1
|
Bai M, Zhou Z, Yin M, Wang M, Gao X, Zhao J. The use of metagenomic and untargeted metabolomics in the analysis of the effects of the Lycium barbarum glycopeptide on allergic airway inflammation induced by Artemesia annua pollen. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118816. [PMID: 39270881 DOI: 10.1016/j.jep.2024.118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of allergic airway inflammation (AAI) worldwide is high. Artemisia annua L. pollen is spread worldwide, and allergic diseases caused by its plant polysaccharides, which are closely related to the intestinal microbiota, have anti-inflammatory effects. Further isolation and purification of Lycium barbarum L. yielded its most effective component Lycium barbarum L. glycopeptide (LbGP), which can inhibit inflammation in animal models. However, its therapeutic effect on AAI and its mechanism of regulating the intestinal flora have not been fully investigated. AIM OF THE STUDY To explore LbGP in APE-induced immunological mechanisms of AAI and the interaction mechanism of the intestinal flora and metabolites. METHODS A mouse model of AAI generated from Artemisia annua pollen was constructed, and immunological indices related to the disease were examined. A combination of macrogenomic and metabolomic analyses was used to investigate the effects of LbGP on the gut microbial and metabolite profiles of mice with airway inflammation. RESULTS LbGP effectively alleviated Artemisia. annua pollen extract (APE)-induced AAI, corrected Th1/Th2 immune dysregulation, decreased Th17 cells, increased Treg cells, and altered the composition and function of the intestinal microbiota. LbGP treatment increased the number of OdoribacterandDuncaniella in the intestines of the mice, but the numble of Alistipes and Ruminococcus decreased. Metabolite pathway enrichment analysis were used to determine the effects of taurine and hypotaurine metabolism, bile acid secretion, and pyrimidine metabolism pathways on disease. CONCLUSION Our results revealed significant changes in the macrogenome and metabolome following APE and LbGP intervention, revealed potential correlations between gut microbial species and metabolites, and highlighted the beneficial effects of LbGP on AAI through the modulation of the gut microbiome and host metabolism.
Collapse
Affiliation(s)
- Min Bai
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Department of Rheumatology and Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Zhichao Zhou
- School of Inspection, Ningxia Medical University, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China
| | - Mei Yin
- Department of Respiratory and Critical Care Medicine, Hospital of Cardiovascular and Cerebrovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Mei Wang
- Ningxia Institute of Medical Science, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China.
| | - Xiaoping Gao
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Jiaqing Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China; Ningxia Institute of Medical Science, Yinchuan, China; Research Center for Medical Science and Technology, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Deng X, Li S, Wu Y, Yao J, Hou W, Zheng J, Liang B, Liang X, Hu Q, Wu Z, Tang Z. Correlation analysis of the impact of Clonorchis sinensis juvenile on gut microbiota and transcriptome in mice. Microbiol Spectr 2024:e0155024. [PMID: 39727670 DOI: 10.1128/spectrum.01550-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Clonorchiasis remains a non-negligible global zoonosis, imposing serious socio-economic burdens in endemic regions. The interplay between gut microbiota and the host transcriptome is crucial for maintaining health; however, the impact of Clonorchiasis sinensis juvenile infection on these factors is still poorly understood. This study aimed to investigate their relationship and potential pathogenic mechanisms. The BALB/c mouse model of early infection with C. sinensis juvenile was constructed. Pathological analyses revealed that C. sinensis juvenile triggered liver inflammation, promoted intestinal villi growth, and augmented goblet cell numbers in the ileum. Additionally, the infection altered the diversity and structure of gut microbiota, particularly affecting beneficial bacteria that produce short-chain fatty acids, such as Lactobacillus and Muribaculaceae, and disrupted the Firmicutes/Bacteroidetes ratio. Gut transcriptome analysis demonstrated an increase in the number of differentially expressed genes (DEGs) as infection progressed. Enriched Gene Ontology items highlighted immune and detoxification-related processes, including immunoglobulin production and xenobiotic metabolic processes. Kyoto Encyclopedia of Genes and Genomes pathway analysis further indicated involvement in circadian rhythm, as well as various detoxification and metabolic-related pathways (e.g., glutathione metabolism and glycolysis/gluconeogenesis). Prominent DEGs associated with these pathways included Igkv12-41, Mcpt2, Arntl, Npas2, Cry1, and Gsta1. Correlation analysis additionally identified Bacteroides_sartorii as a potential key regulator in the interaction between gut microbiota and transcriptome. This study sheds light on the alterations in gut microbiota and transcriptome in mice following C. sinensis juvenile infection, as well as their correlation, laying a foundation for a better understanding of their interaction during infection. IMPORTANCE This study highlighted the impact of C. sinensis juvenile infection on the gut microbiota and transcriptome of BALB/c mice. It induced liver inflammation, promoted intestinal villi growth, and altered goblet cell numbers. The infection also disrupted the diversity and structure of gut microbiota, particularly affecting beneficial bacteria. Transcriptome analysis revealed increased expression of genes related to immune response and detoxification processes. Important pathways affected included circadian rhythm, glutathione metabolism, and glycolysis/gluconeogenesis. Notable genes implicated included Igkv12-41, Mcpt2, Arntl, Npas2, Cry1, and Gsta1. Bacteroides_sartorii emerged as a potential key regulator in this interaction.
Collapse
Affiliation(s)
- Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Shitao Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Hou
- Guangxi Key Laboratory of Thalassemia Research, Nanning, China
| | - Jiangyao Zheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Boying Liang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xiaole Liang
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
3
|
Pei Z, Qian L, Miao T, Wang H, Lu W, Chen Y, Zhuang Q. Uncovering the mechanisms underlying the efficacy of probiotic strains in mitigating food allergies: an emphasis on gut microbiota and indoleacrylic acid. Front Nutr 2024; 11:1523842. [PMID: 39726866 PMCID: PMC11670748 DOI: 10.3389/fnut.2024.1523842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Food allergies manifest as systemic or digestive allergic responses induced by food allergens, and their progression has been demonstrated to be intimately associated with the host's gut microbiota. Our preceding investigation has revealed that the probiotic strains Lactiplantibacillus plantarum CCFM1189 and Limosilactobacillus reuteri CCFM1190 possess the capability to mitigate the symptoms of food allergy in mice. However, the underlying mechanisms and material foundations through which these probiotic strains exert their effects remain enigmatic. Here, we initially compared the ameliorative effects of these two probiotic strains on food allergy mice subjected to antibiotic cocktail (ABX) treatment. It is indicated that ABX treatment was ineffective in alleviating weight loss, diarrhea, and allergic symptoms in mice, and it also inhibited the reduction of histamine and T helper cell 2 (Th2) cytokines mediated by effective strains, suggesting that effective strains must operate through the gut microbiota. Then, building upon the outcomes of prior non-targeted metabolomics studies, by quantifying the content of indoleacrylic acid (IA) in single-strain fermentation of probiotic strains and mouse feces, it was ascertained that effective strains do not synthesize IA themselves but can augment the concentration of IA in the gut by modulating the gut microbiota. Ultimately, we discovered that direct intervention with IA could mitigate diarrhea, allergic symptoms, and intestinal damage by modulating immunoglobulin E (IgE) levels, histamine, Th2 cytokines, and tight junction proteins, thereby corroborating that IA is a pivotal metabolite for the alleviation of food allergies. These observations underscore the significance of gut microbiota and metabolites like IA in the management of food allergies and hold potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Taolin Miao
- Children's ENT Department, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Children's ENT Department, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternal and Child Healthcare Hospital), Wuxi, China
| | - Qianger Zhuang
- Children's ENT Department, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi, China
| |
Collapse
|
4
|
Xie R, Yang F, Liu X, Ma X, Fu S, Wang X, Chen H, Li X. Allergenicity Reduction of Bovine β-Lactoglobulin Binding to Lactic Acid by Masking Epitopes with Lactylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27440-27450. [PMID: 39611295 DOI: 10.1021/acs.jafc.4c09679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Lactic acid, an important organic acid, commonly exists in a variety of foods. During food processing, lactic acid may undergo dehydration and condensation with proteins. This study investigated the effect of lactylation on the sensitization of bovine β-lactoglobulin during food processing. First, we screened 19 lactylation sites on β-lactoglobulin through mass spectrometry. Comparing the specific IgE/IgG epitopes of β-lactoglobulin, we found that lactylation masks it. At the same time, the structure of β-lactoglobulin is destroyed after binding to lactic acid. Animal experiment results show that the levels of antibodies (IgE and IgG1) and Th2-type cytokines (IL-4 and IL-13) in vivo induced by lactated β-lactoglobulin are significantly reduced. All results indicate that the allergenicity of β-lactoglobulin is reduced after lactylation. In conclusion, this study provides valuable insights into the molecular mechanisms underlying the reduction of β-lactoglobulin allergenicity by lactylation and lays a solid foundation for the application of lactylation in hypoallergenic foods.
Collapse
Affiliation(s)
- Ruofan Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Fan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Xin Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Xin Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Siqi Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
- Sino German Joint Research Institute, Nanchang University, 235 Nanjing Dong Road, Nanchang, Jiangxi 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| |
Collapse
|
5
|
Yu G, Wen W, Li Q, Chen H, Zhang S, Huang H, Zhang Q, Fu L. Heat-Processed Diet Rich in Advanced Glycation End Products Induced the Onset and Progression of NAFLD via Disrupting Gut Homeostasis and Hepatic Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39635825 DOI: 10.1021/acs.jafc.4c08360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Epidemiologic studies have suggested an association between the consumption of dietary advanced glycation end products (dAGEs) and the incidence of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanism by which dAGEs induce NAFLD development, particularly the pathogenic role of the gut-liver axis, remains poorly understood. In this study, by establishing a high-AGE diet (HAD)-fed C57BL/6 mouse model, we employed multiomics approaches combined with a series of biological analyses to investigate the effect of HAD on NAFLD in vivo. Our results showed that exposure to HAD led to fat accumulation, oxidative stress, inflammation, and fibrosis in the liver of mice. Transcriptome analysis further revealed that HAD exposure disrupted lipid metabolism and activated inflammation-related signaling pathways in the liver. Additionally, exposure to HAD induced perturbations in gut homeostasis, as evidenced by the compromised gut barrier function, reduced probiotic abundance, and increases in pathogenic bacterial proportions. Dysbiosis of gut homeostasis may further act as a trigger for the initiation and progression of NAFLD via the gut-liver axis. This study sheds light on the underlying mechanisms through which dAGEs contribute to the development of NAFLD and helps to understand the detrimental effects of food ultraprocessing products in modern diets. Future studies are needed to explore the in-depth mechanisms related to the gut-liver axis to consolidate our conclusions.
