1
|
Solano-Aguilar G, Matuszek G, Matthan NR, Lichtenstein AH, Wang X, Lakshman S, Barger K, Urban JF, Molokin A, Bennett RE, Hyman BT, Lamon-Fava S. Differential regulation of brain microvessel transcriptome and brain metabolome by western and heart-healthy dietary patterns in Ossabaw pigs. Sci Rep 2024; 14:29621. [PMID: 39609531 PMCID: PMC11604918 DOI: 10.1038/s41598-024-81321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Diet is a potentially modifiable neurodegenerative disease risk factor. We studied the effects of a typical Western diet (WD; high in refined carbohydrates, cholesterol and saturated fat), relative to a heart-healthy diet (HHD; high in unrefined carbohydrates, polyunsaturated fat and fiber, and low in cholesterol) on brain microvessel transcriptomics and brain metabolomics of the temporal region in Ossabaw minipigs. Thirty-two pigs (16 male and 16 females) were fed a WD or HHD starting at the age of 4 months for a period of 6 months. The WD and HHD were isocaloric and had a similar macronutrient content but differed in macronutrient quality. Within each dietary group, half of the pigs also received atorvastatin. Relative to HHD-fed pigs, WD-fed pigs had 175 genes differentially expressed (fold change > 1.3, FDR < 0.05) by diet, 46 upregulated and 129 downregulated. Gene Set Enrichment Analysis identified 22 gene sets enriched in WD-fed pigs, comprising pathways related to inflammation, angiogenesis, and apoptosis, and 53 gene sets enriched in the HHD-fed pigs, including cell energetics, neurotransmission, and inflammation resolution pathways. Metabolite analysis showed enrichment in arginine, tyrosine, and lysine in WD-fed pigs, and ergothioneine and S-adenosyl methionine in HHD-fed pigs. Atorvastatin treatment did not affect gene expression. These results suggest a likely contribution of diet to brain pathologies characterized by neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Gloria Solano-Aguilar
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Gregory Matuszek
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xuedi Wang
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sukla Lakshman
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Kathryn Barger
- Biostatistics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Joseph F Urban
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Aleksey Molokin
- Diet Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA Northeast Area, Beltsville, MD, USA
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA.
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
2
|
Milenkovic D, Nuthikattu S, Norman JE, Villablanca AC. Single Nuclei Transcriptomics Reveals Obesity-Induced Endothelial and Neurovascular Dysfunction: Implications for Cognitive Decline. Int J Mol Sci 2024; 25:11169. [PMID: 39456952 PMCID: PMC11508525 DOI: 10.3390/ijms252011169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese (ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key brain memory center and assessed blood-brain barrier permeability (BBB) by gadolinium-enhanced magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types, namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene ontology analysis identified important biological processes such as angiogenesis in endothelial cells and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin signaling, which were common to all NVU cell types. Correlation analysis revealed significant positive correlations between endothelial cells and other NVU cell types. Differentially expressed long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken together, our study provides in-depth insight into the molecular mechanisms underlying cognitive dysfunction in obesity and may have implications for therapeutic gene targeting.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| | - Amparo C. Villablanca
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA; (S.N.); (J.E.N.); (A.C.V.)
| |
Collapse
|
3
|
Li S, Song H, Sun Y, Sun Y, Zhang H, Gao Z. Inhibition of soluble epoxide hydrolase as a therapeutic approach for blood-brain barrier dysfunction. Biochimie 2024; 223:13-22. [PMID: 38531484 DOI: 10.1016/j.biochi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.
Collapse
Affiliation(s)
- Shuo Li
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huijia Song
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yanping Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yongjun Sun
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huimin Zhang
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Zibin Gao
- Hebei Province Key Laboratory of Molecular Chemistry for Drug, School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Valiauga R, Talley S, Khemmani M, Fontes Noronha M, Gogliotti R, Wolfe AJ, Campbell E. Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system. J Neuroinflammation 2024; 21:151. [PMID: 38840215 PMCID: PMC11155082 DOI: 10.1186/s12974-024-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.
