s abnormal metabolism, which can have long-term effects and influence both health and disease conditions. It involves various molecular processes causing cellular shifts, tissue and organ dysfunctions, disease progression, and effects on offspring. The conceptual framework of metabolic memory is defined and strengthened, offering a comprehensive understanding of the underlying causes of diabetic nephropathy (DN) and providing a potential new approach for diagnosing and treating the disease. In this review, we elucidated the importance, characteristics, cellular and molecular importance, and therapeutic intervention to eradicate metabolic memory in DN once hyperglycemia has been eliminated. The regulation of metabolic memory is assisted based on an epigenetic mechanism. Therefore, this report traces the significant factors involved in regulating epigenetic modifications such as DNA methylation, histone modification, and chromatin remodeling. This mechanism significantly triggers epigenetic regulation, leading to glucose stress, oxidative stress induction, and apoptosis, causing DN. It occurs beyond various signaling cascades, resulting in alterations in transcription factors and receptor molecules, which enhance the metabolic memory in the post-sustenance of hyperglycemia. This condition can be modulated based on therapeutic interventions involving lifestyle modification and the inclusion of natural substances like bioactive compounds, polyphenols, and terpenoids in the diet, followed by medications acting as epigenetic modifiers.
Collapse
|
10
|
Zheng L, Li X, Widjaja F, Liu C, Rietjens IMCM. Use of physiologically based kinetic modeling to predict neurotoxicity and genotoxicity of methylglyoxal in humans. NPJ Sci Food 2024; 8:79. [PMID: 39368970 PMCID: PMC11455947 DOI: 10.1038/s41538-024-00322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
This study aimed to evaluate human neurotoxicity and genotoxicity risks from dietary and endogenous methylglyoxal (MGO), utilizing physiologically based kinetic (PBK) modeling-facilitated reverse dosimetry as a new approach methodology (NAM) to extrapolate in vitro toxicity data to in vivo dose-response predictions. A human PBK model was defined based on a newly developed and evaluated mouse model enabling the translation of in vitro toxicity data for MGO from human stem cell-derived neurons and WM-266-4 melanoma cells into quantitative human in vivo toxicity data and subsequent risk assessment by the margin of exposure (MOE) approach. The results show that the MOEs resulting from daily dietary intake did not raise a concern for endpoints for neurotoxicity including mitochondrial function, cytotoxicity, and apoptosis, while those for DNA adduct formation could not exclude a concern over genotoxicity. Endogenous MGO formation, especially under diabetic conditions, resulted in MOEs that raised concern not only for genotoxicity but also for some of the neurotoxicity endpoints evaluated. Thus, the results also point to the importance of taking the endogenous levels into account in the risk assessment of MGO.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiyu Li
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Frances Widjaja
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Koroleva EA, Romanov VV. Analysis of Associations Between Advanced Glycation end-Products and Vascular Complications of type 2 Diabetes. 2024 IEEE INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON) 2024:248-252. [DOI: 10.1109/sibircon63777.2024.10758526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Elena A. Koroleva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL - Branch of IC&G SB RAS),Laboratory of Endocrinology,Novosibirsk,Russia
| | - Vyacheslav V. Romanov
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL - Branch of IC&G SB RAS),Laboratory of Endocrinology,Novosibirsk,Russia
| |
Collapse
|
12
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
13
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Mo T, Wei M, Fu J. Dietary inflammatory index and type 2 diabetes in US women: a cross-sectional analysis of the National Health and Nutrition Examination Survey, 2007-2018. Front Nutr 2024; 11:1455521. [PMID: 39206319 PMCID: PMC11351284 DOI: 10.3389/fnut.2024.1455521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is a major public health concern in the United States and worldwide. The dietary inflammatory index (DII) is a useful tool for assessing dietary inflammation. Although much research links the DII to diabetes, little is known about the relationship in adult women with a reproductive history in the United States. We aimed to investigate how the relationship between the DII and T2D varies among different subgroups of American women. Methods Secondary data from the National Health and Nutrition Examination Survey from 2007 to 2018 were analyzed. Cross-sectional analysis of 8,394 American women aged 20 years or older who had at least one live birth. The main outcome was the diagnosis of T2D. Multivariate survey-weighted regression was used to determine the odds ratio (OR) and 95% confidence interval (95%CI) for the association between DII and T2D. A weighted restricted cubic spline (RCS) model was constructed to establish OR curves at three knots to examine the dose-response association between DII and T2D. Additionally, a weighted subgroup analysis was performed in a fully adjusted model to verify that the association was robust. Results The study main found a significant association between the DII and T2D (OR = 1.19, 95%CI: 1.12, 1.26, p < 0.001). Participants in the highest third of DII scores had a 56% increased risk of T2D (OR = 1.56, 95%CI: 1.16, 2.10; p for trend = 0.003) compared with those in the lowest third of DII scores, after adjusting for all covariates. The multivariable RCS demonstrated a linear association between DII and T2D (p = 0.892). The subsidiary found that subgroup analyses revealed a significant variation in the association between DII and T2D according to obesity, oral health, and poverty-income ratio (PIR) status. Among non-obese women, the OR was 1.22 (95%CI: 1.08, 1.37); among women with good oral health, the OR was 1.17 (95%CI: 1.07, 1.28); among women with low PIR, the OR was 1.17 (95%CI: 1.05, 1.30); and among women with high PIR, the OR was 1.26 (95% CI: 1.07, 1.48). Conclusion Our findings suggest that there is a significant association between DII and T2D and that oral health, obesity, and PIR status may influence the relationship between DII and T2D risk. Further studies are warranted to validate our results and evaluate whether the results are similar in other populations.