Collapse
Affiliation(s)
- Gang Yu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Wenjiabao Wen
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Qianqian Li
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Hongbo Chen
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Shuifeng Zhang
- National Pre-packaged Food Quality Supervision and Inspection Center, Zhejiang Fangyuan Test Group Co., LTD., Hangzhou 310018, China
| | - Hua Huang
- Quzhou Institute for Food and Drug Control, Quzhou 324000, China
| | - Qiaozhi Zhang
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| | - Linglin Fu
- School of Statistics and Mathematics and Collaborative Innovation Centre of Statistical Data, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, P. R. China
| |
Collapse
|
6
|
Alemu BK, Wang CC, Li L, Zhu Z, Li Q, Wang Y. Effect of preconception antibiotics exposure on female reproductive health and pregnancy outcomes: a systematic review and meta-analysis. EClinicalMedicine 2024; 78:102935. [PMID: 39687430 PMCID: PMC11647117 DOI: 10.1016/j.eclinm.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background The preconception period is a window of opportunity to influence maternal and pregnancy outcomes. Inappropriate use of antibiotics results in gut dysbiosis and may affect host reproductive health through multiple dimensions. Animal studies demonstrate that antibiotic treatment profoundly affects ovarian functions and the estrous cycle, and it has a direct implication for infertility. Infertility was defined as the inability to conceive after 12 months of unprotected intercourse. However, whether antibiotic exposure in the preconception period influences female fertility, miscarriage, and congenital malformation remains obscure and controversial. Methods A systematic review and meta-analysis until April 20, 2024, was conducted by searching PubMed, Web of Science, Scopus, and Science Direct without restrictions to designs and language. The risk of bias was assessed by two independent reviewers using the Newcastle Ottawa Scale (NOS) and the Risk of Bias 2 (RoB-2) tools. The report followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relative risks (RR), odds ratios (OR), and fecundability ratios (FR) with a 95% confidence interval (CI) were effect size measures determined with a random effect model. Heterogeneity across included studies was assessed using I 2 , T2, and H2. The review protocol is registered in PROSPERO, CRD42024515680. Findings Fifteen studies with a total of 1,206,583 participants were included. Preconception exposure to macrolides reduced the FR by 35% (FR: 0.65, 95% CI: 0.48, 0.88, P < 0.001). Sulfonamide users were also at 2.35 times (OR:2.35, 95% CI: 1.86, 2.97; P < 0.001) more risk of developing infertility. Using beta-lactams other than penicillin G reduced the odds of infertility by 64% (OR: 0.36, 95% CI: 0.26,0.50; P < 0.001). The possibility of infertility among quinolone users was 13% lower (OR: 0.87, 95% CI: 0.77, 0.99; P = 0.03) than non-users. Preconception antibiotics exposure increased the risk of spontaneous miscarriage by 34% (RR: 1.34, 95% CI: 1.16, 1.53; P < 0.001). Moreover, trimethoprim intake also increased the odds of congenital malformations by 85% (OR:1.85, 95% CI: 1.54, 2.23; P < 0.001). Interpretation Preconception antibiotics exposure in females increases the risk of infertility, miscarriage, and congenital anomalies. Macrolides, sulfonamides, and trimethoprim increase the risk of infertility, spontaneous miscarriage, and congenital malformation while beta-lactams and quinolones reduce the risk. Clinicians, pregnancy planners, and health care policymakers should be warranted for pregnancy needs and success. Further clinical and mechanistic studies are required to illustrate their specific functions and cause effects. Funding Funded by Leading Discipline Development Fund (No. 403947), The Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine; and The Hong Kong Obstetrical and Gynaecological Trust Fund.
Collapse
Affiliation(s)
- Bekalu Kassie Alemu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lianchun Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenyi Zhu
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qin Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yao Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
9
|
Lee HY, Nazmul T, Lan J, Oyoshi MK. Maternal influences on offspring food allergy. Immunol Rev 2024; 326:130-150. [PMID: 39275992 DOI: 10.1111/imr.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The prevalence of allergies has been globally escalating. While allergies could appear at any age, they often develop in early life. However, the significant knowledge gap in the field is the mechanisms by which allergies affect certain people but not others. Investigating early factors and events in neonatal life that have a lasting impact on determining the susceptibilities of children to develop allergies is a significant area of the investigation as it promotes the understanding of neonatal immune system that mediates tolerance versus allergies. This review focuses on the research over the recent 10 years regarding the potential maternal factors that influence offspring allergies with a view to food allergy, a potentially life-threatening cause of anaphylaxis. The role of breast milk, maternal diet, maternal antibodies, and microbiota that have been suggested as key maternal factors regulating offspring allergies are discussed here. We also suggest future research area to expand our knowledge of maternal-offspring interactions on the pathogenesis of food allergy.
Collapse
Affiliation(s)
- Hwa Yeong Lee
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tanuza Nazmul
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Jinggang Lan
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Michiko K Oyoshi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Xu X, Yuan J, Zhu M, Gao J, Meng X, Wu Y, Li X, Tong P, Chen H. The potential of orally exposed risk factors and constituents aggravating food allergy: Possible mechanism and target cells. Compr Rev Food Sci Food Saf 2024; 23:e70014. [PMID: 39230383 DOI: 10.1111/1541-4337.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
Food allergy is a significant concern for the health of humans worldwide. In addition to dietary exposure of food allergens, genetic and environmental factors also play an important role in the development of food allergy. However, only the tip of the iceberg of risk factors in food allergy has been identified. The importance of food allergy caused by orally exposed risk factors and constituents, including veterinary drugs, pesticides, processed foods/derivatives, nanoparticles, microplastics, pathogens, toxins, food additives, dietary intake of salt/sugar/total fat, vitamin D, and therapeutic drugs, are highlighted and discussed in this review. Moreover, the epithelial barrier hypothesis, which is closely associated with the occurrence of food allergy, is also introduced. Additionally, several orally exposed risk factors and constituents that have been reported to disrupt the epithelial barrier are elucidated. Finally, the possible mechanisms and key immune cells of orally exposed risk factors and constituents in aggravating food allergy are overviewed. Further work should be conducted to define the specific mechanism by which these risk factors and constituents are driving food allergy, which will be of central importance to the targeted therapy of food allergy.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Mengting Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- College of Food Science & Technology, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, P. R. China
| |
Collapse
|
11
|
Ko G, Unno T, Kim Y, Kim J. Dietary Polycan, a β-glucan originating from Aureobasidium pullulansSM-2001, attenuates high-fat-diet-induced intestinal barrier damage in obese mice by modulating gut microbiota dysbiosis. Food Sci Nutr 2024; 12:5824-5835. [PMID: 39139941 PMCID: PMC11317661 DOI: 10.1002/fsn3.4235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024] Open
Abstract
Various metabolic diseases caused by a high-fat diet (HFD) are closely related to gut microbiota dysbiosis and epithelial barrier dysfunction. Polycan, a type of β-glucan, is effective in treating anti-obesity and metabolic diseases caused by HFD. However, the effect of Polycan on dysbiosis and epithelial barrier damage is still unknown. In this study, the effects of Polycan on dysbiosis and intestinal barrier damage were investigated using HFD-induced obese model mice. C57BL/6 mice were fed a HFD for 12 weeks and treated with two different doses of Polycan (250 and 500 mg/kg) orally administered during weeks 9 to 12. Polycan supplementation increased the expression of tight junction genes (zonula occludens-1, occludin, and claudin-3) and short-chain fatty acid (SCFA) content while reducing toxic substances (phenol, p-cresol, and skatole). Most significantly, Polycan enriched SCFA-producing bacteria (i.e., Phocaeicola, Bacteroides, Faecalibaculum, Oscillibacter, Lachnospiraceae, and Muribaculaceae), and decreased the Firmicutes/Bacteroidetes ratio and toxic substances-producing bacteria (i.e., Olsenella, Clostridium XVIII, and Schaedlerella). Furthermore, microbial functional capacity prediction of the gut microbiota revealed that Polycan enriched many SCFA-related KEGG enzymes while toxic substance-related KEGG enzymes were depleted. These findings indicated that Polycan has the potential to alleviate HFD-induced intestinal barrier damage by modulating the function and composition of the gut microbiota.