Collapse
Affiliation(s)
- Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Rocco Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward Campbell
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
5
|
Mondal AK, Brock DC, Rowan S, Yang ZH, Rojulpote KV, Smith KM, Francisco SG, Bejarano E, English MA, Deik A, Jeanfavre S, Clish CB, Remaley AT, Taylor A, Swaroop A. Selective transcriptomic dysregulation of metabolic pathways in liver and retina by short- and long-term dietary hyperglycemia. iScience 2024; 27:108979. [PMID: 38333717 PMCID: PMC10850775 DOI: 10.1016/j.isci.2024.108979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
A high glycemic index (HGI) diet induces hyperglycemia, a risk factor for diseases affecting multiple organ systems. Here, we evaluated tissue-specific adaptations in the liver and retina after feeding HGI diet to mice for 1 or 12 month. In the liver, genes associated with inflammation and fatty acid metabolism were altered within 1 month of HGI diet, whereas 12-month HGI diet-fed group showed dysregulated expression of cytochrome P450 genes and overexpression of lipogenic factors including Srebf1 and Elovl5. In contrast, retinal transcriptome exhibited HGI-related notable alterations in energy metabolism genes only after 12 months. Liver fatty acid profiles in HGI group revealed higher levels of monounsaturated and lower levels of saturated and polyunsaturated fatty acids. Additionally, HGI diet increased blood low-density lipoprotein, and diet-aging interactions affected expression of mitochondrial oxidative phosphorylation genes in the liver and disease-associated genes in retina. Thus, our findings provide new insights into retinal and hepatic adaptive mechanisms to dietary hyperglycemia.
Collapse
Affiliation(s)
- Anupam K. Mondal
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniel C. Brock
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sheldon Rowan
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kelsey M. Smith
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
| | - Sarah G. Francisco
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Eloy Bejarano
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- School of Health Sciences and Veterinary School, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Milton A. English
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Allen Taylor
- Laboratory for Nutrition & Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- Friedman School of Nutrition Science and Policy, and Department of Molecular and Chemical Biology, Tufts University, Boston, MA, USA
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration & Repair Laboratory, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
6
|
Nuthikattu S, Milenkovic D, Norman JE, Villablanca AC. Single nuclei transcriptomics in diabetic mice reveals altered brain hippocampal endothelial cell function, permeability, and behavior. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166970. [PMID: 38036105 DOI: 10.1016/j.bbadis.2023.166970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with cerebrovascular and cardiovascular sequelae. Yet, a clear pattern of gene dysregulation by T2DM in dementia has yet to be defined. We used single nuclei RNA sequencing technology to profile the transcriptome of endothelial cells (EC) from anatomically defined hippocampus of db/db mice to identify differentially expressed (DE) genes, gene pathways and networks, predicted regulating transcription factors, and targets of DE long noncoding RNAs. We also applied gadolinium (Gd) enhanced magnetic resonance imaging (MRI) to assess blood brain barrier (BBB) permeability, and functionally assessed cognitive behavior. The murine gene expression profiles were then integrated with those of persons with Alzheimer's disease (AD) and vascular dementia (VaD). We reveal that the transcriptome of the diabetic hippocampal murine brain endothelium differs substantially from control wild types with molecular changes characterized by differential RNA coding and noncoding pathways enriched for EC signaling and for endothelial functions for neuroinflammation, endothelial barrier disruption, and neurodegeneration. Gd enhanced structural brain MRI linked endothelial molecular alterations to BBB dysfunction by neuroimaging. Integrated multiomics of hippocampal endothelial gene dysregulation associated with impairments in cognitive adaptive capacity. In addition, the diabetic transcriptome significantly and positively correlated with that of persons with AD and VaD. Taken together, our results from comprehensive, multilevel, integrated, single nuclei transcriptomics support the hypothesis of T2DM-mediated neuroinflammation and endothelial cell and barrier disruption as key mechanisms in cognitive decline in T2DM, thereby suggesting potential endothelial-specific molecular therapeutic targets.