1
|
Parafati M, La Russa D, Lascala A, Crupi F, Riillo C, Fotschki B, Mollace V, Janda E. Dramatic Suppression of Lipogenesis and No Increase in Beta-Oxidation Gene Expression Are among the Key Effects of Bergamot Flavonoids in Fatty Liver Disease. Antioxidants (Basel) 2024; 13:766. [PMID: 39061835 PMCID: PMC11273501 DOI: 10.3390/antiox13070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bergamot flavonoids have been shown to prevent metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and stimulate autophagy in animal models and patients. To investigate further the mechanism of polyphenol-dependent effects, we performed a RT2-PCR array analysis on 168 metabolism, transport and autophagy-related genes expressed in rat livers exposed for 14 weeks to different diets: standard, cafeteria (CAF) and CAF diet supplemented with 50 mg/kg of bergamot polyphenol fraction (BPF). CAF diet caused a strong upregulation of gluconeogenesis pathway (Gck, Pck2) and a moderate (>1.7 fold) induction of genes regulating lipogenesis (Srebf1, Pparg, Xbp1), lipid and cholesterol transport or lipolysis (Fabp3, Apoa1, Lpl) and inflammation (Il6, Il10, Tnf). However, only one β-oxidation gene (Cpt1a) and a few autophagy genes were differentially expressed in CAF rats compared to controls. While most of these transcripts were significantly modulated by BPF, we observed a particularly potent effect on lipogenesis genes, like Acly, Acaca and Fasn, which were suppressed far below the mRNA levels of control livers as confirmed by alternative primers-based RT2-PCR analysis and western blotting. These effects were accompanied by downregulation of pro-inflammatory cytokines (Il6, Tnfa, and Il10) and diabetes-related genes. Few autophagy (Map1Lc3a, Dapk) and no β-oxidation gene expression changes were observed compared to CAF group. In conclusion, chronic BPF supplementation efficiently prevents NAFLD by modulating hepatic energy metabolism and inflammation gene expression programs, with no effect on β-oxidation, but profound suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Francesco Crupi
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Concetta Riillo
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, 88100 Catanzaro, Italy; (M.P.); (F.C.); (C.R.); (V.M.)
| |
Collapse
|
2
|
Caddeo A, Maurotti S, Kovooru L, Romeo S. 3D culture models to study pathophysiology of steatotic liver disease. Atherosclerosis 2024; 393:117544. [PMID: 38677899 DOI: 10.1016/j.atherosclerosis.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Steatotic liver disease (SLD) refers to a spectrum of diseases caused by hepatic lipid accumulation. SLD has emerged as the leading cause of chronic liver disease worldwide. Despite this burden and many years, understanding the pathophysiology of this disease is challenging due to the inaccessibility to human liver specimens. Therefore, cell-based in vitro systems are widely used as models to investigate the pathophysiology of SLD. Culturing hepatic cells in monolayers causes the loss of their hepatocyte-specific phenotype and, consequently, tissue-specific function and architecture. Hence, three-dimensional (3D) culture models allow cells to mimic the in vivo microenvironment and spatial organization of the liver unit. The utilization of 3D in vitro models minimizes the drawbacks of two-dimensional (2D) cultures and aligns with the 3Rs principles to alleviate the number of in vivo experiments. This article provides an overview of liver 3D models highlighting advantages and limitations, and culminates by discussing their applications in pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy.
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Lohitesh Kovooru
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
3
|
Bava R, Lupia C, Castagna F, Ruga S, Nucera S, Caminiti R, Bulotta RM, Naccari C, Carresi C, Musolino V, Statti G, Britti D, Mollace V, Palma E. Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals (Basel) 2024; 14:608. [PMID: 38396576 PMCID: PMC10886160 DOI: 10.3390/ani14040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Musolino
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Maurotti S, Pujia R, Ferro Y, Mare R, Russo R, Coppola A, Gazzaruso C, Montalcini T, Pujia A, Paone S, Mollace V, Mazza E. A nutraceutical with Citrus bergamia and Cynara cardunculus improves endothelial function in adults with non-alcoholic fatty liver disease. Nutrition 2024; 118:112294. [PMID: 38042043 DOI: 10.1016/j.nut.2023.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Polyphenol intake may prevent hepatic steatosis and cardiovascular disease by potentially improving endothelial function. The purposes of this study are to investigate the association between fatty liver disease and endothelial dysfunction and to test the effects of a nutraceutical containing extracts made from Citrus bergamia and Cynara cardunculus on peripheral vascular endothelial function in adults with liver steatosis. METHODS We analyzed data from 32 individuals with hepatic steatosis and endothelial dysfunction (reactive hyperemia index ≤ 1.67). Sixteen subjects took 1 capsule/d (300 mg/d) containing Cynara cardunculus extract and bergamot polyphenol fraction, while the other 16 subjects matched for age, sex, and body mass index took 1 capsule/d of placebo (maltodextrin) for 12 wk. All anthropometric parameters were assessed at baseline and after 12 wk as were lipids, glucose, and reactive hyperemia index using an EndoPAT 2000. RESULTS The mean age was 52 ± 9 y. The mean reactive hyperemia index was 1.15 ± 0.4. After 12 wk, we found a greater increase in reactive hyperemia index in the participants taking the nutraceutical rather than placebo (0.58 ± 0.5 versus 0.13 ± 0.5; P = 0.02, respectively). The stepwise multivariable analysis confirmed a positive association between reactive hyperemia index change and the nutraceutical treatment (B = 0.38; P = 0.025) and negative association with reactive hyperemia index values at baseline (B = -0.81; P < 0.001). No association was found between the reduction in the amount of intrahepatic fat and the improvement of endothelial function (B = 0.002; P = 0.56). CONCLUSIONS A nutraceutical containing bergamot and artichoke extracts improves peripheral vascular endothelial function in adults with hepatic steatosis and early phase of atherosclerosis.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.