Collapse
Affiliation(s)
- Tingyan Mo
- Nutrition Section, Women’s Health Department, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Man Wei
- Department of Laboratory Medicine, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jinyan Fu
- Nutrition Section, Women’s Health Department, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| |
Collapse
|
15
|
Polić N, Matulić V, Dragun T, Matek H, Marendić M, Efendić IŽ, Russo A, Kolčić I. Association between Mediterranean Diet and Advanced Glycation End Products in University Students: A Cross-Sectional Study. Nutrients 2024; 16:2483. [PMID: 39125363 PMCID: PMC11313892 DOI: 10.3390/nu16152483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of this study was to evaluate the association between the Mediterranean diet (MD) and the accumulation of advanced glycation end products (AGEs) measured by skin autofluorescence. This cross-sectional study included 1016 healthy students from the University of Split, Croatia. Participants completed a self-administered questionnaire. Adherence to the MD was assessed using the Mediterranean Diet Serving Score (MDSS), and tissue AGEs accumulation was measured using the AGE Reader mu (DiagnOptics). Multivariate linear regression was used in the analysis. Students' age and female gender were associated with higher levels of AGEs, which was likewise found for greater coffee intake, adequate olive oil consumption, smoking, and lower levels of physical activity. Higher consummation of vegetables and eating breakfast regularly were associated with lower AGEs levels. The overall MD adherence was not associated with AGEs, possibly due to very low overall compliance to the MD principles among students (8.3% in women and 3.8% in men). Health perception was positively associated with the MD and nonsmoking and negatively with the perceived stress level, while AGEs did not show significant association with self-rated students' health. These results indicate that various lifestyle habits are associated with AGEs accumulation even in young and generally healthy people. Hence, health promotion and preventive measures are necessary from an early age.
Collapse
Affiliation(s)
- Nikolina Polić
- General Hospital Šibenik, Ul. Stjepana Radića 83, 22000 Šibenik, Croatia;
| | - Viviana Matulić
- Department of Obstetrics and Gynecology, University Hospital Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Tanja Dragun
- Department of Physiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia;
| | - Helena Matek
- Family Medicine Practice, Ulica Stjepana Radića 83, 22000 Šibenik, Croatia;
| | - Mario Marendić
- University Department of Health Studies, University of Split, Ul. Ruđera Boškovića 35, 21000 Split, Croatia;
| | | | - Andrea Russo
- Faculty of Maritime Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
- Andrija Stampar Teaching Institute of Public Health, Mirogojska Cesta 16, 10000 Zagreb, Croatia
- Psychiatric Clinic Sveti Ivan, Jankomir 11, 10090 Zagreb, Croatia
| |
Collapse
|
16
|
Buoli M, Dozio E, Caldiroli L, Armelloni S, Vianello E, Corsi Romanelli M, Castellano G, Vettoretti S. Clinical Factors and Biomarkers Associated with Depressive Disorders in Older Patients Affected by Chronic Kidney Disease (CKD): Does the Advanced Glycation End Products (AGEs)/RAGE (Receptor for AGEs) System Play Any Role? Geriatrics (Basel) 2024; 9:99. [PMID: 39195129 DOI: 10.3390/geriatrics9040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Depressive disorders are highly prevalent among subjects suffering from chronic kidney disease (CKD). The aim of the present study is to evaluate clinical and biochemical factors associated with depressive disorders in a sample of older CKD patients, with a focus on advanced glycation end products (AGEs) and their soluble receptors (sRAGEs). A total of 115 older subjects affected by CKD (stages 3 to 5, not in dialysis) were selected for this study. These patients were divided into two groups according to the presence of depressive disorders defined by a score ≥ 10 on the 30-item Geriatric Depression Scale (GDS). The two groups were compared by independent sample t tests for continuous variables and χ2 tests for qualitative ones. Significant variables at univariate analyses were then inserted as predictors of a binary logistic regression model, with the presence or absence of depressive disorders as a dependent variable. The binary logistic regression model showed that patients with concomitant depressive disorders were more frequently of female gender (p < 0.01) and had lower MCP1 (p < 0.01) and AGE circulating levels (p < 0.01) than their counterparts. Depressive disorders in older CKD patients are more prevalent in women and seem to be inversely associated with systemic inflammation and circulating AGEs.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Dozio
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Lara Caldiroli
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvia Armelloni
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Vianello
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Experimental Laboratory for Research on Organ Damage Biomarkers, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Massimiliano Corsi Romanelli
- Department of Biomedical Science for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Giuseppe Castellano
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Simone Vettoretti
- Unit of Nephrology Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
17
|
Giannakopoulou SP, Antonopoulou S, Chrysohoou C, Barkas F, Tsioufis C, Pitsavos C, Liberopoulos E, Sfikakis PP, Panagiotakos D. The Impact of Dietary Carbohydrates on Inflammation-Related Cardiovascular Disease Risk: The ATTICA Study (2002-2022). Nutrients 2024; 16:2051. [PMID: 38999799 PMCID: PMC11243674 DOI: 10.3390/nu16132051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to evaluate the potential interplay between a carbohydrate diet and inflammation in atherosclerotic cardiovascular disease (ASCVD) development. ATTICA is a prospective observational study of 3042 adults free of cardiovascular disease (CVD) who were recruited in 2002 and followed for 20 years. Baseline data on carbohydrate intake and inflammatory biomarker levels were collected. Participants were stratified by carbohydrate intake (low vs. high: > 190 g/day) and carbohydrate quality. At the 20-year follow-up in 2022, 1988 participants had complete data for CVD assessment. The overall quantity and quality of carbohydrate intake did not show a significant association with CVD incidence; inflammatory markers were positively correlated with an increased risk of CVD (p-values < 0.05). Chronic systemic inflammation seems to affect the CVD risk of participants who had a higher carbohydrate intake more substantially, as compared to those with low intake. Additionally, individuals with higher high carbohydrate/low fiber intake experienced a higher risk of inflammation-related CVD, compared to those with high carbohydrate/high fiber intake. The presented findings revealed that the effect of inflammation markers on the CVD risk is influenced both by the amount and quality of carbohydrate intake, irrespective of overall dietary habits and clinical and lifestyle characteristics.