Collapse
Affiliation(s)
- Gwang‐Pyo Ko
- Faculty of Biotechnology, School of Life SciencesSARI Jeju National UniversityJejuKorea
| | - Tatsuya Unno
- Department of MicrobiologyChungbuk National UniversityCheongjuKorea
| | | | - Jungman Kim
- Subtropical/Tropical Organism Gene Bank Jeju National UniversityJejuKorea
- Jeju Institute of Korean MedicineJejuKorea
| |
Collapse
|
12
|
Sun C, Wang Z, Li Y, Huang J. Antibiotic resistance spectrums of Escherichia coli and Enterococcus spp. strains against commonly used antimicrobials from commercial meat-rabbit farms in Chengdu City, Southwest China. Front Vet Sci 2024; 11:1369655. [PMID: 38756516 PMCID: PMC11096573 DOI: 10.3389/fvets.2024.1369655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Antimicrobial resistance (AMR) is commonly associated with the inappropriate use of antibiotics during meat-rabbit production, posing unpredictable risks to rabbit welfare and public health. However, there is limited research on the epidemiological dynamics of antibiotic resistance among bacteria indicators derived from local healthy meat-rabbits. To bridge the knowledge gap between antibiotic use and AMR distribution, a total of 75 Escherichia coli (E. coli) and 210 Enterococcus spp. strains were successfully recovered from fecal samples of healthy meat-rabbits. The results revealed that diverse AMR phenotypes against seven commonly used antimicrobials, including ampicillin (AMP), amoxicillin-clavulanic acid (A/C), doxycycline (DOX), enrofloxacin (ENR), florfenicol (FFC), gentamicin (GEN), and polymycin B (PMB), were observed among most strains of E. coli and Enterococcus spp. in two rabbit farms, although the distribution pattern of antibiotic resistance between young and adult rabbits was similar. Among them, 66 E. coli strains showed resistance against 6 antimicrobials except for PMB. However, 164 Enterococcus spp. strains only exhibited acquired resistance against DOX and GEN. Notably, the DOX-based AMR phenotypes for E. coli and Enterococcus spp. strains were predominant, indicating the existing environmental stress conferred by DOX exposure. The MICs tests suggested elevated level of antibiotic resistance for resistant bacteria. Unexpectedly, all GEN-resistant Enterococcus spp. strains resistant high-level gentamicin (HLGR). By comparison, the blaTEM, tetA, qnrS and floR were highly detected among 35 multi-resistant E. coli strains, and aac[6']-Ie-aph[2']-Ia genes widely spread among the 40 double-resistant Enterococcus spp. strains. Nevertheless, the presence of ARGs were not concordant with the resistant phenotypes for a portion of resistant bacteria. In conclusion, the distribution of AMR and ARGs are prevalent in healthy meat-rabbits, and the therapeutic antimicrobials use in farming practice may promote the antibiotic resistance transmission among indicator bacteria. Therefore, periodic surveillance of antibiotic resistance in geographic locations and supervisory measures for rational antibiotic use are imperative strategies for combating the rising threats posed by antibiotic resistance, as well as maintaining rabbit welfare and public health.
Collapse
Affiliation(s)
- Chen Sun
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Ziye Wang
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yan Li
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Institute of Qinhai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jian Huang
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Institute of Qinhai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
13
|
Lee SY, Park YM, Yoo HJ, Hong SJ. Metabolomic pathways in food allergy. Pediatr Allergy Immunol 2024; 35:e14133. [PMID: 38727629 DOI: 10.1111/pai.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Food allergy (FA) is a widespread issue, affecting as many as 10% of the population. Over the past two to three decades, the prevalence of FA has been on the rise, particularly in industrialized and westernized countries. FA is a complex, multifactorial disease mediated by type 2 immune responses and involving environmental and genetic factors. However, the precise mechanisms remain inadequately understood. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. A metabolome approach would facilitate the identification of surrogate metabolite markers reflecting the disease activity and prognosis. Here, we present a literature overview of recent metabolomic studies conducted on children with FA.
Collapse
Affiliation(s)
| | - Yoon Mee Park
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
15
|
Yang Q, Jia B, Shang J, Wang X, Xu L, Liu X, Fang M, Zeng F, Zeng HL, Gong Z. Effects of rosmarinic acid on immune response and intestinal microbiota in ovalbumin-induced intestinal allergy mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3002-3012. [PMID: 38053408 DOI: 10.1002/jsfa.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Rosmarinic acid (RA) is an active polyphenol that is widely found in various edible herbs. This study explored the potential anti-allergic activities and the underlying mechanisms of RA in ovalbumin (OVA)-induced intestinal allergic mice. RESULTS Forty female BALB/c mice were randomly divided into five groups: control group, model group (OVA sensitized/challenged), RA-Low group (OVA sensitized/challenged, 30 mg kg-1 RA intervention), RA-Middle group (OVA sensitized/challenged, 90 mg kg-1 RA intervention) and RA-High group (OVA sensitized/challenged, 270 mg kg-1 RA intervention). RA effectively attenuated allergic reactions, including alleviating allergic symptoms and regulating the hypothermia of mice in the model group. Moreover, the anaphylactic mediator (OVA-specific IgE, histamine and mMCP-1) levels of OVA allergic mice were markedly decreased after RA intervention. Quantitative polymerase chain reaction analysis showed that RA significantly inhibited Th2 cytokine expression, while Th1 and Treg cytokines were markedly increased. 16S rRNA gene sequence analysis indicated that RA effectively regulated the richness and diversity of the intestinal microbiota in OVA allergic mice. At the phylum level, the relative abundance of Bacteroidetes and Firmicutes and the Firmicutes/Bacteroidetes ratio were altered by RA intervention. At the genus level, RA was found to regulate the disturbances in the relative abundance of Muribaculaceae, Lactobacillus and Prevotella. CONCLUSION RA exhibited potential anti-allergic activity in OVA allergic mice by regulating hypersensitive immune responses and the intestinal microbiota structure. These results provide important evidence that RA can be developed into a novel functional food-derived ingredient against food allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Jieli Shang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xuanpei Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Fengbo Zeng
- Wuhan BioCSi Tech Laboratory Co. Ltd, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| |
Collapse
|
16
|
Lan Y, Hu Y, Guo Y, Ali F, Amjad N, Ouyang Q, Almutairi MH, Wang D. Microbiome analysis reveals the differences in gut fungal community between Dutch Warmblood and Mongolian horses. Microb Pathog 2024; 188:106566. [PMID: 38309310 DOI: 10.1016/j.micpath.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Similar to gut bacterial community, gut fungal community are also an important part of the gut microbiota and play crucial roles in host immune regulation and metabolism. However, most studies have focused on the gut bacterial community, and research on the gut fungal community has been limited. Dutch Warmblood (DWH) and Mongolian horses (MGH) are important equine breeds, but little research has been done on their gut fungal community. Here, we assessed differences in gut fungal community between two horse species. Results showed that a total of 2159 OTUs were found in the Dutch Warmblood and Mongolian horses, of which 308 were common. Between-group analyzes of microbial diversity showed no differences in the alpha and beta diversity of gut fungal community between the two horse species. Microbiological taxonomic surveys showed that the dominant fungal phyla (Neocallimastigomycota and Ascomycota) and genera (unclassified_Neocallimastigaceae and Anaeromyces) were the same without being affected by species. Although the types of dominant fungal phyla did not change, the abundances of some fungal genera changed significantly. Results of Metastats analysis showed that there were a total of 206 fungal genera that were significantly different between the two horses, among which 78 genera showed an increase and 127 genera significantly decreased in Dutch Warmblood horses compared with Mongolian horses. In conclusion, this study investigated the composition and structure of the gut fungal community of Dutch Warmblood and Mongolian horses and found significant differences in gut fungal community between both breeds. Notably, this is the first exploration of the differences in the gut fungal community of both breeds, which may help to understand the distribution characteristics of the gut fungal community of different breeds of horses and reveal the differences in the traits of different horses.
Collapse
Affiliation(s)
- Yanfang Lan
- Wuhan Business University, Wuhan, 430100, China
| | - Yunyun Hu
- Wuhan Business University, Wuhan, 430100, China
| | | | - Farah Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nouman Amjad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa City, Tibet, 850009, China; State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa City, Tibet, 850009, China.