| | - Rosario Mare
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Raffaella Russo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Adriana Coppola
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy
| | - Carmine Gazzaruso
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Bava R, Castagna F, Ruga S, Caminiti R, Nucera S, Bulotta RM, Naccari C, Britti D, Mollace V, Palma E. Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees ( Apis mellifera). Animals (Basel) 2023; 13:3764. [PMID: 38136801 PMCID: PMC10741048 DOI: 10.3390/ani13243764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a general qualitative and quantitative impoverishment of the nectar resources of terrestrial ecosystems. Malnutrition is associated with a decline in the functionality of the immune system and the systems that are delegated to the detoxification of the organism. This research aimed to verify whether bergamot polyphenolic extract (BPF) could have protective effects against poisoning by the pyrethroid pesticide deltamethrin. The studies were conducted with caged honeybees under controlled conditions. Sub-lethal doses of pesticides and related treatments for BPF were administered. At a dose of 21.6 mg/L, deltamethrin caused mortality in all treated subjects (20 caged honeybees) after one day of administration. The groups where BPF (1 mg/kg) was added to the toxic solution recorded the survival of honeybees by up to three days. Comparing the honeybees of the groups in which the BPF-deltamethrin association was added to the normal diet (sugar solution) with those in which deltamethrin alone was added to the normal diet, the BPF group had a statistically significant reduction in the honeybee mortality rate (p ≤ 0.05) and a greater consumption of food. Therefore, it can be argued that the inclusion of BPF and its constituent antioxidants in the honeybee diet reduces toxicity and oxidative stress caused by oral intake of deltamethrin. Furthermore, it can be argued that BPF administration could compensate for metabolic energy deficits often induced by the effects of malnutrition caused by environmental degradation and standard beekeeping practices.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (S.R.); (R.C.); (S.N.); (R.M.B.); (C.N.); (D.B.); (V.M.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University of Catanzaro Magna Graecia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
6
|
Pantanali CA, Rocha-Santos V, Kubrusly MS, Castro IA, Carneiro-D'Albuquerque LA, Galvão FH. The Protective Effect of Nutraceuticals on Hepatic Ischemia-Reperfusion Injury in Wistar Rats. Int J Mol Sci 2023; 24:10264. [PMID: 37373409 DOI: 10.3390/ijms241210264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Nutraceuticals are bioactive compounds present in foods, utilized to ameliorate health, prevent diseases, and support the proper functioning of the human body. They have gained attention due to their ability to hit multiple targets and act as antioxidants, anti-inflammatory agents, and modulators of immune response and cell death. Therefore, nutraceuticals are being studied to prevent and treat liver ischemia-reperfusion injury (IRI). This study evaluated the effect of a nutraceutical solution formed by resveratrol, quercetin, omega-3 fatty acid, selenium, ginger, avocado, leucine, and niacin on liver IRI. IRI was performed with 60 min of ischemia and 4 h of reperfusion in male Wistar rats. Afterward, the animals were euthanized to study hepatocellular injury, cytokines, oxidative stress, gene expression of apoptosis-related genes, TNF-α and caspase-3 proteins, and histology. Our results show that the nutraceutical solution was able to decrease apoptosis and histologic injury. The suggested mechanisms of action are a reduction in gene expression and the caspase-3 protein and a reduction in the TNF-α protein in liver tissue. The nutraceutical solution was unable to decrease transaminases and cytokines. These findings suggest that the nutraceuticals used favored the protection of hepatocytes, and their combination represents a promising therapeutic proposal against liver IRI.
Collapse
Affiliation(s)
- Carlos Andrés Pantanali
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05403-900, Brazil
| | - Vinicius Rocha-Santos
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05403-900, Brazil
| | - Márcia Saldanha Kubrusly
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05403-900, Brazil
| | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 01246-000, Brazil
| | - Luiz Augusto Carneiro-D'Albuquerque
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05403-900, Brazil
| | - Flávio Henrique Galvão
- Liver and Gastrointestinal Transplant Division, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05403-900, Brazil
| |
Collapse
|
7
|
Stanzione R, Forte M, Cotugno M, Oppedisano F, Carresi C, Marchitti S, Mollace V, Volpe M, Rubattu S. Beneficial Effects of Citrus Bergamia Polyphenolic Fraction on Saline Load-Induced Injury in Primary Cerebral Endothelial Cells from the Stroke-Prone Spontaneously Hypertensive Rat Model. Nutrients 2023; 15:nu15061334. [PMID: 36986064 PMCID: PMC10056311 DOI: 10.3390/nu15061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.