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Villablanca A, Dugger BN, Nuthikattu S, Chauhan J, Cheung S, Chuah CN, Garrison SL, Milenkovic D, Norman JE, Oliveira LC, Smith BP, Brown SD. How cy pres promotes transdisciplinary convergence science: an academic health center for women's cardiovascular and brain health. J Clin Transl Sci 2024; 8:e16. [PMID: 38384925 PMCID: PMC10880003 DOI: 10.1017/cts.2023.705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Cardiovascular disease (CVD) is largely preventable, and the leading cause of death for men and women. Though women have increased life expectancy compared to men, there are marked sex disparities in prevalence and risk of CVD-associated mortality and dementia. Yet, the basis for these and female-male differences is not completely understood. It is increasingly recognized that heart and brain health represent a lifetime of exposures to shared risk factors (including obesity, hyperlipidemia, diabetes, and hypertension) that compromise cerebrovascular health. We describe the process and resources for establishing a new research Center for Women's Cardiovascular and Brain Health at the University of California, Davis as a model for: (1) use of the cy pres principle for funding science to improve health; (2) transdisciplinary collaboration to leapfrog progress in a convergence science approach that acknowledges and addresses social determinants of health; and (3) training the next generation of diverse researchers. This may serve as a blueprint for future Centers in academic health institutions, as the cy pres mechanism for funding research is a unique mechanism to leverage residual legal settlement funds to catalyze the pace of scientific discovery, maximize innovation, and promote health equity in addressing society's most vexing health problems.
Collapse
Affiliation(s)
- Amparo Villablanca
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
| | | | - Joohi Chauhan
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Samson Cheung
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Chen-Nee Chuah
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Siedah L. Garrison
- Department of Internal Medicine, University of California, Davis, CA, USA
| | | | - Jennifer E. Norman
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Luca Cerny Oliveira
- Department of Computer Engineering, University of California, Davis, CA, USA
| | - Bridgette P. Smith
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Susan D. Brown
- Department of Internal Medicine, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Wei X, Xing Z, Huang T, Zhang M, Song J, Zhao Y. Hyperglycemia disrupted the integrity of the blood-brain barrier following diffuse axonal injury through the sEH/NF-κB pathway. Immun Inflamm Dis 2023; 11:e1105. [PMID: 38156378 PMCID: PMC10698817 DOI: 10.1002/iid3.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVES We aimed to investigate the role of soluble epoxide hydrolase for hyperglycemia induced-disruption of blood-brain barrier (BBB) integrity after diffuse axonal injury (DAI). METHODS Rat DAI hyperglycemia model was established by a lateral head rotation device and intraperitoneal injection of 50% glucose. Glial fibrillary acidic protein, ionized calcium-binding adapter molecule-1, β-amyloid precursor protein, neurofilament light chain, and neurofilament heavy chain was detected by immunohistochemistry. Cell apoptosis was examined by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay. The permeability of blood-brain barrier (BBB) was assessed by expression of tight junction proteins, leakage of Evans blue and brain water content. The soluble epoxide hydrolase (sEH) pathway was inhibited by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) and the nuclear transcription factor kappa B (NF-κB) pathway was inhibited by pyrrolidine dithiocarbamate and activated by phorbol-12-myristate-13-acetate in vivo and/or vitro, respectively. The inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS Hyperglycemia could exacerbate axonal injury, aggravate cell apoptosis and glial activation, worsen the loss of BBB integrity, increase the release of inflammatory factors, and upregulate the expression of sEH and NF-κB. Inhibition of sEH could reverse all these damages and protect BBB integrity by upregulating the expression of tight junction proteins and downregulating the levels of inflammatory factors in vivo and vitro, while the agonist of NF-κB pathway abrogated the protective effects of TPPU on BBB integrity in vitro. CONCLUSIONS sEH was involved in mediating axonal injury induced by hyperglycemia after DAI by disrupting BBB integrity through inducing inflammation via the NF-κB pathway.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynaecology and ObstetricsThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiguo Xing