| |
Collapse
|
17
|
Ye Y, Wang T, Wang JS, Ji J, Ning X, Sun X. Antibiotic altered liver damage induced by aflatoxin B1 exposure in mice by modulating the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123291. [PMID: 38176639 DOI: 10.1016/j.envpol.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Aflatoxins B1 (AFB1) and antibiotic (AN) carry co-exposure risks, with the gut being a target organ for their combined effects. However, the current understanding of the impact of AN on gut and liver injury induced by AFB1 remains limited. In this study, we conducted a 9-week investigation into the implications of AN (ampicillin and penicillin) treatment on AFB1-induced intestinal and liver injury in C57BL/6J male mice fed a normal diet (ND) and a high-fat diet (HFD). The results showed that AN treatment significantly reduce the total number and diversity of intestinal species in both ND and HFD mice exposed to AFB1. Moreover, AN treatment alleviated AFB1-induced liver injury and lipid accumulation in mice on ND and HFD, while improving abnormal lipid metabolism in the liver and serum. However, AN treatment also promoted intestinal damage and reduced the levels of short-chain fatty acids in the gut. Correlation analysis demonstrated that, under the two dietary patterns, microorganisms across various genera were significantly positively or negatively correlated with alterations in liver, serum, and intestinal biochemical indexes. These genera include Akkermansia, Robinsoniella, Parabacteroides, Escherichia-Shigel, and Parabacteroides, Odoribacter. AN may alleviate long-term AFB1-induced liver injury through the regulation of intestinal microorganisms, with the effect being more pronounced in mice following an HFD pattern. These findings provide novel insights into the effects of AFB1 on the gut‒liver axis under complex exposure conditions, as well as the relationship between gut microbial homeostasis and liver injury across different dietary patterns.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Tingwei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing, 100050, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| |
Collapse
|
18
|
Zhan M, Yang X, Zhao C, Han Y, Xie P, Mo Z, Xiao J, Cao Y, Xiao H, Song M. Dietary nobiletin regulated cefuroxime- and levofloxacin-associated "gut microbiota-metabolism" imbalance and intestinal barrier dysfunction in mice. Food Funct 2024; 15:1265-1278. [PMID: 38196314 DOI: 10.1039/d3fo04378a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Nobiletin (NOB) exhibits significant biological activities and may be a potential dietary treatment for antibiotic-associated gut dysbiosis. In this study, mice were gavaged with 0.2 mL day-1 of 12.5 g L-1 cefuroxime (LFX) and 10 g L-1 levofloxacin (LVX) for a duration of 10 days, accompanied by 0.05% NOB to investigate the regulatory effect and potential mechanisms of NOB on antibiotic-induced intestinal microbiota disorder and intestinal barrier dysfunction. Our results indicated that dietary NOB improved the pathology of intestinal epithelial cells and the intestinal permeability by upregulating the expression of intestinal tight junction proteins (TJs) and the number of goblet cells. Furthermore, dietary NOB reduced the levels of serum lipopolysaccharide (LPS) and pro-inflammatory factors (TNF-α and IL-1β), thereby facilitating the restoration of the intestinal mucosal barrier. Additionally, dietary NOB increased the abundance of beneficial bacteria f_Lachnospiraceae and regulated the metabolic disorders of short-chain fatty acids (SCFAs) and bile acids (BAs). Notably, NOB supplementation resulted in elevated levels of butyric acid and lithocholic acid (LCA), which contributed to the repair of the intestinal mucosal barrier function and the maintenance of intestinal homeostasis. Collectively, our results propose a healthy dietary strategy for the prevention or mitigation of antibiotic-associated gut dysbiosis by dietary NOB.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanhui Han
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shanxi 710062, P.R. China
| | - Peichun Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Zheqi Mo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Cheng JH, Li J, Sun DW. In vivo biological analysis of cold plasma on allergenicity reduction of tropomyosin in shrimp. Food Chem 2024; 432:137210. [PMID: 37659333 DOI: 10.1016/j.foodchem.2023.137210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
In vivo biological regulations of the allergenicity of tropomyosin (TM) treated by cold plasma (CP) were investigated by in vivo mouse model. The sensitization models of Balb/c mice were successfully established. CP treatment reduced the allergic symptoms of mice and regulated the Th1/Th2 balance to prevent allergy by activating Treg cells, which was deduced by serum and cytokines analysis. For intestinal flora analysis, allergy occurrence was accompanied by the decreased species abundance and the increased species diversity of intestinal flora. The significant species composition difference between the TM group and the PBS group showed a possible connection between bacterial diversity and allergy. Furthermore, Firmicutes, Bacteroidetes, Parabacteroides, Alloprevotella, Bacteroides, and Lachnospiraceae could relate to allergy occurrence. Intestinal section analysis suggested that allergy occurrence was accompanied by the damaged intestinal structure, and CP treatment could relieve the damage caused by an allergy.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Li T, Xu B, Chen H, Shi Y, Li J, Yu M, Xia S, Wu S. Gut toxicity of polystyrene microplastics and polychlorinated biphenyls to Eisenia fetida: Single and co-exposure effects with a focus on links between gut bacteria and bacterial translocation stemming from gut barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168254. [PMID: 37923278 DOI: 10.1016/j.scitotenv.2023.168254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Microplastics' (MPs) ability to sorb and transport polychlorinated biphenyls (PCBs) in soil ecosystems warrants significant attention. Although organisms mainly encounter pollutants through the gut, the combined pollution impact of MPs and PCBs on soil fauna gut toxicity remains incompletely understood. Consequently, this study examined the gut toxicity of polystyrene MPs (PS-MPs) and PCB126 on Eisenia fetida, emphasizing the links between gut bacteria and bacterial translocation instigated by gut barrier impairment. Our findings underscored that E. fetida could ingest PS-MPs, which mitigated the PCB126 accumulation in E. fetida by 9.43 %. Exposure to PCB126 inhibited the expression of gut tight junction (TJ) protein genes. Although the presence of PS-MPs attenuated this suppression, it didn't alleviate gut barrier damage and bacterial translocation in the co-exposure group. This group demonstrated a significantly increased level of gut bacterial load (BLT, ANOVA, p = 0.005 vs control group) and lipopolysaccharide-binding protein (LBP, ANOVA, all p < 0.001 vs control, PCB, and PS groups), both of which displayed significant positive correlations with antibacterial defense. Furthermore, exposure to PS-MPs and PCB126, particularly within the co-exposure group, results in a marked decline in the dispersal ability of gut bacteria. This leads to dysbiosis (Adonis, R2 = 0.294, p = 0.001), with remarkable signature taxa such as Janthinobacterium, Microbacterium and Pseudomonas, being implicated in gut barrier dysfunction. This research illuminates the mechanism of gut toxicity induced by PS-MPs and PCB126 combined pollution in earthworms, providing novel insights for the ecological risk assessment of soil.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
21
|
Sillcox C, Gabrielli S, O'Keefe A, McCusker C, Abrams EM, Eiwegger T, Atkinson A, Kim V, Copaescu AM, Ben-Shoshan M. Assessing Pediatric Cephalosporin Allergic Reactions Through Direct Graded Oral Challenges. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:156-164.e4. [PMID: 37832819 DOI: 10.1016/j.jaip.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Cephalosporins, β-lactam antibiotics, commonly cause allergic reactions. OBJECTIVE To assess the clinical characteristics and management of pediatric patients with suspected cephalosporin allergy using direct graded oral challenges (GOCs). METHODS Children referred for suspected cephalosporin allergy at 4 Canadian clinics were recruited over 10 years. Data on demographics, clinical reaction characteristics, and management were collected through a questionnaire. Patients underwent a direct GOC (initially 10% of the treatment dose, then 90% after 20 min), and reactions were monitored 1 week postchallenge. Families were contacted annually for up to 5 years to detect subsequent antibiotic reactions. Logistic regression analysis identified factors associated with positive GOC reactions. RESULTS Among the 136 patients reporting cephalosporin allergy, 75 (55.1%) were males with a median age of 3.9 years (interquartile range 2.3-8.7). Cefprozil represented the most common cephalosporin linked to the index reaction (67.6% of cases). Of the 136 direct GOCs, 5.1% had an immediate and 4.4% a nonimmediate reaction, respectively. Positive GOCs conducted in children with a history of skin-limited nonsevere rashes were classified as mild, benign skin rashes. Positive GOCs were more likely in children with food allergies (adjusted odds ratio 1.14; 95% confidence interval [95% CI] 1.00-1.29). CONCLUSIONS Direct GOCs are safe and effective for diagnosing pediatric cases that report nonvesicular skin-limited symptoms while being treated with cephalosporins.
Collapse
Affiliation(s)
- Carly Sillcox
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Sofianne Gabrielli
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew O'Keefe
- Department of Pediatrics, Faculty of Medicine, Memorial University, St. John's, NL, Canada
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Elissa M Abrams
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, Children's Hospital Research Institute of Manitoba, Winnipeg, Man, Canada
| | - Thomas Eiwegger
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria; Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria; Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ont, Canada; Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ont, Canada
| | - Adelle Atkinson
- Division of Clinical Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ont, Canada
| | - Vy Kim
- Division of Clinical Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ont, Canada
| | - Ana-Maria Copaescu
- Division of Allergy and Clinical Immunology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Moshe Ben-Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Hays KE, Pfaffinger JM, Ryznar R. The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease. Gut Microbes 2024; 16:2393270. [PMID: 39284033 PMCID: PMC11407412 DOI: 10.1080/19490976.2024.2393270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.
Collapse
Affiliation(s)
- Kallie E Hays
- Doctor of Osteopathic Medicine Program, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| | - Jacob M Pfaffinger
- Doctor of Osteopathic Medicine Program, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Englewood, CO, USA
| |
Collapse
|
23
|
Li N, Xiao X, Zhang H, Bai Z, Li M, Sun J, Dong Y, Zhu W, Fei Z, Sun X, Xiao P, Gao Y, Zhou D. Sterile soil mitigates the intergenerational loss of gut microbial diversity and anxiety-like behavior induced by antibiotics in mice. Brain Behav Immun 2024; 115:179-190. [PMID: 37848098 DOI: 10.1016/j.bbi.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
The decline in gut microbial diversity in modern humans is closely associated with the rising prevalence of various diseases. It is imperative to investigate the underlying causes of gut microbial loss and restoring methods. Although the impact of non-perinatal antibiotic use on gut microbiota has been recognized, its intergenerational effects remain unexplored. Our previous research has highlighted soil in the farm environment as a key factor for gut microbiome health by restoring gut microbial diversity and balance. In this study, we investigated the intergenerational consequences of antibiotic exposure and the therapeutic potential of sterile soil. We treated C57BL/6 mice with vancomycin and streptomycin for 2 weeks continuously, followed by a 4-8 week withdrawal period before breeding. The process was repeated across 3 generations. Half of the mice in each generation received an oral sterile soil intervention. We assessed gut microbial diversity, anxiety behavior, microglial reactivity, and gut barrier integrity across generations. Antibiotic exposure led to a decrease in gut microbial diversity over generations, along with aggravated anxiety behavior, microgliosis, and altered intestinal tight junction protein expression. Oral sterile soil intervention restored gut microbial diversity in adult mice across generations, concomitantly rescuing abnormalities in behavior, microgliosis, and intestinal barrier integrity. In conclusion, this study simulated an important process of the progressive loss of gut microbiota diversity in modern humans and demonstrated the potential of sterile soil to reverse this process. This study provides a theoretical and experimental basis for research and interventions targeting multiple modern chronic diseases related to intestinal microorganisms.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Xiaoao Xiao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Honglin Zhang
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China
| | - Mengjie Li
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Jia Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yangyang Dong
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dongrui Zhou
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
24
|
Shi J, Dong P, Liu C, Xu Y, Zheng M, Cheng L, Wang J, Raghavan V. Lactobacillus rhamnosus Probio-M9 alleviates OVA-sensitized food allergy through modulating gut microbiota and its metabolism. Food Funct 2023; 14:10784-10795. [PMID: 37982421 DOI: 10.1039/d3fo03321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Over the past few decades, food allergy has continued to rise, significantly affecting our health, economy, and quality of life. However, current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies is to modulate immunity and microbiota. Human milk (HM) could be considered a protective factor against food allergy, but how probiotics in human milk impact the susceptibility to food allergy remains unknown. Therefore, we studied the preventive impact of human milk Lactobacillus rhamnosus Probio-M9 on food allergy in ovalbumin (OVA)-sensitized mice. We studied the effects of oral administration of Probio-M9 on allergic signatures, immune response, gut microbiota, and metabolism. Oral therapeutic administration of live Probio-M9, but not heat-killed Probio-M9, significantly reduces OVA-specific IgE (OVA-sIgE), histamine, and mMCP-1 (mouse mast cell protease-1) levels in OVA-sensitized mice. Moreover, Probio-M9 supplementation reduced allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response. 16S rDNA sequencing analysis revealed an increased ratio of Firmicutes/Bacteroidota (F/B) and the relative abundance of short-chain fatty acid (SCFA)-producing Clostridia in the feces after Probio-M9 intake. Simultaneously, Probio-M9 significantly increased the levels of SCFAs and promoted the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing the expression of the antimicrobial peptides (AMPs) Reg3b and Reg3g. Our findings suggest that the use of Probio-M9 can be a potent strategy in food allergy prevention.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yan Xu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Mingzhu Zheng
- Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| |
Collapse
|
25
|
Ren Y, Tian Y, Hou M, Zhao Y, Li J, Aftab U, Rousseau X, Jiang R, Kang X, Tian Y, Gong Y. Evaluation of stimbiotic on growth performance and intestinal development of broilers fed corn- or wheat-based diets. Poult Sci 2023; 102:103094. [PMID: 37931376 PMCID: PMC10633449 DOI: 10.1016/j.psj.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023] Open
Abstract
In the antibiotics-free era, stimbiotic (STB) has been suggested as a new alternative of antibiotic growth promoters to modulate intestinal health via stimulating dietary fiber utilization in poultry production. The aim of this study was to evaluate the effects of STB supplementation in corn- or wheat-basal diet on growth performance, intestinal development, and function of broilers. A total of 512 one-day-old Arbor Acres(AA)broilers were randomly allocated 4 treatments, including corn group (CG), corn + 100 g/t STB (CG + STB), wheat group (WG), wheat + 100 g/t STB (WG + STB). The broilers were weighed at the days of 14, 28, and 42, of which 8 repetitions per treatment were randomly selected to determine the intestinal morphology, intestinal barrier, and cecal microbiota and metabolites. Our data showed that STB increased (P < 0.05) feed intake, body weight and reduced FCR for the overall period (0-42 d). At 28 d of age, significant increases in villus height and the villus height-to-crypt depth ratio (V/C) were found in the STB supplementation groups (P < 0.05). Addition of STB significantly increased intestinal mucosal DAO and AMPK enzyme activity and the gene expression of OCLN, CLDN1, ZO1, MUC2, SGLT1, PEPT1, FABP2, Ghrelin, and GCG in jejunum (P < 0.05), and significantly decreased the expression of the PYY gene. In addition, STB increased the relative abundance of beneficial bacteria, such as Akkermansia, Bifidobacterium, and Oscillospirales (P < 0.05). A significant increase in cecal short-chain fatty acid (SCFAs) concentration was also observed in the STB supplementation groups. At the cellular level, STB cannot directly increase the expression of small intestinal epithelial cells, and may indirectly improve intestinal barrier function by increasing the level of sodium butyrate. Overall, these results indicated that STB supplementation could improve the growth performance, intestinal development and barrier functions, and fiber fermentation in cecum of broiler chickens.