Collapse
Affiliation(s)
| | | | | | - Francesca Oppedisano
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
| | | | - Vincenzo Mollace
- Department of Health Science, Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy
- IRCCS San Raffaele, 00163 Rome, Italy
| | - Massimo Volpe
- IRCCS San Raffaele, 00163 Rome, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
8
|
Palacio TLN, Siqueira JS, de Paula BH, Rego RMP, Vieira TA, Baron G, Altomare A, Ferron AJT, Aldini G, Kano HT, Correa CR. Bergamot ( Citrus bergamia) leaf extract improves metabolic, antioxidant and anti-inflammatory activity in skeletal muscles in a metabolic syndrome experimental model. Int J Food Sci Nutr 2023; 74:64-71. [PMID: 36519349 DOI: 10.1080/09637486.2022.2154328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic Syndrome (MetS), inflammation and oxidative stress contribute to impairment of skeletal muscle function. Bergamot (Citrus bergamia) leaf extract (BLE) has shown protective effects against comorbidities associated with MetS through its anti-inflammatory and antioxidant effects. The aim of this work was to elucidate the antioxidant and anti-inflammatory activity of BLE in skeletal muscles in an experimental model of MetS. Once metabolic syndrome was diagnosed, animals were divided into groups receiving different treatments for 10 weeks, including control diet (n = 10), control + BLE (n = 10), High Sugar-fat diet (HSF) (n = 10), HSF + BLE (n = 10). Evaluation included nutritional, metabolic and hormonal analyses, along with measurements of inflammatory status and oxidative stress in soleus and extensor digitorum longus (EDL) muscles. BLE showed positive metabolic effects, with a reduction of plasma triglycerides and insulin resistance and an increase in high-density lipoprotein cholesterol, and protective activity against oxidative stress and inflammation in Soleus and EDL muscles in animals with MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Artur Junio Togneri Ferron
- Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil.,Department of Physical Education, Integrated Colleges of Bauru (FIB), Bauru, Brazil
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Hugo Tadashi Kano
- Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | | |
Collapse
|
9
|
Musolino V, Macrì R, Cardamone A, Serra M, Coppoletta AR, Tucci L, Maiuolo J, Lupia C, Scarano F, Carresi C, Nucera S, Bava I, Marrelli M, Palma E, Gliozzi M, Mollace V. Nocellara Del Belice ( Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. PLANTS (BASEL, SWITZERLAND) 2022; 12:27. [PMID: 36616158 PMCID: PMC9824270 DOI: 10.3390/plants12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 μg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Citrus Bergamia and Cynara Cardunculus Reduce Serum Uric Acid in Individuals with Non-Alcoholic Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121728. [PMID: 36556930 PMCID: PMC9784233 DOI: 10.3390/medicina58121728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Hyperuricemia and liver steatosis are risk factors for cardiovascular diseases and mortality. The use of natural compounds could be a safe and effective alternative to drugs for the treatment of fatty liver and hyperuricemia. Polyphenolic fraction of Citrus Bergamia in association with the extract of Cynara Cardunculus, as nutraceutical, is able to reduce body weight, hepatic steatosis and markers of oxidative stress. Then, we performed a secondary analysis of a double-blind placebo-controlled trial to examine the effects of this nutraceutical on serum uric acid levels in adults with fatty liver. Materials and Methods: The study included 94 individuals with hepatic steatosis. For six weeks, the intervention group was given a nutraceutical (300 mg/day) comprising a Bergamot polyphenol fraction and Cynara Cardunculus extract. The control group received a daily pill of placebo. Serum uric acid, lipids, glucose and anthropometric parameters were assessed at baseline and after 6 weeks. Results: We found a greater reduction in serum uric acid in the participants taking the nutraceutical rather than placebo (−0.1 ± 0.7 mg/dL vs. 0.3 ± 0.7 mg/dL, p = 0.004), and especially in those with moderate/severe hepatic steatosis also after adjustment for confounding variables. In addition, we analysed the two groups according to tertiles of uric acid concentration. Among participants taking the nutraceutical, we found in those with the highest baseline serum uric acid (>5.4 mg/dL) the greater reduction compared to the lowest baseline uric acid (−7.8% vs. +4.9%; adjusted p = 0.04). The stepwise multivariable analysis confirmed the association between the absolute serum uric acid change and nutraceutical treatment (B = −0.43; p = 0.004). Conclusions: A nutraceutical containing bioactive components from bergamot and wild cardoon reduced serum uric acid during 6 weeks in adults with fatty liver. Future investigations are needed to evaluate the efficacy of this nutraceutical in the treatment of hyperuricaemia.
Collapse
|