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tingqin Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ming Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jinning Song
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yonglin Zhao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Cai W, Li Y, Guo K, Wu X, Chen C, Lin X. Association of glycemic variability with death and severe consciousness disturbance among critically ill patients with cerebrovascular disease: analysis of the MIMIC-IV database. Cardiovasc Diabetol 2023; 22:315. [PMID: 37974159 PMCID: PMC10652479 DOI: 10.1186/s12933-023-02048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The association of glycemic variability with severe consciousness disturbance and in-hospital all-cause mortality in critically ill patients with cerebrovascular disease (CVD) remains unclear, This study aimed to investigate the association of glycemic variability with cognitive impairment and in-hospital death. METHOD We extracted all blood glucose measurements of patients diagnosed with CVD from the Medical Information Mart for Intensive Care IV (MIMIC-IV). Glycemic variability was defined as the coefficient of variation (CV), which was determined using the ratio of standard deviation and the mean blood glucose levels. Cox hazard regression models were applied to analyze the link between glycemic variability and outcomes. We also analyzed non-linear relationship between outcome indicators and glycemic variability using restricted cubic spline curves. RESULTS The present study included 2967 patients diagnosed with cerebral infarction and 1842 patients diagnosed with non-traumatic cerebral hemorrhage. Log-transformed CV was significantly related to cognitive impairment and in-hospital mortality, as determined by Cox regression. Increasing log-transformed CV was approximately linearly with the risk of cognitive impairment and in-hospital mortality. CONCLUSION High glycemic variability was found to be an independent risk factor for severe cognitive decline and in-hospital mortality in critically ill patients with CVD. Our study indicated that enhancing stability of glycemic variability may reduced adverse outcomes in patients with severe CVD.
Collapse
Affiliation(s)
- Weimin Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaling Li
- Department Health Management Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 31000, China
| | - Kun Guo
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| | - Xinran Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2, Fuxue Lane, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. Sex-Specific Response of the Brain Free Oxylipin Profile to Soluble Epoxide Hydrolase Inhibition. Nutrients 2023; 15:1214. [PMID: 36904213 PMCID: PMC10005333 DOI: 10.3390/nu15051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Oxylipins are the oxidation products of polyunsaturated fatty acids and have been implicated in neurodegenerative disorders, including dementia. Soluble epoxide hydrolase (sEH) converts epoxy-fatty acids to their corresponding diols, is found in the brain, and its inhibition is a treatment target for dementia. In this study, male and female C57Bl/6J mice were treated with an sEH inhibitor (sEHI), trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks to comprehensively study the effect of sEH inhibition on the brain oxylipin profile, and modulation by sex. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used to measure the profile of 53 free oxylipins in the brain. More oxylipins were modified by the inhibitor in males than in females (19 versus 3, respectively) and favored a more neuroprotective profile. Most were downstream of lipoxygenase and cytochrome p450 in males, and cyclooxygenase and lipoxygenase in females. The inhibitor-associated oxylipin changes were unrelated to serum insulin, glucose, cholesterol, or female estrous cycle. The inhibitor affected behavior and cognitive function as measured by open field and Y-maze tests in males, but not females. These findings are novel and important to our understanding of sexual dimorphism in the brain's response to sEHI and may help inform sex-specific treatment targets.