Collapse
Affiliation(s)
- Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- AB Vista, Marlborough SN8 4AN, UK
| | | | | | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
26
|
Wang Z, Li L, Yan H, Li W, Pang Y, Yuan Y. Salidroside Ameliorates Furan-Induced Testicular Inflammation in Relation to the Gut-Testis Axis and Intestinal Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17968-17987. [PMID: 37943949 DOI: 10.1021/acs.jafc.3c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Furan is a heat-induced food contaminant, and it causes damage to visceral organs, including the testis. To determine the mechanism of the damage to the testis, a mouse model treated with furan (8 mg/kg bw/day) and salidroside (SAL, 10/20/40 mg/kg bw/day) was established, and levels of testicular functional markers and changes of morphology were investigated in furan-induced mice treated with SAL. The change in related proteins and genes suggested that SAL restored the furan-mediated leaky tight junction and triggered the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome together with inflammation. To find out the gut-testis axis, microbiota PICRUSt analysis and correlation analysis were conducted to investigate the core microbiota and metabolites. The endoplasmic reticulum stress (ERS)-related key protein levels and the result of transmission electron microscopy suggested that SAL inhibited the furan-induced intestinal ERS. The result of TUNEL and levels of apoptosis-related proteins suggested that furan-induced intestinal apoptosis was alleviated by SAL. Collectively, SAL inhibited furan-induced ERS-mediated intestinal apoptosis through modulation of intestinal flora and metabolites, thus strengthening the gut barrier. It inhibited LPS from entering the circulatory system and suppressed the testicular TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome, which alleviated testicular inflammation.
Collapse
Affiliation(s)
- Ziyue Wang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Wenliang Li
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yong Pang
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, China 130062
| |
Collapse
|
27
|
Wan Y, Yang L, Li Q, Wang X, Zhou T, Chen D, Li L, Wang Y, Wang X. Stability and emetic activity of enterotoxin like X (SElX) with high carrier rate of food poisoning Staphylococcus aureus. Int J Food Microbiol 2023; 404:110352. [PMID: 37549593 DOI: 10.1016/j.ijfoodmicro.2023.110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
In order to analyze and clarify the thermal stability of food poisoning Staphylococcus aureus (S. aureus) enterotoxin-like X (SElX) and the biological characteristics of digestive enzymes, and to evaluate the risk of S. aureus carrying selx gene in food poisoning, the selx gene carrying rates of 165 strains isolated from 95 food poisoning events from 2006 to 2019 were first statistically analyzed. Subsequently, the purified recombinant SElX protein was digested and heated, and the superantigen activity was verified with mouse spleen cells and peripheral blood mononuclear cells of kittens. At the same time, the emetic activity and toxicity of SElX were evaluated using the kitten vomiting animal model, mice toxin model and in vitro cell models. The results showed the selx gene carrying rate of 165 food poisoning S. aureus strains was 90.30 %. SElX had significant resistance to heat treatment and pepsin digestion (pH = 4.0 and pH = 4.5), and had good superantigen activity and emetic activity. However, there is no significant lethal effect on mice and no significant toxicity to cells. Importantly, we found that SElX had an inhibitory effect on acidic mucus of goblet cells in various segments of the small intestine. The present study investigated the stability of SElX, and confirmed the emetic activity of SElX by establishing a kitten vomiting model for the first time, suggesting that SElX is a high risk toxin of food poisoning, which will provide new ideas for the prevention and control of S. aureus food poisoning.
Collapse
Affiliation(s)
- Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Yeru Wang
- Risk Assessment Division China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Zou Y, Liao R, Cheng R, Chung H, Zhu H, Huang Y. Alterations of gut microbiota biodiversity and relative abundance in women with PCOS: A systematic review and meta-analysis. Microb Pathog 2023; 184:106370. [PMID: 37739322 DOI: 10.1016/j.micpath.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Numerous studies have implicated that the gut microbiota is associated with polycystic ovary syndrome (PCOS). However, a comprehensive data-based summary shown that the effects of the PCOS on the gut microbiota is minimal. We aim to assess the alterations of gut microbiota in women with PCOS. METHODS An electronic search of PubMed, Web of Science, Embase, Cochrane Library and Ovid was conducted for eligible studies published from inception to 28 March 2023, without any language or regional restrictions. We used Newcastle-Ottawa Quality Assessment Scale (NOS) to complete the assessment of the risk of bias and Stata 15.1 software to performed meta-analysis. RESULTS There were 19 human observational studies in total with 617 women with PCOS and 439 healthy individuals were identified. Compared to the control group, the Chao index (WMD -28.88, 95% CI -45.78 to -11.98, I2 = 100%), Shannon index (WMD -0.11, 95% CI -0.18 to 0.00, I2 = 92.2%); and observed operational taxonomic units (OTUs) counts (WMD - 23.48, 95% CI -34.44 to -12. 53, I2 = 99.6%) were significantly lower in women with PCOS. The relative abundance of Bacteroidaceae was significantly higher (WMD 0.12, 95% CI 0.02 to 0.22, I2 = 9.2%), however there were no statistical differences in Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Alcaligenaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Lachnospiraceae, Prevotellaceae, Ruminococcaceae, Veillonellaceae, Bacteroides, Bifidobacterium, Blautia, Dialister, Escherichia-Shigella, Faecalibacterium, Lachnoclostridium, Lachnospira, Megamonas, Phascolarctobacterium, Prevotella, Roseburia, and Subdoligranulum. CONCLUSION We demonstrated the alpha diversity of gut microbiota and the relative abundance of Bacteroidaceae in women with PCOS are altered. The results indicates that dysbiosis may be a potential pathogenetic factor in PCOS and provided reliable information to investigate the role of gut microbiota in the development and progression of PCOS.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ruoyuan Liao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Rui Cheng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Huiyee Chung
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hongqiu Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
29
|
Elizalde-Torrent A, Borgognone A, Casadellà M, Romero-Martin L, Escribà T, Parera M, Rosales-Salgado Y, Díaz-Pedroza J, Català-Moll F, Noguera-Julian M, Brander C, Paredes R, Olvera A. Vaccination with an HIV T-Cell Immunogen (HTI) Using DNA Primes Followed by a ChAdOx1-MVA Boost Is Immunogenic in Gut Microbiota-Depleted Mice despite Low IL-22 Serum Levels. Vaccines (Basel) 2023; 11:1663. [PMID: 38005995 PMCID: PMC10675013 DOI: 10.3390/vaccines11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the important role of gut microbiota in the maturation of the immune system, little is known about its impact on the development of T-cell responses to vaccination. Here, we immunized C57BL/6 mice with a prime-boost regimen using DNA plasmid, the Chimpanzee Adenovirus, and the modified Vaccinia Ankara virus expressing a candidate HIV T-cell immunogen and compared the T-cell responses between individuals with an intact or antibiotic-depleted microbiota. Overall, the depletion of the gut microbiota did not result in significant differences in the magnitude or breadth of the immunogen-specific IFNγ T-cell response after vaccination. However, we observed marked changes in the serum levels of four cytokines after vaccinating microbiota-depleted animals, particularly a significant reduction in IL-22 levels. Interestingly, the level of IL-22 in serum correlated with the abundance of Roseburia in the large intestine of mice in the mock and vaccinated groups with intact microbiota. This short-chain fatty acid (SCFA)-producing bacterium was significantly reduced in the vaccinated, microbiota-depleted group. Therefore, our results indicate that, although microbiota depletion reduces serum levels of IL-22, the powerful vaccine regime used could have overcome the impact of microbiota depletion on IFNγ-producing T-cell responses.