Collapse
Affiliation(s)
- Sofia-Panagiota Giannakopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Christina Chrysohoou
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Fotios Barkas
- Department of Internal Medicine, Medical School, University of Ioannina, 45500 Ioannina, Greece
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Christos Pitsavos
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Petros P. Sfikakis
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| |
Collapse
|
18
|
Su L, Wang F, Qin C, Wang Z, Yang X, Ye J. Association between energy-adjusted dietary inflammatory index and total immunoglobulin E: A cross-sectional study. Food Sci Nutr 2024; 12:1627-1634. [PMID: 38455225 PMCID: PMC10916634 DOI: 10.1002/fsn3.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
The relationship between a pro-inflammatory diet, assessed by the dietary inflammatory index (DII), and allergic diseases has attracted attention. However, the association between DII and immunoglobulin E (IgE) remains uncertain. We aim to investigate the association between energy-adjusted DII (E-DII) and total IgE. We analyzed data from the 2005 to 2006 National Health and Nutrition Examination Survey. The relationship between E-DII and total IgE was assessed using linear regression and logistic regression analysis. Meanwhile, we conducted a subgroup analysis stratified by body mass index (BMI) and analyzed the mediating role of BMI. We included 3614 adult participants. After controlling for confounding factors, there was no statistical association between E-DII and total IgE (β 0.023, 95% CI -0.01 to 0.057, p = .173) and the risk of high total IgE (OR 1.036, 95% CI 0.977 to 1.099, p = .233). We conducted subgroup analysis stratified by BMI. After controlling for confounding factors, only in overweight groups, E-DII was statistically associated with total IgE (β 0.076, 95% CI 0.017 to 0.135, p = .012) and the risk of high total IgE (OR 1.124, 95% CI 1.015 to 1.246, p = .025). Generalized additive models and smooth curve fittings showed a positive linear relationship between E-DII and total IgE in overweight participants. No statistical association was noted for the mediation effect of BMI on the association between E-DII and total IgE in the overweight group (p = .23). Overweight participants with higher E-DII were potentially at risk of elevated total IgE.
Collapse
Affiliation(s)
- Liang Su
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| | - Fang Wang
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Cheng Qin
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Zhimin Wang
- The First Clinical School of Yunnan University of Chinese MedicineKunmingChina
| | - Xuesong Yang
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| | - Jianzhou Ye
- Department of DermatologyThe First Affiliated Hospital of Yunnan University of Chinese MedicineKunmingChina
- Department of DermatologyYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
19
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Pedreanez A, Robalino J, Tene D, Salazar P. Advanced glycation end products of dietary origin and their association with inflammation in diabetes - A minireview. Endocr Regul 2024; 58:57-67. [PMID: 38563294 DOI: 10.2478/enr-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse group of compounds that are formed as a result of the non-enzymatic reaction between a reducing sugar such as glucose and the free NH2 groups of an amino acid in a protein or other biomolecule. The chemical reaction, by which these products are generated, is known as the Maillard reaction and occurs as a part of the body's normal metabolism. Such a reaction is enhanced during diabetes due to hyperglycemia, but it can also occur during the preparation, processing, and preservation of certain foods. Therefore, AGEs can also be obtained from the diet (d-AGE) and contribute to an increase of the total serum pool of these compounds. They have been implicated in a wide variety of pathological processes, mainly because of their ability to induce inflammatory responses and oxidative stress increase. They are extensively accumulated as a part of the normal aging, especially in tissues rich in long half-life proteins, which can compromise the physiology of these tissues. d-AGEs are abundant in diets rich in processed fats and sugars. This review is addressed to the current knowledge on these products and their impact on the immunomodulation of various mechanisms that may contribute to exacerbation of the diabetes pathophysiology.
Collapse
Affiliation(s)
- Adriana Pedreanez
- Catedra de Inmunologia, Escuela de Bioanalisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | | | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| | - Patricio Salazar
- Departamento de Nutricion Clinica, Hospital General Santo Domingo, Ecuador
| |
Collapse
|
21
|
Zheng L, Bakker W, Estruch IM, Widjaja F, Rietjens IM. Comparison of the methylglyoxal scavenging effects of kaempferol and glutathione and the consequences for the toxicity of methylglyoxal in SH-SY5Y cells. Food Chem X 2023; 20:100920. [PMID: 38144772 PMCID: PMC10740108 DOI: 10.1016/j.fochx.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to characterize the methylglyoxal (MGO) scavenging capacity of glutathione (GSH) and kaempferol in more detail with special emphasis on the possible reversible nature of the adduct formation and their competition for MGO, and the safety consequences of their MGO-scavenging effects. GSH showed immediate and concentration-dependent MGO-scavenging effects, while the scavenging effects by kaempferol appeared concentration- but also time-dependent, with stable adducts formed over time. The GSH adduct gradually disappeared in a competition reaction with kaempferol, and kaempferol became the preferred scavenger over time. Furthermore, the scavenging of MGO by kaempferol provided better protection than GSH against extracellular MGO in SH-SY5Y cells. It is concluded that flavonoids like kaempferol provide better scavengers for food-borne MGO than thiol-based scavengers such as GSH, while, given the endogenous concentrations of both scavengers and the detoxification of the GSH-MGO adduct by the glyoxalase system, GSH will be dominant for intracellular MGO protection.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Frances Widjaja
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M.C.M. Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
22
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
23
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
24
|
Guedes Lúcio H, Grancieri M, David Medina Martinez O, Celi Lopes Toledo R, Beserra de Menezes C, Maria Brunoro Costa N, Aparecida Vieira Queiroz V, Pereira da Silva B, Stampini Duarte Martino H. Dry heat whole Sorghum BRS 305 flour modulate satiety and improves antioxidant response in brain of Wistar rats fed with high-fat high-fructose diet. Food Res Int 2023; 173:113252. [PMID: 37803565 DOI: 10.1016/j.foodres.2023.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Sorghum BRS 305 (Sorghum bicolor L. Moench) is a cereal with high tannins and anthocyanins content and keep better the resistant starch when submitted to dry heat treatment. Our objective was to investigate the effects of BRS 305 dry heat treatment whole sorghum flour on satiety and antioxidant response in brain and adipose tissue of Wistar rats fed with a high fat high fructose diet (HFHF). Male Wistar rats were divided in two groups: control (n = 8) and HFHF (n = 16) for eight weeks. After, animals of HFHF group were divided: HFHF (n = 8) and HFHF + BRS 305 sorghum whole flour (n = 8), for 10 weeks. Sorghum consumption reduced gene expression of leptin, resistin, and endocannabinoid receptor 1 type (CB1) in adipose and brain tissues compared to HFHF group. In brain, sorghum consumption also promotes reduction in neuropeptide Y (NPY) gene expression. BRS305 sorghum consumption improved gene expression of sirtuin-1 (SIRT1) in adipose tissue, and in the brain increased heat shock protein 72 (HSP72), erythroid-derived nuclear factor 2 (NRF2), peroxisome proliferator-activated receptor alpha (PPARα), superoxide dismutase (SOD) and catalase activity compared to HFHF. In silicoanalysis showed interaction with PPARα, CB1, and leptin receptors. Advanced glycation end products (AGEs) concentrations in group HFHF + sorghum did not differ from HFHF group. Advanced glycation end products receptors (RAGEs) concentrations did not differ among experimental groups. Then, BRS 305 sorghum submitted to dry treatment was able to modulate gene expression of markers related to satiety and improve antioxidant capacity of rats fed with HFHF diet.