Collapse
Affiliation(s)
- Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Norman JE, Nuthikattu S, Milenkovic D, Rutledge JC, Villablanca AC. A high sucrose diet modifies brain oxylipins in a sex-dependent manner. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102506. [PMID: 36244214 DOI: 10.1016/j.plefa.2022.102506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Oxylipins have been implicated in many biological processes and diseases. Dysregulation of cerebral lipid homeostasis and altered lipid metabolites have been associated with the onset and progression of dementia. Although most dietary interventions have focused on modulation of dietary fats, the impact of a high sucrose diet on the brain oxylipin profile is unknown. METHODS Male and female C57BL/6J mice were fed a high sucrose diet (HSD, 34%) in comparison to a control low sucrose diet (LSD, 12%) for 12 weeks beginning at 20 weeks of age. The profile of 53 free oxylipins was then measured in brain by ultra-high performance liquid chromatography tandem mass spectrometry. Serum glucose and insulin were measured enzymatically. We first assessed whether there were any effects of the diet on the brain oxylipin profile, then assessed for sex differences. RESULTS There were no differences in fasting serum glucose between the sexes for mice fed a HSD or in fasting serum insulin levels for mice on either diet. The HSD altered the brain oxylipin profile in both sexes in distinctly different patterns: there was a reduction in three oxylipins (by 47-61%) and an increase in one oxylipin (16%) all downstream of lipoxygenase enzymes in males and a reduction in eight oxylipins (by 14-94%) mostly downstream of cyclooxygenase activity in females. 9-oxo-ODE and 6-trans-LTB4 were most influential in the separation of the oxylipin profiles by diet in male mice, whereas 5-HEPE and 12-HEPE were most influential in the separation by diet in female mice. Oxylipins 9‑hydroxy-eicosatetraenoic acid (HETE), 11-HETE, and 15-HETE were higher in the brains of females, regardless of diet. CONCLUSION A HSD substantially changes brain oxylipins in a distinctly sexually dimorphic manner. Results are discussed in terms of potential mechanisms and links to metabolic disease. Sex and diet effects on brain oxylipin composition may provide future targets for the management of neuroinflammatory diseases, such as dementia.
Collapse
Affiliation(s)
- Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA.
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Meyer Hall 3143, One Shields Avenue, Davis, CA 95616, USA
| | - John C Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, The Grove 1258, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
12
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. High Glycemia and Soluble Epoxide Hydrolase in Females: Differential Multiomics in Murine Brain Microvasculature. Int J Mol Sci 2022; 23:13044. [PMID: 36361847 PMCID: PMC9655872 DOI: 10.3390/ijms232113044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2023] Open
Abstract
The effect of a high glycemic diet (HGD) on brain microvasculature is a crucial, yet understudied research topic, especially in females. This study aimed to determine the transcriptomic changes in female brain hippocampal microvasculature induced by a HGD and characterize the response to a soluble epoxide hydrolase inhibitor (sEHI) as a mechanism for increased epoxyeicosatrienoic acids (EETs) levels shown to be protective in prior models of brain injury. We fed mice a HGD or a low glycemic diet (LGD), with/without the sEHI (t-AUCB), for 12 weeks. Using microarray, we assessed differentially expressed protein-coding and noncoding genes, functional pathways, and transcription factors from laser-captured hippocampal microvessels. We demonstrated for the first time in females that the HGD had an opposite gene expression profile compared to the LGD and differentially expressed 506 genes, primarily downregulated, with functions related to cell signaling, cell adhesion, cellular metabolism, and neurodegenerative diseases. The sEHI modified the transcriptome of female mice consuming the LGD more than the HGD by modulating genes involved in metabolic pathways that synthesize neuroprotective EETs and associated with a higher EETs/dihydroxyeicosatrienoic acids (DHETs) ratio. Our findings have implications for sEHIs as promising therapeutic targets for the microvascular dysfunction that accompanies vascular dementia.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
13
|
Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14:nu14194137. [PMID: 36235789 PMCID: PMC9572450 DOI: 10.3390/nu14194137] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-504-20-00
| | - Anna Molins
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rocío Rojas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
14
|
Nuthikattu S, Milenkovic D, Norman JE, Rutledge J, Villablanca A. The Brain's Microvascular Response to High Glycemia and to the Inhibition of Soluble Epoxide Hydrolase Is Sexually Dimorphic. Nutrients 2022; 14:3451. [PMID: 36079709 PMCID: PMC9460226 DOI: 10.3390/nu14173451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Biological sex and a high glycemic diet (HGD) contribute to dementia, yet little is known about the operative molecular mechanisms. Our goal was to understand the differences between males and females in the multi-genomic response of the hippocampal microvasculature to the HGD, and whether there was vasculoprotection via the inhibition of soluble epoxide hydrolase (sEHI). Adult wild type mice fed high or low glycemic diets for 12 weeks, with or without an sEHI inhibitor (t-AUCB), had hippocampal microvessels isolated by laser-capture microdissection. Differential gene expression was determined by microarray and integrated multi-omic bioinformatic analyses. The HGD induced opposite effects in males and females: the HGD-upregulated genes were involved in neurodegeneration or neuroinflammation in males, whereas in females they downregulated the same pathways, favoring neuroprotection. In males, the HGD was associated with a greater number of clinical diseases than in females, the sEHI downregulated genes involved in neurodegenerative diseases to a greater extent with the HGD and compared to females. In females, the sEHI downregulated genes involved in endothelial cell functions to a greater extent with the LGD and compared to males. Our work has potentially important implications for sex-specific therapeutic targets for vascular dementia and cardiovascular diseases in males and females.