Collapse
Affiliation(s)
- Aleix Elizalde-Torrent
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Alessandra Borgognone
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Maria Casadellà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Luis Romero-Martin
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - Tuixent Escribà
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Mariona Parera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Yaiza Rosales-Salgado
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Jorge Díaz-Pedroza
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (Y.R.-S.); (J.D.-P.)
| | - Francesc Català-Moll
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
| | - Marc Noguera-Julian
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
| | - Christian Brander
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Aelix Therapeutics, 08028 Barcelona, Spain
| | - Roger Paredes
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- Facultat de Medicina, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Fight AIDS Foundation, Infectious Diseases Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Department of Infectious Diseases Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Alex Olvera
- Irsicaixa—AIDS Research Institute, 08916 Barcelona, Spain; (A.E.-T.); (A.B.); (M.C.); (L.R.-M.); (T.E.); (M.P.); (F.C.-M.); (M.N.-J.); (C.B.); (R.P.)
- CIBERINFEC—ISCIII, 28029 Madrid, Spain
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic—Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
30
|
Chen C, Sang Z, Xie Q, Xue W. Effects of hazelnut protein isolate-induced food allergy on the gut microenvironment in a BALB/c mouse model. Food Funct 2023; 14:8761-8774. [PMID: 37718731 DOI: 10.1039/d3fo02324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hazelnuts are reported as among the nuts that cause severe allergic reactions. However, few systematic studies exist on the changes in the gut microenvironment following hazelnut allergy. This study focused on the effects of hazelnut allergy on the duodenum, jejunum, ileum and colon microenvironment in vivo. We established a hazelnut protein isolate (HPI)-allergic mouse model, which was distinguished by the visible allergy symptoms, dropped temperatures and enhanced allergic inflammatory factor levels in serum, such as HPI-specific immunoglobulin E (sIgE), sIgG2a, interleukin-4, histamine, mouse mast cell protease-1, TNF-α, monocyte chemotactic protein-1 and lipopolysaccharide. For HPI sensitized mice, aggravated mast cell degranulation, severe morphologic damage and inflammatory cell infiltration were observed in the duodenum, jejunum, ileum, and colon, while goblet cell numbers were reduced in the duodenum, jejunum and ileum. Secretory IgA of the jejunum and tight junctions of the duodenum and jejunum were decreased significantly after HPI sensitization. There was no remarkable difference in the pH values of small intestinal contents, but the pH values of colonic contents were elevated, which was due to the decreased short-chain fatty acids (mainly acetate, propionate and butyrate) in the colon. The antioxidant capacity of both large and small intestinal contents declined after HPI sensitization, as evidenced by the increased malondialdehyde and decreased superoxide dismutase activity. HPI sensitization induced gut microbiota dysbiosis with decreased α diversity and altered β diversity in colonic contents. Spearman correlation analysis indicated that the increased characteristic genera, namely Bacteroides, Lactobacillus, Alloprevotella, Erysipelatoclostridium, Parabacteroides, and Helicobacter, played potentially synergistic roles in promoting allergy and gut microenvironment dysregulation.
Collapse
Affiliation(s)
- Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ziqing Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Notarbartolo V, Carta M, Accomando S, Giuffrè M. The First 1000 Days of Life: How Changes in the Microbiota Can Influence Food Allergy Onset in Children. Nutrients 2023; 15:4014. [PMID: 37764797 PMCID: PMC10534753 DOI: 10.3390/nu15184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Allergic disease, including food allergies (FA)s, has been identified as a major global disease. The first 1000 days of life can be a "window of opportunity" or a "window of susceptibility", during which several factors can predispose children to FA development. Changes in the composition of the gut microbiota from pregnancy to infancy may play a pivotal role in this regard: some bacterial genera, such as Lactobacillus and Bifidobacterium, seem to be protective against FA development. On the contrary, Clostridium and Staphylococcus appear to be unprotective. METHODS We conducted research on the most recent literature (2013-2023) using the PubMed and Scopus databases. We included original papers, clinical trials, meta-analyses, and reviews in English. Case reports, series, and letters were excluded. RESULTS During pregnancy, the maternal diet can play a fundamental role in influencing the gut microbiota composition of newborns. After birth, human milk can promote the development of protective microbial species via human milk oligosaccharides (HMOs), which play a prebiotic role. Moreover, complementary feeding can modify the gut microbiota's composition. CONCLUSIONS The first two years of life are a critical period, during which several factors can increase the risk of FA development in genetically predisposed children.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Neonatal Intensive Care Unit with Neonatology, “G.F. Ingrassia” Hospital Unit, ASP 6, 90131 Palermo, Italy;
| | - Maurizio Carta
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinic “Paolo Giaccone”, 90127 Palermo, Italy;
| | - Salvatore Accomando
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | - Mario Giuffrè
- Neonatology and Neonatal Intensive Care Unit, University Hospital Policlinic “Paolo Giaccone”, 90127 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
32
|
Dissanayake WMN, Chandanee MR, Lee SM, Heo JM, Yi YJ. Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis. Anim Biosci 2023; 36:1403-1413. [PMID: 37170509 PMCID: PMC10472154 DOI: 10.5713/ab.23.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. METHODS Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. RESULTS The IAP activity was significantly lower in the ileum samples of the dysbiosisinduced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. CONCLUSION The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.
Collapse
Affiliation(s)
| | - Malavige Romesha Chandanee
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922,
Korea
| | - Sang-Myeong Lee
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644,
Korea
| | - Jung Min Heo
- College of Agriculture and Life Sciences, Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922,
Korea
| |
Collapse
|
33
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
34
|
Muniz AKOA, Vianna EO, Padilha LL, Nascimento JXPT, Batista RFL, Barbieri MA, Bettiol H, Ribeiro CCC. Sugar-Sweetened Beverages and Allergy Traits at Second Year of Life: BRISA Cohort Study. Nutrients 2023; 15:3218. [PMID: 37513636 PMCID: PMC10383806 DOI: 10.3390/nu15143218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Sugar-Sweetened Beverage (SSBs) consumption has risen in early life and it is plausible that it might increase children's risk of allergies. In this paper, we analyzed the association of SSB consumption with allergies in children's second year of life. This study analyzed data from a São Luís BRISA prenatal cohort in the follow-up of children (n = 1144) in their second year of life. Allergy Traits were a latent variable deduced from medical diagnoses of allergic rhinitis, atopic dermatitis, and food allergies. SSBs were investigated as a percentage of daily calories based on 24 h recalls, including industrialized fruit juices, soft drinks, and ready-made chocolate milk. Other variables analyzed were socioeconomic status, age, body mass index z-score, episodes of diarrhea, and breastfeeding. Our finds were that higher consumption of daily calories from SSBs was associated with higher Allergy Trait values (SC = 0.174; p = 0.025); older age (SC = -0.181; p = 0.030) was associated with lower Allergy Trait values; and episodes of diarrhea were correlated with Allergy Traits (SC = 0.287; p = 0.015). SSB exposure was associated with Allergy Traits in children's second year of life; thus, abstaining from these beverages may also confer additional advantages in curtailing allergic diseases during early childhood.
Collapse
Affiliation(s)
| | - Elcio Oliveira Vianna
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Luana Lopes Padilha
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| | | | - Rosangela Fernandes Lucena Batista
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| | - Marco Antonio Barbieri
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Heloisa Bettiol
- Ribeirão Preto Medical School, University of São Paulo-USP, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Cecilia Claudia Costa Ribeiro
- Postgraduate Program in Public Health, Department of Public Health, Federal University of Maranhão-UFMA, Sao Luis 65020-060, Maranhao, Brazil
| |
Collapse
|
35
|
Xie Q, Liu C, Fu W, Chen C, Gu S, Luo D, Xue W. Intestinal microenvironment-mediated allergic dynamic phenotypes and endotypes in the development of gluten allergy. Food Res Int 2023; 169:112840. [PMID: 37254413 DOI: 10.1016/j.foodres.2023.112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to investigate the dynamic changes in intestinal microenvironment factors in the development of gluten-induced allergy (GA). Our results showed that GA provoked increasingly severe allergic phenotypes such as allergic and diarrheal symptoms with the gluten sensitization frequency, which was accompanied by dynamically rising levels of gluten-specific immunoglobulin (Ig) E, IgG2a and IgA, serum histamine, T cell-related inflammatory cytokines, and intestinal indexes. An increase in luminal pH was more significant in the large intestine versus the small intestine, which was due to a dynamic decline in colonic short-chain fatty acid levels. Both antioxidant capacity and intestinal permeability in the large intestine varied with the GA severity, as evidenced by a dynamic increase in the malondialdehyde content and a decrease in the superoxide dismutase activity and total antioxidant capacity. Moreover, we demonstrated that intestinal microenvironment dysbiosis occurred before a true allergy reaction began. Spearman correlation analysis suggested that the characteristic bacterial cluster, namely Alistipes, Desulfovibrio, Ileibacterium, Parabacteroides, and Ruminococcus torques group, are essential in the association between GA and intestinal microenvironment homeostasis.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Chenglong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Wenhui Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, PR China.
| |
Collapse
|
36
|
Ma RX, Hu JQ, Fu W, Zhong J, Cao C, Wang CC, Qi SQ, Zhang XL, Liu GH, Gao YD. Intermittent fasting protects against food allergy in a murine model via regulating gut microbiota. Front Immunol 2023; 14:1167562. [PMID: 37228621 PMCID: PMC10205017 DOI: 10.3389/fimmu.2023.1167562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.