Collapse
Affiliation(s)
- Haira Guedes Lúcio
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Mariana Grancieri
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil; Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alto Universitário, Centro, Alegre, ES Zip Code: 29500-000, Brazil
| | - Oscar David Medina Martinez
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Renata Celi Lopes Toledo
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | | | - Neuza Maria Brunoro Costa
- Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alto Universitário, Centro, Alegre, ES Zip Code: 29500-000, Brazil
| | | | - Bárbara Pereira da Silva
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Hércia Stampini Duarte Martino
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| |
Collapse
|
25
|
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and Perspectives in Relation to the Molecular Basis of Diabetic Retinopathy-A Review. Biomedicines 2023; 11:2951. [PMID: 38001952 PMCID: PMC10669459 DOI: 10.3390/biomedicines11112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus (DM) is a growing problem nowadays, and diabetic retinopathy (DR) is its predominant complication. Currently, DR diagnosis primarily relies on fundoscopic examination; however, novel biomarkers may facilitate that process and make it widely available. In this current review, we delve into the intricate roles of various factors and mechanisms in DR development, progression, prediction, and their association with therapeutic approaches linked to the underlying pathogenic pathways. Specifically, we focus on advanced glycation end products, vascular endothelial growth factor (VEGF), asymmetric dimethylarginine, endothelin-1, and the epigenetic regulation mediated by microRNAs (miRNAs) in the context of DR.
Collapse
Affiliation(s)
- Michał Błaszkiewicz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Agata Walulik
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Kamila Florek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Ignacy Górecki
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Olga Sławatyniec
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
26
|
Schwertner K, Gelles K, Leitner J, Steinberger P, Gundacker C, Vrticka R, Hoffmann-Sommergruber K, Ellinger I, Geiselhart S. Human intestine and placenta exhibit tissue-specific expression of RAGE isoforms. Heliyon 2023; 9:e18247. [PMID: 37533998 PMCID: PMC10391957 DOI: 10.1016/j.heliyon.2023.e18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is encoded by AGER, a gene that is subjected to tissue-specific alternative splicing. Splice variants of RAGE in intestine and placenta are unknown and contradictory data concerning RAGE protein expression in these tissues have been published. As a basis for future functional studies, we examined RAGE expression in small intestine, colon and placentas. PCR cloning revealed that full-length RAGE is the only RAGE transcript isoform expressed in placenta. In the small intestine, the major transcript isoform detected was RAGE_v1 encoding the C-terminally truncated soluble receptor. In the colon, both full-length RAGE as well as several splice variants were identified. Four antibodies were used to study protein expression by immunoblotting and were carefully validated. Appropriate controls were essential to avoid misinterpretation of bands caused by non-specific reactivity of antibodies. Only one of four antibodies tested detected full-length RAGE in placenta, whereas no RAGE-specific band was detected in intestinal tissues despite loading >30-fold more intestinal tissue than the positive control, human lung. RAGE expression levels in the placenta were 100-fold lower compared with human lung when analyzed by ELISA, and no significant differences in RAGE expression were detected between healthy placentas and placentas from women with preeclampsia, gestational diabetes mellitus, or fetal growth restriction. We conclude that healthy placental chorionic tissue expresses low levels of full-length RAGE, whereas expression of the tissue-specific intestinal isoforms is below the limit of detection. Low RAGE expression levels in combination with a lack of antibody validation may explain the conflicting published results on RAGE protein expression in intestine and placenta.
Collapse
Affiliation(s)
- Katharina Schwertner
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia Gundacker
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruben Vrticka
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Geiselhart
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
28
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
29
|
Portero-Otin M, de la Maza MP, Uribarri J. Dietary Advanced Glycation End Products: Their Role in the Insulin Resistance of Aging. Cells 2023; 12:1684. [PMID: 37443718 PMCID: PMC10340703 DOI: 10.3390/cells12131684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Insulin resistance (IR) is commonly observed during aging and is at the root of many of the chronic nontransmissible diseases experienced as people grow older. Many factors may play a role in causing IR, but diet is undoubtedly an important one. Whether it is total caloric intake or specific components of the diet, the factors responsible remain to be confirmed. Of the many dietary influences that may play a role in aging-related decreased insulin sensitivity, advanced glycation end products (AGEs) appear particularly important. Herein, we have reviewed in detail in vitro, animal, and human evidence linking dietary AGEs contributing to the bodily burden of AGEs with the development of IR. We conclude that numerous small clinical trials assessing the effect of dietary AGE intake in combination with strong evidence in many animal studies strongly suggest that reducing dietary AGE intake is associated with improved IR in a variety of disease conditions. Reducing AGE content of common foods by simple changes in culinary techniques is a feasible, safe, and easily applicable intervention in both health and disease. Large-scale clinical trials are still needed to provide broader evidence for the deleterious role of dietary AGEs in chronic disease.