Collapse
Affiliation(s)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E. Norman
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - John Rutledge
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| | - Amparo Villablanca
- Division of Cardiovascular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Ruskovska T, Morand C, Bonetti CI, Gebara KS, Cardozo Junior EL, Milenkovic D. Multigenomic modifications in human circulating immune cells in response to consumption of polyphenol rich extract of yerba mate ( Ilex paraguariensis A. St.-Hil.) are suggestive of cardiometabolic protective effects. Br J Nutr 2022; 129:1-60. [PMID: 35373729 DOI: 10.1017/s0007114522001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mate is a traditional drink obtained from the leaves of yerba mate and rich in a diversity of plant bioactive compounds including polyphenols, particularly chlorogenic acids. Studies, even though limited, suggest that consumption of mate is associated with health effects, including prevention of cardiometabolic disorders. Molecular mechanisms underlying the potential health properties are still largely unknown, especially in humans. The aim of this study was to investigate nutrigenomic effects of mate consumption and identify regulatory networks potentially mediating cardiometabolic health benefits. Healthy middle-aged men at risk for cardiovascular disease consumed a standardized mate extract or placebo for 4 weeks. Global gene expression, including protein coding and non-coding RNAs profiles were determined using microarrays. Biological function analyses were performed using integrated bioinformatic tools. Comparison of global gene expression profiles showed significant change following mate consumption with 2635 significantly differentially expressed genes, among which 6 are miRNAs and 244 are lncRNAs. Functional analyses showed that these genes are involved in regulation of cell interactions and motility, inflammation or cell signaling. Transcription factors, such as MEF2A, MYB or HNF1A, could have their activity modulated by mate consumption either by direct interaction with polyphenol metabolites or by interactions of metabolites with cell signaling proteins, like p38 or ERK1/2, that could modulate transcription factor activity and regulate expression of genes observed. Correlation analysis suggests that expression profile is inversely associated with gene expression profiles of patients with cardiometabolic disorders. Therefore, mate consumption may exert cardiometabolic protective effects by modulating gene expression towards a protective profile.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia
| | - Christine Morand
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
| | - Carla Indianara Bonetti
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Karimi Sater Gebara
- Grande Dourados University Center, UNIGRAN, R. Balbina de Matos, 2121 - J. Universitario, Dourados 79824-900, MS, Brazil
| | - Euclides Lara Cardozo Junior
- Institute of Biological, Medical and Health Sciences, Universidade Paranaense, Av. Parigot de Souza, 3636 J. Prada, Toledo 85903-170, PR, Brazil
| | - Dragan Milenkovic
- Human Nutrition Unit, Université Clermont Auvergne, INRAE, F-63003 Clermont-Ferrand, France
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important “omics” tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual’s metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in “omics”-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- *Correspondence: Jaya Kumar,
| |
Collapse
|
17
|
Nutrition for Brain Development. Nutrients 2022; 14:nu14071419. [PMID: 35406032 PMCID: PMC9003088 DOI: 10.3390/nu14071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
|