Collapse
Affiliation(s)
- Ru-xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Guang-hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Zhan M, Liang X, Chen J, Yang X, Han Y, Zhao C, Xiao J, Cao Y, Xiao H, Song M. Dietary 5-demethylnobiletin prevents antibiotic-associated dysbiosis of gut microbiota and damage to the colonic barrier. Food Funct 2023; 14:4414-4429. [PMID: 37097253 DOI: 10.1039/d3fo00516j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
5-Demethylnobiletin (5DN) is an important ingredient of citrus extract that is rich in polymethoxyflavones (PMFs). In this study, we systemically investigated the preventive effects of 5DN on antibiotic-associated intestinal disturbances. Experimental mice were gavaged 0.2 mL per day of the antibiotic cocktail (12.5 g L-1 cefuroxime and 10 g L-1 levofloxacin) for 10 days, accompanied by dietary 0.05% 5DN for 10 and 20 days. The results showed that the combination of cefuroxime and levofloxacin caused swelling of the cecum and injury to the colon tissue. Meanwhile, the balance of intestinal oxidative stress and the barrier function of mice was also damaged by the antibiotics through upregulation of the relative mRNA levels of superoxide dismutase 3 (SOD3), quinine oxidoreductase 1 (NQO1) and glutathione peroxidase 1 (GPX1), and downregulation of the relative protein levels of tight junction proteins (TJs). Moreover, antibiotic exposure led to disorder of the gut microbiota, particularly increased harmful bacteria (Proteobacteria) and decreased beneficial bacteria (Bacteroideta). However, dietary 5DN could reduce antibiotic-associated intestinal damage, evidenced by the results that 5DN alleviated gut oxidative damage and attenuated intestinal barrier injury via increasing the expression of TJs including occludin and zonula occluden1 (ZO1). Additionally, dietary 5DN modulated the composition of the gut microbiota in antibiotic-treated mice by increasing the relative levels of beneficial bacteria, such as Dubosiella and Lactobacillus. Moreover, PMFs increased the contents of isobutyric acid and butyric acid, which were almost eliminated by antibiotic exposure. In conclusion, 5DN could alleviate antibiotic-related imbalance of intestinal oxidative stress, barrier function damage, intestinal flora disorders and the reduction of short-chain fatty acids (SCFAs), which lays a foundation for exploring safer and more effective ways to prevent or mitigate antibiotic-associated intestinal damage.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
38
|
AIZAWA S, UEBANSO T, SHIMOHATA T, MAWATARI K, TAKAHASHI A. Effects of the loss of maternal gut microbiota before pregnancy on gut microbiota, food allergy susceptibility, and epigenetic modification on subsequent generations. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:203-212. [PMID: 37404565 PMCID: PMC10315195 DOI: 10.12938/bmfh.2022-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 07/06/2023]
Abstract
Maternal environments affect the health of offspring in later life. Changes in epigenetic modifications may partially explain this phenomenon. The gut microbiota is a critical environmental factor that influences epigenetic modifications of host immune cells and the development of food allergies. However, whether changes in the maternal gut microbiota affect the development of food allergies and related epigenetic modifications in subsequent generations remains unclear. Here, we investigated the effects of antibiotic treatment before pregnancy on the development of the gut microbiota, food allergies, and epigenetic modifications in F1 and F2 mice. We found that pre-conception antibiotic treatment affected the gut microbiota composition in F1 but not F2 offspring. F1 mice born to antibiotic-treated mothers had a lower proportion of butyric acid-producing bacteria and, consequently, a lower butyric acid concentration in their cecal contents. The methylation level in the DNA of intestinal lamina propria lymphocytes, food allergy susceptibility, and production of antigen-specific IgE in the F1 and F2 mice were not different between those born to control and antibiotic-treated mothers. In addition, F1 mice born to antibiotic-treated mothers showed increased fecal excretion related to the stress response in a novel environment. These results suggest that the maternal gut microbiota is effectively passed onto F1 offspring but has little effect on food allergy susceptibility or DNA methylation levels in offspring.
Collapse
Affiliation(s)
- Shinta AIZAWA
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
| | - Takashi UEBANSO
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Takaaki SHIMOHATA
- Faculty of Marine Biosciences, Fukui Prefectural University,
1-1 Gakuen-cho, Obama-shi, Fukui 917-0003, Japan
| | - Kazuaki MAWATARI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Akira TAKAHASHI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| |
Collapse
|
39
|
Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics (Basel) 2023; 12:antibiotics12030550. [PMID: 36978417 PMCID: PMC10044663 DOI: 10.3390/antibiotics12030550] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Antibiotic resistance (ABR) has direct and indirect repercussions on public health and threatens to decrease the therapeutic effect of antibiotic treatments and lead to more infection-related deaths. There are several mechanisms by which ABR can be transferred from one microorganism to another. The risk of transfer is often related to environmental factors. The food supply chain offers conditions where ABR gene transfer can occur by multiple pathways, which generates concerns regarding food safety. This work reviews mechanisms involved in ABR gene transfer, potential transmission routes in the food supply chain, the prevalence of antibiotic residues in food and ABR organisms in processing lines and final products, and implications for public health. Finally, the paper will elaborate on the application of antimicrobial peptides as new alternatives to antibiotics that might countermeasure ABR and is compatible with current food trends.
Collapse
|
40
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
41
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
42
|
Wang Y, He Y, Liang Y, Liu H, Chen X, Kulyar MFEA, Shahzad A, Wei K, Li K. Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the intestinal microbiome. Microb Cell Fact 2023; 22:30. [PMID: 36803386 PMCID: PMC9936653 DOI: 10.1186/s12934-023-02027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Given the crucial role of gut microbiota in animal and human health, studies on modulating the intestinal microbiome for therapeutic purposes have grasped a significant attention, of which the role of fecal microbiota transplantation (FMT) has been emphasized. METHODS In the current study, we evaluated the effect of FMT on gut functions in Escherichia coli (E. coli) infection by using mice model. Moreover, we also investigated the subsequently dependent variables of infection, i.e., body weight, mortality, intestinal histopathology, and the expression changes in tight junction proteins (TJPs). RESULTS The FMT effectively decreased weight loss and mortality to a certain extent with the restoration of intestinal villi that resulted in high histological scores for jejunum tissue damage (p < 0.05). The effect of FMT on alleviating the reduction of intestinal TJPs was also proved by immunohistochemistry analysis and mRNA expression levels. Moreover, the abundance of health-threatening bacteria, belonging to phylum Proteobacteria, family Enterobacteriaceae and Tannerellaceae, genus Escherichia-Shigella, Sphingomonas, Collinsella, etc., were significantly increased, whereas beneficial bacteria, belonging to phylum Firmicutes, family Lactobacillaceae, genus Lactobacillus were decreased in the gut of infected mice. Furthermore, we sought to investigate the association of clinical symptoms with FMT treatment with modulation in gut microbiota. According to beta diversity, the microbial community of gut microbiota results reflected the similarities between non-infected and FMT groups. The improvement of the intestinal microbiota in FMT group was characterized by the significant high level of beneficial microorganisms with the synergistic decrease of Escherichia-Shigella, Acinetobacter, and other taxa. CONCLUSION The findings suggest a beneficial host-microbiome correlation following fecal microbiota transplanatation for controlling gut infections and pathogens-associated diseases.
Collapse
Affiliation(s)
- Yaping Wang
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Yuanyuan He
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Han Liu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Xiushuang Chen
- grid.27871.3b0000 0000 9750 7019Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fakhar-e-Alam Kulyar
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Asim Shahzad
- grid.412496.c0000 0004 0636 6599Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
43
|
Tian D, Shi W, Yu Y, Zhou W, Tang Y, Zhang W, Huang L, Han Y, Liu G. Enrofloxacin exposure induces anxiety-like behavioral responses in zebrafish by affecting the microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160094. [PMID: 36372168 DOI: 10.1016/j.scitotenv.2022.160094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of antibiotic residues in aqueous environments poses a great potential threat to aquatic organisms. Nevertheless, the behavioral effects of environmentally realistic levels of antibiotics remain poorly understood in fish species. In this study, the behavioral impacts of enrofloxacin, one of typical fluoroquinolone antibiotics that is frequently detected in aquatic environments, were evaluated by the classic light-dark test (LDT) and novel tank task (NTT) in zebrafish. Furthermore, the effects of enrofloxacin exposure on the microbiota-gut-brain axis were also assessed to reveal potential affecting mechanisms underlying the behavioral abnormality observed. Our results demonstrated that zebrafish exposed to 60 μg/L enrofloxacin for 28 days took significantly longer to enter the stressful area of the testing tank and spent significantly less time there in both the LDT and NTT, indicating abnormal anxiety-like behaviors induced by the exposure. In addition, exposure to enrofloxacin at 6 and 60 μg/L resulted in a significant elevation in Bacteroidetes and a marked decline in the Firmicutes/Bacteroidetes ratio of the gut microbiota. Moreover, the intestinal contents of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), glucagon-like peptide 1 (GLP-1), and 5-hydroxytryptamine (5-HT) in zebrafish were significantly upregulated, whereas those of plasma adrenocorticotropic hormone (ACTH) and cortisol (COR) were markedly downregulated upon enrofloxacin exposure. Incubation of zebrafish with a high dose of enrofloxacin (60 μg/L) also resulted in evident increases in the contents of corticotropin-releasing hormone (CRH), brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) in the brain. Fortunately, no significant alteration in the expression of glial fibrillary acidic protein (GFAP) was detected in the brain after enrofloxacin exposure. Our findings suggest that the disruption of the microbiota-gut-brain axis may account for enrofloxacin-induced anxiety-like behaviors in zebrafish. Since the disruption of microbiota-gut-brain axis may give rise to various clinical symptoms, the health risk of antibiotic exposure deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
45
|
Zhang H, Xu Z, Chen W, Huang F, Chen S, Wang X, Yang C. Algal oil alleviates antibiotic-induced intestinal inflammation by regulating gut microbiota and repairing intestinal barrier. Front Nutr 2023; 9:1081717. [PMID: 36726819 PMCID: PMC9884693 DOI: 10.3389/fnut.2022.1081717] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/17/2023] Open
Abstract
Introduction Taking antibiotics would interfere with gut microbiota and increase the risk of opportunistic pathogen infection and inflammation. Methods In this study, 36 male C57BL/6 mice were divided into 4 groups (n = 9) to investigate whether two kinds of algal oil could alleviate the intestinal damage induced by CS (Ceftriaxone sodium). These algal oils were obtained from Schizochytrium sp. cultures using Yeast extract (YE) and Rapeseed meal (RSM) as substrate, respectively. All tested mice were administrated with CS for 8 days and then the colon pathological morphology, the expression levels of inflammatory factors and the gut microbial profile were analyzed in mice supplemented with or without algal oil. Results The results showed that both YE and RSM algal oils markedly reduced mucosal damage and intestinal inflammatory response in CS-treated mice by inhibiting the pro-inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-6 and myeloperoxidase (MPO) activity. In addition, fluorescence immunohistochemistry showed that the tight junction protein ZO-1 was increased in mice supplemented with YE and RSM algal oil. Furthermore, YE algal oil promoted the beneficial intestinal bacteria such as Lachnospiraceae and S24_7 compared with the CS group, while supplementation with RSM algal oil enriched the Robinsoniella. Spearman's correlation analysis exhibited that Melissococcus and Parabacteroides were positively correlated with IL-6 but negatively correlated with IL-10. Discussion This study suggested that supplementation with algal oil could alleviate intestinal inflammation by regulating gut microbiota and had a protective effect on maintaining intestinal barrier against antibiotic-induced damage in mice.