Collapse
Affiliation(s)
- Manuel Portero-Otin
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad de Lleida, 25196 Lleida, Spain;
| | - M. Pia de la Maza
- Centro de Nutricion y Diabetes, Departamento de Medicina, Clinica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile;
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
30
|
Duisenbek A, Lopez-Armas GC, Pérez M, Avilés Pérez MD, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Yessenbekova A, Ablaikhanova N, Escames G, Acuña-Castroviejo D, Rusanova I. Insights into the Role of Plasmatic and Exosomal microRNAs in Oxidative Stress-Related Metabolic Diseases. Antioxidants (Basel) 2023; 12:1290. [PMID: 37372020 DOI: 10.3390/antiox12061290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
A common denominator of metabolic diseases, including type 2 diabetes Mellitus, dyslipidemia, and atherosclerosis, are elevated oxidative stress and chronic inflammation. These complex, multi-factorial diseases are caused by the detrimental interaction between the individual genetic background and multiple environmental stimuli. The cells, including the endothelial ones, acquire a preactivated phenotype and metabolic memory, exhibiting increased oxidative stress, inflammatory gene expression, endothelial vascular activation, and prothrombotic events, leading to vascular complications. There are different pathways involved in the pathogenesis of metabolic diseases, and increased knowledge suggests a role of the activation of the NF-kB pathway and NLRP3 inflammasome as key mediators of metabolic inflammation. Epigenetic-wide associated studies provide new insight into the role of microRNAs in the phenomenon of metabolic memory and the development consequences of vessel damage. In this review, we will focus on the microRNAs related to the control of anti-oxidative enzymes, as well as microRNAs related to the control of mitochondrial functions and inflammation. The objective is the search for new therapeutic targets to improve the functioning of mitochondria and reduce oxidative stress and inflammation, despite the acquired metabolic memory.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Gabriela C Lopez-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Miguel Pérez
- Hospital de Alta Resolución de Alcalá la Real, 23680 Jaén, Spain
| | - María D Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
31
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
32
|
Cao Y, Ye X, Yuan X, Liu J, Zhang Q. Serum Pentosidine is Associated with Cardiac Dysfunction and Atherosclerosis in T2DM. Diabetes Metab Syndr Obes 2023; 16:237-244. [PMID: 36760597 PMCID: PMC9885869 DOI: 10.2147/dmso.s398119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Aim The purpose of this paper is to investigate the relationship between serum pentosidine levels and cardiac function and vascular disease in diabetic patients, and to provide a new reference indicator for the early detection of diabetic cardiovascular complications. Materials and Methods This was a cross-sectional study. One hundred and twenty-two patients with type 2 diabetes were grouped by LVEF quartiles to compare the differences between their clinical data and serum pentosidine levels. Also, the correlation between serum pentosidine and clinical indicators was assessed. The effect of serum pentosidine on cardiac function and vascular stiffness was analyzed by multiple stepwise regression. Results Serum pentosidine levels were higher in patients with LVEF ≤57%. Serum pentosidine levels were positively correlated with waist-to-hip ratio, hemoglobin, AIP, baPWV, LVESD, and ARD, and negatively correlated with LVEF. Low serum pentosidine was associated with increased LVESD; high pentosidine was significantly associated with increased ARD, high AIP and high baPWV. Conclusion The results suggest that serum pentosidine, a member of AGEs, may reflect cardiac remodeling and dysfunction as well as atherosclerosis.
Collapse
Affiliation(s)
- Yuyan Cao
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xinhua Ye
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Xiaoqing Yuan
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Juan Liu
- Department of Endocrinology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Qing Zhang
- Changzhou Medical Center, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
33
|
Grant WB, Blake SM. Diet's Role in Modifying Risk of Alzheimer's Disease: History and Present Understanding. J Alzheimers Dis 2023; 96:1353-1382. [PMID: 37955087 PMCID: PMC10741367 DOI: 10.3233/jad-230418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Diet is an important nonpharmacological risk-modifying factor for Alzheimer's disease (AD). The approaches used here to assess diet's role in the risk of AD include multi-country ecological studies, prospective and cross-sectional observational studies, and laboratory studies. Ecological studies have identified fat, meat, and obesity from high-energy diets as important risk factors for AD and reported that AD rates peak about 15-20 years after national dietary changes. Observational studies have compared the Western dietary pattern with those of the Dietary Approaches to Stop Hypertension (DASH), Mediterranean (MedDi), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. Those studies identified AD risk factors including higher consumption of saturated and total fats, meat, and ultraprocessed foods and a lower risk of AD with higher consumption of fruits, legumes, nuts, omega-3 fatty acids, vegetables, and whole grains. Diet-induced factors associated with a significant risk of AD include inflammation, insulin resistance, oxidative stress, elevated homocysteine, dietary advanced glycation end products, and trimethylamine N-oxide. The molecular mechanisms by which dietary bioactive components and specific foods affect risk of AD are discussed. Given most countries' entrenched food supply systems, the upward trends of AD rates would be hard to reverse. However, for people willing and able, a low-animal product diet with plenty of anti-inflammatory, low-glycemic load foods may be helpful.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| | - Steven M. Blake
- Nutritional Neuroscience, Maui Memory Clinic, Wailuku, HI, USA
| |
Collapse
|
34
|
Hadzi-Petrushev N, Angelovski M, Mladenov M. Advanced Glycation End Products and Diabetes. CONTEMPORARY ENDOCRINOLOGY 2023:99-127. [DOI: 10.1007/978-3-031-39721-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Liu R, Zhang M, Xu L, Liu J, Yang P, Li M, Qin J. Fluorescent advanced glycation end products in type 2 diabetes and its association with diabetes duration, hemoglobin A1c, and diabetic complications. Front Nutr 2022; 9:1083872. [PMID: 36590223 PMCID: PMC9797537 DOI: 10.3389/fnut.2022.1083872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Fluorescent advanced glycation end products (fAGEs) are generated through the Maillard reaction between reducing sugars and amino compounds. fAGEs accumulation in human bodies have been confirmed to be related to many chronic diseases. To date, the correlations between serum fAGEs levels and clinical parameters or carotid intima media thickness (CIMT) in patients with T2DM remain unclear. Thus, this study aimed to investigate the relationship between serum AGEs levels and clinical parameters or CIMT in patients with T2DM. Method A total of 131 patients with diabetes and 30 healthy controls were enrolled. Patients were divided into three groups according to diabetes duration, including ≤5, 5-10, and ≥10 years. Serum fAGEs, protein oxidation products, clinical parameters, and CIMT were determined. Results The result showed that levels of fAGEs and protein oxidation products increased with the increasing duration of diabetics. Pearson correlation coefficients of fAGEs versus hemoglobin A1c (HbA1c) were >0.5 in patients with diabetes duration ≥10 years. A continued increase in fAGEs might cause the increase of HbA1c, urinary albumin/creatinine ratio (UACR) and CIMT in patients with T2DM. Conclusion Our study suggested that levels of fAGEs could be considered as an indicator for duration of diabetics and carotid atherosclerosis. Diabetes duration and smoking might have a synergistic effect on the increment of fAGEs levels, as evidence by the results of correlation analysis in patients with long-duration diabetics (≥10 years) and smoking. The determination of fAGEs might be helpful to advance our knowledge on the overall risk of complications in patients with T2DM.
Collapse
Affiliation(s)
- Rui Liu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China,*Correspondence: Rui Liu,
| | - Mengyao Zhang
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Xu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjin Liu
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Pingan Yang
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Li
- Department of Cardiology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Qin
- Department of Endocrinology, Shanxi Provincial People’s Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, China,Jie Qin,
| |
Collapse
|
36
|
Taviano MF, Núñez S, Millán-Laleona A, Condurso C, Verzera A, Merlino M, Ragusa M, Miceli N, López V. Volatile composition, antidiabetic, and anti-obesity potential of Brassica incana leaf and flowering top extracts. PHARMACEUTICAL BIOLOGY 2022; 60:1994-2001. [PMID: 36219451 PMCID: PMC9559316 DOI: 10.1080/13880209.2022.2128825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
CONTEXT Brassica incana Ten. (Brassicaceae) is an edible plant with very limited available information. Previous studies have demonstrated the polyphenolic profile and the antioxidant and cytotoxic properties of the leaf and flowering top hydroalcoholic extracts. OBJECTIVE The volatile composition and the antidiabetic and anti-obesity potential of B. incana leaf and flowering top extracts have been investigated. MATERIAL AND METHODS The volatile characterization of the extracts was attained by HS-SPME-GC/MS analysis. The antidiabetic and anti-obesity potential was investigated spectrophotometrically in vitro by the ability to modulate pancreatic lipase and α-glucosidase at different concentrations using orlistat and acarbose as reference drugs. The inhibition of advanced glycation end-products (AGEs) was measured with aminoguanidine as reference and the antioxidant activity with the xanthine/xanthine oxidase system and Trolox for comparative purposes. RESULTS Several volatiles belonging to different chemical classes were identified, being sulphur compounds the most abundant in both leaf and flowering top extracts (56.33% and 64.40% of all volatiles). Although the leaf extract showed lower IC50 values in most of the assays (0.968 and 1.921 mg/mL for α-glucosidase; 0.192 and 0.262 mg/mL for AGEs; 0.022 and 0.038 mg/mL for superoxide scavenging), there were no statistically significant differences between both samples. These extracts showed a similar behaviour to Trolox in the xanthine oxidase assay (IC50 values of 0.022 mg/mL for leaf extract; 0.038 mg/mL for flowering top and 0.028 for Trolox). CONCLUSIONS Leaves and flowering tops from B. incana can be used as sources of functional compounds that could act as antidiabetic and anti-obesogenic agents.
Collapse
Affiliation(s)
- Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sonia Núñez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Millán-Laleona
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Concetta Condurso
- Department of Veterinary Sciences, Viale Palatucci, University of Messina, Messina, Italy
| | - Antonella Verzera
- Department of Veterinary Sciences, Viale Palatucci, University of Messina, Messina, Italy
| | - Maria Merlino
- Department of Veterinary Sciences, Viale Palatucci, University of Messina, Messina, Italy
| | - Monica Ragusa
- IRCCS Istituto Ortopedico Rizzoli, Complex Structure of Surgical Sciences and Technologies, Bologna, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- CONTACT Natalizia Miceli University of Messina, Messina, Italy
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
- Víctor López Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain
| |
Collapse
|
37
|
Kang Q, Dai H, Jiang S, Yu L. Advanced glycation end products in diabetic retinopathy and phytochemical therapy. Front Nutr 2022; 9:1037186. [PMID: 36466410 PMCID: PMC9716030 DOI: 10.3389/fnut.2022.1037186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/31/2022] [Indexed: 10/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are generated by the nonenzymatic glycation of proteins or lipids. Diabetic retinopathy (DR) is one common complication in patients with diabetes. The accumulation of AGEs in retinal cells is strongly associated with the development of DR. AGEs can induce the breakdown of redox balance and then cause oxidative stress in retinal cells, exerting cytopathic effects in the progression of DR. The interaction between AGEs and the receptor for AGE (RAGE) is involved in multiple cellular pathological alterations in the retina. This review is to elucidate the pathogenetic roles of AGEs in the progression of DR, including metabolic abnormalities, lipid peroxidation, structural and functional alterations, and neurodegeneration. In addition, disorders associated with AGEs can be used as potential therapeutic targets to explore effective and safe treatments for DR. In this review, we have also introduced antioxidant phytochemicals as potential therapeutic strategies for the treatment of DR.
Collapse
Affiliation(s)
- Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Haiyu Dai
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Suwei Jiang
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
38
|
Li J, Zeng X, Yang X, Ding H. Lycopene ameliorates skin aging by regulating the insulin resistance pathway and activating SIRT1. Food Funct 2022; 13:11307-11320. [PMID: 36226790 DOI: 10.1039/d2fo01111e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Microvascular loss is one of the most important characteristics of skin aging and several microvascular activities play key roles in preserving skin health. In vitro, lycopene (Ly) reduced the contents of reactive oxygen species (ROS), β-galactosidase, and advanced glycosylation end products (AGEs), while increasing the contents of ATP and NAD+/NADH along with the mitochondrial membrane potential (MMP). Furthermore, the expression of Fibrillin-I and VEGF was increased in aged primary skin fibroblast cells (PRSFs). LC-MS non-targeted cell metabolomics demonstrated a mechanism by which (Ly) lycopene protects aging skin cells, and the KEGG analysis predicted the pathways involved. In vivo, aged rats exhibited signs of reduced capillary density and blood flow, skin aging, mitochondrial disorder, and insulin resistance. Following Ly intervention, these phenomena were reversed. Meanwhile, insulin pathway protein, VEGF, and SIRT1 protein expression data showed that lycopene might reverse insulin resistance and promote microvascular renewal to protect aging skin. In summary, all data demonstrated that Ly might reverse insulin resistance via SIRT1 during skin aging and promote microvascular neovascularization to protect aging skin.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| | - Xin Zeng
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430000, Hubei, P. R. China.