Collapse
Affiliation(s)
- Huimin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan, China
| | - Zhenxia Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Science, Jinan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan, China
| | - Xu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National and Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China,Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Science, Jinan, China,*Correspondence: Chen Yang,
| |
Collapse
|
46
|
Schinnerling K, Penny HA, Soto JA, Melo-Gonzalez F. Immune Responses at Host Barriers and Their Importance in Systemic Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:3-24. [PMID: 37093419 DOI: 10.1007/978-3-031-26163-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Host barriers such as the skin, the lung mucosa, the intestinal mucosa and the oral cavity are crucial at preventing contact with potential threats and are populated by a diverse population of innate and adaptive immune cells. Alterations in antigen recognition driven by genetic and environmental factors can lead to autoimmune systemic diseases such rheumatoid arthritis, systemic lupus erythematosus and food allergy. Here we review how different immune cells residing at epithelial barriers, host-derived signals and environmental signals are involved in the initiation and progression of autoimmune responses in these diseases. We discuss how regulation of innate responses at these barriers and the influence of environmental factors such as the microbiota can affect the susceptibility to develop local and systemic autoimmune responses particularly in the cases of food allergy, systemic lupus erythematosus and rheumatoid arthritis. Induction of pathogenic autoreactive immune responses at host barriers in these diseases can contribute to the initiation and progression of their pathogenesis.
Collapse
Affiliation(s)
| | - Hugo A Penny
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK
| | - Jorge A Soto
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Felipe Melo-Gonzalez
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
47
|
Shi J, Wang Y, Cheng L, Wang J, Raghavan V. Gut microbiome modulation by probiotics, prebiotics, synbiotics and postbiotics: a novel strategy in food allergy prevention and treatment. Crit Rev Food Sci Nutr 2022; 64:5984-6000. [PMID: 36576159 DOI: 10.1080/10408398.2022.2160962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food allergy has caused lots of global public health issues, particularly in developed countries. Presently, gut microbiota has been widely studied on allergy, while the role of dysbiosis in food allergy remains unknown. Scientists found that changes in gut microbial compositions and functions are strongly associated with a dramatic increase in the prevalence of food allergy. Altering microbial composition is crucial in modulating food antigens' immunogenicity. Thus, the potential roles of probiotics, prebiotics, synbiotics, and postbiotics in affecting gut bacteria communities and the immune system, as innovative strategies against food allergy, begins to attract high attention of scientists. This review briefly summarized the mechanisms of food allergy and discussed the role of the gut microbiota and the use of probiotics, prebiotics, synbiotics, and postbiotics as novel therapies for the prevention and treatment of food allergy. The perspective studies on the development of novel immunotherapy in food allergy were also described. A better understanding of these mechanisms will facilitate the development of preventive and therapeutic strategies for food allergy.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Chen Z, Xu Q, Liu Y, Wei Y, He S, Lin W, Wang Y, Li L, Xu Y. Vancomycin-induced gut microbiota dysbiosis aggravates allergic rhinitis in mice by altered short-chain fatty acids. Front Microbiol 2022; 13:1002084. [PMID: 36439824 PMCID: PMC9687373 DOI: 10.3389/fmicb.2022.1002084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/06/2022] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE This study aims to explore how gut microbiota dysbiosis affects allergic rhinitis (AR) and whether short-chain fatty acids (SCFAs) play a role in this process. METHODS A mouse gut microbiota dysbiosis model was established by adding vancomycin to drinking water for 2 weeks before ovalbumin (OVA) sensitization. Then an OVA-alum AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. Hematoxylin and eosin (H&E) staining was performed to observe pathological changes in nasal and colon tissues of AR mice. Serum levels of total-IgE, OVA-sIgE, IL-4, IL-5, IL-10, and TGF-β1 were measured. The composition and diversity of the mouse gut microbiota were observed by 16S rDNA sequencing. Levels of SCFAs in feces were determined using SCFA-targeted metabolomics. Sodium butyrate (NaB) was added daily to mice on a low-fiber basal diet 2 weeks before the first sensitization, until the end of the study. RESULTS After gut microbiota dysbiosis, serum levels of the total IgE, OVA-sIgE, IL-4, and IL-5 in AR mice were significantly increased, compared with the control group. The composition and diversity of gut microbiota were significantly altered after gut microbiota dysbiosis, with the fecal SCFAs significantly reduced as well. The reduced bacterial genera after gut microbiota dysbiosis, such as Ruminococcus and Lactobacillus, were significantly and positively correlated with SCFAs. In contrast, the increased genera in the Van group, such as Escherichia-Shigella and Klebsiella, were significantly negatively correlated with SCFAs in feces. NaB treatment significantly reduced total-IgE, OVA-sIgE, IL-4, and IL-5 levels in serum, and inflammatory infiltration of the nasal and colon mucosa. In addition, serum levels of IL-10 and TGF-β1 increased significantly after NaB treatment. Foxp3 protein in the colon was upregulated considerably after NaB intervention. CONCLUSION Vancomycin-induced gut microbiota dysbiosis increased susceptibility and severity of AR, which is significantly related to reduced SCFA-producing bacteria, fecal SCFAs, and specific bacterial taxa. In addition, it was found that NaB alleviated low dietary fiber base-fed symptoms and immune status in AR mice.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yihan Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shancai He
- Department of Otorhinolaryngology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yingge Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li Li
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yuanteng Xu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Allergy Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
49
|
Han B, Ma Y, Liu Y. Fucoxanthin Prevents the Ovalbumin-Induced Food Allergic Response by Enhancing the Intestinal Epithelial Barrier and Regulating the Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10229-10238. [PMID: 35947424 DOI: 10.1021/acs.jafc.2c04685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to determine whether fucoxanthin alleviated ovalbumin (OVA)-induced food allergy (FA) and explored the possible mechanisms. The results indicated that supplementation with fucoxanthin at 10.0-20.0 mg/kg per day for 7 weeks inhibited food anaphylaxis and the production of immunoglobulin (Ig) E, IgG, histamine, and related cytokines while alleviating allergic symptoms in sensitized mice. Fucoxanthin enhanced the intestinal epithelial barrier by up-regulating tight junction (TJ) protein expression and promoting regenerating islet-derived protein III-gamma (RegIIIγ) and secretory IgA (sIgA) secretion. In addition, fucoxanthin induced the secretion of anti-inflammatory factors (interleukin (IL)-10 and transforming growth factor β (TGF-β)) by regulatory T (Treg) cells and decreased the pro-inflammatory factor levels (IL-4, tumor necrosis factor-α (TNF-α), IL-17, and IL-1β), ameliorating intestinal inflammation. Compared with the model group, beneficial bacteria, such as Lactobacillaceae, increased in the intestinal flora, while pathogenic bacteria like Helicobacteraceae, Desulfovibrionaceae, and Streptococcaceae decreased. Therefore, fucoxanthin may effectively prevent FA by enhancing the intestinal epithelial barrier and reshaping the intestinal flora.
Collapse
Affiliation(s)
- Bing Han
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yu Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
50
|
Dou W, Abdalla HB, Chen X, Sun C, Chen X, Tian Q, Wang J, Zhou W, Chi W, Zhou X, Ye H, Bi C, Tian X, Yang Y, Wong A. ProbResist: a database for drug-resistant probiotic bacteria. Database (Oxford) 2022; 2022:6665407. [PMID: 35962763 PMCID: PMC9375527 DOI: 10.1093/database/baac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/13/2022]
Abstract
Drug resistance remains a global threat, and the rising trend of consuming probiotic-containing foods, many of which harbor antibiotic resistant determinants, has raised serious health concerns. Currently, the lack of accessibility to location-, drug- and species-specific information of drug-resistant probiotics has hampered efforts to combat the global spread of drug resistance. Here, we describe the development of ProbResist, which is a manually curated online database that catalogs reports of probiotic bacteria that have been experimentally proven to be resistant to antibiotics. ProbResist allows users to search for information of drug resistance in probiotics by querying with the names of the bacteria, antibiotic or location. Retrieved results are presented in a downloadable table format containing the names of the antibiotic, probiotic species, resistant determinants, region where the study was conducted and digital article identifiers (PubMed Identifier and Digital Object Identifier) hyperlinked to the original sources. The webserver also presents a simple analysis of information stored in the database. Given the increasing reports of drug-resistant probiotics, an exclusive database is necessary to catalog them in one platform. It will enable medical practitioners and experts involved in policy making to access this information quickly and conveniently, thus contributing toward the broader goal of combating drug resistance.
Collapse
Affiliation(s)
- Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hemn Barzan Abdalla
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xu Chen
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Changyi Sun
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuefei Chen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Xuechen Tian
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics , Ouhai, Wenzhou, Zhejiang 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center , Ouhai, Wenzhou, Zhejiang 325060, China
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University , 88 Daxue Road, Ouhai, Wenzhou, Zhejiang 325060, China
| |
Collapse
|