| |
Collapse
|
39
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Morales MA. Receptor of advanced glycation end-products axis and gallbladder cancer: A forgotten connection that we should reconsider. World J Gastroenterol 2022; 28:5679-5690. [PMID: 36338887 PMCID: PMC9627425 DOI: 10.3748/wjg.v28.i39.5679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence derived from clinical and experimental research has demonstrated the crucial contribution of chronic inflammation in the development of neoplasms, including gallbladder cancer. In this regard, data derived from clinical and experimental studies have demonstrated that the receptor of advanced glycation end-products (RAGE)/AGEs axis plays an important role in the onset of a crucial and long-lasting inflammatory milieu, thus supporting tumor growth and development. AGEs are formed in biological systems or foods, and food-derived AGEs, also known as dietary AGEs are known to contribute to the systemic pool of AGEs. Once they bind to RAGE, the activation of multiple and crucial signaling pathways are triggered, thus favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration. In the present review, we aimed to highlight the relevance of the association between high dietary AGEs intakes and high risk for gallbladder cancer, and emerging data supporting that dietary intervention to reduce gallbladder cancer risk is a very attractive approach that deserves much more research efforts.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Ileana Gonzàlez
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Santiago, Chile
| |
Collapse
|
40
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
41
|
Grados L, Pérot M, Barbezier N, Delayre-Orthez C, Bach V, Fumery M, Anton PM, Gay-Quéheillard J. How advanced are we on the consequences of oral exposure to food contaminants on the occurrence of chronic non communicable diseases? CHEMOSPHERE 2022; 303:135260. [PMID: 35688194 DOI: 10.1016/j.chemosphere.2022.135260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
The development of an individual during fetal life and childhood is characterized by rapid growth as well as gradual maturation of organs and systems. Beyond the nutritional intake in essential nutrients, food contaminants can permanently influence the way organs mature and function. These processes are called "programming" and play an essential role in the occurrence of non-communicable chronic diseases throughout the lifespan. Populations as pregnant women, fetuses and young children are vulnerable and particularly sensitive to food contaminants which can induce epigenetic modifications transmissible to future generations. Among these contaminants, pesticides are found in most food matrices exposing humans to cocktails of molecules through variable concentrations and duration of exposure. The Maillard reaction products (MRPs) represent other food contaminants resulting from heat treatment of food. Modern diet, rich in fats and sugars, is also rich in neoformed pathogenic compounds, Advanced Glycation End products (AGEs), the levels of which depend on the heat treatment of foods and eating habits and whose effects on health are controversial. In this review, we have chosen to present the current knowledge on the impacts of selected pesticides and MRPs, on the risk of developing during life non-communicable chronic diseases such as IBD, metabolic disorders or allergies. A large review of literature was performed via Pubmed, and the most appropriate studies were summarised.
Collapse
Affiliation(s)
- Lucien Grados
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Maxime Pérot
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Nicolas Barbezier
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Véronique Bach
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France
| | - Mathurin Fumery
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France; CHU Amiens-Picardie, Service D'hépato-gastro-entérologie, Rond-point Du Pr Cabrol, Amiens, France
| | - Pauline M Anton
- Transformations and Agroressources (URL 7519), Institut Polytechnique UniLaSalle, Université D'Artois, 19 Rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Jérôme Gay-Quéheillard
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, CURS, CHU Amiens Picardie, Avenue René Laennec, Amiens, France.
| |
Collapse
|
42
|
The relationship between tooth loss and hypertension: a systematic review and meta-analysis. Sci Rep 2022; 12:13311. [PMID: 35922537 PMCID: PMC9349209 DOI: 10.1038/s41598-022-17363-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
As tooth loss is the high end of periodontal problems and edentulous individuals are at higher risk of nutritional problems like obesity, understanding the association between tooth loss and hypertension is important for improving cardiovascular health. We searched for publications from the last two decades using three electronic databases (PubMed, Web of Science and Scopus) and conducted a systematic review and meta-analysis on the association between tooth loss and hypertension according to PRISMA-P guidelines. Quality assessments were performed using the Newcastle–Ottawa Scale and the GRADE approach. Twenty-four studies (20 cross-sectional, and 4 cohort) met the inclusion criteria for this review. Most cross-sectional studies showed that subjects with more tooth loss exhibited a greater proportion of hypertension and higher systolic blood pressure than those with less tooth loss. Meta-analyses revealed a statistically significant association between tooth loss and hypertension. The pooled odds ratios of hypertension for having tooth loss with no tooth loss and for edentulous with dentate were 2.22 (95% CI 2.00–2.45) and 4.94 (95% CI 4.04–6.05), respectively. In cohort studies, subjects with more tooth loss had a greater incidence of hypertension than those with less tooth loss during the follow-up period. The present systematic review and meta-analysis suggests that tooth loss is associated with an increased risk of hypertension and higher systolic blood pressure.
Collapse
|
43
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
44
|
Lee J, Yun JS, Ko SH. Advanced Glycation End Products and Their Effect on Vascular Complications in Type 2 Diabetes Mellitus. Nutrients 2022; 14:3086. [PMID: 35956261 PMCID: PMC9370094 DOI: 10.3390/nu14153086] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is well established as a chronic disease with a high health burden due to mortality or morbidity from the final outcomes of vascular complications. An increased duration of hyperglycemia is associated with abnormal metabolism. Advanced glycation end products (AGEs) are nonenzymatic glycated forms of free amino acids that lead to abnormal crosslinking of extra-cellular and intracellular proteins by disrupting the normal structure. Furthermore, the interaction of AGEs and their receptors induces several pathways by promoting oxidative stress and inflammation. In this review, we discuss the role of AGEs in diabetic vascular complications, especially type 2 DM, based on recent clinical studies.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03391, Korea;
| | - Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Korea;
| |
Collapse
|
45
|
Yuan S, Song C, Zhang R, He J, Dou K. Dietary Inflammation Index and Its Association with Long-Term All-Cause and Cardiovascular Mortality in the General US Population by Baseline Glycemic Status. Nutrients 2022; 14:nu14132556. [PMID: 35807737 PMCID: PMC9268060 DOI: 10.3390/nu14132556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Dietary inflammatory potential has been proven to be correlated with the incidence of diabetes and cardiovascular diseases. However, the evidence regarding the impact of dietary inflammatory patterns on long-term mortality is scarce. This cohort study aims to investigate the dietary inflammatory pattern of the general US individuals by baseline glycemic status and to estimate its association with long-term mortality. A total of 20,762 general American adults with different glycemic statuses from the National Health and Nutrition Examination Survey were included. We extracted 24-h dietary information, and the dietary inflammatory index (DII) was calculated. The outcomes were defined as 5-year all-cause and cardiovascular mortality. Compared with the normoglycemia group, individuals with prediabetes and type 2 diabetes had higher DII scores (overall weighted p < 0.001). Compared with low DII scores, participants with high DII scores were at a higher risk of long-term all-cause mortality (HR: 1.597, 95% CI: 1.370, 1.861; p < 0.001) and cardiovascular mortality (HR: 2.036, 95% CI: 1.458, 2.844; p < 0.001). The results were stable after adjusting for potential confounders. Moreover, the prognostic value of DII for long-term all-cause mortality existed only in diabetic individuals but not in the normoglycemia or prediabetes group (p for interaction = 0.006). In conclusion, compared to the normoglycemia or prediabetes groups, participants with diabetes had a higher DII score, which indicates a greater pro-inflammatory potential. Diabetic individuals with higher DII scores were at a higher risk of long-term all-cause and cardiovascular mortality.
Collapse
Affiliation(s)
- Sheng Yuan
- State Key Laboratory of Cardiovascular Disease, Beijing 102308, China; (S.Y.); (C.S.); (R.Z.); (J.H.)
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenxi Song
- State Key Laboratory of Cardiovascular Disease, Beijing 102308, China; (S.Y.); (C.S.); (R.Z.); (J.H.)
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Rui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing 102308, China; (S.Y.); (C.S.); (R.Z.); (J.H.)
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jining He
- State Key Laboratory of Cardiovascular Disease, Beijing 102308, China; (S.Y.); (C.S.); (R.Z.); (J.H.)
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing 102308, China; (S.Y.); (C.S.); (R.Z.); (J.H.)
- Cardiometabolic Medicine Center, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Correspondence:
| |
Collapse
|
46
|
D’Cunha NM, Sergi D, Lane MM, Naumovski N, Gamage E, Rajendran A, Kouvari M, Gauci S, Dissanayka T, Marx W, Travica N. The Effects of Dietary Advanced Glycation End-Products on Neurocognitive and Mental Disorders. Nutrients 2022; 14:nu14122421. [PMID: 35745150 PMCID: PMC9227209 DOI: 10.3390/nu14122421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids formed endogenously in the human body or consumed through diet. Ultra-processed foods and some culinary techniques, such as dry cooking methods, represent the main sources and drivers of dietary AGEs. Tissue accumulation of AGEs has been associated with cellular aging and implicated in various age-related diseases, including type-2 diabetes and cardiovascular disease. The current review summarizes the literature examining the associations between AGEs and neurocognitive and mental health disorders. Studies indicate that elevated circulating AGEs are cross-sectionally associated with poorer cognitive function and longitudinally increase the risk of developing dementia. Additionally, preliminary studies show that higher skin AGE accumulation may be associated with mental disorders, particularly depression and schizophrenia. Potential mechanisms underpinning the effects of AGEs include elevated oxidative stress and neuroinflammation, which are both key pathogenetic mechanisms underlying neurodegeneration and mental disorders. Decreasing dietary intake of AGEs may improve neurological and mental disorder outcomes. However, more sophisticated prospective studies and analytical approaches are required to verify directionality and the extent to which AGEs represent a mediator linking unhealthy dietary patterns with cognitive and mental disorders.
Collapse
Affiliation(s)
- Nathan M. D’Cunha
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Melissa M. Lane
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nenad Naumovski
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Elizabeth Gamage
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Anushri Rajendran
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Matina Kouvari
- Discipline of Nutrition and Dietetics, Faculty of Health, University of Canberra, Canberra, ACT 2601, Australia (N.N.); (M.K.)
- Functional Foods and Nutrition Research (FFNR) Laboratory, University of Canberra, Bruce, ACT 2617, Australia
- Department of Nutrition-Dietetics, Harokopio University, 17671 Athens, Greece
| | - Sarah Gauci
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
- Heart and Mind Research, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Thusharika Dissanayka
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Wolfgang Marx
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
| | - Nikolaj Travica
- Food and Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia; (M.M.L.); (E.G.); (A.R.); (T.D.); (W.M.)
- Correspondence:
| |
Collapse
|
47
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
48
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
49
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
50
|
Calatayud-Sáez FM, Calatayud B, Calatayud A. Effects of the Mediterranean Diet on Morbidity from Inflammatory and Recurrent Diseases with Special Reference to Childhood Asthma. Nutrients 2022; 14:936. [PMID: 35267912 PMCID: PMC8912337 DOI: 10.3390/nu14050936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Objective: For 15 years, we have been working with a nutritional programme based on the traditional Mediterranean diet (TMD) to complete the treatment of inflammatory and recurrent diseases (IRD), such as childhood asthma. The objective of this study is to verify the effects of TMD in the prevention and treatment of IRD by measuring the incidence of infant morbidity over 8 years. Material and Methods: The number of patients who suffered from IRD each year (just before the pandemic) was determined, as well as the frequentation and the percentage of scheduled and on-demand consultations. Results: The incidence of infant morbidity decreased as they were incorporated into a TMD, and we observed a progressive disappearance of IRD. At the beginning of the study, 20% of the patients had been diagnosed with some type of IRD. At the study's end, the prevalence of IRD decreased to less than 2%, and the use of drugs and surgical interventions decreased markedly. Conclusions: A diet based on the TMD reduces the incidence of infant morbidity and contributes to the disappearance of IRD, whereas some non-traditional foods with high antigenic power could be involved in the appearance of IRD.
Collapse
|